301
|
Li YZ, Chen JH, Tsai CF, Yeh WL. Anti-inflammatory Property of Imperatorin on Alveolar Macrophages and Inflammatory Lung Injury. JOURNAL OF NATURAL PRODUCTS 2019; 82:1002-1008. [PMID: 30892032 DOI: 10.1021/acs.jnatprod.9b00145] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Imperatorin is one of the furanocoumarin derivatives and exists in many medicinal herbs with anticancer, antiviral, antibacterial, and antihypertensive activities. In this study, we examined the anti-inflammatory effects of imperatorin on inflammation-associated lung diseases. Imperatorin reduced iNOS and COX-2 expression and also IL-6 and TNFα production enhanced by zymosan. Imperatorin also inhibited the signaling pathways of JAK/STAT and NF-κB. Moreover, in vivo study also revealed that zymosan-induced immune cell infiltration, pulmonary fibrosis, and edema were relieved by imperatorin in mice. We found that imperatorin exerts anti-inflammatory effects that are associated with amelioration of lung inflammation, edema, and rapid fibrosis. Studies on alveolar macrophages also reveal that imperatorin reduced the production of pro-inflammatory mediators and cytokines and inhibited pro-inflammatory JAK1/STAT3 and NF-κB signaling pathways. These results indicate that imperatorin may be a potential anti-inflammatory agent for inflammatory-associated lung diseases.
Collapse
Affiliation(s)
- Ya-Zhen Li
- Department of Biological Science and Technology , China Medical University , No. 91 Hsueh-Shih Road , Taichung , 40402 , Taiwan
| | - Jia-Hong Chen
- Department of General Surgery , Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation , Taichung , 42743 , Taiwan
| | - Cheng-Fang Tsai
- Department of Biotechnology , Asia University , No. 500 Lioufeng Road , Taichung , 41354 , Taiwan
| | - Wei-Lan Yeh
- Institute of New Drug Development , China Medical University , No. 91 Hsueh-Shih Road , Taichung , 40402 , Taiwan
- Research Center for Tumor Medical Science , China Medical University , No. 91 Hsueh-Shih Road , Taichung , 40402 , Taiwan
| |
Collapse
|
302
|
Cho H, Eom Y. Potential Forensic Application of Receptor for Advanced Glycation End Products (RAGE) as a Novel Biomarker for Estimating Postmortem Interval. J Forensic Sci 2019; 64:1878-1883. [DOI: 10.1111/1556-4029.14063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Hye‐Won Cho
- Department of Biomedical Laboratory Science College of Medical Sciences Soonchunhyang University Asan 31538 Republic of Korea
| | - Yong‐Bin Eom
- Department of Biomedical Laboratory Science College of Medical Sciences Soonchunhyang University Asan 31538 Republic of Korea
| |
Collapse
|
303
|
Fizeșan I, Cambier S, Moschini E, Chary A, Nelissen I, Ziebel J, Audinot JN, Wirtz T, Kruszewski M, Pop A, Kiss B, Serchi T, Loghin F, Gutleb AC. In vitro exposure of a 3D-tetraculture representative for the alveolar barrier at the air-liquid interface to silver particles and nanowires. Part Fibre Toxicol 2019; 16:14. [PMID: 30940208 PMCID: PMC6444883 DOI: 10.1186/s12989-019-0297-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/06/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The present study aimed to evaluate the potential differences in the biological effects of two types of spherical silver particles of 20 and 200 nm (Ag20 and Ag200), and of PVP-coated silver nanowires (AgNWs) with a diameter of 50 nm and length up to 50 μm, using a complex 3D model representative for the alveolar barrier cultured at air-liquid interface (ALI). The alveolar model was exposed to 0.05, 0.5 and 5 μg/cm2 of test compounds at ALI using a state-of-the-art exposure system (Vitrocell™Cloud System). Endpoints related to the oxidative stress induction, anti-oxidant defence mechanisms, pro-inflammatory responses and cellular death were selected to evaluate the biocompatibility of silver particles and nanowires (AgNMs) and to further ascribe particular biological effects to the different morphologic properties between the three types of AgNMs evaluated. RESULTS Significant cytotoxic effect was observed for all three types of AgNMs at the highest tested doses. The increased mRNA levels of the pro-apoptotic gene CASP7 suggests that apoptosis may occur after exposure to AgNWs. All three types of AgNMs increased the mRNA level of the anti-oxidant enzyme HMOX-1 and of the metal-binding anti-oxidant metallothioneins (MTs), with AgNWs being the most potent inducer. Even though all types of AgNMs induced the nuclear translocation of NF-kB, only AgNWs increased the mRNA level of pro-inflammatory mediators. The pro-inflammatory response elicited by AgNWs was further confirmed by the increased secretion of the 10 evaluated interleukins. CONCLUSION In the current study, we demonstrated that the direct exposure of a complex tetra-culture alveolar model to different types of AgNMs at ALI induces shape- and size-specific biological responses. From the three AgNMs tested, AgNWs were the most potent in inducing biological alterations. Starting from 50 ng/cm2, a dose representative for an acute exposure in a high exposure occupational setting, AgNWs induced prominent changes indicative for a pro-inflammatory response. Even though the acute responses towards a dose representative for a full-lifetime exposure were also evaluated, chronic exposure scenarios at low dose are still unquestionably needed to reveal the human health impact of AgNMs during realistic conditions.
Collapse
Affiliation(s)
- Ionel Fizeșan
- Toxicology Department, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Elisa Moschini
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Aline Chary
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Inge Nelissen
- Health Unit, Flemish Institute for Technological Research (VITO NV), Mol, Belgium
| | - Johanna Ziebel
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Jean-Nicolas Audinot
- Material Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Tom Wirtz
- Material Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Marcin Kruszewski
- Faculty of Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, Rzeszow, Poland
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, Warszawa, Poland
| | - Anca Pop
- Toxicology Department, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Béla Kiss
- Toxicology Department, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Tommaso Serchi
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Felicia Loghin
- Toxicology Department, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Arno C. Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| |
Collapse
|
304
|
Laskin DL, Malaviya R, Laskin JD. Role of Macrophages in Acute Lung Injury and Chronic Fibrosis Induced by Pulmonary Toxicants. Toxicol Sci 2019; 168:287-301. [PMID: 30590802 PMCID: PMC6432864 DOI: 10.1093/toxsci/kfy309] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A diverse group of toxicants has been identified that cause injury to the lung including gases (eg, ozone, chlorine), particulates/aerosols (eg, diesel exhaust, fly ash, other combustion products, mustards, nanomaterials, silica, asbestos), chemotherapeutics (eg, bleomycin), and radiation. The pathologic response to these toxicants depends on the dose and duration of exposure and their physical/chemical properties. A common response to pulmonary toxicant exposure is an accumulation of proinflammatory/cytotoxic M1 macrophages at sites of tissue injury, followed by the appearance of anti-inflammatory/wound repair M2 macrophages. It is thought that the outcome of the pathogenic responses to toxicants depends on the balance in the activity of these macrophage subpopulations. Overactivation of either M1 or M2 macrophages leads to injury and disease pathogenesis. Thus, the very same macrophage-derived mediators, released in controlled amounts to destroy injurious materials and pathogens (eg, reactive oxygen species, reactive nitrogen species, proteases, tumor necrosis factor α) and initiate wound repair (eg, transforming growth factor β, connective tissue growth factor, vascular endothelial growth factor), can exacerbate acute lung injury and/or induce chronic disease such as fibrosis, chronic obstructive pulmonary disease, and asthma, when released in excess. This review focuses on the role of macrophage subsets in acute lung injury and chronic fibrosis. Understanding how these pathologies develop following exposure to toxicants, and the contribution of resident and inflammatory macrophages to disease pathogenesis may lead to the development of novel approaches for treating lung diseases.
Collapse
Affiliation(s)
- Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy
| | - Rama Malaviya
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
305
|
Shen Y, Song J, Wang Y, Chen Z, Zhang L, Yu J, Zhu D, Zhong M. M2 macrophages promote pulmonary endothelial cells regeneration in sepsis-induced acute lung injury. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:142. [PMID: 31157263 DOI: 10.21037/atm.2019.02.47] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background Macrophages can polarize to M2 phenotype to decrease inflammation and encourage tissue repair. Nonetheless, its role in sepsis-induced acute lung injury and its effect on endothelial cells (ECs) regeneration remains unknown. The aim of the current study was to explore the impact of M2 macrophages on pulmonary ECs proliferation in sepsis-induced acute lung injury. Methods We co-cultured mouse lung microvascular endothelial cells (MLMVECs) with M2 macrophages following LPS challenge. M2 macrophages were intratracheally transplanted into mice subjected to cecal ligation and puncture (CLP). We further performed cytokine array for the supernatant from M2 macrophages and serum from mice subjected with CLP. Results We found both co-culture with M2 macrophages and treating with supernatant from M2 macrophages increased ECs viability following LPS challenge. Intratracheal transplantation of M2 macrophages markedly promoted pulmonary ECs proliferation, manifesting as attenuation of lung microvascular permeability and lung tissue edema, as well as improvement of survival rate. We further found that CXCL12, IL-1ra, TIMP-1, IL-4, and CXCL1 were increased in the supernatant of M2 macrophages in vitro. G-CSF and Complement Component 5a (C5/C5a) were increased in the serum of the M2-transplanted mice. Conclusions The present study suggested M2 macrophages could promote ECs proliferation in sepsis-induced ALI through secretion of anti-inflammatory cytokines and growth factors.
Collapse
Affiliation(s)
- Yaxing Shen
- Department of Thoracic Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China.,Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jieqiong Song
- Department of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Yingqin Wang
- Department of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Zhenglong Chen
- School of Medical Instrumentation, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Lin Zhang
- Center of Emergency and Intensive Care Unit, Jinshan Hospital Fudan University, Shanghai 201508, China
| | - Jie Yu
- Department of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Duming Zhu
- Department of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai 200032, China
| |
Collapse
|
306
|
Zhang S, Ren Q, Qi H, Liu S, Liu Y. Adverse Effects of Fine-Particle Exposure on Joints and Their Surrounding Cells and Microenvironment. ACS NANO 2019; 13:2729-2748. [PMID: 30773006 DOI: 10.1021/acsnano.8b08517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Current understanding of the health risks and adverse effects upon exposure to fine particles is premised on the direct association of particles with target organs, particularly the lung; however, fine-particle exposure has also been found to have detrimental effects on sealed cavities distant to the portal-of-entry, such as joints. Moreover, the fundamental toxicological issues have been ascribed to the direct toxic mechanisms, in particular, oxidative stress and proinflammatory responses, without exploring the indirect mechanisms, such as compensated, adaptive, and secondary effects. In this Review, we recapitulate the current findings regarding the detrimental effects of fine-particle exposure on joints, the surrounding cells, and microenvironment, as well as their deteriorating impact on the progression of arthritis. We also elaborate the likely molecular mechanisms underlying the particle-induced detrimental influence on joints, not limited to direct toxicity, but also considering the other indirect mechanisms. Because of the similarities between fine air particles and engineered nanomaterials, we compare the toxicities of engineered nanomaterials to those of fine air particles. Arthritis and joint injuries are prevalent, particularly in the elderly population. Considering the severity of global exposure to fine particles and limited studies assessing the detrimental effects of fine-particle exposure on joints and arthritis, this Review aims to appeal to a broad interest and to promote more research efforts in this field.
Collapse
Affiliation(s)
- Shuping Zhang
- Institute for Medical Engineering and Science , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , P. R. China
| | - Hui Qi
- Beijing Jishuitan Hospital , Peking University Health Science Center , Beijing 100035 , P. R. China
- Beijing Research Institute of Traumatology and Orthopaedics , Beijing 100035 , P. R. China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , P. R. China
| | - Yajun Liu
- Beijing Jishuitan Hospital , Peking University Health Science Center , Beijing 100035 , P. R. China
| |
Collapse
|
307
|
Bottemanne P, Paquot A, Ameraoui H, Alhouayek M, Muccioli GG. The α/β–hydrolase domain 6 inhibitor WWL70 decreases endotoxin‐induced lung inflammation in mice, potential contribution of 2‐arachidonoylglycerol, and lysoglycerophospholipids. FASEB J 2019; 33:7635-7646. [DOI: 10.1096/fj.201802259r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pauline Bottemanne
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de Louvain (UCLouvain)BrusselsBelgium
| | - Adrien Paquot
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de Louvain (UCLouvain)BrusselsBelgium
| | - Hafsa Ameraoui
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de Louvain (UCLouvain)BrusselsBelgium
| | - Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de Louvain (UCLouvain)BrusselsBelgium
| | - Giulio G. Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de Louvain (UCLouvain)BrusselsBelgium
| |
Collapse
|
308
|
Liu Q, Dwyer GK, Zhao Y, Li H, Mathews LR, Chakka AB, Chandran UR, Demetris JA, Alcorn JF, Robinson KM, Ortiz LA, Pitt BR, Thomson AW, Fan MH, Billiar TR, Turnquist HR. IL-33-mediated IL-13 secretion by ST2+ Tregs controls inflammation after lung injury. JCI Insight 2019; 4:123919. [PMID: 30779711 DOI: 10.1172/jci.insight.123919] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/12/2019] [Indexed: 12/24/2022] Open
Abstract
Acute respiratory distress syndrome is an often fatal disease that develops after acute lung injury and trauma. How released tissue damage signals, or alarmins, orchestrate early inflammatory events is poorly understood. Herein we reveal that IL-33, an alarmin sequestered in the lung epithelium, is required to limit inflammation after injury due to an unappreciated capacity to mediate Foxp3+ Treg control of local cytokines and myeloid populations. Specifically, Il33-/- mice are more susceptible to lung damage-associated morbidity and mortality that is typified by augmented levels of the proinflammatory cytokines and Ly6Chi monocytes in the bronchoalveolar lavage fluid. Local delivery of IL-33 at the time of injury is protective but requires the presence of Treg cells. IL-33 stimulates both mouse and human Tregs to secrete IL-13. Using Foxp3Cre × Il4/Il13fl/fl mice, we show that Treg expression of IL-13 is required to prevent mortality after acute lung injury by controlling local levels of G-CSF, IL-6, and MCP-1 and inhibiting accumulation of Ly6Chi monocytes. Our study identifies a regulatory mechanism involving IL-33 and Treg secretion of IL-13 in response to tissue damage that is instrumental in limiting local inflammatory responses and may shape the myeloid compartment after lung injury.
Collapse
Affiliation(s)
- Quan Liu
- Thomas E. Starzl Transplantation Institute.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Southern University of Science and Technology School of Medicine, Shenzhen, China
| | - Gaelen K Dwyer
- Thomas E. Starzl Transplantation Institute.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yifei Zhao
- Thomas E. Starzl Transplantation Institute.,Tsinghua University School of Medicine, Beijing, China
| | - Huihua Li
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | | | | | | | - Jake A Demetris
- Thomas E. Starzl Transplantation Institute.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John F Alcorn
- Department of Pediatrics, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Luis A Ortiz
- Department of Environmental and Occupational Heath, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Bruce R Pitt
- Department of Environmental and Occupational Heath, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Angus W Thomson
- Thomas E. Starzl Transplantation Institute.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ming-Hui Fan
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hēth R Turnquist
- Thomas E. Starzl Transplantation Institute.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
309
|
Zhang W, Zhang Y, He Y, Wang X, Fang Q. Lipopolysaccharide mediates time-dependent macrophage M1/M2 polarization through the Tim-3/Galectin-9 signalling pathway. Exp Cell Res 2019; 376:124-132. [DOI: 10.1016/j.yexcr.2019.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/09/2019] [Indexed: 11/25/2022]
|
310
|
de Carvalho Santuchi M, Dutra MF, Vago JP, Lima KM, Galvão I, de Souza-Neto FP, Morais e Silva M, Oliveira AC, de Oliveira FCB, Gonçalves R, Teixeira MM, Sousa LP, dos Santos RAS, da Silva RF. Angiotensin-(1-7) and Alamandine Promote Anti-inflammatory Response in Macrophages In Vitro and In Vivo. Mediators Inflamm 2019; 2019:2401081. [PMID: 30918468 PMCID: PMC6409041 DOI: 10.1155/2019/2401081] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/12/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023] Open
Abstract
The renin-angiotensin system (RAS) peptides play an important role in inflammation. Resolution of inflammation contributes to restore tissue homeostasis, and it is characterized by neutrophil apoptosis and their subsequent removal by macrophages, which are remarkable plastic cells involved in the pathophysiology of diverse inflammatory diseases. However, the effects of RAS peptides on different macrophage phenotypes are still emerging. Here, we evaluated the effects of angiotensin-(1-7) (Ang-(1-7)) and the most novel RAS peptide, alamandine, on resting (M0), proinflammatory M(LPS+IFN-γ), and anti-inflammatory M(IL-4) macrophage phenotypes in vitro, as well as on specific immune cell populations and macrophage subsets into the pleural cavity of LPS-induced pleurisy in mice. Our results showed that Ang-(1-7) and alamandine, through Mas and MrgD receptors, respectively, do not affect M0 macrophages but reduce the proinflammatory TNF-α, CCL2, and IL-1β transcript expression levels in LPS+IFN-γ-stimulated macrophages. Therapeutic administration of these peptides in LPS-induced inflammation in mice decreased the number of neutrophils and M1 (F4/80lowGr1+CD11bmed) macrophage frequency without affecting the other investigated macrophage subsets. Our data suggested that both Ang-(1-7) and alamandine, through their respective receptors Mas and MrgD, promote an anti-inflammatory reprogramming of M(LPS+IFN-γ)/M1 macrophages under inflammatory circumstances and potentiate the reprogramming induced by IL-4. In conclusion, our work sheds light on the emerging proresolving properties of Ang-(1-7) and alamandine, opening new avenues for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Melissa de Carvalho Santuchi
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Miriane Fernandes Dutra
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Priscila Vago
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Kátia Maciel Lima
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Izabela Galvão
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernando Pedro de Souza-Neto
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mario Morais e Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Aline Cristina Oliveira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Ricardo Gonçalves
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia Pires Sousa
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Robson Augusto Souza dos Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rafaela Fernandes da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
311
|
Gao W, Wang Y, Xiong Y, Sun L, Wang L, Wang K, Lu HY, Bao A, Turvey SE, Li Q, Yang H. Size-dependent anti-inflammatory activity of a peptide-gold nanoparticle hybrid in vitro and in a mouse model of acute lung injury. Acta Biomater 2019; 85:203-217. [PMID: 30597258 PMCID: PMC8960115 DOI: 10.1016/j.actbio.2018.12.046] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 12/21/2018] [Accepted: 12/27/2018] [Indexed: 11/18/2022]
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a life-threatening condition of critically-ill patients, characterized by overwhelming inflammatory responses in the lung. Multiple lines of evidence suggest that the excessive activation of Toll-like receptor 4 (TLR4) plays an important role in this detrimental lung inflammation. Recently, we developed a unique class of peptide-gold nanoparticle (GNP) hybrids that act as potent nano-inhibitors of TLR4 signaling by modulating the process of endosomal acidification. In this study, we aimed to identify the key physiochemical factors that could further strengthen the anti-inflammatory activity of these nano-inhibitors, including the nanoparticle size, the density of peptides coating the nanoparticle surface, as well as the number of the effective amino acid phenylalanine (F) residues in the peptide sequence. Among these factors, we found that the nanoparticle size could significantly affect the TLR4 inhibition. Specifically, the peptide-GNP hybrids with a GNP core of 20 nm (P12(G20)) exhibited the most potent inhibitory activity on TLR4 activation and its downstream cytokine production among those with a GNP core of 13 nm (P12(G13)) and 5 nm (P12(G5)) in THP-1 cell-derived macrophages. This size-dependent anti-inflammatory effect of the hybrid P12 was also observed in a lipopolysaccharide (LPS)-induced mouse model of ALI. It was found that P12(G20) was superior to P12(G13) in prolonging the survival of mice experiencing lethal LPS challenge, decreasing the acute lung inflammation, and alleviating diffuse alveolar damage in the lungs. Interestingly, P12(G20) could also promote long-term tolerance to endotoxin. Detailed mechanistic studies demonstrated that when compared to the smaller P12(G13), the larger P12(G20) had higher cellular uptake and a stronger endosomal pH buffering capacity, contributing to its enhanced therapeutic effects on reducing TLR4 activation in vitro and in vivo. Overall, this study suggests that nanoparticle size is one key factor determining the anti-inflammatory potency of the peptide-GNP hybrids, and the hybrid P12 may serve as a promising, novel class of nanotherapeutics for modulating TLR signaling to treat ALI/ARDS. STATEMENT OF SIGNIFICANCE: We have developed a new class of nanoparticle-based inhibitors (i.e., peptide-GNP hybrids) targeting TLR4 signaling in macrophages. Through evidence-based engineering of the nanoparticle size, surface peptide ligand density and effective amino acid (phenylalanine, F) chain length, we identified a peptide-GNP hybrid, P12(G20), with enhanced anti-inflammatory activity. Specifically, P12(G20) was more potent in reducing inflammation in THP-1 cell-derived macrophages and in a LPS-induced ALI mouse model. More interestingly, P12(G20) facilitated long-term protection against lethal LPS challenge in vivo and induced endotoxin tolerance in vitro. We anticipate that these new hybrids would serve as the next generation anti-inflammatory nano-therapeutics for the treatment of ALI/ARDS or other acute and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Wei Gao
- Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University Shool of Medicine, Shanghai 201620, China
| | - Yulu Wang
- Department of Pulmonary and Critical Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Ye Xiong
- Department of Pulmonary and Critical Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Liya Sun
- Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University Shool of Medicine, Shanghai 201620, China
| | - Lu Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University Shool of Medicine, Shanghai 201620, China
| | - Kun Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University Shool of Medicine, Shanghai 201620, China
| | - Henry Y Lu
- BC Children's Hospital Research Institute, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Aihua Bao
- Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University Shool of Medicine, Shanghai 201620, China
| | - Stuart E Turvey
- BC Children's Hospital Research Institute, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University Shool of Medicine, Shanghai 201620, China; Department of Pulmonary and Critical Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China; Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai 200120, China.
| | - Hong Yang
- Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University Shool of Medicine, Shanghai 201620, China.
| |
Collapse
|
312
|
Abstract
Acute respiratory distress syndrome (ARDS) is a syndrome of acute respiratory failure caused by noncardiogenic pulmonary edema. Despite five decades of basic and clinical research, there is still no effective pharmacotherapy for this condition and the treatment remains primarily supportive. It is critical to study the molecular and physiologic mechanisms that cause ARDS to improve our understanding of this syndrome and reduce mortality. The goal of this review is to describe our current understanding of the pathogenesis and pathophysiology of ARDS. First, we will describe how pulmonary edema fluid accumulates in ARDS due to lung inflammation and increased alveolar endothelial and epithelial permeabilities. Next, we will review how pulmonary edema fluid is normally cleared in the uninjured lung, and describe how these pathways are disrupted in ARDS. Finally, we will explain how clinical trials and preclinical studies of novel therapeutic agents have further refined our understanding of this condition, highlighting, in particular, the study of mesenchymal stromal cells in the treatment of ARDS.
Collapse
Affiliation(s)
- Laura A. Huppert
- Department of Medicine, University of California San Francisco, San Francisco, CA USA
| | - Michael A. Matthay
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA USA
| | - Lorraine B. Ware
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| |
Collapse
|
313
|
Englert JA, Bobba C, Baron RM. Integrating molecular pathogenesis and clinical translation in sepsis-induced acute respiratory distress syndrome. JCI Insight 2019; 4:e124061. [PMID: 30674720 PMCID: PMC6413834 DOI: 10.1172/jci.insight.124061] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sepsis-induced acute respiratory distress syndrome (ARDS) has high morbidity and mortality and arises after lung infection or infection at extrapulmonary sites. An aberrant host response to infection leads to disruption of the pulmonary alveolar-capillary barrier, resulting in lung injury characterized by hypoxemia, inflammation, and noncardiogenic pulmonary edema. Despite increased understanding of the molecular biology underlying sepsis-induced ARDS, there are no targeted pharmacologic therapies for this devastating condition. Here, we review the molecular underpinnings of sepsis-induced ARDS with a focus on relevant clinical and translational studies that point toward novel therapeutic strategies.
Collapse
Affiliation(s)
- Joshua A. Englert
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Christopher Bobba
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Rebecca M. Baron
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
314
|
Feng L, Sun Y, Song P, Xu L, Wu X, Wu X, Shen Y, Sun Y, Kong L, Wu X, Xu Q. Seselin ameliorates inflammation via targeting Jak2 to suppress the proinflammatory phenotype of macrophages. Br J Pharmacol 2019; 176:317-333. [PMID: 30338847 PMCID: PMC6295420 DOI: 10.1111/bph.14521] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/23/2018] [Accepted: 09/24/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Sepsis is a serious clinical condition with a high mortality rate. Anti inflammatory agents have been found to be beneficial for the treatment of sepsis. Here, we have evaluated the anti-inflammatory activity of seselin in models of sepsis and investigated the underlying molecular mechanism(s). EXPERIMENTAL APPROACH In vivo therapeutic effects of seselin was evaluated in two models of sepsis, caecal ligation and puncture or injection of LPS, in C57BL/6 mice. In vitro, anti-inflammatory activity of seselin was assessed with macrophages stimulated with LPS and IFN-γ. Anti inflammatory actions were analysed with immunohistochemical methods, ELISA and Western blotting. Flow cytometry was used to assess markers of macrophage phenotype (pro- or anti-inflammatory). Other methods used included co-immunoprecipitation, cellular thermal shift assay and molecular docking. KEY RESULTS In vivo, seselin clearly ameliorated sepsis induced by caecal ligation and puncture. In lung tissue from septic mice and in cultured macrophages, seselin down-regulated levels of proinflammatory factors and activity of STAT1 and p65, the master signal pathway molecules for polarization of macrophages into the proinflammatory phenotype. Importantly, adoptive transfer of bone marrow-derived macrophages, pretreated with seselin, lowered systemic proinflammatory factors in mice challenged with LPS. The underlying mechanism was that seselin targeted Jak2 to block interaction with IFNγ receptors and downstream STAT1. CONCLUSIONS AND IMPLICATIONS Seselin exhibited anti-inflammatory activity through its action on Jak2. These results indicated a possible application of seselin to the treatment of inflammatory disease via blocking the development of the proinflammatory phenotype of macrophages.
Collapse
Affiliation(s)
- Lili Feng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Life SciencesNanjing UniversityNanjingChina
| | - Yi Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Life SciencesNanjing UniversityNanjingChina
| | - Pingping Song
- Jiangsu Centre for Research and Development of Medicinal Plants, Institute of Botany Jiangsu ProvinceChinese Academy of SciencesNanjingChina
| | - Lisha Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Life SciencesNanjing UniversityNanjingChina
| | - Xingxin Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Life SciencesNanjing UniversityNanjingChina
| | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Life SciencesNanjing UniversityNanjingChina
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Life SciencesNanjing UniversityNanjingChina
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Life SciencesNanjing UniversityNanjingChina
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Life SciencesNanjing UniversityNanjingChina
| | - Xudong Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Life SciencesNanjing UniversityNanjingChina
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Life SciencesNanjing UniversityNanjingChina
| |
Collapse
|
315
|
Jiang L, Jiang Q, Yang S, Huang S, Han X, Duan J, Pan S, Zhao M, Guo S. GYY4137 attenuates LPS-induced acute lung injury via heme oxygenase-1 modulation. Pulm Pharmacol Ther 2018; 54:77-86. [PMID: 30605726 DOI: 10.1016/j.pupt.2018.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 12/16/2018] [Accepted: 12/30/2018] [Indexed: 12/16/2022]
Abstract
GYY4137, a slow-releasing hydrogen sulfide (H2S) donor, has been reported to exert anti-inflammatory activity and protect against sepsis. Heme oxygenase-1 (HO-1) is an important anti-inflammatory heat shock protein and plays a similar effect on sepsis. This study investigated the role of GYY4137 in acute lung injury (ALI) via HO-1 regulation. Lung injury was assessed in mice challenged with intratracheal lipopolysaccharide (LPS) and the mechanism of anti-inflammatory effects of GYY4137 was investigated in mice and RAW264.7 cells. GYY4137 reduced the LPS-mediated pulmonary injury and neutrophil infiltration, and inhibited the LPS-induced production of proinflammatory cytokines, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Moreover, GYY4137 suppressed the LPS-evoked NF-κB activation in RAW264.7 cells. GYY4137, not time-expired GYY4137 significantly induced HO-1 expression compared with the LPS group. The beneficial effects of GYY4137 above were reversed by the HO-1 inhibitor tin protoporphyrin (SnPP). These results suggest an anti-inflammatory effect and a therapeutic role of GYY4137 in LPS-induced ALI via HO-1 regulation.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Jiang
- School of Statistics, Beijing Normal University, Beijing, China
| | - Songlin Yang
- Department of ICU, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shicong Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoli Han
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Duan
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shangha Pan
- The Key Hepatosplenic Surgery Laboratory, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingyan Zhao
- Department of ICU, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Shuliang Guo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
316
|
Enomoto N, Oyama Y, Enomoto Y, Mikamo M, Karayama M, Hozumi H, Suzuki Y, Kono M, Furuhashi K, Fujisawa T, Inui N, Nakamura Y, Suda T. Prognostic evaluation of serum ferritin in acute exacerbation of idiopathic pulmonary fibrosis. CLINICAL RESPIRATORY JOURNAL 2018; 12:2378-2389. [PMID: 29873202 DOI: 10.1111/crj.12918] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/13/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND Acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) has an extremely poor prognosis. The role of ferritin in the pathogenesis of AE-IPF is not well known while serum ferritin is a key prognostic indicator for patients with clinically amyopathic dermatomyositis with rapidly progressive interstitial pneumonia. OBJECTIVE To elucidate the clinical importance of serum ferritin in patients with AE-IPF. METHODS Thirty-seven patients (48 episodes), who were diagnosed with AE-IPF and treated at our hospital between 1997 and 2015, were retrospectively studied. RESULTS Patients with AE-IPF had significantly higher levels of serum ferritin than baseline levels at the first diagnosis of IPF (P = 0.0017). Receiver operating characteristic analysis showed the cut-off value 174 ng/mL for the separation of AE (area under the curve, 0.700). No patients with AE-IPF were positive for anti- melanoma differentiation-associated gene 5 antibody. Patients with AE-IPF and higher ferritin (≥174 ng/mL) had lower %FVC and %DLCO before AE, and those with much higher ferritin (≥500 ng/mL) had significantly worse prognosis than those with lower ferritin (log-rank, P = 0.024). Immunohistochemical staining in autopsy specimens showed alveolar macrophages that were producing ferritin. Finally, in multivariate Cox proportional hazards analyses, serum ferritin level of ≥500 ng/mL was a significant worse prognostic factor (hazard ratio 5.280, P = 0.046). CONCLUSION Higher serum ferritin may be related to a worse prognosis in patients with AE-IPF.
Collapse
Affiliation(s)
- Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Health Administration Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoshiyuki Oyama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasunori Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masashi Mikamo
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Karayama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hironao Hozumi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuzo Suzuki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Kono
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuki Furuhashi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoki Inui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yutaro Nakamura
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
317
|
Krishnamoorthy N, Abdulnour REE, Walker KH, Engstrom BD, Levy BD. Specialized Proresolving Mediators in Innate and Adaptive Immune Responses in Airway Diseases. Physiol Rev 2018; 98:1335-1370. [PMID: 29717929 DOI: 10.1152/physrev.00026.2017] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Airborne pathogens and environmental stimuli evoke immune responses in the lung. It is critical to health that these responses be controlled to prevent tissue damage and the compromise of organ function. Resolution of inflammation is a dynamic process that is coordinated by biochemical and cellular mechanisms. Recently, specialized proresolving mediators (SPMs) have been identified in resolution exudates. These molecules orchestrate anti-inflammatory and proresolving actions that are cell type specific. In this review, we highlight SPM biosynthesis, the influence of SPMs on the innate and adaptive immune responses in the lung, as well as recent insights from SPMs on inflammatory disease pathophysiology. Uncovering these mediators and cellular mechanisms for resolution is providing new windows into physiology and disease pathogenesis.
Collapse
Affiliation(s)
- Nandini Krishnamoorthy
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Raja-Elie E Abdulnour
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Katherine H Walker
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Braden D Engstrom
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
318
|
Abstract
Pneumonia is a type of acute lower respiratory infection that is common and severe. The outcome of lower respiratory infection is determined by the degrees to which immunity is protective and inflammation is damaging. Intercellular and interorgan signaling networks coordinate these actions to fight infection and protect the tissue. Cells residing in the lung initiate and steer these responses, with additional immunity effectors recruited from the bloodstream. Responses of extrapulmonary tissues, including the liver, bone marrow, and others, are essential to resistance and resilience. Responses in the lung and extrapulmonary organs can also be counterproductive and drive acute and chronic comorbidities after respiratory infection. This review discusses cell-specific and organ-specific roles in the integrated physiological response to acute lung infection, and the mechanisms by which intercellular and interorgan signaling contribute to host defense and healthy respiratory physiology or to acute lung injury, chronic pulmonary disease, and adverse extrapulmonary sequelae. Pneumonia should no longer be perceived as simply an acute infection of the lung. Pneumonia susceptibility reflects ongoing and poorly understood chronic conditions, and pneumonia results in diverse and often persistent deleterious consequences for multiple physiological systems.
Collapse
Affiliation(s)
- Lee J Quinton
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| | - Allan J Walkey
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| |
Collapse
|
319
|
Abstract
Acute Respiratory Distress Syndrome (ARDS) is a well-described disease process that can have numerous underlying causes, is commonly seen in the critical care setting, and is often under-recognized. ARDS is characterized by pulmonary edema with refractory hypoxemia, and was traditionally associated with a high mortality rate. The past few decades have generated many studies examining therapeutic interventions for ARDS; however, there are few Level 1 evidence-based interventions to this day that have been shown to improve mortality and outcomes. Lung protective ventilation remains the most studied and evidence-based intervention for the treatment of ARDS.
Collapse
Affiliation(s)
- Hemanshu Prabhakar
- Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Zulfiqar Ali
- Division of Neuroanesthesiology, Department of Anesthesiology, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir India
| |
Collapse
|
320
|
Liu H, Zhou K, Liao L, Zhang T, Yang M, Sun C. Lipoxin A4 receptor agonist BML-111 induces autophagy in alveolar macrophages and protects from acute lung injury by activating MAPK signaling. Respir Res 2018; 19:243. [PMID: 30518355 PMCID: PMC6282312 DOI: 10.1186/s12931-018-0937-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022] Open
Abstract
Background Acute lung injury (ALI) is a life-threatening lung disease where alveolar macrophages (AMs) play a central role both in the early phase to initiate inflammatory responses and in the late phase to promote tissue repair. In this study, we examined whether BML-111, a lipoxin A4 receptor agonist, could alter the phenotypes of AM and thus present prophylactic benefits for ALI. Methods In vitro, isolated AMs were treated with lipopolysaccharide (LPS) to induce ALI. In response to BML-111 pre-treatment, apoptosis and autophagy of AMs were examined by flow cytometry, and by measuring biomarkers for each process. The potential involvement of MAPK1 and mTOR signaling pathway was analyzed. In vivo, an LPS-induced septic ALI model was established in rats and the preventative significance of BML-111 was assessed. On the cellular and molecular levels, the pro-inflammatory cytokines TNF-α and IL-6 from bronchoalveolar lavage were measured by ELISA, and the autophagy in AMs examined using Western blot. Results BML-111 inhibited apoptosis and induced autophagy of AMs in response to ALI inducer, LPS. The enhancement of autophagy was mediated through the suppression of MAPK1 and MAPK8 signaling, but independent of mTOR signaling. In vivo, BML-111 pre-treatment significantly alleviated LPS-induced ALI, which was associated with the reduction of apoptosis, the dampened production of pro-inflammatory cytokines in the lung tissue, as well as the increase of autophagy of AMs. Conclusions This study reveals the prophylactic significance of BML-111 in ALI and the underlying mechanism: by targeting the MAPK signaling but not mTOR pathway, BML-111 stimulates autophagy in AMs, attenuates the LPS-induced cell apoptosis, and promotes the resolution of ALI.
Collapse
Affiliation(s)
- Huaizheng Liu
- Emergency and Intensive Care Center, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan Province, PR, China
| | - Kefu Zhou
- Emergency and Intensive Care Center, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan Province, PR, China
| | - Liangkan Liao
- Emergency and Intensive Care Center, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan Province, PR, China
| | - Tianyi Zhang
- Emergency and Intensive Care Center, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan Province, PR, China
| | - Mingshi Yang
- Emergency and Intensive Care Center, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan Province, PR, China
| | - Chuanzheng Sun
- Emergency and Intensive Care Center, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan Province, PR, China.
| |
Collapse
|
321
|
Derwall M, Martin L, Rossaint R. The acute respiratory distress syndrome: pathophysiology, current clinical practice, and emerging therapies. Expert Rev Respir Med 2018; 12:1021-1029. [PMID: 30431366 DOI: 10.1080/17476348.2018.1548280] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION More than fifty years after the first description of acute respiratory distress syndrome (ARDS) by Ashbaugh and colleagues, no specific treatment of the underlying pathophysiological processes is available. The current therapeutic regime is comprised of supportive measures such as lung protective ventilation, restrictive fluid management, paralyzing drugs, and prone positioning. Although vast improvements have been made in ARDS-treatment during the last five decades, mortality among patients with severe ARDS remains at an unacceptable rate of 45%. Areas covered: This article reviews the evolution of the currently used definition, established pathophysiological mechanism, highlights the current best clinical practice to treat ARDS, gives a brief outlook on cutting edge trends in ARDS research and closes with an expert opinion on the subject. Expert commentary: Individualizing the provided measures to specific genotypes is the key challenge in ARDS research today. The ongoing digital revolution will help to individualize ARDS-treatment and will therefore presumably improve survival and quality of life.
Collapse
Affiliation(s)
- Matthias Derwall
- a Klinik für Anästhesiologie , Uniklinik RWTH Aachen, Medizinische Fakultät RWTH Aachen , Aachen , Germany.,b Klinik für Operative Intensivmedizin und Intermediate Care , Uniklinik RWTH Aachen, Medizinische Fakultät RWTH Aachen , Aachen , Germany
| | - Lukas Martin
- a Klinik für Anästhesiologie , Uniklinik RWTH Aachen, Medizinische Fakultät RWTH Aachen , Aachen , Germany.,b Klinik für Operative Intensivmedizin und Intermediate Care , Uniklinik RWTH Aachen, Medizinische Fakultät RWTH Aachen , Aachen , Germany
| | - Rolf Rossaint
- a Klinik für Anästhesiologie , Uniklinik RWTH Aachen, Medizinische Fakultät RWTH Aachen , Aachen , Germany.,b Klinik für Operative Intensivmedizin und Intermediate Care , Uniklinik RWTH Aachen, Medizinische Fakultät RWTH Aachen , Aachen , Germany
| |
Collapse
|
322
|
Affiliation(s)
- Lee J Quinton
- 1 Pulmonary Center Boston University School of Medicine Boston, Massachusetts
| |
Collapse
|
323
|
Kim J, Chang Y, Bae B, Sohn KH, Cho SH, Chung DH, Kang HR, Kim HY. Innate immune crosstalk in asthmatic airways: Innate lymphoid cells coordinate polarization of lung macrophages. J Allergy Clin Immunol 2018; 143:1769-1782.e11. [PMID: 30414858 DOI: 10.1016/j.jaci.2018.10.040] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 09/21/2018] [Accepted: 10/09/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Recent studies have emphasized the role of innate lymphoid cells (ILCs) in the development of asthma. The involvement of group 2 innate lymphoid cells (ILC2s) in asthma is well studied: however, the participation of other types of ILCs in the development of asthma remains unclear. OBJECTIVE This study aims to understand the role of various ILCs in patients with asthma, especially their effect on macrophage polarization. METHODS Each subset of ILCs and macrophages in induced sputum from 51 steroid-naive patients with asthma and 18 healthy donors was analyzed by using flow cytometry. Alveolar macrophages (AM) were sorted and cocultured with each subset of ILCs to determine whether the polarization of macrophages could be regulated by ILCs. RESULTS In addition to ILC2s, numbers of group 1 innate lymphoid cells (ILC1s) and group 3 innate lymphoid cells (ILC3s) were increased in induced sputum from asthmatic patients when compared with those in healthy control subjects. The dominance of macrophages in induced sputum was more prominent in asthmatic patients than in healthy control subjects. A positive correlation between numbers of ILC2s and numbers of M2 macrophages and those of ILC1s/ILC3s and M1 macrophages was observed. Coculture of ILC2s with AMs induced expression of M2 macrophage-related genes, whereas coculture of ILC1s and ILC3s with AMs induced expression of M1 macrophage-related genes through cytokine secretion, as well as cell-cell contact. According to the inflammatory signature, patients with eosinophilic asthma have more ILC2s and M2 macrophages, and those with noneosinophilic asthma have an M1 macrophage-dominant profile. CONCLUSION A different subset of ILCs regulates macrophage polarization, contributing to developing the distinct phenotype of asthma.
Collapse
Affiliation(s)
- Jihyun Kim
- Laboratory of Mucosal Immunology in the Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Yuna Chang
- Laboratory of Mucosal Immunology in the Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Boram Bae
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Kyoung-Hee Sohn
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sang-Heon Cho
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Doo Hyun Chung
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea; Laboratory of Immune Regulation in the Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Ryun Kang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| | - Hye Young Kim
- Laboratory of Mucosal Immunology in the Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea.
| |
Collapse
|
324
|
Lierova A, Jelicova M, Nemcova M, Proksova M, Pejchal J, Zarybnicka L, Sinkorova Z. Cytokines and radiation-induced pulmonary injuries. JOURNAL OF RADIATION RESEARCH 2018; 59:709-753. [PMID: 30169853 PMCID: PMC6251431 DOI: 10.1093/jrr/rry067] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/11/2018] [Indexed: 05/20/2023]
Abstract
Radiation therapy is one of the most common treatment strategies for thorax malignancies. One of the considerable limitations of this therapy is its toxicity to normal tissue. The lung is the major dose-limiting organ for radiotherapy. That is because ionizing radiation produces reactive oxygen species that induce lesions, and not only is tumor tissue damaged, but overwhelming inflammatory lung damage can occur in the alveolar epithelium and capillary endothelium. This damage may result in radiation-induced pneumonitis and/or fibrosis. While describing the lung response to irradiation generally, the main focus of this review is on cytokines and their roles and functions within the individual stages. We discuss the relationship between radiation and cytokines and their direct and indirect effects on the formation and development of radiation injuries. Although this topic has been intensively studied and discussed for years, we still do not completely understand the roles of cytokines. Experimental data on cytokine involvement are fragmented across a large number of experimental studies; hence, the need for this review of the current knowledge. Cytokines are considered not only as molecular factors involved in the signaling network in pathological processes, but also for their diagnostic potential. A concentrated effort has been made to identify the significant immune system proteins showing positive correlation between serum levels and tissue damages. Elucidating the correlations between the extent and nature of radiation-induced pulmonary injuries and the levels of one or more key cytokines that initiate and control those damages may improve the efficacy of radiotherapy in cancer treatment and ultimately the well-being of patients.
Collapse
Affiliation(s)
- Anna Lierova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence in Brno, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Marcela Jelicova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence in Brno, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Marketa Nemcova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence in Brno, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Magdalena Proksova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence in Brno, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence in Brno, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Lenka Zarybnicka
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence in Brno, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Zuzana Sinkorova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence in Brno, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
- Corresponding author. Department of Radiobiology, Faculty of Military Health Sciences, University of Defence in Brno, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic. Tel.: +420 973 253 219.
| |
Collapse
|
325
|
Liang Y, Yang N, Pan G, Jin B, Wang S, Ji W. Elevated IL-33 promotes expression of MMP2 and MMP9 via activating STAT3 in alveolar macrophages during LPS-induced acute lung injury. Cell Mol Biol Lett 2018; 23:52. [PMID: 30410547 PMCID: PMC6208075 DOI: 10.1186/s11658-018-0117-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/12/2018] [Indexed: 12/31/2022] Open
Abstract
Background Pulmonary inflammation and endothelial barrier permeability increase in acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) induced by pro-inflammatory cytokines and matrix metalloproteinases (MMPs). However, the relationship between pro-inflammatory cytokines and MMPs in ALI/ARDS remains poorly understood. Methods A lipopolysaccharide (LPS)-induced ALI rat model was established through intratracheal instillation. The wet/dry ratios of lung tissues were measured, and bronchoalveolar lavage fluid (BALF) was collected to test protein concentrations, total cell/macrophage numbers, and pro-inflammatory cytokine levels. LPS-treated alveolar macrophages were utilized in in vitro experiments. The expression and secretion of MMPs were respectively detected using quantitative PCR, Western blotting and ELISA assays. Results The levels of IL-33 and MMP2/9 in BALF increased in all the ALI rats with severe lung injury. LPS-induced IL-33 autocrine upregulated the expression of MMP2 and MMP9 through activating STAT3. Neutralizing IL-33 in culture medium with specific antibodies suppressed the expression and secretion of MMP2 and MMP9 in LPS-treated alveolar macrophages. Consistently, eliminating IL-33 decreased the levels of MMP2 and MMP9 in BALF and alleviated lung injury in ALI rats. Conclusion The IL-33/STAT3/MMP2/9 regulatory pathway is activated in alveolar macrophages during acute lung injury, which may exacerbate the pulmonary inflammation.
Collapse
Affiliation(s)
- Yafeng Liang
- 1Department of Pediatric Pulmonology, Children's Hospital of Soochow University, No 303, Jingde Road, Suzhou, 215003 China.,2Department of Pediatric Intensive Care Unit, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325000 China
| | - Nengli Yang
- 3Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
| | - Guoquan Pan
- 2Department of Pediatric Intensive Care Unit, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325000 China
| | - Bingxin Jin
- 2Department of Pediatric Intensive Care Unit, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325000 China
| | - Shufen Wang
- 2Department of Pediatric Intensive Care Unit, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325000 China
| | - Wei Ji
- 1Department of Pediatric Pulmonology, Children's Hospital of Soochow University, No 303, Jingde Road, Suzhou, 215003 China
| |
Collapse
|
326
|
Physiological and structural changes of the lung tissue in male albino rat exposed to immobilization stress. J Cell Physiol 2018; 234:9168-9183. [DOI: 10.1002/jcp.27594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/19/2018] [Indexed: 12/31/2022]
|
327
|
Xiong Y, Gao W, Xia F, Sun Y, Sun L, Wang L, Ben S, Turvey SE, Yang H, Li Q. Peptide-Gold Nanoparticle Hybrids as Promising Anti-Inflammatory Nanotherapeutics for Acute Lung Injury: In Vivo Efficacy, Biodistribution, and Clearance. Adv Healthc Mater 2018; 7:e1800510. [PMID: 30101578 DOI: 10.1002/adhm.201800510] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/17/2018] [Indexed: 12/23/2022]
Abstract
Gold nanoparticles (GNPs) have shown great promises in various biomedical applications. Although GNPs exhibit excellent therapeutic efficacy in in vitro and in vivo in numerous studies, there still exists significant biosafety concerns, mainly for their nonbiodegradability and tendency to be trapped in the liver and spleen. To tackle this problem, hexapeptides are utilized to modify the GNP surface to not only impart them with potent anti-inflammatory activity, but also facilitate their rapid clearance in vivo. Previously, a unique class of peptide-GNP hybrids that potently inhibit multiple TLR signaling pathways in macrophages was identified; in this work, it is further demonstrated that these hybrids, after intratracheal instillation, are capable of effectively reducing lung inflammation and injury by decreasing neutrophil infiltration and increasing the number of regulatory T cells in the lung in a lipopolysaccharide-induced acute lung injury (ALI) mouse model. More importantly, these hybrids can be effectively excreted 26 h post-administration with only 8.49 ± 0.70% of them remaining in the body, primarily in the lung and intestine and less than 0.03% accumulated in the liver and spleen. This work provides strong evidences that properly designed peptide-GNP hybrids can serve as the next generation of effective and safe anti-inflammatory nanotherapeutics to treat ALI.
Collapse
Affiliation(s)
- Ye Xiong
- Department of Pulmonary and Critical Care MedicineShanghai General HospitalShanghai Jiaotong University School of Medicine Shanghai 201620 China
- Department of Pulmonary and Critical Care MedicineChanghai HospitalSecond Military Medical University Shanghai 200433 China
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalTongji University Shanghai 200120 China
| | - Wei Gao
- Department of Pulmonary and Critical Care MedicineShanghai General HospitalShanghai Jiaotong University School of Medicine Shanghai 201620 China
| | - Fan Xia
- Department of Pulmonary MedicineMedicine, 85 Hospital of People's Liberation Army Shanghai 200052 China
| | - Yi Sun
- Department of Laboratory MedicineShanghai General HospitalShanghai Jiaotong University School of Medicine Shanghai 201620 China
| | - Liya Sun
- Department of Pulmonary and Critical Care MedicineShanghai General HospitalShanghai Jiaotong University School of Medicine Shanghai 201620 China
| | - Ling Wang
- Department of Pulmonary and Critical Care MedicineShanghai General HospitalShanghai Jiaotong University School of Medicine Shanghai 201620 China
| | - Suqin Ben
- Department of Pulmonary and Critical Care MedicineShanghai General HospitalShanghai Jiaotong University School of Medicine Shanghai 201620 China
| | - Stuart E. Turvey
- BC Children's Hospital and Child & Family Research InstituteDepartment of PediatricsFaculty of MedicineUniversity of British Columbia Vancouver British Columbia V5Z 4H4 Canada
| | - Hong Yang
- Department of Pulmonary and Critical Care MedicineShanghai General HospitalShanghai Jiaotong University School of Medicine Shanghai 201620 China
| | - Qiang Li
- Department of Pulmonary and Critical Care MedicineShanghai General HospitalShanghai Jiaotong University School of Medicine Shanghai 201620 China
- Department of Pulmonary and Critical Care MedicineChanghai HospitalSecond Military Medical University Shanghai 200433 China
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalTongji University Shanghai 200120 China
| |
Collapse
|
328
|
|
329
|
Rothman SM, Tanis KQ, Gandhi P, Malkov V, Marcus J, Pearson M, Stevens R, Gilliland J, Ware C, Mahadomrongkul V, O'Loughlin E, Zeballos G, Smith R, Howell BJ, Klappenbach J, Kennedy M, Mirescu C. Human Alzheimer's disease gene expression signatures and immune profile in APP mouse models: a discrete transcriptomic view of Aβ plaque pathology. J Neuroinflammation 2018; 15:256. [PMID: 30189875 PMCID: PMC6127905 DOI: 10.1186/s12974-018-1265-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022] Open
Abstract
Background Alzheimer’s disease (AD) is a chronic neurodegenerative disease with pathological hallmarks including the formation of extracellular aggregates of amyloid-beta (Aβ) known as plaques and intracellular tau tangles. Coincident with the formation of Aβ plaques is recruitment and activation of glial cells to the plaque forming a plaque niche. In addition to histological data showing the formation of the niche, AD genetic studies have added to the growing appreciation of how dysfunctional glia pathways drive neuropathology, with emphasis on microglia pathways. Genomic approaches enable comparisons of human disease profiles between different mouse models informing on their utility to evaluate secondary changes to triggers such as Aβ deposition. Methods In this study, we utilized two animal models of AD to examine and characterize the AD-associated pathology: the Tg2576 Swedish APP (KM670/671NL) and TgCRND8 Swedish plus Indiana APP (KM670/671NL + V717F) lines. We used laser capture microscopy (LCM) to isolate samples surrounding Thio-S positive plaques from distal non-plaque tissue. These samples were then analyzed using RNA sequencing. Results We determined age-associated transcriptomic differences between two similar yet distinct APP transgenic mouse models, known to differ in proportional amyloidogenic species and plaque deposition rates. In Tg2576, human AD gene signatures were not observed despite profiling mice out to 15 months of age. TgCRND8 mice however showed progressive and robust induction of lysomal, neuroimmune, and ITIM/ITAM-associated gene signatures overlapping with prior human AD brain transcriptomic studies. Notably, RNAseq analyses highlighted the vast majority of transcriptional changes observed in aging TgCRND8 cortical brain homogenates were in fact specifically enriched within the plaque niche samples. Data uncovered plaque-associated enrichment of microglia-related genes such as ITIM/ITAM-associated genes and pathway markers of phagocytosis. Conclusion This work may help guide improved translational value of APP mouse models of AD, particularly for strategies aimed at targeting neuroimmune and neurodegenerative pathways, by demonstrating that TgCRND8 more closely recapitulates specific human AD-associated transcriptional responses. Electronic supplementary material The online version of this article (10.1186/s12974-018-1265-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah M Rothman
- In Vivo Pharmacology, Merck & Co, Kenilworth, New Jersey, USA
| | - Keith Q Tanis
- Genetics and Genomics, Merck & Co., West Point, Pennsylvania, USA
| | - Pallavi Gandhi
- Neuroscience, Merck & Co., Merck Research Labs, Boston, Massachusetts, USA
| | - Vladislav Malkov
- Genetics and Genomics, Merck & Co., Merck Research Labs, Boston, Massachusetts, USA
| | - Jacob Marcus
- Neuroscience, Merck & Co, West Point, Pennsylvania, USA
| | | | - Richard Stevens
- Genetics and Genomics, Merck & Co., Merck Research Labs, Boston, Massachusetts, USA
| | - Jason Gilliland
- Genetics and Genomics, Merck & Co., West Point, Pennsylvania, USA
| | - Christopher Ware
- Neuroscience, Merck & Co., Merck Research Labs, Boston, Massachusetts, USA
| | | | - Elaine O'Loughlin
- Neuroscience, Merck & Co., Merck Research Labs, Boston, Massachusetts, USA
| | - Gonzalo Zeballos
- Neuroscience, Merck & Co., Merck Research Labs, Boston, Massachusetts, USA
| | - Roger Smith
- Systems Toxicology, Merck & Co., Kenilworth, New Jersey, USA
| | - Bonnie J Howell
- Infectious Diseases and Vaccines, Merck & Co., West Point, Kenilworth, Pennsylvania, USA
| | - Joel Klappenbach
- Genetics and Genomics, Merck & Co., Merck Research Labs, Boston, Massachusetts, USA
| | - Matthew Kennedy
- Neuroscience, Merck & Co., Merck Research Labs, Boston, Massachusetts, USA
| | - Christian Mirescu
- Neuroscience, Merck & Co., Merck Research Labs, Boston, Massachusetts, USA.
| |
Collapse
|
330
|
Ménoret A, Buturla JA, Xu MM, Svedova J, Kumar S, Rathinam VAK, Vella AT. T cell-directed IL-17 production by lung granular γδ T cells is coordinated by a novel IL-2 and IL-1β circuit. Mucosal Immunol 2018; 11:1398-1407. [PMID: 29907868 PMCID: PMC6668340 DOI: 10.1038/s41385-018-0037-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/29/2018] [Accepted: 04/20/2018] [Indexed: 02/04/2023]
Abstract
Immune-mediated lung is considered the result of an exacerbated innate injury immune response, although a role for adaptive lymphocytes is emerging. αβ T cells specific for S. aureus enterotoxin A orchestrate a Tγδ17 response during lung injury. However, the mechanism driving IL-17 production is unclear. Here, we show a role for IL-2 triggering IL-17 production by lung granular γδ T cells as IL-17 synthesis and neutrophil recruitment was reduced by IL-2 blocking mAbs in vitro and in vivo. Mass cytometry analysis revealed that lung γδ T cells responded directly to IL-2 as evident from STAT5 phosphorylation and RoRγt expression. IL-2 receptor blocking mAbs and JAK inhibition impaired STAT5 phosphorylation and IL-17 release. Moreover, inhalation of S. aureus enterotoxin A induced IL-2 secretion and caspase-1-dependent IL-1β activation to drive IL-17 production. This T-cell-mediated inflammasome-dependent IL-17 response is maximum when lung Tγδ17 cells were sequentially stimulated first with IL-2 then IL-1β. Interestingly, when IL-2 is given therapeutically to cancer patients it carries a known risk of lung injury that is largely indistinguishable from that seen in sepsis. Hence, this novel mechanism reveals therapeutic targets treating both acute lung injury and high-dose IL-2 toxicity in cancer.
Collapse
Affiliation(s)
- Antoine Ménoret
- Department of Immunology, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA;,Institute for Systems Genomics, UConn Health, 400 Farmington Avenue, Farmington, CT 06030, USA and
| | - James A. Buturla
- Department of Internal Medicine, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Maria M. Xu
- Department of Immunology, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Julia Svedova
- Department of Immunology, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Sanjeev Kumar
- Department of Immunology, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Vijay A. K. Rathinam
- Department of Immunology, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Anthony T. Vella
- Department of Immunology, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA
| |
Collapse
|
331
|
Li D, Ren W, Jiang Z, Zhu L. Regulation of the NLRP3 inflammasome and macrophage pyroptosis by the p38 MAPK signaling pathway in a mouse model of acute lung injury. Mol Med Rep 2018; 18:4399-4409. [PMID: 30152849 PMCID: PMC6172370 DOI: 10.3892/mmr.2018.9427] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/25/2018] [Indexed: 01/06/2023] Open
Abstract
Acute lung injury and acute respiratory distress syndrome (ALI/ARDS) is characterized by uncontrolled progressive lung inflammation. Macrophages serve a key role in the pathogenesis of ALI/ARDS. Macrophage pyroptosis is a process of cell death releasing the proinflammatory cytokines interleukin (IL)‑1β and IL‑18. It was hypothesized that macrophage pyroptosis may partially account for the uncontrolled lung inflammation of ALI/ARDS. In the present study, greater macrophage pyroptosis in lipopolysaccharide (LPS)‑treated macrophages and the ALI/ARDS mouse model was observed. The expression of nucleotide‑binding domain, leucine‑rich‑containing family, pyrin domain‑containing (NLRP)3 and IL‑1β and cleavage of caspase‑1 were significantly elevated following LPS treatment accompanied by greater activation of p38 mitogen‑activated protein kinase (MAPK) signaling in vitro and in vivo. However, blocking p38 MAPK signaling through the inhibitor SB203580 significantly suppressed the acute lung injury and excessive lung inflammation in vivo, consistent with the reduced expression of the NLRP3 inflammasome and IL‑1β and cleavage of caspase‑1. Pretreatment of the rat NR8383 macrophage cell line with SB203580 significantly decreased the population of caspase‑1+PI+ pyroptotic cells and expression of NLRP3/IL‑1β. However, a larger population of Annexin V+PI‑ apoptotic cells was observed following blocking of the p38 MAPK signaling pathway. The results indicated that blockage of p38 MAPK signaling pathway skewed macrophage cell death from proinflammatory pyroptosis towards non‑inflammatory apoptosis. These effects may contribute to attenuated acute lung injury and excessive inflammation in the SB203580‑treated mice. The results may provide a novel therapeutic strategy for the treatment of uncontrolled lung inflammation in patients with ALI/ARDS.
Collapse
Affiliation(s)
- Dandan Li
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Weiying Ren
- Department of Gerontology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Zhilong Jiang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Lei Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
332
|
Zhang G, Zhang X, Huang H, Ji Y, Li D, Jiang W. Saquinavir plus methylprednisolone ameliorates experimental acute lung injury. ACTA ACUST UNITED AC 2018; 51:e7579. [PMID: 30088541 PMCID: PMC6086550 DOI: 10.1590/1414-431x20187579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/04/2018] [Indexed: 01/01/2023]
Abstract
Glucocorticoid insensitivity is an important barrier to the treatment of several inflammatory diseases, including acute lung injury (ALI). Saquinavir (SQV) is an inhibitor of the human immunodeficiency virus protease, and the therapeutic effects of SQV in ALI accompanied with glucocorticoid insensitivity have not been previously investigated. In this study, the effects of SQV on lipopolysaccharide (LPS)-mediated injury in human pulmonary microvascular endothelial cells (HPMECs), human type I alveolar epithelial cells (AT I), and alveolar macrophages were determined. In addition, the effects of SQV on an LPS-induced ALI model with or without methylprednisolone (MPS) were studied. In LPS-stimulated HPMECs, SQV treatment resulted in a decrease of high mobility group box 1 (HMGB1), phospho-NF-κB (p-NF-κB), and toll-like receptor 4 (TLR4), and an increase of VE-cadherin. Compared to MPS alone, MPS plus SQV attenuated the decrease of glucocorticoid receptor alpha (GRα) and IκBα in LPS-stimulated HPMECs. HMGB1, TLR4, and p-NF-κB expression were also lessened in LPS-stimulated alveolar macrophages with SQV treatment. In addition, SQV reduced the injury in human AT I with a decrease of HMGB1 and p-NF-κB, and with an increase of aquaporin 5 (AQP 5). SQV ameliorated the lung injury caused by LPS in rats with reductions in vascular permeability, myeloperoxidase activity (MPO) and histopathological scores, and with lowered HMGB1, TLR4, and p-NF-κB expression, but with enhanced VE-cadherin expression. By comparison, SQV plus MPS increased GRα and IκBα in lung tissues of rats with ALI. This study demonstrated that SQV prevented experimental ALI and improved glucocorticoid insensitivity by modulating the HMGB1/TLR4 pathway.
Collapse
Affiliation(s)
- Guanghua Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xue Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Haidi Huang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yunxia Ji
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Defang Li
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Wanglin Jiang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
333
|
Brandenberger C, Kling KM, Vital M, Christian M. The Role of Pulmonary and Systemic Immunosenescence in Acute Lung Injury. Aging Dis 2018; 9:553-565. [PMID: 30090646 PMCID: PMC6065297 DOI: 10.14336/ad.2017.0902] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/02/2017] [Indexed: 12/19/2022] Open
Abstract
Acute lung injury (ALI) is associated with increased morbidity and mortality in the elderly (> 65 years), but the knowledge about origin and effects of immunosenescence in ALI is limited. Here, we investigated the immune response at pulmonary, systemic and cellular level in young (2-3 months) and old (18-19 months) C57BL/6J mice to localize and characterize effects of immunosenescence in ALI. ALI was induced by intranasal lipopolysaccharide (LPS) application and the animals were sacrificed 24 or 72 h later. Pulmonary inflammation was investigated by analyzing histopathology, bronchoalveolar lavage fluid (BALF) cytometry and cytokine expression. Systemic serum cytokine expression, spleen lymphocyte populations and the gut microbiome were analyzed, as well as activation of alveolar and bone marrow derived macrophages (BMDM) in vitro. Pulmonary pathology of ALI was more severe in old compared with young mice. Old mice showed significantly more inflammatory cells and pro-inflammatory cyto- or chemokines (TNFα, IL-6, MCP-1, CXCL1, MIP-1α) in the BALF, but a delayed expression of cytokines associated with activation of adaptive immunity and microbial elimination (IL-12 and IFNγ). Alveolar macrophages, but not BMDM, of old mice showed greater activation after in vivo and in vitro stimulation with LPS. No systemic enhanced pro-inflammatory cytokine response was detected in old animals after LPS exposure, but a delayed expression of IL-12 and IFNγ. Furthermore, old mice had less CD8+ T-cells and NK cells and more regulatory T-cells in the spleen compared with young mice and a distinct gut microbiome structure. The results of our study show an increased alveolar macrophage activation and pro-inflammatory signaling in the lungs, but not systemically, suggesting a key role of senescent alveolar macrophages in ALI. A decrease in stimulators of adaptive immunity with advancing age might further promote the susceptibility to a worse prognosis in ALI in elderly.
Collapse
Affiliation(s)
- Christina Brandenberger
- 1Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,2Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,3Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany
| | - Katharina Maria Kling
- 1Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,2Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Marius Vital
- 4Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mühlfeld Christian
- 1Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,2Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,3Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany
| |
Collapse
|
334
|
Zhang D, Li X, Hu Y, Jiang H, Wu Y, Ding Y, Yu K, He H, Xu J, Sun L, Qian F. Tabersonine attenuates lipopolysaccharide-induced acute lung injury via suppressing TRAF6 ubiquitination. Biochem Pharmacol 2018; 154:183-192. [DOI: 10.1016/j.bcp.2018.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022]
|
335
|
Magnani ND, Dada LA, Sznajder JI. Ubiquitin-proteasome signaling in lung injury. Transl Res 2018; 198:29-39. [PMID: 29752900 PMCID: PMC6986356 DOI: 10.1016/j.trsl.2018.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/15/2018] [Accepted: 04/16/2018] [Indexed: 12/21/2022]
Abstract
Cell homeostasis requires precise coordination of cellular proteins function. Ubiquitination is a post-translational modification that modulates protein half-life and function and is tightly regulated by ubiquitin E3 ligases and deubiquitinating enzymes. Lung injury can progress to acute respiratory distress syndrome that is characterized by an inflammatory response and disruption of the alveolocapillary barrier resulting in alveolar edema accumulation and hypoxemia. Ubiquitination plays an important role in the pathobiology of acute lung injury as it regulates the proteins modulating the alveolocapillary barrier and the inflammatory response. Better understanding of the signaling pathways regulated by ubiquitination may lead to novel therapeutic approaches by targeting specific elements of the ubiquitination pathways.
Collapse
Affiliation(s)
- Natalia D Magnani
- Pulmonary and Critical Care Division, Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Laura A Dada
- Pulmonary and Critical Care Division, Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Jacob I Sznajder
- Pulmonary and Critical Care Division, Northwestern Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
336
|
Ma J, Guo A, Wang S, Man S, Zhang Y, Liu S, Liu Y. From the lung to the knee joint: Toxicity evaluation of carbon black nanoparticles on macrophages and chondrocytes. JOURNAL OF HAZARDOUS MATERIALS 2018; 353:329-339. [PMID: 29680691 DOI: 10.1016/j.jhazmat.2018.04.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
Carbon black (CB), a core elemental carbon component of airborne particles, has been used as a model material to study environmental safety and health impacts of airborne particles. Although potential adverse effects of CB have been reported, limited knowledge is available regarding CB-induced metabolic disorders and secondary effects distant from primary target organs, such as the effects on joints. The knee cavity is a relatively closed space along the peripheral circulation route with a slow rate of interchange of nutrition with blood. While epidemiologic studies have indicated that airborne particle exposure may affect the occurrence and severity of inflammatory knee diseases, no research has been performed to understand the potential hazardous direct/indirect interactions between particles and knee cells. Herein, we have scrutinized the toxicity of four commercial nano-sized CB samples in the lung and a distant site: knee joint. Our results indicated that CB triggered pulmonary and systemic inflammation upon inhalation exposure, and, more strikingly, CB also elicited injuries of the knee joint, as demonstrated by thickened synovial membrane, suggesting disordered cellular metabolism within the knee joint. Our data recognized the CB toxicity profiles to macrophages as characterized by pro-inflammatory reactions, and also defined an activated metabolic state of chondrocytes, as evidenced by metalloproteinase (MMP) induction. Of note, remarkable variations were also found for these changes induced by these four CB samples, due to their distinct physicochemical properties. Collectively, our results uncovered a significant toxicity of CB inhalation exposure to the knee joint, as reflected by metabolic activation of chondrocytes, and, more importantly, these findings unearthed CB-induced metabolic disorders and secondary effects owing to systemic pro-inflammatory conditions upon CB exposure, in addition to the likelihood of direct toxicity to knee cells.
Collapse
Affiliation(s)
- Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Anyi Guo
- Beijing Jishuitan Hospital, Peking University Health Science Center, Beijing, 100035, PR China
| | - Shunhao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Siliang Man
- Beijing Jishuitan Hospital, Peking University Health Science Center, Beijing, 100035, PR China
| | - Yunjian Zhang
- Beijing Jishuitan Hospital, Peking University Health Science Center, Beijing, 100035, PR China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yajun Liu
- Beijing Jishuitan Hospital, Peking University Health Science Center, Beijing, 100035, PR China.
| |
Collapse
|
337
|
Wang F, Fu X, Wu X, Zhang J, Zhu J, Zou Y, Li J. Bone marrow derived M 2 macrophages protected against lipopolysaccharide-induced acute lung injury through inhibiting oxidative stress and inflammation by modulating neutrophils and T lymphocytes responses. Int Immunopharmacol 2018; 61:162-168. [PMID: 29883961 DOI: 10.1016/j.intimp.2018.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 05/06/2018] [Accepted: 05/20/2018] [Indexed: 01/31/2023]
Abstract
Acute lung injury (ALI) is characterized by aggravated inflammatory responses and the subsequent alveolar-capillary injury for which there are no specific therapies available currently. The present study was designed to investigate the protective roles of bone marrow derived M2 macrophages (M2 BMDMs) in lipopolysaccharide (LPS) induced ALI. M2 BMDMs were obtained from bone marrow cells stimulated with M-CSF and IL-4. Mice received M2 BMDMs intratracheally 3 h after LPS administration. Histology and wet/dry (W/D) weight ratio, activated immune cells and total protein were detected. Cytokines production were measured in vivo and vitro study. The effects of PD-L1 blockade on M2 BMDMs were calculated. The results showed that M2 BMDMs administration reduced the infiltration of neutrophils, inhibited the oxidative stress, while increased the counts of CD3+T lymphocytes as well as CD4+CD25+ regulatory T lymphocytes. Further, M2 BMDMs suppressed the TNF-α, IL-1β and IL-6 production, while increased the IL-10 production. Blockade of PD-L1/PD-1 pathway reversed cytokines production of M2 BMDMs in the BALF. These findings indicated that M2 BMDMs might be a promising therapeutic strategy for LPS-induced ALI through inhibiting oxidative stress and inflammation by modulating neutrophils and T lymphocytes responses.
Collapse
Affiliation(s)
- Fang Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20080, China; Department of Anesthesiology and Intensive Care, Changhai Hospital, the Second Military Medical University, Shanghai 200433, China
| | - Xiazhen Fu
- Department of Anesthesiology, Weifang Medical University, Weifang 261053, China
| | - Xinwan Wu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20080, China
| | - Jianhai Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20080, China
| | - Jiali Zhu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20080, China
| | - Yun Zou
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20080, China; Department of Anesthesiology and Intensive Care, Changhai Hospital, the Second Military Medical University, Shanghai 200433, China.
| | - Jinbao Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20080, China.
| |
Collapse
|
338
|
Morrell ED, Wiedeman A, Long SA, Gharib SA, West TE, Skerrett SJ, Wurfel MM, Mikacenic C. Cytometry TOF identifies alveolar macrophage subtypes in acute respiratory distress syndrome. JCI Insight 2018; 3:99281. [PMID: 29769438 DOI: 10.1172/jci.insight.99281] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/13/2018] [Indexed: 01/01/2023] Open
Abstract
Studies in human peripheral blood monocyte-derived macrophages in vitro have shown clear evidence that multiple macrophage polarization states exist. The extent to which different alveolar macrophage (AM) polarization states exist in homeostasis or in the setting of severe injury such as acute respiratory distress syndrome (ARDS) is largely unknown. We applied single-cell cytometry TOF (CyTOF) to simultaneously measure 36 cell-surface markers on CD45+ cells present in bronchoalveolar lavage from healthy volunteers, as well as mechanically ventilated subjects with and without ARDS. Visualization of the high-dimensional data with the t-distributed stochastic neighbor embedding algorithm demonstrated wide diversity of cell-surface marker profiles among CD33+CD71+CD163+ AMs. We then used a κ-nearest neighbor density estimation algorithm to statistically identify distinct alveolar myeloid subtypes, and we discerned 3 AM subtypes defined by CD169 and PD-L1 surface expression. The percentage of AMs that were classified into one of the 3 AM subtypes was significantly different between healthy and mechanically ventilated subjects. In an independent cohort of subjects with ARDS, PD-L1 gene expression and PD-L1/PD-1 pathway-associated gene sets were significantly decreased in AMs from patients who experienced prolonged mechanical ventilation or death. Unsupervised CyTOF analysis of alveolar leukocytes from human subjects has potential to identify expected and potentially novel myeloid populations that may be linked with clinical outcomes.
Collapse
Affiliation(s)
- Eric D Morrell
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Alice Wiedeman
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - S Alice Long
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Sina A Gharib
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - T Eoin West
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Shawn J Skerrett
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Mark M Wurfel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Carmen Mikacenic
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
339
|
Weng P, Zhang XT, Sheng Q, Tian WF, Chen JL, Yuan JJ, Zhang JR, Pang QF. Caveolin-1 scaffolding domain peptides enhance anti-inflammatory effect of heme oxygenase-1 through interrupting its interact with caveolin-1. Oncotarget 2018; 8:40104-40114. [PMID: 28402952 PMCID: PMC5522314 DOI: 10.18632/oncotarget.16676] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/19/2017] [Indexed: 12/22/2022] Open
Abstract
Caveolin-1(Cav-1) scaffolding domain (CSD) peptides compete with the plasma membrane Cav-1, inhibit the interaction of the proteins and Cav-1, and re-store the functions of Cav-1 binding proteins. Heme oxygenase-1 (HO-1) binds to Cav-1 and its enzymatic activity was inhibited. In this study, we investigated the effect of CSD peptides on interaction between HO-1 and Cav-1, and on the HO-1 activity in vitro and in vivo. Our data showed that CSD peptides decreased the compartmentalization of HO-1 and Cav-1, and increased the HO-1 activity both in LPS-treated alveolar macrophages and in mice. Meanwhile, CSD peptides obviously ameliorated the pathology changes in mice and lowered the following injury indexes: the wet/dry ratio of lung tissues, total cell numbers in bronchoalveolar lavage fluid and lactate dehydrogenase activity in the serum. Mechanistically, it was firstly found that CSD peptides promoted alveolar macrophages polarization to M2 phenotype and inhibited the IκB degeneration. Furthermore, CSD peptides down-regulated the expression of IL-1β, IL-6, TNF-α, MCP-1, and iNOS in alveolar macrophages and in lung tissue. However, the protective role of CSD peptides on LPS-induced acute lung injury in mice could be abolished by zinc protoporphyrin IX (ZnPP, a HO-1 activity inhibitor). In summary, CSD peptides have beneficial anti-inflammatory effects by restoring the HO-1 activity suppressed by Cav-1 on plasma membrane.
Collapse
Affiliation(s)
- Ping Weng
- Wuxi Medical School, Jiangnan University, Wuxi, China
| | | | - Qiong Sheng
- Wuxi Medical School, Jiangnan University, Wuxi, China
| | - Wen-Fang Tian
- Wuxi Medical School, Jiangnan University, Wuxi, China
| | | | - Jia-Jia Yuan
- Wuxi Medical School, Jiangnan University, Wuxi, China
| | - Ji-Ru Zhang
- Department of Anesthesiology, the Affiliated Hospital of Jiangnan University, Wuxi, China
| | | |
Collapse
|
340
|
The Role of Macrophages in the Pathogenesis of ALI/ARDS. Mediators Inflamm 2018; 2018:1264913. [PMID: 29950923 PMCID: PMC5989173 DOI: 10.1155/2018/1264913] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/21/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022] Open
Abstract
Despite development in the understanding of the pathogenesis of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), the underlying mechanism still needs to be elucidated. Apart from leukocytes and endothelial cells, macrophages are also essential for the process of the inflammatory response in ALI/ARDS. Notably, macrophages play a dual role of proinflammation and anti-inflammation based on the microenvironment in different pathological stages. In the acute phase of ALI/ARDS, resident alveolar macrophages, typically expressing the alternatively activated phenotype (M2), shift into the classically activated phenotype (M1) and release various potent proinflammatory mediators. In the later phase, the M1 phenotype of activated resident and recruited macrophages shifts back to the M2 phenotype for eliminating apoptotic cells and participating in fibrosis. In this review, we summarize the main subsets of macrophages and the associated signaling pathways in three different pathological phases of ALI/ARDS. According to the current literature, regulating the function of macrophages and monocytes might be a promising therapeutic strategy against ALI/ARDS.
Collapse
|
341
|
Takatani Y, Ono K, Suzuki H, Inaba M, Sawada M, Matsuda N. Inducible nitric oxide synthase during the late phase of sepsis is associated with hypothermia and immune cell migration. J Transl Med 2018; 98:629-639. [PMID: 29449632 DOI: 10.1038/s41374-018-0021-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/21/2017] [Accepted: 12/04/2017] [Indexed: 11/09/2022] Open
Abstract
Hypothermia is a significant sign of sepsis, which is associated with poor prognosis, but few mechanisms underlying the regulation of hypothermia are known. Inducible nitric oxide synthase (iNOS) is a key inflammatory mediator of sepsis. However, the therapeutic benefit of iNOS inhibition in sepsis is still controversial, and requires elucidation in an accurate model system. In this study, wild-type (WT) mice showed temperature drops in a biphasic manner at the early and late phase of sepsis, and all mice died within 48 h of sepsis. In contrast, iNOS-knockout (KO) mice never showed the second temperature drop and exhibited improved mortality. Plasma nitric oxide (NO) levels of WT mice increased in the late phase of sepsis and correlated to hypothermia. The results indicate that iNOS-derived NO during the late phase of sepsis caused vasodilation-induced hypothermia and a lethal hypodynamic state. The expression of the iNOS mRNA was high in the lung of WT mice with sepsis, which reflects the pathology of acute respiratory distress syndrome (ARDS). We obtained the results in a modified keyhole-type cecal ligation and puncture model of septic shock induced by minimally invasive surgery. In this accurate and reproducible model system, we transplanted the bone marrow cells of GFP transgenic mice into WT and iNOS-KO mice, and evaluated the role of increased pulmonary iNOS expression in cell migration during the late phase of sepsis. We also investigated the quantity and type of bone marrow-derived cells (BMDCs) in the lung. The number of BMDCs in the lung of iNOS-KO mice was less than that in the lung of WT mice. The major BMDCs populations were CD11b-positive, iNOS-negative cells in WT mice, and Gr-1-positive cells in iNOS-KO mice that expressed iNOS. These results suggest that sustained hypothermia may be a beneficial guide for future iNOS-targeted therapy of sepsis, and that iNOS modulated the migratory efficiency and cell type of BMDCs in septic ARDS.
Collapse
Affiliation(s)
- Yudai Takatani
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Aichi, 466-8560, Japan
| | - Kenji Ono
- Division of Stress Adaptation and Protection, Department of Brain Function, Research Institute of Environmental Medicine, Nagoya University, Aichi, 464-8601, Japan
| | - Hiromi Suzuki
- Division of Stress Adaptation and Protection, Department of Brain Function, Research Institute of Environmental Medicine, Nagoya University, Aichi, 464-8601, Japan
| | - Masato Inaba
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Aichi, 466-8560, Japan
| | - Makoto Sawada
- Division of Stress Adaptation and Protection, Department of Brain Function, Research Institute of Environmental Medicine, Nagoya University, Aichi, 464-8601, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Aichi, 466-8560, Japan.
| |
Collapse
|
342
|
Abstract
The goal of the present study was to investigate the role of M1 macrophages in acute lung injury (ALI). To address this, we used lipopolysaccharide (LPS)-treated wild-type and CD11b-DTR mice, and examined their M1 macrophage levels, and the extent of their inflammation and pulmonary injuries. In addition, we evaluated pulmonary function by measuring the expressions of SP-A and SP-B in infiltrated M1 macrophages. Finally, we co-cultured the mouse type II-like alveolar epithelial cells (AT-II) and mouse pulmonary microvascular endothelial cells (PMECs) with M1 macrophages in the presence of TNF-α or H2O2 and assessed them for viability and apoptosis. After LPS treatment, we observed that the number of pulmonary M1/M2 macrophages and the serum levels of interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), and reactive oxygen species (ROS) significantly increased. Furthermore, the increase in cytokines was accompanied with the initiation of lung injury indicated by the decreased levels of SP-A and SP-B. In macrophage-depleted CD11b-DTR mice, ALI was attenuated, serum levels of IL-1β, TNF-α and ROS were reduced, and lung levels of monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-2 (MIP-2) were decreased. After administering TNF-α and H2O2, the proapoptotic effect of M1 macrophages on AT-II or PMECs significantly increased, the cell viabilities significantly decreased, and apoptosis significantly increased. Our results suggest that M1 macrophages are recruited to the lungs where they significantly contribute to an increase in TNF-α and ROS production, thus initiating ALI.
Collapse
|
343
|
Multi-faceted immunomodulatory and tissue-tropic clinical bacterial isolate potentiates prostate cancer immunotherapy. Nat Commun 2018; 9:1591. [PMID: 29686284 PMCID: PMC5913311 DOI: 10.1038/s41467-018-03900-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/20/2018] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint inhibitors have not been effective for immunologically "cold" tumors, such as prostate cancer, which contain scarce tumor infiltrating lymphocytes. We hypothesized that select tissue-specific and immunostimulatory bacteria can potentiate these immunotherapies. Here we show that a patient-derived prostate-specific microbe, CP1, in combination with anti-PD-1 immunotherapy, increases survival and decreases tumor burden in orthotopic MYC- and PTEN-mutant prostate cancer models. CP1 administered intra-urethrally specifically homes to and colonizes tumors without causing any systemic toxicities. CP1 increases immunogenic cell death of cancer cells, T cell cytotoxicity, and tumor infiltration by activated CD8 T cells, Th17 T cells, mature dendritic cells, M1 macrophages, and NK cells. CP1 also decreases intra-tumoral regulatory T cells and VEGF. Mechanistically, blocking CP1-recruited T cells from infiltrating the tumor inhibits its therapeutic efficacy. CP1 is an immunotherapeutic tool demonstrating how a tissue-specific microbe can increase tumor immunogenicity and sensitize an otherwise resistant cancer type to immunotherapy.
Collapse
|
344
|
Hayama Y, Kimura T, Takeda Y, Nada S, Koyama S, Takamatsu H, Kang S, Ito D, Maeda Y, Nishide M, Nojima S, Sarashina-Kida H, Hosokawa T, Kinehara Y, Kato Y, Nakatani T, Nakanishi Y, Tsuda T, Koba T, Okada M, Kumanogoh A. Lysosomal Protein Lamtor1 Controls Innate Immune Responses via Nuclear Translocation of Transcription Factor EB. THE JOURNAL OF IMMUNOLOGY 2018; 200:3790-3800. [PMID: 29686050 DOI: 10.4049/jimmunol.1701283] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/30/2018] [Indexed: 11/19/2022]
Abstract
Amino acid metabolism plays important roles in innate immune cells, including macrophages. Recently, we reported that a lysosomal adaptor protein, Lamtor1, which serves as the scaffold for amino acid-activated mechanistic target of rapamycin complex 1 (mTORC1), is critical for the polarization of M2 macrophages. However, little is known about how Lamtor1 affects the inflammatory responses that are triggered by the stimuli for TLRs. In this article, we show that Lamtor1 controls innate immune responses by regulating the phosphorylation and nuclear translocation of transcription factor EB (TFEB), which has been known as the master regulator for lysosome and autophagosome biogenesis. Furthermore, we show that nuclear translocation of TFEB occurs in alveolar macrophages of myeloid-specific Lamtor1 conditional knockout mice and that these mice are hypersensitive to intratracheal administration of LPS and bleomycin. Our observation clarified that the amino acid-sensing pathway consisting of Lamtor1, mTORC1, and TFEB is involved in the regulation of innate immune responses.
Collapse
Affiliation(s)
- Yoshitomo Hayama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| | - Tetsuya Kimura
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; .,Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shigeyuki Nada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| | - Hyota Takamatsu
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| | - Sujin Kang
- Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Immune Regulation, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daisuke Ito
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yohei Maeda
- Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; and
| | - Masayuki Nishide
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| | - Satoshi Nojima
- Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan.,Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hana Sarashina-Kida
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takashi Hosokawa
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuhei Kinehara
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| | - Yasuhiro Kato
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| | - Takeshi Nakatani
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| | - Yoshimitsu Nakanishi
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| | - Takeshi Tsuda
- Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan.,Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; and
| | - Taro Koba
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| | - Masato Okada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; .,Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| |
Collapse
|
345
|
Gharib SA, Manicone AM, Parks WC. Matrix metalloproteinases in emphysema. Matrix Biol 2018; 73:34-51. [PMID: 29406250 DOI: 10.1016/j.matbio.2018.01.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/14/2017] [Accepted: 01/24/2018] [Indexed: 02/07/2023]
Abstract
Several studies have implicated a causative role for specific matrix metalloproteinases (MMPs) in the development and progression of cigarette smoke-induced chronic obstructive pulmonary disease (COPD) and its severe sequela, emphysema. However, the precise function of any given MMP in emphysema remains an unanswered question. Emphysema results from the degradation of alveolar elastin - among other possible mechanisms - a process that is often thought to be caused by elastolytic proteinases made by macrophages. In this article, we discuss the data suggesting, supporting, or refuting causative roles of macrophage-derived MMPs, with a focus on MMPs-7, -9, -10, -12, and 28, in both the human disease and mouse models of emphysema. Findings from experimental models suggest that some MMPs, such as MMP-12, may directly breakdown elastin, whereas others, particularly MMP-10 and MMP-28, promote the development of emphysema by influencing the proteolytic and inflammatory activities of macrophages.
Collapse
Affiliation(s)
- Sina A Gharib
- Center for Lung Biology, University of Washington, Seattle, WA, USA
| | - Anne M Manicone
- Center for Lung Biology, University of Washington, Seattle, WA, USA
| | - William C Parks
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
346
|
M2A and M2C Macrophage Subsets Ameliorate Inflammation and Fibroproliferation in Acute Lung Injury Through Interleukin 10 Pathway. Shock 2018; 48:119-129. [PMID: 27941591 DOI: 10.1097/shk.0000000000000820] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The role of M2 macrophages in the resolution and fibroproliferation of acute lung injury (ALI) is poorly understood. In this study, we investigated the effects of two M2 macrophage subtypes, M2a induced by interleukin (IL)-4/IL-13 and M2c induced by IL-10/transforming growth factor -β, on the pathogenesis of ALI. M2a and M2c were adoptively transferred into lipopolysaccharide-induced ALI mice model. Data showed that Vybrant-labeled macrophages appeared in the lungs of ALI mice. Subsequently, we observed that both subsets significantly reduced lung inflammation and injury including a reduction of neutrophil influx into the lung and an augmentation of apoptosis. Interestingly, M2c macrophages more effectively suppressed indices of lung injury than M2a macrophages. M2c macrophages were also more effective than M2a in reduction of lung fibrosis. In addition, we found that M2c but not M2a macrophages increased IL-10 level in lung tissues of the recipient ALI mice partially mediated by activating the JAK1/STAT3/suppressor of cytokine signaling 3 signaling pathway. After blocking IL-10, these superior effects of M2c over M2a were abolished. These data imply that M2c are more potent than M2a macrophages in protecting against lung injury and subsequent fibrosis due to their ability to produce IL-10. Therefore, reprogramming macrophages to M2c subset may be a novel treatment modality with transitional potential.
Collapse
|
347
|
Abstract
PURPOSE OF REVIEW Macrophages are central players in the immune response following tissue injury. These cells perform many functions, and the changing tissue microenvironment during injury shapes macrophage phenotype down a variety of polarized pathways. This review summarizes the current knowledge on the roles of macrophages during different stages of tissue injury, repair, and-if repair is not achieved-fibrosis. RECENT FINDINGS Macrophages present early in inflammation are functionally distinct from those at later stages. The predominant macrophage phenotype must transition from pro-inflammatory to pro-reparative to facilitate wound healing and scar resolution. If macrophages fail to acquire a tissue-healing phenotype, dysregulated signals can be drivers of disease processes, such as sustained, exuberant inflammation-as occurs in arthropathies-and fibrosis. Comprehensive understanding of the roles of specific macrophage populations at different stages of the repair process will support the development of immune-targeted therapies for diseases such as fibrosis.
Collapse
Affiliation(s)
- Kate S Smigiel
- Women's Guild Lung Institute, Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - William C Parks
- Women's Guild Lung Institute, Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| |
Collapse
|
348
|
Curran CS, Bolig T, Torabi-Parizi P. Mechanisms and Targeted Therapies for Pseudomonas aeruginosa Lung Infection. Am J Respir Crit Care Med 2018; 197:708-727. [PMID: 29087211 PMCID: PMC5855068 DOI: 10.1164/rccm.201705-1043so] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/26/2017] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is a complex gram-negative facultative anaerobe replete with a variety of arsenals to activate, modify, and destroy host defense mechanisms. The microbe is a common cause of nosocomial infections and an antibiotic-resistant priority pathogen. In the lung, P. aeruginosa disrupts upper and lower airway homeostasis by damaging the epithelium and evading innate and adaptive immune responses. The biology of these interactions is essential to understand P. aeruginosa pathogenesis. P. aeruginosa interacts directly with host cells via flagella, pili, lipoproteins, lipopolysaccharides, and the type III secretion system localized in the outer membrane. P. aeruginosa quorum-sensing molecules regulate the release of soluble factors that enhance the spread of infection. These characteristics of P. aeruginosa differentially affect lung epithelial, innate, and adaptive immune cells involved in the production of mediators and the recruitment of additional immune cell subsets. Pathogen interactions with individual host cells and in the context of host acute lung infection are discussed to reveal pathways that may be targeted therapeutically.
Collapse
Affiliation(s)
- Colleen S Curran
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Thomas Bolig
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Parizad Torabi-Parizi
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
349
|
Inhibition of insulin-like growth factor receptor-1 reduces necroptosis-related markers and attenuates LPS-induced lung injury in mice. Biochem Biophys Res Commun 2018; 498:877-883. [PMID: 29545181 DOI: 10.1016/j.bbrc.2018.03.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/09/2018] [Indexed: 02/02/2023]
Abstract
Insulin-like growth factor-1 (IGF-1) levels are known to increase in the bronchoalveolar lavage fluid (BALF) of patients with acute respiratory distress syndrome. Herein, we investigated the role of IGF-1 in lipopolysaccharide (LPS)-induced lung injury. In LPS-treated cells, expressions of receptor-interacting protein 3 (RIP3) and phosphorylated mixed lineage kinase domain-like protein (MLKL) were decreased in IGF-1 receptor small interfering RNA (siRNA)-treated cells compared to control cells. The levels of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-10, tumour necrosis factor-α, and macrophage inflammatory protein 2/C-X-C motif chemokine ligand 2 in the supernatant were significantly reduced in IGF-1 receptor siRNA-treated cells compared to control cells. In LPS-induced murine lung injury model, total cell counts, polymorphonuclear leukocytes counts, and pro-inflammatory cytokine levels in the BALF were significantly lower and histologically detected lung injury was less common in the group treated with IGF-1 receptor monoclonal antibody compared to the non-treated group. On western blotting, RIP3 and phosphorylated MLKL expressions were relatively decreased in the IGF-1 receptor monoclonal antibody group compared to the non-treated group. IGF-1 may be associated with RIP3-mediated necroptosis in vitro, while blocking of the IGF-1 pathway may reduce LPS-induced lung injuries in vivo.
Collapse
|
350
|
Yang CY, Chen CS, Yiang GT, Cheng YL, Yong SB, Wu MY, Li CJ. New Insights into the Immune Molecular Regulation of the Pathogenesis of Acute Respiratory Distress Syndrome. Int J Mol Sci 2018; 19:588. [PMID: 29462936 PMCID: PMC5855810 DOI: 10.3390/ijms19020588] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/11/2018] [Accepted: 02/14/2018] [Indexed: 12/11/2022] Open
Abstract
Acute respiratory distress syndrome is an inflammatory disease characterized by dysfunction of pulmonary epithelial and capillary endothelial cells, infiltration of alveolar macrophages and neutrophils, cell apoptosis, necroptosis, NETosis, and fibrosis. Inflammatory responses have key effects on every phase of acute respiratory distress syndrome. The severe inflammatory cascades impaired the regulation of vascular endothelial barrier and vascular permeability. Therefore, understanding the relationship between the molecular regulation of immune cells and the pulmonary microenvironment is critical for disease management. This article reviews the current clinical and basic research on the pathogenesis of acute respiratory distress syndrome, including information on the microenvironment, vascular endothelial barrier and immune mechanisms, to offer a strong foundation for developing therapeutic interventions.
Collapse
Affiliation(s)
- Chin-Yao Yang
- Division of Chest Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| | - Chien-Sheng Chen
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Giou-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Yeung-Leung Cheng
- Division of Thoracic Surgery, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan.
- School of Surgery, Tzu Chi University, Hualien 970, Taiwan.
| | - Su-Boon Yong
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Division of Pediatric Allergy, Immunology and Rheumatology, Department of Pediatrics, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
- Department of Nursing, Meiho University, Pingtung 912, Taiwan.
| | - Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Chia-Jung Li
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| |
Collapse
|