301
|
Shah MY, Ferracin M, Pileczki V, Chen B, Redis R, Fabris L, Zhang X, Ivan C, Shimizu M, Rodriguez-Aguayo C, Dragomir M, Van Roosbroeck K, Almeida MI, Ciccone M, Nedelcu D, Cortez MA, Manshouri T, Calin S, Muftuoglu M, Banerjee PP, Badiwi MH, Parker-Thornburg J, Multani A, Welsh JW, Estecio MR, Ling H, Tomuleasa C, Dima D, Yang H, Alvarez H, You MJ, Radovich M, Shpall E, Fabbri M, Rezvani K, Girnita L, Berindan-Neagoe I, Maitra A, Verstovsek S, Fodde R, Bueso-Ramos C, Gagea M, Manero GG, Calin GA. Cancer-associated rs6983267 SNP and its accompanying long noncoding RNA CCAT2 induce myeloid malignancies via unique SNP-specific RNA mutations. Genome Res 2018; 28:432-447. [PMID: 29567676 PMCID: PMC5880235 DOI: 10.1101/gr.225128.117] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 02/28/2018] [Indexed: 01/11/2023]
Abstract
The cancer-risk-associated rs6983267 single nucleotide polymorphism (SNP) and the accompanying long noncoding RNA CCAT2 in the highly amplified 8q24.21 region have been implicated in cancer predisposition, although causality has not been established. Here, using allele-specific CCAT2 transgenic mice, we demonstrate that CCAT2 overexpression leads to spontaneous myeloid malignancies. We further identified that CCAT2 is overexpressed in bone marrow and peripheral blood of myelodysplastic/myeloproliferative neoplasms (MDS/MPN) patients. CCAT2 induces global deregulation of gene expression by down-regulating EZH2 in vitro and in vivo in an allele-specific manner. We also identified a novel non-APOBEC, non-ADAR, RNA editing at the SNP locus in MDS/MPN patients and CCAT2-transgenic mice. The RNA transcribed from the SNP locus in malignant hematopoietic cells have different allelic composition from the corresponding genomic DNA, a phenomenon rarely observed in normal cells. Our findings provide fundamental insights into the functional role of rs6983267 SNP and CCAT2 in myeloid malignancies.
Collapse
Affiliation(s)
- Maitri Y Shah
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
| | - Valentina Pileczki
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA.,The Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj Napoca, Romania
| | - Baoqing Chen
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Roxana Redis
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Linda Fabris
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Xinna Zhang
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Cristina Ivan
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Masayoshi Shimizu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Mihnea Dragomir
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Katrien Van Roosbroeck
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Maria Ines Almeida
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA.,Institute for Research and Innovation in Health (I3S), and Institute of Biomedical Engineering (INEB), University of Porto, 4200-135, Porto, Portugal
| | - Maria Ciccone
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA.,Hematology Section, Azienda Ospedaliero-Universitaria Arcispedale S. Anna, 44124, Ferrara, Italy
| | - Daniela Nedelcu
- Department of Oncology-Pathology, Karolinska Institute, Cancer Center Karolinska, SE-171 77 Stockholm, Sweden
| | - Maria Angelica Cortez
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Taghi Manshouri
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Steliana Calin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Muharrem Muftuoglu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Pinaki P Banerjee
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Mustafa H Badiwi
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Jan Parker-Thornburg
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Asha Multani
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - James William Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Marcos Roberto Estecio
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Hui Ling
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Ciprian Tomuleasa
- The Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj Napoca, Romania.,Department of Hematology, The Oncology Institute Ion Chiricuta, 400015 Cluj Napoca, Romania
| | - Delia Dima
- Department of Hematology, The Oncology Institute Ion Chiricuta, 400015 Cluj Napoca, Romania
| | - Hui Yang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Hector Alvarez
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - M James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Milan Radovich
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Elizabeth Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Muller Fabbri
- Departments of Pediatrics and Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Children's Center for Cancer and Blood Diseases and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California 90027, USA
| | - Katy Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Leonard Girnita
- Department of Oncology-Pathology, Karolinska Institute, Cancer Center Karolinska, SE-171 77 Stockholm, Sweden
| | - Ioana Berindan-Neagoe
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA.,The Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj Napoca, Romania
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Riccardo Fodde
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CE Rotterdam, The Netherlands
| | - Carlos Bueso-Ramos
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Mihai Gagea
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Guillermo Garcia Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA.,Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| |
Collapse
|
302
|
Li W, Zheng Z, Chen H, Cai Y, Xie W. Knockdown of long non-coding RNA PVT1 induces apoptosis and cell cycle arrest in clear cell renal cell carcinoma through the epidermal growth factor receptor pathway. Oncol Lett 2018; 15:7855-7863. [PMID: 29725475 PMCID: PMC5920359 DOI: 10.3892/ol.2018.8315] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 02/15/2018] [Indexed: 12/13/2022] Open
Abstract
Previous years have witnessed the importance of long non-coding RNAs (lncRNAs) in cancer research. The lncRNA Pvt1 oncogene (non-protein coding) (PVT1) was revealed to be upregulated in various cancer types. The aim of the present study was to investigate the function of PVT1 in clear cell renal cell carcinoma (ccRCC). The expression of PVT1 in ccRCC was analyzed using reverse transcription-quantitative polymerase chain reaction, and it was revealed that PVT1 expression was upregulated in ccRCC tissues compared with that in normal adjacent tissues. Next, PVT1 expression from The Cancer Genome Atlas datasets was validated, and it was also revealed that the high expression of PVT1 was associated with advanced disease stage and a poor prognosis. Furthermore, the knockdown of PVT1 induced apoptosis by increasing the expression of poly ADP ribose polymerase and Bcl-2-associated X protein, and promoted cell cycle arrest at the G1 phase by decreasing the expression of cyclin D1. Study of the mechanism involved indicated that PVT1 promoted the progression of ccRCC partly through activation of the epidermal growth factor receptor pathway. Altogether, the results of the present study suggested that PVT1 serves oncogenic functions and may be a biomarker and therapeutic target in ccRCC.
Collapse
Affiliation(s)
- Weicong Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Zaosong Zheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Haicheng Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Yuhong Cai
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Wenlian Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
303
|
LncRNA CASC9 promotes esophageal squamous cell carcinoma metastasis through upregulating LAMC2 expression by interacting with the CREB-binding protein. Cell Death Differ 2018; 25:1980-1995. [PMID: 29511340 PMCID: PMC6219493 DOI: 10.1038/s41418-018-0084-9] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/31/2018] [Accepted: 02/08/2018] [Indexed: 02/07/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the main subtype of esophageal cancer. Long noncoding RNAs (lncRNAs) are thought to play a critical role in cancer development. Recently, lncRNA CASC9 was shown to be dysregulated in many cancer types, but the mechanisms whereby this occurs remain largely unknown. In this study, we found that CASC9 was significantly upregulated in ESCC tissues, with further analysis revealing that elevated CASC9 expression was associated with ESCC prognosis and metastasis. Furthermore, we found that CASC9 knockdown significantly repressed ESCC migration and invasion in vitro and metastasis in nude mice in vivo. A microarray analysis and mechanical experiments indicated that CASC9 preferentially affected gene expression linked to ECM–integrin interactions, including LAMC2, an upstream inducer of the integrin pathway. We demonstrated that LAMC2 was consistently upregulated in ESCC and promoted ESCC metastasis. LAMC2 overexpression partially compromised the decrease of cell migration and invasion capacity in CASC9 knockdowns. In addition, we found that both CASC9 and LAMC2 depletion reduced the phosphorylation of FAK, PI3K, and Akt, which are downstream effectors of the integrin pathway. Moreover, the reduction in phosphorylation caused by CASC9 depletion was rescued by LAMC2 overexpression, further confirming that CASC9 exerts a pro-metastatic role through LAMC2. Mechanistically, RNA pull-down and RNA-binding protein immunoprecipitation (RIP) assay indicated that CASC9 could bind with the transcriptional coactivator CREB-binding protein (CBP) in the nucleus. Chromatin immunoprecipitation (ChIP) assay additionally illustrated that CASC9 increased the enrichment of CBP and H3K27 acetylation in the LAMC2 promoter, thereby upregulating LAMC2 expression. In conclusion, we demonstrate that CASC9 upregulates LAMC2 expression by binding with CBP and modifying histone acetylation. Our research reveals the prognostic and pro-metastatic roles for CASC9 in ESCC, suggesting that CASC9 could serve as a biomarker for prognosis and a target for metastasis treatment.
Collapse
|
304
|
Yang W, Li Y, Song X, Xu J, Xie J. Genome-wide analysis of long noncoding RNA and mRNA co-expression profile in intrahepatic cholangiocarcinoma tissue by RNA sequencing. Oncotarget 2018; 8:26591-26599. [PMID: 28427159 PMCID: PMC5432281 DOI: 10.18632/oncotarget.15721] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/13/2017] [Indexed: 01/17/2023] Open
Abstract
Long noncoding RNAs (lncRNAs), which are pervasively transcribed in the genome, are emerging in molecular biology as crucial regulators of cancer. RNA-seq data were downloaded from GEO of NCBI and further analyzed to identify novel targets in intrahepatic cholangiocarcinoma (iCCA). We investigated differences in lncRNA and mRNA profiles between 7 pairs of iCCA and adjacent normal tissues. 230 lncRNAs were differentially expressed more than four-fold change in iCCA tissues. Among these, 97 were upregulated and 133 downregulated relatively to normal tissues. Moreover, 169 lncRNAs and 597 mRNAs formed the lncRNA-mRNA co-expression network which consist 766 network nodes and 769 connection edges. Bioinformatics analysis identified these dysregulated lncRNAs were associated with cholesterol homeostasis, insoluble fraction and lipid binding activity and were enriched in complement and coagulation cascades and PPAR signaling pathway. These results uncovered the landscape of iCCA-associated lncRNAs and co-expression network, providing insightful information about dysregulated lncRNAs in iCCA.
Collapse
Affiliation(s)
- Wenhui Yang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China.,Shanxi Province Cancer Hospital, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yuan Li
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xia Song
- Shanxi Province Cancer Hospital, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jun Xu
- Shanxi Province Cancer Hospital, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
305
|
Xiong Y, Wang J, Zhu H, Liu L, Jiang Y. Chronic oxymatrine treatment induces resistance and epithelial‑mesenchymal transition through targeting the long non-coding RNA MALAT1 in colorectal cancer cells. Oncol Rep 2018; 39:967-976. [PMID: 29328404 PMCID: PMC5802036 DOI: 10.3892/or.2018.6204] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 12/05/2017] [Indexed: 01/30/2023] Open
Abstract
A major reason for colorectal cancer (CRC) chemoresistance is the enhanced migration and invasion of cancer cells, such as the cell acquisition of epithelial-mesenchymal transition (EMT). Long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been considered as a pro-oncogene in multiple cancers. However, the precise functional mechanism of lncRNA MALAT1 in chemoresistance and EMT is not well known. In the present study, we focused on the effect of oxymatrine on CRC cells and further investigated the role of MALAT1 in oxymatrine-induced resistance and EMT process. The human CRC cell line HT29 was exposed to increasing doses of oxymatrine to establish stable cell lines resistant to oxymatrine. The established HT29 oxymatrine resistant cells showed an EMT phenotype including specific morphologic changes, enhanced migratory and invasive capacity, and downregulation of E-cadherin protein expression. Subsequently, high-throughput HiSeq sequencing and RT-qPCR showed that lncRNA MALAT1 was significantly upregulated in the oxymatrine resistant cells (P<0.01), while knockdown of MALAT1 partially reversed the EMT phenotype in HT29 resistant cells. Furthermore, oxymatrine treatment suppressed the migration and invasion ability of CRC cells, however, this effect was significantly reversed by overexpression of MALAT1. Finally, we investigated the clinical role of MALAT1 and found that high lncRNA MALAT1 expression level is associated with poor prognosis in CRC patients receiving oxymatrine treatment (P<0.01). In conclusion, we demonstrate that lncRNA MALAT1 is a stimulator for oxymatrine resistance in CRC and it may provide therapeutic and prognostic information for CRC patients.
Collapse
Affiliation(s)
- Yibai Xiong
- Department of Oncology, Longhua Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200021, P.R. China
| | - Jun Wang
- Department of Anorectal Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Huirong Zhu
- Shanghai University of Traditional Chinese Medicine, Shanghai 200021, P.R. China
| | - Lingshuang Liu
- Department of Oncology, Longhua Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200021, P.R. China
| | - Yi Jiang
- Department of Oncology, Longhua Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200021, P.R. China
| |
Collapse
|
306
|
Nasrollahzadeh-Khakiani M, Emadi-Baygi M, Schulz WA, Nikpour P. Long noncoding RNAs in gastric cancer carcinogenesis and metastasis. Brief Funct Genomics 2018; 16:129-145. [PMID: 27122631 DOI: 10.1093/bfgp/elw011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Recent studies of the human transcriptome, most prominently by the ENCyclopedia Of DNA Elements project, have revealed an unexpected number of noncoding RNAs (ncRNAs). Long noncoding RNAs (lncRNAs) are typically referred to a heterogeneous group of polyadenylated long ncRNAs, with a length of > 200 nt. LncRNAs constitute an integral part of tumor biology, with many lncRNAs discovered to be aberrantly expressed in various cancer types. They are involved in many aspects of cancer pathogenesis from its initiation to progression, metastasis and treatment response. Gastric cancer (GC) is the third leading cause of cancer death worldwide. Despite the current improvements of life expectancy and survival rate, most of the patients are diagnosed when their cancer has been progressed to advanced stages. Therefore, unraveling the molecular mechanisms of GC to find early-stage biomarkers is urgent. As the list of lncRNAs with deregulated expression in GC is steadily expanding, these molecules offer a source for developing GC-specific biomarkers. In this review, we will present and discuss those lncRNAs whose expression has been shown to be deregulated in GC.
Collapse
|
307
|
Long noncoding RNA BX357664 regulates cell proliferation and epithelial-to-mesenchymal transition via inhibition of TGF-β1/p38/HSP27 signaling in renal cell carcinoma. Oncotarget 2018; 7:81410-81422. [PMID: 27806310 PMCID: PMC5348402 DOI: 10.18632/oncotarget.12937] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 09/12/2016] [Indexed: 02/06/2023] Open
Abstract
Antisense long noncoding RNAs (lncRNAs) are reported to play a regulating role in carcinogenesis of various human malignancies. However, the function of lncRNAs and their underlying mechanism in renal cell carcinoma (RCC) is still unknown. The aims of this study are to investigate the expression of lncRNA BX357664 in RCC and to explore its function in RCC cell lines. As a result, BX357664 was downregulated in RCC according to previous microarray analysis and qualitative real-time polymerase chain reaction. After the upregulation of BX357664, reduced migration, invasion, and proliferation capabilities in RCC cells were detected. Furthermore, Western blot analysis was conducted to identify the influence of BX357664 on epithelial-to-mesenchymal transition, matrix metalloproteinase 2, matrix metalloproteinase 9, and transforming growth factor-beta 1 (TGF-β1)/p38/HSP27 signaling pathway in RCC. Subsequently, upregulating the protein level of TGF-β1 in the presence of BX357664 could rescue the suppression of the malignant behavior mediated by BX357664, indicating that BX357664 attributed its inhibitory role to the suppression of TGF-β1. Therefore, we investigated a novel lncRNA BX357664, which might exhibit its inhibitory role in RCC metastasis and progression by blocking the TGF-β1/p38/HSP27 pathway.
Collapse
|
308
|
Amodio N, Stamato MA, Juli G, Morelli E, Fulciniti M, Manzoni M, Taiana E, Agnelli L, Cantafio MEG, Romeo E, Raimondi L, Caracciolo D, Zuccalà V, Rossi M, Neri A, Munshi NC, Tagliaferri P, Tassone P. Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity. Leukemia 2018; 32:1948-1957. [PMID: 29487387 PMCID: PMC6127082 DOI: 10.1038/s41375-018-0067-3] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/21/2018] [Accepted: 01/25/2018] [Indexed: 12/27/2022]
Abstract
The biological role and therapeutic potential of long non-coding RNAs (lncRNAs) in multiple myeloma (MM) are still to be investigated. Here, we studied the functional significance and the druggability of the oncogenic lncRNA MALAT1 in MM. Targeting MALAT1 by novel LNA-gapmeR antisense oligonucleotide antagonized MM cell proliferation and triggered apoptosis both in vitro and in vivo in a murine xenograft model of human MM. Of note, antagonism of MALAT1 downmodulated the two major transcriptional activators of proteasome subunit genes, namely NRF1 and NRF2, and resulted in reduced trypsin, chymotrypsin and caspase-like proteasome activities and in accumulation of polyubiquitinated proteins. NRF1 and NRF2 decrease upon MALAT1 targeting was due to transcriptional activation of their negative regulator KEAP1, and resulted in reduced expression of anti-oxidant genes and increased ROS levels. In turn, NRF1 promoted MALAT1 expression thus establishing a positive feedback loop. Our findings demonstrate a crucial role of MALAT1 in the regulation of the proteasome machinery, and provide proof-of-concept that its targeting is a novel powerful option for the treatment of MM.
Collapse
Affiliation(s)
- Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Maria Angelica Stamato
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Giada Juli
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Eugenio Morelli
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Mariateresa Fulciniti
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Martina Manzoni
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.,Hematology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Taiana
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.,Hematology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Agnelli
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.,Hematology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Enrica Romeo
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Lavinia Raimondi
- Laboratory of Tissue Engineering, Rizzoli Orthopedic Institute, Palermo, Italy
| | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | | | - Marco Rossi
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.,Hematology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Nikhil C Munshi
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,VA Boston Healthcare System, West Roxbury, Boston, MA, USA
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy. .,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
309
|
Du M, Chen W, Zhang W, Tian XK, Wang T, Wu J, Gu J, Zhang N, Lu ZW, Qian LX, Fei Q, Wang Y, Peng F, He X, Yin L. TGF-? regulates the ERK/MAPK pathway independent of the SMAD pathway by repressing miRNA-124 to increase MALAT1 expression in nasopharyngeal carcinoma. Biomed Pharmacother 2018; 99:688-696. [PMID: 29710466 DOI: 10.1016/j.biopha.2018.01.120] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/13/2018] [Accepted: 01/24/2018] [Indexed: 12/12/2022] Open
Abstract
Transforming growth factor beta (TGF-?), a pleiotropic cytokine, promotes cell proliferation and migration in multiple cancers, including nasopharyngeal carcinoma (NPC). microRNA-124 (miR-124) becomes downregulated in NPC and inhibits the tumorigenesis of this disease. However, the role of miR-124 in TGF-?-induced NPC development remains unknown. In this study, constant TGF-? stimulation repressed miR-124 expression, whereas miR-124 overexpression antagonized TGF-?-promoted NPC cell growth and migration. miR-124 overexpression decreased p-SMAD2/3, SMAD4, and p-ERK levels, indicating that ectopic miR-124 overexpression inhibited SMAD and non-SMAD pathways. Pro-oncogenic lncRNA MALAT1 was targeted by miR-124 that regulated ERK/MAPK by targeting MALAT1 independent of the SMAD signaling pathway. In conclusion, our work clarified the significant role of miR-124 in TGF-? signaling pathways independent of the SMAD signaling pathway and showed the potential of miR-124 as a new therapeutic target against NPC.
Collapse
Affiliation(s)
- Mingyu Du
- Jiangsu Cancer Hospital & Jiangsu Institue of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, Jiangsu 210000, China; Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu, China
| | - Wei Chen
- Jiangsu Cancer Hospital & Jiangsu Institue of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, Jiangsu 210000, China
| | - Wenjun Zhang
- Jiangsu Cancer Hospital & Jiangsu Institue of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, Jiangsu 210000, China
| | - Xiao-Kang Tian
- Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu, China
| | - Tingting Wang
- Jiangsu Cancer Hospital & Jiangsu Institue of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, Jiangsu 210000, China
| | - Jing Wu
- Jiangsu Cancer Hospital & Jiangsu Institue of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, Jiangsu 210000, China
| | - Jiajia Gu
- Jiangsu Cancer Hospital & Jiangsu Institue of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, Jiangsu 210000, China
| | - Nan Zhang
- Jiangsu Cancer Hospital & Jiangsu Institue of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, Jiangsu 210000, China
| | - Zhi-Wei Lu
- The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lu-Xi Qian
- The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Fei
- The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Wang
- The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fanyu Peng
- The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xia He
- Jiangsu Cancer Hospital & Jiangsu Institue of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, Jiangsu 210000, China; Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu, China.
| | - Li Yin
- Jiangsu Cancer Hospital & Jiangsu Institue of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, Jiangsu 210000, China.
| |
Collapse
|
310
|
Moghaddas Sani H, Hejazian M, Hosseinian Khatibi SM, Ardalan M, Zununi Vahed S. Long non-coding RNAs: An essential emerging field in kidney pathogenesis. Biomed Pharmacother 2018; 99:755-765. [PMID: 29710473 DOI: 10.1016/j.biopha.2018.01.122] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/13/2018] [Accepted: 01/24/2018] [Indexed: 12/21/2022] Open
Abstract
Human Genome Project has made it clear that a majority of the genome is transcribed into the non-coding RNAs including microRNAs as well as long non-coding RNAs (lncRNAs) which both can affect different features of cells. LncRNAs are long heterogenous RNAs that regulate gene expression and a variety of signaling pathways involved in cellular homeostasis and development. Studies over the past decade have shown that lncRNAs have a major role in the kidney pathogenesis. The effective roles of lncRNAs have been recognized in renal ischemia, injury, inflammation, fibrosis, glomerular diseases, renal transplantation, and renal cell carcinoma. The present review outlines the role and function of lncRNAs in kidney pathogenesis as novel essential regulators. Molecular mechanism insights into the functions of lncRNAs in kidney pathophysiological processes may contribute to effective future therapeutics.
Collapse
Affiliation(s)
| | - Mina Hejazian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | |
Collapse
|
311
|
Integrated bioinformatics analysis of chromatin regulator EZH2 in regulating mRNA and lncRNA expression by ChIP sequencing and RNA sequencing. Oncotarget 2018; 7:81715-81726. [PMID: 27835578 PMCID: PMC5348424 DOI: 10.18632/oncotarget.13169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/24/2016] [Indexed: 12/16/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2), a dynamic chromatin regulator in cancer, represents a potential therapeutic target showing early signs of promise in clinical trials. EZH2 ChIP sequencing data in 19 cell lines and RNA sequencing data in ten cancer types were downloaded from GEO and TCGA, respectively. Integrated ChIP sequencing analysis and co-expressing analysis were conducted and both mRNA and long noncoding RNA (lncRNA) targets were detected. We detected a median of 4,672 mRNA targets and 4,024 lncRNA targets regulated by EZH2 in 19 cell lines. 20 mRNA targets and 27 lncRNA targets were found in all 19 cell lines. These mRNA targets were enriched in pathways in cancer, Hippo, Wnt, MAPK and PI3K-Akt pathways. Co-expression analysis confirmed numerous targets, mRNA genes (RRAS, TGFBR2, NUF2 and PRC1) and lncRNA genes (lncRNA LINC00261, DIO3OS, RP11-307C12.11 and RP11-98D18.9) were potential targets and were significantly correlated with EZH2. We predicted genome-wide potential targets and the role of EZH2 in regulating as a transcriptional suppressor or activator which could pave the way for mechanism studies and the targeted therapy of EZH2 in cancer.
Collapse
|
312
|
Abstract
BACKGROUND MicroRNAs proceeds through the different canonical and non-canonical pathways; the most frequent of the non-canonical ones is the splicing-dependent biogenesis of mirtrons. We compare the mirtrons and non-mirtrons of human and mouse to explore how their maturation appears in the precursor structure around the miRNA. RESULTS We found the coherence of the overhang lengths what indicates the dependence between the cleavage sites. To explain this dependence we suggest the 2-lever model of the Dicer structure that couples the imprecisions in Drosha and Dicer. Considering the secondary structure of all animal pre-miRNAs we confirmed that single-stranded nucleotides tend to be located near the miRNA boundaries and in its center and are characterized by a higher mutation rate. The 5' end of the canonical 5' miRNA approaches the nearest single-stranded nucleotides what suggests the extension of the loop-counting rule from the Dicer to the Drosha cleavage site. A typical structure of the annotated mirtron pre-miRNAs differs from the canonical pre-miRNA structure and possesses the 1- and 2 nt hanging ends at the hairpin base. Together with the excessive variability of the mirtron Dicer cleavage site (that could be partially explained by guanine at its ends inherited from splicing) this is one more evidence for the 2-lever model. In contrast with the canonical miRNAs the mirtrons have higher snp densities and their pre-miRNAs are inversely associated with diseases. Therefore we supported the view that mirtrons are under positive selection while canonical miRNAs are under negative one and we suggested that mirtrons are an intrinsic source of silencing variability which produces the disease-promoting variants. Finally, we considered the interference of the pre-miRNA structure and the U2snRNA:pre-mRNA basepairing. We analyzed the location of the branchpoints and found that mirtron structure tends to expose the branchpoint site what suggests that the mirtrons can readily evolve from occasional hairpins in the immediate neighbourhood of the 3' splice site. CONCLUSION The miRNA biogenesis manifests itself in the footprints of the secondary structure. Close inspection of these structural properties can help to uncover new pathways of miRNA biogenesis and to refine the known miRNA data, in particular, new non-canonical miRNAs may be predicted or the known miRNAs can be re-classified.
Collapse
Affiliation(s)
- Igor I Titov
- Federal State Budget Scientific Institution "The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences", Novosibirsk, Russia. .,Novosibirsk State University, Novosibirsk, Russia.
| | | |
Collapse
|
313
|
Chen R, Xia W, Wang X, Qiu M, Yin R, Wang S, Xi X, Wang J, Xu Y, Dong G, Xu L, De W. Upregulated long non-coding RNA SBF2-AS1 promotes proliferation in esophageal squamous cell carcinoma. Oncol Lett 2018; 15:5071-5080. [PMID: 29552140 DOI: 10.3892/ol.2018.7968] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 09/01/2017] [Indexed: 11/06/2022] Open
Abstract
Esophageal cancer is one of the most common types of malignant tumors located within the digestive system, with >50% of esophageal cancer cases worldwide occurring in China. Recent studies have demonstrated that long non-coding RNAs (lncRNAs) are frequently dysregulated in cancer; however, few lncRNAs have been characterized in esophageal squamous cell carcinoma (ESCC). In the present study, a novel lncRNA, SET-binding factor 2 (SBF2) antisense RNA1 (SBF2-AS1) was exhibited in ESCC. Expression levels of SBF2-AS1 in ESCC and adjacent non-cancerous tissues were detected using the reverse transcription-quantitative polymerase chain reaction. SBF2-AS1 was knocked down, and proliferation, migration, invasion, apoptosis and the cell cycle were examined in ESCC cells. Results identified that SBF2-AS1 was significantly upregulated in ESCC compared with adjacent non-cancerous tissues (fold increase, 8.82; P=0.023). The SBF2-AS1 expression level was significantly increased in patients who had a smoking (9.927 vs. 4.507; P=0.030) and/or drinking (10.938 vs. 4.232; P=0.032) history. Patients with a large tumor size exhibited increased SBF2-AS1 expression (≥4 vs. <4 cm, 14.898 vs. 5.435; P=0.018). Patients with advanced ESCC exhibited increased upregulation of SBF2-AS1 [tumor-node-metastasis (TNM) I-II vs. TNM III-IV, 1.302 vs. 15.475; P<0.01]. SBF2-AS1 was also silenced using small interfering RNA. Cell proliferative and invasive ability were significantly inhibited (P<0.05) following SBF2-AS1 silencing, the cell cycle was arrested in the G2 phase; however, there was no significant difference in the proportion of apoptotic cells. Gene Set Enrichment Analysis revealed that genes associated with cell cycle biological processes, including the cancer suppressor gene cyclin-dependent kinase 1A (CDKN1A), were significantly associated with SBF2-AS1 in ESCC tissues. Further validation confirmed that CDKN1A expression levels were increased in ECA-109 cells following SBF2-AS1 silencing. The results of the present study demonstrate that SBF2-AS1 is significantly upregulated in ESCC, and that silencing of SBF2-AS1 inhibits the proliferative and invasive ability of ESCC cells. SBF2-AS1 may be a novel biomarker and therefore a potential therapeutic target for ESCC.
Collapse
Affiliation(s)
- Rui Chen
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu 210009, P.R. China.,Department of Thoracic Surgery, The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China.,Department of Cardiothoracic Surgery, Taixing People's Hospital, The Affiliated Taixing Hospital of Yangzhou University, Taixing, Jiangsu 225400, P.R. China
| | - Wenjia Xia
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu 210009, P.R. China.,Department of Thoracic Surgery, The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Xiaoxiao Wang
- Department of GCP Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Mantang Qiu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu 210009, P.R. China.,Department of Thoracic Surgery, The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu 210009, P.R. China
| | - Siwei Wang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu 210009, P.R. China.,Department of Thoracic Surgery, The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Xiaoxiang Xi
- Department of Cardiothoracic Surgery, Taixing People's Hospital, The Affiliated Taixing Hospital of Yangzhou University, Taixing, Jiangsu 225400, P.R. China
| | - Jie Wang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu 210009, P.R. China.,Department of Scientific Research, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu, Nanjing, Jiangsu 210009, P.R. China
| | - Youtao Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu 210009, P.R. China
| | - Gaochao Dong
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu 210009, P.R. China.,Department of GCP Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu 210009, P.R. China
| | - Wei De
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
314
|
Cheng Y, Imanirad P, Jutooru I, Hedrick E, Jin UH, Rodrigues Hoffman A, Leal de Araujo J, Morpurgo B, Golovko A, Safe S. Role of metastasis-associated lung adenocarcinoma transcript-1 (MALAT-1) in pancreatic cancer. PLoS One 2018; 13:e0192264. [PMID: 29389953 PMCID: PMC5794178 DOI: 10.1371/journal.pone.0192264] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/12/2018] [Indexed: 12/28/2022] Open
Abstract
Metastasis-associated lung adenocarcinoma transcript-1 (MALAT-1) is a long non-coding RNA (lncRNA) that is a negative prognostic factor for patients with pancreatic cancer and several other tumors. In this study, we show that knockdown of MALAT-1 in Panc1 and other pancreatic cancer cell lines decreases cell proliferation, survival and migration. We previously observed similar results for the lncRNAs HOTTIP and HOTAIR in Panc1 cells; however, RNAseq comparison of genes regulated by MALAT-1 shows minimal overlap with HOTTIP/HOTAIR-regulated genes. Analysis of changes in gene expression after MALAT-1 knockdown shows that this lncRNA represses several tumor suppressor-like genes including N-myc downregulated gene-1 (NDRG-1), a tumor suppressor in pancreatic cancer that is also corepressed by EZH2 (a PRC2 complex member). We also observed that Specificity proteins Sp1, Sp3 and Sp4 are overexpressed in Panc1 cells and Sp knockdown or treatment with small molecules that decrease Sp proteins expression also decrease MALAT-1 expression. We also generated Kras-overexpressing p53L/L;LSL-KrasG12DL/+;p48Cre+/- (p53L/L/KrasG12D) and p53L/+;LSLKrasG12DL/+;p48Cre+/- (p53L/+/KrasG12D) mice which are p53 homo- and heterozygous, respectively. These mice rapidly develop pancreatic ductal adenocarcinoma-like tumors and were crossed with MALAT-1-/- mice. We observed that the loss of one or two MALAT-1 alleles in these Ras overexpressing mice does not significantly affect the time to death; however, the loss of MALAT-1 in the p53-/+ (heterozygote) mice slightly increases their lifespan.
Collapse
Affiliation(s)
- Yating Cheng
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
| | - Parisa Imanirad
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
| | - Indira Jutooru
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
| | - Erik Hedrick
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
| | - Un-Ho Jin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
| | - Aline Rodrigues Hoffman
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States of America
| | - Jeann Leal de Araujo
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States of America
| | - Benjamin Morpurgo
- Texas A&M Institute for Genomic Medicine, Texas A&M University, College Station, TX, United States of America
| | - Andrei Golovko
- Texas A&M Institute for Genomic Medicine, Texas A&M University, College Station, TX, United States of America
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
315
|
Sun Q, Hao Q, Prasanth KV. Nuclear Long Noncoding RNAs: Key Regulators of Gene Expression. Trends Genet 2018; 34:142-157. [PMID: 29249332 PMCID: PMC6002860 DOI: 10.1016/j.tig.2017.11.005] [Citation(s) in RCA: 433] [Impact Index Per Article: 61.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023]
Abstract
A significant portion of the human genome encodes genes that transcribe long nonprotein-coding RNAs (lncRNAs). A large number of lncRNAs localize in the nucleus, either enriched on the chromatin or localized to specific subnuclear compartments. Nuclear lncRNAs participate in several biological processes, including chromatin organization, and transcriptional and post-transcriptional gene expression, and also act as structural scaffolds of nuclear domains. Here, we highlight recent studies demonstrating the role of lncRNAs in regulating gene expression and nuclear organization in mammalian cells. In addition, we update current knowledge about the involvement of the most-abundant and conserved lncRNA, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), in gene expression control.
Collapse
Affiliation(s)
- Qinyu Sun
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA; These authors contributing equally
| | - Qinyu Hao
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA; These authors contributing equally
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
316
|
Luo W, He H, Xiao W, Liu Q, Deng Z, Lu Y, Wang Q, Zheng Q, Li Y. MALAT1 promotes osteosarcoma development by targeting TGFA via MIR376A. Oncotarget 2018; 7:54733-54743. [PMID: 27458156 PMCID: PMC5342377 DOI: 10.18632/oncotarget.10752] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/08/2016] [Indexed: 01/08/2023] Open
Abstract
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a long non-coding RNA (lncRNA) that contributes to the initiation and development of many solid tumors, including osteosarcoma (OS). Here, we showed that MALAT1 was increased in human OS cell lines and tissues and promoted OS cell growth, while MALAT1 knockdown suppressed OS cell growth. We also detected downregulation of MIR376A, a suppressor of OS growth, and upregulation of TGFA, a promoter of OS growth, in OS tissues. TGFA expression was positively correlated with MALAT1 expression, and both were negatively correlated with MIR376A expression. There was a direct interaction between MIR376A and MALAT1 via a putative MIR376A binding site within the MALAT1 3′-untranslated region (3′-UTR). There was also a direct interaction between MIR376A and the TGFA 3′-UTR. Thus, MALAT1 may promote OS cell growth through inhibition of MIR376A, leading to increased expression of TGFA. Our results suggest a MALAT1/MIR376A/TGFA axis mediates OS cell proliferation and tumor progression.
Collapse
Affiliation(s)
- Wei Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Hongbo He
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qing Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhenhan Deng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yaojuan Lu
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Qian Wang
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Qiping Zheng
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
317
|
Wang SH, Zhang WJ, Wu XC, Zhang MD, Weng MZ, Zhou D, Wang JD, Quan ZW. Long non-coding RNA Malat1 promotes gallbladder cancer development by acting as a molecular sponge to regulate miR-206. Oncotarget 2018; 7:37857-37867. [PMID: 27191262 PMCID: PMC5122355 DOI: 10.18632/oncotarget.9347] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/26/2016] [Indexed: 12/30/2022] Open
Abstract
Long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (Malat1) functions as an oncogene in many types of human cancer. In this study, we show that Malat1 is overexpressed in gallbladder cancer (GBC) tissue and cells. The high Malat1 levels correlated positively with tumor size and lymphatic metastasis, and correlated negatively with overall survival. We also show that Malat1 functions as a competing endogenous RNA (ceRNA) for miR-206. Because miR-206 directly suppresses expression of ANXA2 and KRAS, which are thought to promote GBC progression, Malat1 binding of miR-206 in GBC tissue and cells has an oncogenic effect. Conversely, Malat1 knockdown inhibits proliferation and invasion by GBC cells while increasing apoptosis. In vivo, silencing Malat1 decreases tumor volume. These results suggest Malat1 could potentially serve as a therapeutic target and prognostic marker for GBC.
Collapse
Affiliation(s)
- Shou-Hua Wang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China
| | - Wen-Jie Zhang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China
| | - Xiao-Cai Wu
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China
| | - Ming-Di Zhang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China
| | - Ming-Zhe Weng
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China
| | - Di Zhou
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China
| | - Jian-Dong Wang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China
| | - Zhi-Wei Quan
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China
| |
Collapse
|
318
|
Yang F, Wu Q, Zhang Y, Xiong H, Li X, Li B, Xie W, Zhang L, Xu M, Zhang K, He F. LncRNA LOC653786 promotes growth of RCC cells via upregulating FOXM1. Oncotarget 2018; 9:12101-12111. [PMID: 29552295 PMCID: PMC5844731 DOI: 10.18632/oncotarget.24027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/02/2018] [Indexed: 01/09/2023] Open
Abstract
Renal cell carcinoma (RCC) is the most common kidney malignancy with poor prognosis. Recently, long noncoding RNAs (lncRNAs) have been demonstrated as important regulators in multiple cancers including RCC. LOC653786 is a lncRNA, but its role in cancer remains unclear. In this study, we for the first time found that LOC653786 was upregulated in RCC tissues and cell lines, and this lncRNA promoted growth and cell cycle progression of RCC cells. Moreover, we showed that LOC653786 elevated the expression of forkhead box M1 (FOXM1) and its downstream target genes cyclin D1 and cyclin B1 in RCC cells. Reporter assay revealed that LOC653786 enhanced the transcriptional activity of FOXM1 gene promoter. Additionally, knockdown of FOXM1 attenuated the LOC653786-enhanced growth and cell cycle progression of RCC cells. Meanwhile, silencing of LOC653786 suppressed RCC cell growth and cell cycle progression, which was alleviated by overexpression of FOXM1. The in vivo experiments in nude mice showed knockdown of LOC653786 repressed xenograft tumor growth and FOXM1 expression. In conclusion, our results demonstrate that LOC653786 accelerates growth and cell cycle progression of RCC cells via upregulating FOXM1, suggesting that the ‘LOC653786/FOXM1’ pathway may serve as a novel target for RCC treatment.
Collapse
Affiliation(s)
- Fan Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China.,Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Qingjian Wu
- Department of Urology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Haojun Xiong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Xinzhe Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Bo Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Wei Xie
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Le Zhang
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Min Xu
- Center for Disease Control and Prevention, Chengdu Military Region, Chengdu 610021, China
| | - Kebin Zhang
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
319
|
Zhang ZC, Tang C, Dong Y, Zhang J, Yuan T, Li XL. Targeting LncRNA-MALAT1 suppresses the progression of osteosarcoma by altering the expression and localization of β-catenin. J Cancer 2018; 9:71-80. [PMID: 29290771 PMCID: PMC5743713 DOI: 10.7150/jca.22113] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/24/2017] [Indexed: 12/29/2022] Open
Abstract
Osteosarcoma (OS), which affects adolescents especially during a growth spurt, has the highest incidence of any primary malignant bone tumour, and a high rate of early metastasis leading to a very poor prognosis. In recent years, non-coding RNAs, especially long non-coding RNAs (lncRNAs) have attracted more and more attention as novel epigenetic regulators in a variety of tumours, including OS. Most recently, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) was found to play an important role in OS progression by modulating the enhancers of zeste homolog 2 (EZH2). Furthermore, MALAT1 could inhibit the expression of E-cadherin and promote the expression of β-catenin, and this phenomenon might be the outcome of MALAT1-induced EZH2 activation. In this study, we investigated the vital function of MALAT1 in the progression of OS and its potential leading mechanism, altering the expression and localization of β-catenin via epigenetic transcriptional regulation by interacting with EZH2. With the help of MALAT1 silencing using small interfering RNAs (siRNAs), the loss of E-cadherin of MNNG/HOS cells was rescued, and the abnormal expression and localization of β-catenin were corrected at the same time. Overall, our research showed promising potential for new treatment strategies based on epigenetic regulation targeting MALAT1, which will not only coordinate with the patient's immune system, but also eliminate OS in conjunction with chemotherapy.
Collapse
Affiliation(s)
- Zhi-Chang Zhang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Chun Tang
- Department of Nursing, Guangming Traditional Chinese Medicine Hospital, Pudong New Area, Shanghai 201300, China
| | - Yang Dong
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Jing Zhang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Ting Yuan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Xiao-Lin Li
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| |
Collapse
|
320
|
Guo G, Wang F, Han M, Gu Y, Duan X, Li L. Long non-coding RNA PVT1 facilitates cell proliferation by epigenetically regulating FOXF1 in breast cancer. RSC Adv 2018; 8:2740-2750. [PMID: 35541468 PMCID: PMC9077462 DOI: 10.1039/c7ra12042g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/04/2018] [Indexed: 12/16/2022] Open
Abstract
Plasmacytoma variant translocation 1 (PVT1) expression was elevated in breast cancer tissues and correlated to breast cancer progression and prognosis.
Collapse
Affiliation(s)
- Guangcheng Guo
- Department of Breast Surgery
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou
- China
| | - Fang Wang
- Department of Breast Surgery
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou
- China
| | - Mingli Han
- Department of Breast Surgery
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou
- China
| | - Yuanting Gu
- Department of Breast Surgery
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou
- China
| | - Xin Duan
- Department of Breast Surgery
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou
- China
| | - Lin Li
- Department of Breast Surgery
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou
- China
| |
Collapse
|
321
|
Abstract
Objective: Emerging evidence indicates that long non-coding RNAs (lncRNAs) are critical in carcinogenesis and progression of ovarian cancer. This study aimed to explore the functions and molecular mechanisms of plasmacytoma variant translocation I (PVT1) in ovarian cancer Methods: PVT1 and miR-214 were detected by qRT-PCR assays in ovarian cancer tissues and cells. The cell proliferation, migration, and invasion abilities were detected by cell functional experiments, respectively. Western blot assay was performed to detect epithelial-mesenchymal transition (EMT) markers. MiR-214 expression regulated by PVT1 was studied by RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP) assays. Results: The expression of PVT1 was up-regulated in ovarian cancer tissues and cell lines. Elevated PVT1 expression was associated with advanced stage and indicated poor prognosis for ovarian cancer patients. The knockdown of PVT1 impaired SKOV3 cell proliferation, migration, and invasion in vitro. The promotion of ovarian cancer progression by PVT1 involved in regulation of the epithelial-mesenchymal transition process and PVT1 interaction with EZH2 represses miR-214 expression in ovarian cancer cells.
Conclusions: PVT1 plays an important role in ovarian cancer tumorigenesis, which might be as a novel diagnostic marker and therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Ying Chen
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Hui Du
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Lewen Bao
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Wenxin Liu
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
322
|
Xiping Z, Bo C, Shifeng Y, Feijiang Y, Hongjian Y, Qihui C, Binbin T. Roles of MALAT1 in development and migration of triple negative and Her-2 positive breast cancer. Oncotarget 2017; 9:2255-2267. [PMID: 29416769 PMCID: PMC5788637 DOI: 10.18632/oncotarget.23370] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/23/2017] [Indexed: 12/27/2022] Open
Abstract
Background As a type of new targets for prognosis of malignancies, long non-coding RNA MALAT1 (metastasis-associated lung adenocarcinoma transcription 1) is associated with proliferation and metastatic abilities of several malignancies. However, its relations to development and migration of triple negative and human epidermal growth factor receptor 2 (Her-2) positive breast cancers haven't been reported. Objectives In this paper, we aimed to discuss how MALAT1 is connected with and affects proliferation and invasion abilities of cells in Her-2 positive and triple-negative breast cancers (TNBC). Methods The expression of MALAT1 in clinical samples with TNBC and Her-2 positive breast cancers was tested by qRT-PCR. The statistical analysis was performed to unveil the potential relationships between the expression of MALAT1 and prognostic factors of breast cancer such as OS (overall survival), RFS (relapse-free survival), number of metastatic lymph nodes and pTNM staging in patients with TNBC or Her-2 positive breast cancer. MALAT1 and XBP1 were knockdown respectively in Her-2 positive cell line MDA-MB-231, and MALAT1 and Her-2 were knockdown respectively in TNBC cell line MDA-MD-435 using siRNA. The alterations of expressions of MALAT1 and related genes were detected by qRT-PCR in two breast cancer cell lines. The changes of proliferation abilities in two cell lines were observed using CCK8 assays. Furthermore, transwell assays were performed to detect changes to invasion abilities of the cells. Results The expression of MALAT1 in triple negative and Her-2 positive breast cancers was positively correlated to the number of metastatic lymph nodes in patients with breast cancer. MALAT1 promotes proliferation and invasion abilities of breast cancer cells through XBP1 (X-box binding protein 1)-HIF (hypoxia-inducible factor)-1α pathway in MDA-MB-231 and through Her-2 pathway in MDA-MD-435. Moreover, MALAT1 could possibly be involved in regulation of MYC gene and CD47 (an immune checkpoint gene) in both cell lines. Conclusions Our study suggested that MALAT1 is a core signaling molecule for promoting development and migration of triple negative and Her-2 positive breast cancers. It would be employed as common markers for prognosis of the two types of breast cancer mentioned above and potential targets for treating them.
Collapse
Affiliation(s)
- Zhang Xiping
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, Zhejiang Province, China
| | - Chen Bo
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou 310022, Zhejiang Province, China
| | - Yang Shifeng
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou 310022, Zhejiang Province, China
| | - Yu Feijiang
- Department of Medical Records Room, Zhejiang Cancer Hospital, Hangzhou 310022, Zhejiang Province, China
| | - Yang Hongjian
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, Zhejiang Province, China
| | - Cheng Qihui
- Department of Obstetrics and Gynecology, Hangzhou First People's Hospital, Hangzhou 310006, Zhejiang Province, China
| | - Tang Binbin
- Second Outpatient Department of Traditional Chinese Internal Medicine, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, China
| |
Collapse
|
323
|
Han T, Jiao F, Hu H, Yuan C, Wang L, Jin ZL, Song WF, Wang LW. EZH2 promotes cell migration and invasion but not alters cell proliferation by suppressing E-cadherin, partly through association with MALAT-1 in pancreatic cancer. Oncotarget 2017; 7:11194-207. [PMID: 26848980 PMCID: PMC4905466 DOI: 10.18632/oncotarget.7156] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 01/23/2016] [Indexed: 12/24/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is an essential component of the polycomb repressive complex 2 (PRC2), which is required for epigenetic silencing of target genes, including those affecting cancer progression. Its role in pancreatic cancer remains to be clarified; therefore, we investigated the effects of aberrantly expressed EZH2 on pancreatic cancer. We found that EZH2 expression is up-regulated in pancreatic cancer tissues and positively correlated with lymph node metastasis and advanced clinical stage in pancreatic cancer patients. EZH2 knockdown in pancreatic cancer cell lines inhibited cell migration and invasion, but did not alter cell proliferation. Silencing of EZH2 also increased E-cadherin expression in vitro, and E-cadherin expression was inversely correlated with EZH2 expression in pancreatic cancer tissue samples. Patients with high EZH2 and low E-cadherin expression had the worst prognosis. RIP and ChIP assays suggest that EZH2 is recruited to the E-cadherin promoter by the long non-coding RNA, MALAT-1 (metastasis associated in lung adenocarcinoma transcript 1), where it represses E-cadherin expression. Our results show that EZH2-based therapies may be an option for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Ting Han
- Department of Medical Oncology and Pancreatic Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai 201620, China
| | - Feng Jiao
- Department of Medical Oncology and Pancreatic Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai 201620, China
| | - Hai Hu
- Department of Medical Oncology and Pancreatic Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Cuncun Yuan
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Lei Wang
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai 201620, China
| | - Zi-Liang Jin
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai 201620, China
| | - Wei-Feng Song
- Department of Medical Oncology and Pancreatic Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Li-Wei Wang
- Department of Medical Oncology and Pancreatic Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai 201620, China
| |
Collapse
|
324
|
Feng T, Shao F, Wu Q, Zhang X, Xu D, Qian K, Xie Y, Wang S, Xu N, Wang Y, Qi C. miR-124 downregulation leads to breast cancer progression via LncRNA-MALAT1 regulation and CDK4/E2F1 signal activation. Oncotarget 2017; 7:16205-16. [PMID: 26918449 PMCID: PMC4941308 DOI: 10.18632/oncotarget.7578] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 02/05/2016] [Indexed: 12/28/2022] Open
Abstract
The long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been recently shown to be dysregulated in several cancers. However, the mechanisms underlying the role of MALAT1 in breast cancer remain unclear. Herein, we showed that MALAT1 was aberrantly increased in breast cancer tissues and cells. MALAT1-siRNA inhibited breast cancer cell proliferation and cell cycle progression in vitro and in vivo. Furthermore, MALAT1 acted as an endogenous potent regulator by directly binding to miR-124 and down-regulating miR-124 expression. In addition, MALAT1 reversed the inhibitory effect of miR-124 on breast cancer proliferation and was involved in the cyclin-dependent kinase 4 (CDK4) expression. Taken together, our data highlight the pivotal role of MALAT1 in breast cancer tumorigenesis. Moreover, the present study elucidated the MALAT1-miR-124-CDK4/E2F1 signaling pathway in breast cancer, which might provide a new approach for tackling breast cancer.
Collapse
Affiliation(s)
- Tongbao Feng
- Medical Research Center, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, 213003, China.,Department of Oncology, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, 213003, China.,Department of General Surgery, the Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, 213003, China
| | - Fang Shao
- Medical Research Center, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, 213003, China
| | - Qiyong Wu
- Department of General Surgery, the Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, 213003, China
| | - Xiaohang Zhang
- Medical Research Center, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, 213003, China
| | - Dongqin Xu
- Medical Research Center, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, 213003, China
| | - Keqing Qian
- Medical Research Center, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, 213003, China.,Department of Oncology, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, 213003, China
| | - Yewen Xie
- Medical Research Center, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, 213003, China.,Department of Oncology, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, 213003, China
| | - Shizhong Wang
- Medical Research Center, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, 213003, China
| | - Ning Xu
- Section of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, S-221 85 Lund, Sweden
| | - Yong Wang
- Department of General Surgery, the Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, 213003, China
| | - Chunjian Qi
- Medical Research Center, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, 213003, China.,Department of Oncology, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, 213003, China
| |
Collapse
|
325
|
Qi Y, Ooi HS, Wu J, Chen J, Zhang X, Tan S, Yu Q, Li YY, Kang Y, Li H, Xiong Z, Zhu T, Liu B, Shao Z, Zhao X. MALAT1 long ncRNA promotes gastric cancer metastasis by suppressing PCDH10. Oncotarget 2017; 7:12693-703. [PMID: 26871474 PMCID: PMC4914315 DOI: 10.18632/oncotarget.7281] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/23/2016] [Indexed: 01/01/2023] Open
Abstract
EZH2, the catalytic component of polycomb repressive complex 2 (PRC2), is frequently overexpressed in human cancers and contributes to tumor initiation and progression, in part through transcriptional silencing of tumor suppressor genes. A number of noncoding RNAs (ncRNAs) recruit EZH2 to specific chromatin loci, where they modulate gene expression. Here, we used RNA immunoprecipitation sequencing (RIP-seq) to profile EZH2-associated transcripts in human gastric cancer cell lines. We identified 8,256 transcripts, including both noncoding and coding transcripts, some of which were derived from cancer-related loci. In particular, we found that long noncoding RNA (lncRNA) MALAT1 binds EZH2, suppresses the tumor suppressor PCDH10, and promotes gastric cellular migration and invasion. Our work thus provides a global view of the EZH2-associated transcriptome and offers new insight into the function of EZH2 in gastric tumorigenesis.
Collapse
Affiliation(s)
- Ying Qi
- School of Biomedical Engineering, Bio-ID Research Center, State Key Laboratory for Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Sain Ooi
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jun Wu
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Chen
- School of Biomedical Engineering, Bio-ID Research Center, State Key Laboratory for Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoli Zhang
- School of Biomedical Engineering, Bio-ID Research Center, State Key Laboratory for Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng Tan
- Laboratory of Molecular Tumor Pathology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Qing Yu
- Laboratory of Molecular Tumor Pathology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuan-Yuan Li
- Shanghai Center for Bioinformatics Technology, Shanghai, China.,Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China
| | - Yani Kang
- School of Biomedical Engineering, Bio-ID Research Center, State Key Laboratory for Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Li
- School of Biomedical Engineering, Bio-ID Research Center, State Key Laboratory for Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, China
| | - Zirui Xiong
- Laboratory of Molecular Tumor Pathology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Tao Zhu
- Laboratory of Molecular Tumor Pathology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Bingya Liu
- School of Biomedical Engineering, Bio-ID Research Center, State Key Laboratory for Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, China.,Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhifeng Shao
- School of Biomedical Engineering, Bio-ID Research Center, State Key Laboratory for Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaodong Zhao
- School of Biomedical Engineering, Bio-ID Research Center, State Key Laboratory for Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
326
|
Long non-coding RNA n326322 promotes the proliferation and invasion in nasopharyngeal carcinoma. Oncotarget 2017; 9:1843-1851. [PMID: 29416735 PMCID: PMC5788603 DOI: 10.18632/oncotarget.22828] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 11/05/2017] [Indexed: 12/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been reported to perform significant roles in cancer development and progression. Our research has found that a novel lncRNA n326322 was higher in nasopharyngeal carcinoma (NPC) cells. Moreover, the gain and loss of functional approaches revealed that the overexpression of lncRNA-n326322 promoted NPC cell proliferation and invasion, whereas the downregulation of lncRNA-n326322 suppressed cell proliferation and invasion. Further experiments demonstrated that potential mechanism may be associated with the activation of PI3K/AKT and ERK/MAPK pathways. Taken together, these results indicate that lncRNA-n326322 is associated with tumorigenesis of NPC.
Collapse
|
327
|
Yuan J, Jiang YY, Mayakonda A, Huang M, Ding LW, Lin H, Yu F, Lu Y, Loh TKS, Chow M, Savage S, Tyner JW, Lin DC, Koeffler HP. Super-Enhancers Promote Transcriptional Dysregulation in Nasopharyngeal Carcinoma. Cancer Res 2017; 77:6614-6626. [PMID: 28951465 PMCID: PMC6637769 DOI: 10.1158/0008-5472.can-17-1143] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/27/2017] [Accepted: 09/22/2017] [Indexed: 01/17/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is an invasive cancer with particularly high incidence in Southeast Asia and Southern China. The pathogenic mechanisms of NPC, particularly those involving epigenetic dysregulation, remain largely elusive, hampering clinical management of this malignancy. To identify novel druggable targets, we carried out an unbiased high-throughput chemical screening and observed that NPC cells were highly sensitive to inhibitors of cyclin-dependent kinases (CDK), especially THZ1, a covalent inhibitor of CDK7. THZ1 demonstrated pronounced antineoplastic activities both in vitro and in vivo An integrative analysis using both whole-transcriptome sequencing and chromatin immunoprecipitation sequencing pinpointed oncogenic transcriptional amplification mediated by super-enhancers (SE) as a key mechanism underlying the vulnerability of NPC cells to THZ1 treatment. Further characterization of SE-mediated networks identified many novel SE-associated oncogenic transcripts, such as BCAR1, F3, LDLR, TBC1D2, and the long noncoding RNA TP53TG1. These transcripts were highly and specifically expressed in NPC and functionally promoted NPC malignant phenotypes. Moreover, DNA-binding motif analysis within the SE segments suggest that several transcription factors (including ETS2, MAFK, and TEAD1) may help establish and maintain SE activity across the genome. Taken together, our data establish the landscape of SE-associated oncogenic transcriptional network in NPC, which can be exploited for the development of more effective therapeutic regimens for this disease. Cancer Res; 77(23); 6614-26. ©2017 AACR.
Collapse
Affiliation(s)
- Jiang Yuan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Yan-Yi Jiang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.
| | - Anand Mayakonda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Moli Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ling-Wen Ding
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Han Lin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Fenggang Yu
- Department of Otolaryngology, National University Hospital Singapore, Singapore
| | - Yanan Lu
- Department of Otolaryngology, National University Hospital Singapore, Singapore
| | - Thomas Kwok Seng Loh
- Department of Otolaryngology, National University Hospital Singapore, Singapore
- National University Cancer Institute of Singapore, National University Health System, Singapore
| | - Marilynn Chow
- Department of Cell, Developmental & Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Samantha Savage
- Department of Cell, Developmental & Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Jeffrey W Tyner
- Department of Cell, Developmental & Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - De-Chen Lin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.
- Department of Medicine, Cedars-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, California
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Medicine, Cedars-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, California
- National University Cancer Institute, National University Hospital Singapore, Singapore
| |
Collapse
|
328
|
YiRen H, YingCong Y, Sunwu Y, Keqin L, Xiaochun T, Senrui C, Ende C, XiZhou L, Yanfan C. Long noncoding RNA MALAT1 regulates autophagy associated chemoresistance via miR-23b-3p sequestration in gastric cancer. Mol Cancer 2017; 16:174. [PMID: 29162158 PMCID: PMC5699172 DOI: 10.1186/s12943-017-0743-3] [Citation(s) in RCA: 274] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/13/2017] [Indexed: 02/06/2023] Open
Abstract
Background Chemoresistance has long been recognized as a major obstacle in cancer therapy. Clarifying the underlying mechanism of chemoresistance would result in novel strategies to improve patient’s response to chemotherapeutics. Methods lncRNA expression levels in gastric cancer (GC) cells was detected by quantitative real-time PCR (qPCR). MALAT1 shRNAs and overexpression vector were transfected into GC cells to down-regulate or up-regulate MALAT1 expression. In vitro and in vivo assays were performed to investigate the functional role of MALAT1 in autophagy associated chemoresistance. Results We showed that chemoresistant GC cells had higher levels of MALAT1 and increased autophagy compared with parental cells. Silencing of MALAT1 inhibited chemo-induced autophagy, whereas MALAT1 promoted autophagy in gastric cancer cells. Knockdown of MALAT1 sensitized GC cells to chemotherapeutics. MALAT1 acts as a competing endogenous RNA for miR-23b-3p and attenuates the inhibitory effect of miR-23b-3p on ATG12, leading to chemo-induced autophagy and chemoresistance in GC cells. Conclusions Taken together, our study revealed a novel mechanism of lncRNA-regulated autophagy-related chemoresistance in GC, casting new lights on the understanding of chemoresistance. Electronic supplementary material The online version of this article (10.1186/s12943-017-0743-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hu YiRen
- Department of General Surgery, The third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, Zhejiang, China
| | - Yu YingCong
- Department of Gastroenterology, The third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University(IGZJU), Hangzhou, Zhejiang, China
| | - You Sunwu
- Department of General Surgery, The third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, Zhejiang, China
| | - Li Keqin
- Department of General Surgery, The third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, Zhejiang, China
| | - Tong Xiaochun
- Department of General Surgery, The third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, Zhejiang, China
| | - Chen Senrui
- Department of General Surgery, The third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, Zhejiang, China
| | - Chen Ende
- Department of General Surgery, The third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, Zhejiang, China
| | - Lin XiZhou
- Department of Gastroenterology, The third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University(IGZJU), Hangzhou, Zhejiang, China
| | - Chen Yanfan
- Department of radiology, Wenzhou No.3 Clinical Institute of Wenzhou Medical University, Wenzhou People's Hospital, No. 57 Canghou Street, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
329
|
Zhu S, Fu W, Zhang L, Fu K, Hu J, Jia W, Liu G. LINC00473 antagonizes the tumour suppressor miR-195 to mediate the pathogenesis of Wilms tumour via IKKα. Cell Prolif 2017; 51. [PMID: 29159834 DOI: 10.1111/cpr.12416] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/26/2017] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Although dramatic improvements of overall survival has achieved in patients with favourable histology Wilms tumour, disease recurrence is still the main cause of cancer-related death in childhood. Long non-coding RNAs (lncRNAs) as oncogenes or tumour suppressors are dysregulated during carcinogenesis. However, the role of lncRNAs in the pathogenesis of Wilms tumour is unknown. Here, an lncRNA LINC00473 signature that functioned as oncogene was identified in Wilms tumour. METHODS Wilms tumour (n = 15) and relative normal tissues were collected. The LINC00473 expression and function in Wilms tumour was determined. The LncRNA-miRNA network of LINC00473 was analysed in vitro and vivo. RESULTS We uncovered that the expression of LINC00473 was elevated in tumour tissues than that in relative normal tissues. Higher LINC00473 levels correlated to higher stage and unfavourable histology Wilms tumour. Mechanistically, knockdown of LINC00473 inhibited cell vitality and induced Bcl-2-dependent apoptosis and G1/S arrest via CDK2 and cyclin D1. Moreover, LINC00473 harboured binding sites for miR-195 and limited miR-195 availability in a dose-dependent manner. Forced expression of miR-195 impaired tumour survival and metastasis, which, however, could be restored by LINC00473. Furthermore, IKKα was the downstream of LINC00473/miR-195 signals and could be directly targeted by miR-195 to participate LINC00473-induced tumour progression. Loss-of-function of LINC00473 in vivo effectively promoted the regression of Wilms tumour via miR-195/IKKα-mediated growth inhibition. CONCLUSION LINC00473 as an oncogene is up-regulated to participate into the molecular pathogenesis of Wilms tumour via miR-195/IKKα.
Collapse
Affiliation(s)
- Shibo Zhu
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wen Fu
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Liyu Zhang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kai Fu
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jinhua Hu
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Jia
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Guochang Liu
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
330
|
Stamato MA, Juli G, Romeo E, Ronchetti D, Arbitrio M, Caracciolo D, Neri A, Tagliaferri P, Tassone P, Amodio N. Inhibition of EZH2 triggers the tumor suppressive miR-29b network in multiple myeloma. Oncotarget 2017; 8:106527-106537. [PMID: 29290968 PMCID: PMC5739753 DOI: 10.18632/oncotarget.22507] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/29/2017] [Indexed: 11/25/2022] Open
Abstract
Downregulation of tumor suppressor (TS) microRNAs (miRNAs) commonly occurs in human cancer, including multiple myeloma (MM). We previously demonstrated that miR-29b is a relevant TS miRNA, whose expression in MM cells is inhibited by HDAC4-dependent deacetylation. Here, we provide novel insights into epigenetic mechanisms suppressing miR-29b in MM. In MM patient-derived plasma cells, we found inverse correlation between miR-29b and EZH2 mRNA expression. Both siRNAs and pharmacologic inhibitors of EZH2 led to miR-29b upregulation, and this effect was ascribed to reduced H3K27-trimethylation (H3K27me3) of miR-29a/b-1 promoter regions. Induction of miR-29b upon EZH2 inhibition occurred together with downregulation of major miR-29b pro-survival targets, such as SP1, MCL-1 and CDK6. Knock-down of the EZH2-interacting long non-coding RNA MALAT1 also reduced H3K27me3 of miR-29a/b-1 promoter, along with induction of miR-29b and downregulation of miR-29b targets. Importantly, inhibition of miR-29b by antagomiRs dramatically reduced in vitro anti-MM activity of small molecule EZH2-inhibitors, indicating that functional miR-29b is crucial for the activity of these compounds. Altogether, these results disclose novel epigenetic alterations contributing to the suppression of miR-29b molecular network, which can be instrumental for the development of rationally designed miRNA-based anti-MM therapeutics.
Collapse
Affiliation(s)
- Maria Angelica Stamato
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Giada Juli
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Enrica Romeo
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Domenica Ronchetti
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.,Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.,Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, US
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
331
|
Chen Q, Cai J, Wang Q, Wang Y, Liu M, Yang J, Zhou J, Kang C, Li M, Jiang C. Long Noncoding RNA NEAT1, Regulated by the EGFR Pathway, Contributes to Glioblastoma Progression Through the WNT/β-Catenin Pathway by Scaffolding EZH2. Clin Cancer Res 2017; 24:684-695. [PMID: 29138341 DOI: 10.1158/1078-0432.ccr-17-0605] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/04/2017] [Accepted: 11/08/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Qun Chen
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin, China
- Glioma Cooperative Group (CGCG), Beijing, China
| | - Jinquan Cai
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin, China
- Glioma Cooperative Group (CGCG), Beijing, China
| | - Qixue Wang
- Glioma Cooperative Group (CGCG), Beijing, China
- Department of Neurosurgery, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Medical University General Hospital, Tianjin, China
| | - Yunfei Wang
- Glioma Cooperative Group (CGCG), Beijing, China
- Department of Neurosurgery, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Medical University General Hospital, Tianjin, China
| | - Mingyang Liu
- Department of Medicine, Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jingxuan Yang
- Department of Medicine, Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Junhu Zhou
- Glioma Cooperative Group (CGCG), Beijing, China
- Department of Neurosurgery, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunsheng Kang
- Glioma Cooperative Group (CGCG), Beijing, China.
- Department of Neurosurgery, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Medical University General Hospital, Tianjin, China
| | - Min Li
- Department of Medicine, Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| | - Chuanlu Jiang
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China.
- Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin, China
- Glioma Cooperative Group (CGCG), Beijing, China
| |
Collapse
|
332
|
Li H, Wang X, Wen C, Huo Z, Wang W, Zhan Q, Cheng D, Chen H, Deng X, Peng C, Shen B. Long noncoding RNA NORAD, a novel competing endogenous RNA, enhances the hypoxia-induced epithelial-mesenchymal transition to promote metastasis in pancreatic cancer. Mol Cancer 2017; 16:169. [PMID: 29121972 PMCID: PMC5679488 DOI: 10.1186/s12943-017-0738-0] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/01/2017] [Indexed: 12/16/2022] Open
Abstract
Background Pancreatic cancer, one of the top two most fatal cancers, is characterized by a desmoplastic reaction that creates a dense microenvironment, promoting hypoxia and inducing the epithelial-to-mesenchymal transition (EMT) to facilitate invasion and metastasis. Recent evidence indicates that the long noncoding RNA NORAD may be a potential oncogenic gene and that this lncRNA is significantly upregulated during hypoxia. However, the overall biological role and clinical significance of NORAD remains largely unknown. Methods NORAD expression was measured in 33 paired cancerous and noncancerous tissue samples by real-time PCR. The effects of NORAD on pancreatic cancer cells were studied by overexpression and knockdown in vitro. Insights into the mechanism of competitive endogenous RNAs (ceRNAs) were gained from bioinformatics analyses and luciferase assays. In vivo, metastatic potential was identified using an orthotopic model of PDAC and quantified using bioluminescent signals. Alterations in RhoA expression and EMT levels were identified and verified by immunohistochemistry and Western blotting. Results NORAD is highly expressed in pancreatic cancer tissues and upregulated in hypoxic conditions. NORAD upregulation is correlated with shorter overall survival in pancreatic cancer patients. Furthermore, NORAD overexpression promoted the migration and invasion of pancreatic carcinoma cells, while NORAD depletion inhibited EMT and metastasis in vitro and in vivo. In particular, NORAD may function as a ceRNA to regulate the expression of the small GTP binding protein RhoA through competition for hsa-miR-125a-3p, thereby promoting EMT. Conclusions Elevated expression of NORAD in pancreatic cancer tissues is linked to poor prognosis and may confer a malignant phenotype upon tumor cells. NORAD may function as a ceRNA to regulate the expression of the small GTP binding protein RhoA through competition for hsa-miR-125a-3p. This finding may contribute to a better understanding of the role played by lncRNAs in hypoxia-induced EMT and provide a potential novel diagnostic and therapeutic target for pancreatic cancer. Electronic supplementary material The online version of this article (10.1186/s12943-017-0738-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongzhe Li
- Research Institute of Pancreatic Disease, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinjing Wang
- Research Institute of Pancreatic Disease, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenlei Wen
- Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Huo
- Research Institute of Pancreatic Disease, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weishen Wang
- Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Zhan
- Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dongfeng Cheng
- Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Chen
- Research Institute of Pancreatic Disease, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaxing Deng
- Research Institute of Pancreatic Disease, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenghong Peng
- Research Institute of Pancreatic Disease, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Baiyong Shen
- Research Institute of Pancreatic Disease, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. .,Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. .,Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
333
|
Jin L, Quan J, Pan X, He T, Hu J, Li Y, Gui Y, Yang S, Mao X, Chen Y, Lai Y. Identification of lncRNA EGOT as a tumor suppressor in renal cell carcinoma. Mol Med Rep 2017; 16:7072-7079. [PMID: 28901455 DOI: 10.3892/mmr.2017.7470] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 07/13/2017] [Indexed: 11/06/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common type of kidney cancer and the prognosis of metastatic RCC remains poor, with a high rate of recurrence and mortality. Long non‑coding RNA (lncRNA) is a class of RNA which serves important roles in multiple cellular processes and tumorigenesis. In the present study, the expression and function of lncRNA eosinophil granule ontogeny transcript (EGOT) were examined in RCC. In 24 paired tissues (RCC tissues and adjacent normal tissues) the results of reverse transcription‑quantitative polymerase chain reaction analysis revealed that EGOT was downregulated in 22 RCC tissues compared with paired tissues. Upregulation of lncRNA EGOT by transfection of 786‑O and ACHN RCC cells with pcDNA3.1‑EGOT suppressed cell proliferation, migration and invasion, and induced RCC cell apoptosis. The results demonstrated that EGOT may serve as a tumor suppressor in RCC and may be a potential prognostic biomarker of RCC.
Collapse
Affiliation(s)
- Lu Jin
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Jing Quan
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Xiang Pan
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Tao He
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Jia Hu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yifan Li
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yaoting Gui
- Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Shangqi Yang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Xiangming Mao
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yun Chen
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yongqing Lai
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|
334
|
Jiang Y, Feng E, Sun L, Jin W, You Y, Yao Y, Xu Y. An increased expression of long non-coding RNA PANDAR promotes cell proliferation and inhibits cell apoptosis in pancreatic ductal adenocarcinoma. Biomed Pharmacother 2017; 95:685-691. [PMID: 28886528 DOI: 10.1016/j.biopha.2017.08.124] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/09/2017] [Accepted: 08/29/2017] [Indexed: 02/04/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies worldwide. Emerging evidence indicates that aberrantly expressed long non-coding RNAs (lncRNAs) act as imperative roles in tumorigenesis and progression. PANDAR (promoter of CDKN1A antisense DNA damage activated RNA) is a novel lncRNA that contributes to the development of various cancers. However, its clinical significance and potential effects on PDAC remains unknown. In the present study, qRT-PCR was performed to explore the expression levels of PANDAR in PDAC tissues and corresponding non-tumor tissues, the correlation between PANDAR expression and clinicopathological characteristics was also analyzed. The functional roles of lncRNA PANDAR in PDAC cells were evaluated both in vitro and in vivo. The results indicated that PANDAR was aberrantly overexpressed in PDAC tissues and cell lines, and this overexpression was closely associated with tumor stage and vascular invasion in PDAC patients. Besides, silencing of PANDAR exerted tumor suppressive effect via reducing cell proliferation, colony-forming ability, inducing cell cycle G0/G1 arrest and apoptosis in PANC1 and Capan-2 cells. Further in vivo study confirmed the oncogenesis role of PANDAR in PDAC cells. Overall, our findings may help to develop a potential therapeutic target for the patients with PDAC.
Collapse
Affiliation(s)
- Yuehong Jiang
- Department of Clinical laboratory of microbiology, Heilongjiang Provincial Hospital, Harbin 150036, China
| | - Enhang Feng
- Department of Clinical laboratory of microbiology, Heilongjiang Provincial Hospital, Harbin 150036, China
| | - Lifang Sun
- Department of Clinical laboratory of microbiology, Heilongjiang Provincial Hospital, Harbin 150036, China
| | - Wei Jin
- Department of Clinical laboratory of microbiology, Heilongjiang Provincial Hospital, Harbin 150036, China
| | - Yuhong You
- Department of Clinical laboratory of microbiology, Heilongjiang Provincial Hospital, Harbin 150036, China
| | - Yue Yao
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
335
|
Zhang S, Xiao J, Chai Y, Du YY, Liu Z, Huang K, Zhou X, Zhou W. LncRNA-CCAT1 Promotes Migration, Invasion, and EMT in Intrahepatic Cholangiocarcinoma Through Suppressing miR-152. Dig Dis Sci 2017; 62:3050-3058. [PMID: 28921383 DOI: 10.1007/s10620-017-4759-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/08/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND Increasing evidence has suggested that lncRNA CCAT1 is upregulated and functions as a potential tumor promoter in many cancers. However, the potential biological roles and regulatory mechanisms of CCAT1 in intrahepatic cholangiocarcinoma (ICC) remain unclear. METHODS We used real-time PCR to measure CCAT1 expression in ICC tissues and the adjacent normal tissues. The statistical analyses were applied to evaluate the prognostic value and associations of CCAT1 expression with clinical parameters. The CCAT1 was silenced with siRNA in ICC cells. The migration and invasion of ICC cells were detected with Transwell assay. The expressions of epithelial-mesenchymal transition (EMT)-related proteins were evaluated to discover whether the process of EMT was involved. RESULTS We found that CCAT1 expression was elevated in ICC tissues compared to the adjacent normal tissues. We also found that high CCAT1 expression is closely correlated with tumor progression in ICC patients. Furthermore, our results show that knockdown of CCAT1 significantly suppressed the migration and invasion of ICC cells. Additionally, CCAT1 silencing remarkably reverses the EMT phenotype of ICC cells. Moreover, bioinformatics analysis and luciferase reporter assay revealed that CCAT1 directly bound to the miR-152, which has been reported to serve as a tumor suppressor in variety cancers. Further investigation demonstrated that CCAT1 led to the metastasis and EMT activation of ICC cells through inhibiting miR-152. CONCLUSIONS Our results suggested that CCAT1 functions as an oncogenic lncRNA in ICC, which could serve as a potential diagnostic and therapeutic target for ICC patients.
Collapse
Affiliation(s)
- Shouhua Zhang
- Department of General Surgery, Jiangxi Children's Hospital, Nanchang, 330006, Jiangxi Province, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi Province, China
| | - Yong Chai
- Department of General Surgery, Jiangxi Children's Hospital, Nanchang, 330006, Jiangxi Province, China
| | - Yun Yan Du
- Department of Otolaryngology, Jiangxi Provincial People's Hospital, Nanchang, 330006, Jiangxi Province, China
| | - Zhiqiang Liu
- Department of General Surgery, Jiangxi Children's Hospital, Nanchang, 330006, Jiangxi Province, China
| | - Kai Huang
- Department of Gastrointestinal Surgery, Jiangxi Provincial Cancer Hospital, No. 519, Beijing East Road, Nanchang, 330029, Jiangxi Province, China
| | - Xin Zhou
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi Province, China
| | - Wei Zhou
- Department of Gastrointestinal Surgery, Jiangxi Provincial Cancer Hospital, No. 519, Beijing East Road, Nanchang, 330029, Jiangxi Province, China.
| |
Collapse
|
336
|
Chu YH, Hardin H, Schneider DF, Chen H, Lloyd RV. MicroRNA-21 and long non-coding RNA MALAT1 are overexpressed markers in medullary thyroid carcinoma. Exp Mol Pathol 2017; 103:229-236. [PMID: 29107050 DOI: 10.1016/j.yexmp.2017.10.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/24/2017] [Accepted: 10/25/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are well-recognized post-transcriptional regulators of gene expression. This study examines the expression of microRNA-21 (miR-21) and lncRNA MALAT1 in medullary thyroid carcinomas (MTCs) and their effects on tumor behavior. METHODS Tissue microarrays (TMAs) were constructed using normal thyroid (n=39), primary tumors (N=39) and metastatic MTCs (N=18) from a total of 42 MTC cases diagnosed between 1987 and 2016. In situ hybridization with probes for miR-21 and MALAT1 was performed. PCR quantification of expression was performed in a subset of normal thyroid (N=10) and primary MTCs (N=32). An MTC-derived cell line (MZ-CRC-1) was transfected with small interfering RNAs (siRNAs) targeting miR-21 and MALAT1 to determine the effects on cell proliferation and invasion. RESULTS In situ hybridization (ISH) showed strong (2+ to 3+) expression of miR-21 in 17 (44%) primary MTCs and strong MALAT1 expression in 37 (95%) primary MTCs. Real-time PCR expression of miR-21 (P<0.001) and MALAT1 (P=0.038) in primary MTCs were significantly higher than in normal thyroid, supporting the ISH findings. Experiments with siRNAs showed inhibition of miR-21 and MALAT1 expression in the MTC-derived cell line, leading to significant decreases in cell proliferation (P<0.05) and invasion (P<0.05). CONCLUSION There is increased expression of miR-21 and MALAT1 in MTCs. This study also showed an in vitro pro-oncogenic effect of MALAT1 and miR-21 in MTCs. The results suggest that overexpression of miR-21 and MALAT1 may regulate MTC progression.
Collapse
Affiliation(s)
- Ying-Hsia Chu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, United States
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, United States
| | - David F Schneider
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, United States
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, United States.
| |
Collapse
|
337
|
Yu W, Peng W, Jiang H, Sha H, Li J. LncRNA HOXA11-AS promotes proliferation and invasion by targeting miR-124 in human non-small cell lung cancer cells. Tumour Biol 2017; 39:1010428317721440. [PMID: 29034803 DOI: 10.1177/1010428317721440] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs have been implicated in human cancer but their mechanisms of action are mainly undocumented. In this study, we found that HOXA11-AS expression was upregulated in non-small cell lung cancer tissues and cell lines. High levels of HOXA11-AS expression were correlated with larger tumor size and lymph node metastasis. Functional analysis revealed that HOXA11-AS promotes non-small cell lung cancer cell proliferation and invasion. In particular, HOXA11-AS functions as a competing endogenous RNA to regulate transcriptional factor Sp1 expression via sponging miR-124. Collectively, our findings reveal an oncogenic role for HOXA11-AS in non-small cell lung cancer tumorigenesis.
Collapse
Affiliation(s)
- Wanjun Yu
- 1 Department of Central Laboratory, Yinzhou Hospital Affiliated to Medical School of Ningbo University, Ningbo, China.,2 Department of Respiratory and Critical Care Medicine, Yinzhou Hospital Affiliated to Medical School of Ningbo University, Ningbo, China
| | - Weidong Peng
- 2 Department of Respiratory and Critical Care Medicine, Yinzhou Hospital Affiliated to Medical School of Ningbo University, Ningbo, China
| | - Hao Jiang
- 2 Department of Respiratory and Critical Care Medicine, Yinzhou Hospital Affiliated to Medical School of Ningbo University, Ningbo, China
| | - Hanyun Sha
- 3 Department of Nephrology, Yinzhou Hospital Affiliated to Medical School of Ningbo University, Ningbo, China
| | - Jipeng Li
- 1 Department of Central Laboratory, Yinzhou Hospital Affiliated to Medical School of Ningbo University, Ningbo, China
| |
Collapse
|
338
|
Yu CK, Xu T, Assoian RK, Rader DJ. Mining the Stiffness-Sensitive Transcriptome in Human Vascular Smooth Muscle Cells Identifies Long Noncoding RNA Stiffness Regulators. Arterioscler Thromb Vasc Biol 2017; 38:164-173. [PMID: 29051139 DOI: 10.1161/atvbaha.117.310237] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/26/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Vascular extracellular matrix stiffening is a risk factor for aortic and coronary artery disease. How matrix stiffening regulates the transcriptome profile of human aortic and coronary vascular smooth muscle cells (VSMCs) is not well understood. Furthermore, the role of long noncoding RNAs (lncRNAs) in the cellular response to stiffening has never been explored. This study characterizes the stiffness-sensitive (SS) transcriptome of human aortic and coronary VSMCs and identifies potential key lncRNA regulators of stiffness-dependent VSMC functions. APPROACH AND RESULTS Aortic and coronary VSMCs were cultured on hydrogel substrates mimicking physiological and pathological extracellular matrix stiffness. Total RNAseq was performed to compare the SS transcriptome profiles of aortic and coronary VSMCs. We identified 3098 genes (2842 protein coding and 157 lncRNA) that were stiffness sensitive in both aortic and coronary VSMCs (false discovery rate <1%). Hierarchical clustering revealed that aortic and coronary VSMCs grouped by stiffness rather than cell origin. Conservation analyses also revealed that SS genes were more conserved than stiffness-insensitive genes. These VSMC SS genes were less tissue-type specific and expressed in more tissues than stiffness-insensitive genes. Using unbiased systems analyses, we identified MALAT1 as an SS lncRNA that regulates stiffness-dependent VSMC proliferation and migration in vitro and in vivo. CONCLUSIONS This study provides the transcriptomic landscape of human aortic and coronary VSMCs in response to extracellular matrix stiffness and identifies novel SS human lncRNAs. Our data suggest that the SS transcriptome is evolutionarily important to VSMCs function and that SS lncRNAs can act as regulators of stiffness-dependent phenotypes.
Collapse
MESH Headings
- Aorta/metabolism
- Aorta/pathology
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Cluster Analysis
- Computational Biology/methods
- Coronary Vessels/metabolism
- Coronary Vessels/pathology
- Data Mining/methods
- Extracellular Matrix/genetics
- Extracellular Matrix/metabolism
- Extracellular Matrix/pathology
- Gene Expression Profiling/methods
- Gene Expression Regulation
- Humans
- Hydrogels
- Mechanotransduction, Cellular
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Transcriptome
- Vascular Stiffness
Collapse
Affiliation(s)
- Christopher K Yu
- From the Perelman School of Medicine (C.K.Y.), Department of Systems Pharmacology and Translational Therapeutics (T.X., R.K.A.), Program in Translational Biomechanics, Institute of Translational Medicine and Therapeutics (T.X., R.K.A.), and Departments of Genetics, Medicine, and Pediatrics, Perelman School of Medicine (D.J.R.), University of Pennsylvania, Philadelphia
- This manuscript was sent to Zahi Fayad, Consulting Editor, for review by expert referees, editorial decision, and final disposition
| | - Tina Xu
- From the Perelman School of Medicine (C.K.Y.), Department of Systems Pharmacology and Translational Therapeutics (T.X., R.K.A.), Program in Translational Biomechanics, Institute of Translational Medicine and Therapeutics (T.X., R.K.A.), and Departments of Genetics, Medicine, and Pediatrics, Perelman School of Medicine (D.J.R.), University of Pennsylvania, Philadelphia
- This manuscript was sent to Zahi Fayad, Consulting Editor, for review by expert referees, editorial decision, and final disposition
| | - Richard K Assoian
- From the Perelman School of Medicine (C.K.Y.), Department of Systems Pharmacology and Translational Therapeutics (T.X., R.K.A.), Program in Translational Biomechanics, Institute of Translational Medicine and Therapeutics (T.X., R.K.A.), and Departments of Genetics, Medicine, and Pediatrics, Perelman School of Medicine (D.J.R.), University of Pennsylvania, Philadelphia
- This manuscript was sent to Zahi Fayad, Consulting Editor, for review by expert referees, editorial decision, and final disposition
| | - Daniel J Rader
- From the Perelman School of Medicine (C.K.Y.), Department of Systems Pharmacology and Translational Therapeutics (T.X., R.K.A.), Program in Translational Biomechanics, Institute of Translational Medicine and Therapeutics (T.X., R.K.A.), and Departments of Genetics, Medicine, and Pediatrics, Perelman School of Medicine (D.J.R.), University of Pennsylvania, Philadelphia.
- This manuscript was sent to Zahi Fayad, Consulting Editor, for review by expert referees, editorial decision, and final disposition.
| |
Collapse
|
339
|
Zhang X, Hamblin MH, Yin KJ. The long noncoding RNA Malat1: Its physiological and pathophysiological functions. RNA Biol 2017; 14:1705-1714. [PMID: 28837398 DOI: 10.1080/15476286.2017.1358347] [Citation(s) in RCA: 361] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recent studies suggest that in humans, DNA sequences responsible for protein coding regions comprise only 2% of the total genome. The rest of the transcripts result in RNA transcripts without protein-coding ability, including long noncoding RNAs (lncRNAs). Different from most members in the lncRNA family, the metastasis-associated lung adenocarcinoma transcript 1 (Malat1) is abundantly expressed and evolutionarily conserved throughout various mammalian species. Malat1 is one of the first identified lncRNAs associated with human disease, and cumulative studies have indicated that Malat1 plays critical roles in the development and progression of various cancers. Malat1 is also actively involved in various physiologic processes, including alternative splicing, epigenetic modification of gene expression, synapse formation, and myogenesis. Furthermore, extensive evidences show that Malat1 plays pivotal roles in multiple pathological conditions as well. In this review, we will summarize latest findings related to the physiologic and pathophysiological processes of Malat1 and discuss its therapeutic potentials.
Collapse
Affiliation(s)
- Xuejing Zhang
- a Pittsburgh Institute of Brain Disorders & Recovery , Department of Neurology , University of Pittsburgh School of Medicine , Pittsburgh , PA USA
| | - Milton H Hamblin
- b Department of Pharmacology , Tulane University School of Medicine , New Orleans , LA , USA
| | - Ke-Jie Yin
- a Pittsburgh Institute of Brain Disorders & Recovery , Department of Neurology , University of Pittsburgh School of Medicine , Pittsburgh , PA USA
| |
Collapse
|
340
|
Adelaiye-Ogala R, Budka J, Damayanti NP, Arrington J, Ferris M, Hsu CC, Chintala S, Orillion A, Miles KM, Shen L, Elbanna M, Ciamporcero E, Arisa S, Pettazzoni P, Draetta GF, Seshadri M, Hancock B, Radovich M, Kota J, Buck M, Keilhack H, McCarthy BP, Persohn SA, Territo PR, Zang Y, Irudayaraj J, Tao WA, Hollenhorst P, Pili R. EZH2 Modifies Sunitinib Resistance in Renal Cell Carcinoma by Kinome Reprogramming. Cancer Res 2017; 77:6651-6666. [PMID: 28978636 DOI: 10.1158/0008-5472.can-17-0899] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/22/2017] [Accepted: 09/25/2017] [Indexed: 12/20/2022]
Abstract
Acquired and intrinsic resistance to receptor tyrosine kinase inhibitors (RTKi) represents a major hurdle in improving the management of clear cell renal cell carcinoma (ccRCC). Recent reports suggest that drug resistance is driven by tumor adaptation via epigenetic mechanisms that activate alternative survival pathways. The histone methyl transferase EZH2 is frequently altered in many cancers, including ccRCC. To evaluate its role in ccRCC resistance to RTKi, we established and characterized a spontaneously metastatic, patient-derived xenograft model that is intrinsically resistant to the RTKi sunitinib, but not to the VEGF therapeutic antibody bevacizumab. Sunitinib maintained its antiangiogenic and antimetastatic activity but lost its direct antitumor effects due to kinome reprogramming, which resulted in suppression of proapoptotic and cell-cycle-regulatory target genes. Modulating EZH2 expression or activity suppressed phosphorylation of certain RTKs, restoring the antitumor effects of sunitinib in models of acquired or intrinsically resistant ccRCC. Overall, our results highlight EZH2 as a rational target for therapeutic intervention in sunitinib-resistant ccRCC as well as a predictive marker for RTKi response in this disease. Cancer Res; 77(23); 6651-66. ©2017 AACR.
Collapse
Affiliation(s)
- Remi Adelaiye-Ogala
- Department of Cancer Pathology and Prevention, University at Buffalo, Buffalo, New York
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, Indiana
| | - Justin Budka
- Medical Sciences, Indiana University, Bloomington, Indiana
| | - Nur P Damayanti
- Department of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Justine Arrington
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Mary Ferris
- Medical Sciences, Indiana University, Bloomington, Indiana
| | - Chuan-Chih Hsu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | | | - Ashley Orillion
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, Indiana
- Department of Cellular and Molecular Biology, University at Buffalo, Buffalo, New York
| | - Kiersten Marie Miles
- Center for Personalized Medicine, Roswell Park Cancer Institute, New York, New York
| | - Li Shen
- Department of Medicine, Roswell Park Cancer Institute, New York, New York
| | - May Elbanna
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, Indiana
| | - Eric Ciamporcero
- Department of Medicine and Experimental Oncology, University of Turin, Turin, Italy
| | - Sreevani Arisa
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Piergiorgio Pettazzoni
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Giulio F Draetta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mukund Seshadri
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, New York, New York
| | - Bradley Hancock
- Department of Surgery, Indiana University, Indianapolis, Indiana
| | - Milan Radovich
- Department of Surgery, Indiana University, Indianapolis, Indiana
| | - Janaiah Kota
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana
| | - Michael Buck
- Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, New York
| | | | - Brian P McCarthy
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana
| | - Scott A Persohn
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana
| | - Paul R Territo
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana
| | - Yong Zang
- Department of Biostatistics, Indiana University, Indianapolis, Indiana
| | | | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | | | - Roberto Pili
- Department of Cancer Pathology and Prevention, University at Buffalo, Buffalo, New York.
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, Indiana
- Department of Medicine, Indiana University, Indianapolis, Indiana
| |
Collapse
|
341
|
A genome-wide comprehensively analyses of long noncoding RNA profiling and metastasis associated lncRNAs in renal cell carcinoma. Oncotarget 2017; 8:87773-87781. [PMID: 29152119 PMCID: PMC5675671 DOI: 10.18632/oncotarget.21206] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/04/2017] [Indexed: 12/21/2022] Open
Abstract
Recently, a growing number of studies have indicated that long noncoding RNAs (lncRNAs) are emerging as new critical regulators of tumorigenesis and prognostic markers in multiple cancers. However, the expression pattern of lncRNAs and their contributions in renal cell carcinoma (RCC) remains poorly understood. In this study, we performed a genome-wide comprehensively analysis of lncRNAs profiling and clinical relevance to provide valuable lncRNA candidates for the further study in RCC. RCC and non-tumor tissues RNA sequencing data, and microarray data were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), then, these data were annotated and analyzed to find dysregulated lncRNAs in RCC. We identified that hundreds of lncRNAs were differentially expressed in RCC tissues compared with normal tissues, and genomic variation analyses revealed that copy number amplification or deletion happened in some of these lncRNAs genome loci. Moreover, lots of lncRNAs expression levels are significantly associated RCC patients overall survival time, such as PVT1 and DUXAP8. Finally, we identified some novel metastasis associated lncRNAs in RCC (such as DUXAP8) by analyzing lncRNAs profiling in the RCC tissues from patients with metastasis compared with the primary RCC tissues without metastasis; knockdown of DUXAP8 could impair RCC cells invasive ability in vitro. Overall, our findings illuminate a lot of lncRNAs are aberrantly expressed in RCC that may offer useful resource for identification novel prognostic markers in this disease.
Collapse
|
342
|
Xiao H, Bao L, Xiao W, Ruan H, Song Z, Qu Y, Chen K, Zhang X, Yang H. Long non-coding RNA Lucat1 is a poor prognostic factor and demonstrates malignant biological behavior in clear cell renal cell carcinoma. Oncotarget 2017; 8:113622-113634. [PMID: 29371934 PMCID: PMC5768351 DOI: 10.18632/oncotarget.21185] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/29/2017] [Indexed: 12/30/2022] Open
Abstract
Background Many long intergenic noncoding RNAs (lincRNAs) are encoded in the human genome. However, their biological functions, molecular mechanisms and prognostic values associated with clear cell renal cell carcinoma (ccRCC) have yet to be elucidated. Methods We screened the lncRNAs’ profile in ccRCC from The Cancer Genome Atlas (TCGA) database, and selected Lucat1 for further study. MTS, colony formation assay and transwell assay were performed to examine the effect of Lucat1 on proliferation and metastasis of ccRCC. The Chip and Rip assay was performed to verify that Lucat1 can bind to polycomb PRC2 complex and suppress p57 expression. Results In this study, we found that lncRNA Lucat1 expression was significantly up regulated in tumor tissues compared to matched adjacent non-tumor tissues. The Lucat1 expression level was also associated with grade, the clinical pathological stage and the survival time. Functional assays showed that Lucat1 can promote renal cancer cell proliferation in vitro and in vivo. Further analysis showed that Lucat1 can bind to polycomb PRC2 complex and suppress p57 expression. Conclusions Taken together, our results suggest that Lucat1, as a regulator of proliferation, may serve as a candidate prognostic biomarker and target for novel therapies in human ccRCC.
Collapse
Affiliation(s)
- Haibing Xiao
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Bao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wen Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hailong Ruan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhengshuai Song
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Qu
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
343
|
Dou C, Sun L, Jin X, Han M, Zhang B, Jiang X, Lv J, Li T. Long non-coding RNA CARLo-5 promotes tumor progression in hepatocellular carcinoma via suppressing miR-200b expression. Oncotarget 2017; 8:70172-70182. [PMID: 29050269 PMCID: PMC5642544 DOI: 10.18632/oncotarget.19597] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/19/2017] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play key roles in cancer initiation and progression. The aim was to investigate the biological functions and clinical significance of long non-coding RNA CARLo-5 in hepatocellular carcinoma (HCC). QRT-PCR was performed to investigate CARLo-5 expression in HCC tissues and cells. Kaplan-Meier curve and multivariate analysis validated the association between CARLo-5 expression and overall survival (OS) in HCC patients. Cell proliferation and invasion was performed by CCK8 cell proliferation, cell colony formation and transwell invasion assays. Western-blot assay was performed to evaluate the protein expression of Twist1, ZEB1, E-cadherin and Vimentin. Tumor xenografts were performed to evaluate the effect of CARLo-5 on tumor growth in vivo. RNA Immunoprecipitation (RIP) and Chromatin Immunoprecipitation (ChIP) were also performed. Our results showed that CARLo-5 expression was significantly higher in HCC tissues and upregulated CARLo-5 expression was closely correlated with tumor size and advanced tumor stage. Kaplan-Meier curve and multivariate analysis validated that higher CARLo-5 expression predicted a poor prognosis for HCC patients and was an independent risk factor for OS in HCC patients. In vitro, knockdown of CARLo-5 inhibited cell proliferation, colony formation, cell invasion and inhibited the cell epithelial-mesenchymal transition (EMT) by up-regulating the E-cadherin expression and down-regulating Twist1, ZEB1 and vimentin expression in HCC cells. Furthermore, we demonstrated that CARLo-5 inhibited the miR-200b expression via EZH2. In vivo, knockdown of CARLo-5 significantly inhibited the tumor growth. Thus, our results indicated that CARLo-5 represented a novel tumor biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Chunqing Dou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Liyuan Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Xin Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Mingming Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Bao Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Xian Jiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Jinyong Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Tao Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
344
|
Ren Y, Shang J, Li J, Liu W, Zhang Z, Yuan J, Yang M. The long noncoding RNA PCAT-1 links the microRNA miR-215 to oncogene CRKL-mediated signaling in hepatocellular carcinoma. J Biol Chem 2017; 292:17939-17949. [PMID: 28887306 DOI: 10.1074/jbc.m116.773978] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 08/29/2017] [Indexed: 12/11/2022] Open
Abstract
The long non-coding RNA (lncRNA) PCAT-1 resides in the chromosome 8q24 cancer-risk locus and acts as a vital oncogene during tumorigenesis and progression. However, how PCAT-1 is post-transcriptionally regulated, for example, by small ncRNAs, such as microRNAs (miRNAs) is largely unknown. Here, we report how miRNAs regulate PCAT-1 expression and also investigate the biological significance of this regulation in hepatocellular carcinoma (HCC). We found that miR-215, a P53-inducible miRNA, is a key regulator of PCAT-1 expression in HCC and identified an interaction between miR-215 and PCAT-1 in dual luciferase reporter gene assays. We also found that post-transcriptional silencing of PCAT-1 by miR-215 or PCAT-1 siRNAs significantly inhibited proliferation of HCC cells and, conversely, that inhibition of endogenous miR-215 up-regulated PCAT-1 expression and promoted cell viability. The tumor-suppressing role of miR-215 was further confirmed in an in vivo mouse HCC xenograft model. Of note, gene profiling assays suggested that the kinase CRK-like proto-oncogene, adaptor protein (CRKL), is a potential downstream target of the miR-215-PCAT-1 axis in HCC, and we demonstrated that CRKL silencing significantly suppresses cell proliferation. Taken together and considering the essential role of CRKL in cancer cells, we propose that the TP53-miR-215-PCAT-1-CRKL axis might represent an important regulatory pathway in HCC. In summary, our results highlight the involvement of several ncRNAs in HCC and thus provide critical insights into the molecular pathways operating in this malignancy.
Collapse
Affiliation(s)
- Yanli Ren
- From the Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, China and
| | - Jinhua Shang
- the College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100021, China
| | - Jinliang Li
- the College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100021, China
| | - Wenjuan Liu
- From the Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, China and
| | - Zhao Zhang
- the College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100021, China
| | - Jupeng Yuan
- From the Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, China and
| | - Ming Yang
- From the Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, China and
| |
Collapse
|
345
|
Zeng X, Hu Z, Ke X, Tang H, Wu B, Wei X, Liu Z. Long noncoding RNA DLX6-AS1 promotes renal cell carcinoma progression via miR-26a/PTEN axis. Cell Cycle 2017; 16:2212-2219. [PMID: 28881158 DOI: 10.1080/15384101.2017.1361072] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Recently, long non-coding RNAs (lncRNAs) have emerged as new gene regulators and prognostic markers in several types of cancer, including renal cell carcinoma (RCC). In this study, we identified an upregulated lncRNA, DLX6-AS1, in RCC tumor tissues compared with normal kidney tissues. Our data suggested that DLX6-AS1 promoted RCC cell growth and tumorigenesis via targeting miR-26a. In addition, we observed that PTEN overexpression restored the renal cancer cell growth and also rescued the RCC tumorigenesis. In summary, we conclude that DLX6-AS1 promotes renal cell carcinoma development via regulation of miR-26a/PTEN axis.
Collapse
Affiliation(s)
- Xing Zeng
- a Department of Urology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Zhiquan Hu
- a Department of Urology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Xinwen Ke
- a Department of Urology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Huake Tang
- a Department of Urology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Bolin Wu
- a Department of Urology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Xian Wei
- a Department of Urology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Zheng Liu
- a Department of Urology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
346
|
Li Q, Pan X, Wang X, Jiao X, Zheng J, Li Z, Huo Y. Long noncoding RNA MALAT1 promotes cell proliferation through suppressing miR-205 and promoting SMAD4 expression in osteosarcoma. Oncotarget 2017; 8:106648-106660. [PMID: 29290978 PMCID: PMC5739763 DOI: 10.18632/oncotarget.20678] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/26/2017] [Indexed: 01/17/2023] Open
Abstract
Increasing evidences have indicated that long non-coding RNAs (lncRNAs) play an important role in multiply biological processes including cell development, differentiation, proliferation and invasion. The metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), is a highly conserved nuclear ncRNA and a key regulator of metastasis development in several cancers. However, its role in osteosarcoma progression is not well known. In this study, we sought to determine the clinical and bilogical role of MALAT1 in osteosarcoma progression. RT-qPCR analysis showed that MALAT1 expression was significantly increased in primary osteosarcoma tissues and cell lines. Kaplan-Meier analysis indicated that patients with high expression of MALAT1 was associated with poor overall survival compared with the low expressing patients. Furthermore, the gain and loss function assay showed that miR-205 was suppressed by MALAT1 in osteosarcoma and this interaction between miR-205 and MALAT1 has reciprocal effects. Cell viability assay showed that MALAT1 promoted MG-63 and SAOS-2 cell growth through suppressing miR-205. Subsequently, the downstream gene SMAD4 was identified as a direct functional target of miR-205, and miR-205 suppressed osteosarcoma cell growth through suppressing SMAD4. Finally, we demonstrated that MALAT1 promoted osteosarcoma progression via a miR-205-SMAD4 axis. In conclusion, we revealed that enhanced MALAT1 expression predicted unfavourable outcome in osteosarcoma and promoted cell proliferation through suppressing miR-205 and activating SMAD4 function. Thus, lncRNA MALAT1 may serve as a promising prognostic and therapeutic target for osteosarcoma patients.
Collapse
Affiliation(s)
- Qingbo Li
- Department of Orthopedics, The Second Hospital of Shandong University, Jinan, 250133, Shandong Province, China
| | - Xiaohan Pan
- Department of Health Management, The Second Hospital of Shandong University, Jinan, 250133, Shandong Province, China
| | - Xiqian Wang
- Department of Orthopedics, The Second Hospital of Shandong University, Jinan, 250133, Shandong Province, China
| | - Xiejia Jiao
- Department of Orthopedics, The Second Hospital of Shandong University, Jinan, 250133, Shandong Province, China
| | - Jiachun Zheng
- Department of Orthopedics, The Second Hospital of Shandong University, Jinan, 250133, Shandong Province, China
| | - Zhiqiang Li
- Department of Orthopedics, The Second Hospital of Shandong University, Jinan, 250133, Shandong Province, China
| | - Yanqing Huo
- Department of Orthopedics, The Second Hospital of Shandong University, Jinan, 250133, Shandong Province, China
| |
Collapse
|
347
|
Chen S, Ma P, Zhao Y, Li B, Jiang S, Xiong H, Wang Z, Wang H, Jin X, Liu C. Biological function and mechanism of MALAT-1 in renal cell carcinoma proliferation and apoptosis: role of the MALAT-1-Livin protein interaction. J Physiol Sci 2017; 67:577-585. [PMID: 27655020 PMCID: PMC10717353 DOI: 10.1007/s12576-016-0486-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/05/2016] [Indexed: 10/21/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been shown to play a critical role in cancer development and progression. LncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1) is a kidney cancer-associated onco-lncRNA involved in the progression of renal cell carcinoma (RCC). However, the pathological role of lncRNA MALAT-1 in RCC proliferation and metastasis remains poorly understood. This study was designed to investigate the biological role and mechanism of MALAT-1 in RCC proliferation and metastasis. The experiments were performed in human tissues, renal carcinoma cell lines, and nude mice. The expression of lncRNA MALAT-1, Livin mRNA, and the Livin protein was determined by quantitative real-time PCR (qRT-PCR) or a Western blot. The interaction between MALAT-1 and Livin was evaluated by RNA pull-down and RNA binding protein immunoprecipitation (RIP). Cell viability and apoptosis in RCC cell lines were detected using CCK-8 and TUNEL assays. LncRNA MALAT-1 and the Livin protein were highly expressed in RCC tissues, as well as in RCC 786-O and Caki-1 cell lines. MALAT-1 interference contributed to an increase in cell apoptosis and a reduction in the cell viability of 786-O and Caki-1 cells. The increase in apoptosis by si-MALAT-1 was reversed by overexpression of Livin. The RIP results showed that MALAT-1 promoted the expression of the Livin protein in 786-O and Caki-1 cells by enhancing the stability of the protein. Furthermore, the volume of si-MALAT-1-786-O cell xenograft was significantly suppressed. These data indicate that lncRNA MALAT-1-mediated promotion of RCC proliferation and metastasis may be due to the upregulation of the expression of Livin.
Collapse
Affiliation(s)
- Shaoan Chen
- Department of Minimally Invasive Urology Center, Provincial Hospital Affiliated to Shandong University, 9677# Olympic Sports Centre Middle Road, Jinan, 250014, Shandong, People's Republic of China
| | - Pengpeng Ma
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Lu, Chongqing, 400010, People's Republic of China
| | - Ying Zhao
- Accounting Institute, Shandong Women's University, Jinan, People's Republic of China
| | - Bin Li
- Department of Medicine, Shandong University, Jinan, People's Republic of China
| | - Shaobo Jiang
- Department of Minimally Invasive Urology Center, Provincial Hospital Affiliated to Shandong University, 9677# Olympic Sports Centre Middle Road, Jinan, 250014, Shandong, People's Republic of China
| | - Hui Xiong
- Department of Minimally Invasive Urology Center, Provincial Hospital Affiliated to Shandong University, 9677# Olympic Sports Centre Middle Road, Jinan, 250014, Shandong, People's Republic of China
| | - Zheng Wang
- Department of Minimally Invasive Urology Center, Provincial Hospital Affiliated to Shandong University, 9677# Olympic Sports Centre Middle Road, Jinan, 250014, Shandong, People's Republic of China
| | - Hanbo Wang
- Department of Minimally Invasive Urology Center, Provincial Hospital Affiliated to Shandong University, 9677# Olympic Sports Centre Middle Road, Jinan, 250014, Shandong, People's Republic of China
| | - Xunbo Jin
- Department of Minimally Invasive Urology Center, Provincial Hospital Affiliated to Shandong University, 9677# Olympic Sports Centre Middle Road, Jinan, 250014, Shandong, People's Republic of China.
| | - Chuan Liu
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Lu, Chongqing, 400010, People's Republic of China.
| |
Collapse
|
348
|
Up-regulation of lncRNA CASC9 promotes esophageal squamous cell carcinoma growth by negatively regulating PDCD4 expression through EZH2. Mol Cancer 2017; 16:150. [PMID: 28854977 PMCID: PMC5577767 DOI: 10.1186/s12943-017-0715-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 08/21/2017] [Indexed: 01/18/2023] Open
Abstract
Background Abnormal expression of numerous long non-coding RNAs (lncRNAs) has been reported in esophageal squamous cell carcinoma (ESCC) recently, but the great majority of their roles and mechanisms remain largely unclear. We aim to identify the critical ESCC-associated lncRNAs and elucidate the functions and mechanisms in detail. Methods Microarrays were used to analyze the differentially expressed lncRNAs in ESCC tissues. qRT-PCR was used to verify the result of microarrays. The effects of the most up-regulated lncRNA, cancer susceptibility candidate 9(CASC9), on cell growth, proliferation and cell cycle were investigated by in vivo and in vitro assays. Microarrays and recovery tests were used to discover the regulatory targets of CASC9. RNA FISH and subcellular fractionation assays were used to detect the subcellular location of CASC9. Finally, the mechanism of CASC9 regulating PDCD4 was explored by RIP, RNA-protein pull down and ChIP assays. Results ESCC tissue microarrays showed that CASC9 was the most up-regulated lncRNA. qRT-PCR analysis indicated that CASC9 expression was positively associated with tumor size and TNM stage, and predicted poor overall survival of ESCC patients. Knockdown of CASC9 inhibited ESCC cell growth in vitro and tumorigenesis in nude mice. Furthermore interfering CASC9 decreased cell proliferation and blocked cell cycle G1/S transition. CASC9-associated microarrays indicated that PDCD4 might be the target of CASC9. Consistent with this, PDCD4 expression was negatively associated with CASC9 expression in ESCC tissues and predicted good prognosis. Manipulating CASC9 expression in ESCC cells altered both PDCD4 mRNA and protein levels and cell cycle arrest caused by CASC9 knockdown could be rescued by suppressing PDCD4 expression. CASC9 located both in the nucleus and cytoplasm. Mechanistically, enhancer of zeste homolog2 (EZH2) could bind to both CASC9 and PDCD4 promoter region. Interfering CASC9 reduced the enrichment of EZH2 and H3K27me3 in the PDCD4 promoter region. Conclusions Our study firstly demonstrates that lncRNA CASC9 functions as an oncogene by negatively regulating PDCD4 expression through recruiting EZH2 and subsequently altering H3K27me3 level. Our study implicates lncRNA CASC9 as a valuable biomarker for ESCC diagnosis and prognosis. Electronic supplementary material The online version of this article (10.1186/s12943-017-0715-7) contains supplementary material, which is available to authorized users.
Collapse
|
349
|
Growth-induced stress enhances epithelial-mesenchymal transition induced by IL-6 in clear cell renal cell carcinoma via the Akt/GSK-3β/β-catenin signaling pathway. Oncogenesis 2017; 6:e375. [PMID: 28846080 PMCID: PMC5608922 DOI: 10.1038/oncsis.2017.74] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/24/2017] [Accepted: 07/07/2017] [Indexed: 12/18/2022] Open
Abstract
Stromal cell populations in the tumor microenvironment (TME) play a critical role in the oncogenesis and metastasis of renal cell carcinoma. In this study, we found that there are α-smooth muscle actin positive (α-SMA (+)) cells in the stroma of clear cell renal cell carcinoma (ccRCC) tissues, and their numbers are significantly associated with poor survival in ccRCC patients. Interleukin 6 (IL-6) is a critical diver that induces α-SMA (+) cells in ccRCC tissues via promotion of epithelial to mesenchymal transition (EMT) and stimulates migration and invasion in ccRCC. Peritumoral CD4+ T cells are the main source of IL-6 in ccRCC tissues. In addition to biochemical factors, mechanical compression within tumors affects tumor cell behavior. Tumors grown in a confined space exhibit intratumoral compressive stress and, with sufficient pressure, stress-stimulated migration of cancer cells. Moreover, a combination of IL-6 secreted by CD4+ T cells and growth-induced solid stress further contributes to the regulation of cancer cell morphogenesis, EMT and acquisition of a stemness phenotype. The effects in the combination group were driven by the Akt/GSK-3β/β-catenin signaling pathway, and deregulation of β-catenin expression was predictive of poor outcome in ccRCC patients. Notably, the expression of a cancer stem cell marker, CD44, was correlated with T stage, high Fuhrman grade and metastasis in ccRCC. These data provide evidence for new stress-reducing and IL-6 targeting strategies in cancer therapy.
Collapse
|
350
|
Epigenome Aberrations: Emerging Driving Factors of the Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2017; 18:ijms18081774. [PMID: 28812986 PMCID: PMC5578163 DOI: 10.3390/ijms18081774] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/29/2017] [Accepted: 08/12/2017] [Indexed: 12/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC), the most common form of Kidney cancer, is characterized by frequent mutations of the von Hippel-Lindau (VHL) tumor suppressor gene in ~85% of sporadic cases. Loss of pVHL function affects multiple cellular processes, among which the activation of hypoxia inducible factor (HIF) pathway is the best-known function. Constitutive activation of HIF signaling in turn activates hundreds of genes involved in numerous oncogenic pathways, which contribute to the development or progression of ccRCC. Although VHL mutations are considered as drivers of ccRCC, they are not sufficient to cause the disease. Recent genome-wide sequencing studies of ccRCC have revealed that mutations of genes coding for epigenome modifiers and chromatin remodelers, including PBRM1, SETD2 and BAP1, are the most common somatic genetic abnormalities after VHL mutations in these tumors. Moreover, recent research has shed light on the extent of abnormal epigenome alterations in ccRCC tumors, including aberrant DNA methylation patterns, abnormal histone modifications and deregulated expression of non-coding RNAs. In this review, we discuss the epigenetic modifiers that are commonly mutated in ccRCC, and our growing knowledge of the cellular processes that are impacted by them. Furthermore, we explore new avenues for developing therapeutic approaches based on our knowledge of epigenome aberrations of ccRCC.
Collapse
|