301
|
Floy ME, Givens SE, Matthys OB, Mateyka TD, Kerr CM, Steinberg AB, Silva AC, Zhang J, Mei Y, Ogle BM, McDevitt TC, Kamp TJ, Palecek SP. Developmental lineage of human pluripotent stem cell-derived cardiac fibroblasts affects their functional phenotype. FASEB J 2021; 35:e21799. [PMID: 34339055 PMCID: PMC8349112 DOI: 10.1096/fj.202100523r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/15/2021] [Accepted: 06/30/2021] [Indexed: 01/24/2023]
Abstract
Cardiac fibroblasts (CFBs) support heart function by secreting extracellular matrix (ECM) and paracrine factors, respond to stress associated with injury and disease, and therefore are an increasingly important therapeutic target. We describe how developmental lineage of human pluripotent stem cell-derived CFBs, epicardial (EpiC-FB), and second heart field (SHF-FB) impacts transcriptional and functional properties. Both EpiC-FBs and SHF-FBs exhibited CFB transcriptional programs and improved calcium handling in human pluripotent stem cell-derived cardiac tissues. We identified differences including in composition of ECM synthesized, secretion of growth and differentiation factors, and myofibroblast activation potential, with EpiC-FBs exhibiting higher stress-induced activation potential akin to myofibroblasts and SHF-FBs demonstrating higher calcification and mineralization potential. These phenotypic differences suggest that EpiC-FBs have utility in modeling fibrotic diseases while SHF-FBs are a promising source of cells for regenerative therapies. This work directly contrasts regional and developmental specificity of CFBs and informs CFB in vitro model selection.
Collapse
Affiliation(s)
- Martha E Floy
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Sophie E Givens
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Oriane B Matthys
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, Berkley, CA, USA
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Taylor D Mateyka
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Charles M Kerr
- Molecular Cell Biology and Pathobiology Program, Medical University of South Carolina, Charleston, SC, USA
| | - Alexandra B Steinberg
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Ana C Silva
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Jianhua Zhang
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Ying Mei
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Brenda M Ogle
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Todd C McDevitt
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Timothy J Kamp
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
302
|
Wojtkiewicz M, Berg Luecke L, Castro C, Burkovetskaya M, Mesidor R, Gundry RL. Bottom-up proteomic analysis of human adult cardiac tissue and isolated cardiomyocytes. J Mol Cell Cardiol 2021; 162:20-31. [PMID: 34437879 PMCID: PMC9620472 DOI: 10.1016/j.yjmcc.2021.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/07/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022]
Abstract
The heart is composed of multiple cell types, each with a specific function. Cell-type-specific approaches are necessary for defining the intricate molecular mechanisms underlying cardiac development, homeostasis, and pathology. While single-cell RNA-seq studies are beginning to define the chamber-specific cellular composition of the heart, our views of the proteome are more limited because most proteomics studies have utilized homogenized human cardiac tissue. To promote future cell-type specific analyses of the human heart, we describe the first method for cardiomyocyte isolation from cryopreserved human cardiac tissue followed by flow cytometry for purity assessment. We also describe a facile method for preparing isolated cardiomyocytes and whole cardiac tissue homogenate for bottom-up proteomic analyses. Prior experience in dissociating cardiac tissue or proteomics is not required to execute these methods. We compare different sample preparation workflows and analysis methods to demonstrate how these can impact the depth of proteome coverage achieved. We expect this how-to guide will serve as a starting point for investigators interested in general and cell-type-specific views of the cardiac proteome.
Collapse
Affiliation(s)
- Melinda Wojtkiewicz
- CardiOmics Program, Center for Heart and Vascular Research, Division of Cardiovascular Medicine, Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Linda Berg Luecke
- CardiOmics Program, Center for Heart and Vascular Research, Division of Cardiovascular Medicine, Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Chase Castro
- CardiOmics Program, Center for Heart and Vascular Research, Division of Cardiovascular Medicine, Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Maria Burkovetskaya
- CardiOmics Program, Center for Heart and Vascular Research, Division of Cardiovascular Medicine, Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Roneldine Mesidor
- CardiOmics Program, Center for Heart and Vascular Research, Division of Cardiovascular Medicine, Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rebekah L Gundry
- CardiOmics Program, Center for Heart and Vascular Research, Division of Cardiovascular Medicine, Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
303
|
Chou C, Chin MT. Pathogenic Mechanisms of Hypertrophic Cardiomyopathy beyond Sarcomere Dysfunction. Int J Mol Sci 2021; 22:ijms22168933. [PMID: 34445638 PMCID: PMC8396307 DOI: 10.3390/ijms22168933] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 01/23/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disorder, affecting 1 in 500 people in the general population. Although characterized by asymmetric left ventricular hypertrophy, cardiomyocyte disarray, and cardiac fibrosis, HCM is in fact a highly complex disease with heterogenous clinical presentation, onset, and complications. While HCM is generally accepted as a disease of the sarcomere, variable penetrance in families with identical genetic mutations challenges the monogenic origin of HCM and instead implies a multifactorial cause. Furthermore, large-scale genome sequencing studies revealed that many genes previously reported as causative of HCM in fact have little or no evidence of disease association. These findings thus call for a re-evaluation of the sarcomere-centered view of HCM pathogenesis. Here, we summarize our current understanding of sarcomere-independent mechanisms of cardiomyocyte hypertrophy, highlight the role of extracellular signals in cardiac fibrosis, and propose an alternative but integrated model of HCM pathogenesis.
Collapse
Affiliation(s)
- Chun Chou
- Department of Medicine, Tufts University School of Medicine, Boston, MA 02111, USA;
| | - Michael T. Chin
- Department of Medicine, Tufts University School of Medicine, Boston, MA 02111, USA;
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
- Correspondence: ; Tel.: +1-617-636-8776
| |
Collapse
|
304
|
Li G, Luan C, Dong Y, Xie Y, Zentz SC, Zelt R, Roach J, Liu J, Qian L, Li Y, Yang Y. ExpressHeart: Web Portal to Visualize Transcriptome Profiles of Non-Cardiomyocyte Cells. Int J Mol Sci 2021; 22:8943. [PMID: 34445647 PMCID: PMC8396223 DOI: 10.3390/ijms22168943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 12/03/2022] Open
Abstract
Unveiling the molecular features in the heart is essential for the study of heart diseases. Non-cardiomyocytes (nonCMs) play critical roles in providing structural and mechanical support to the working myocardium. There is an increasing amount of single-cell RNA-sequencing (scRNA-seq) data characterizing the transcriptomic profiles of nonCM cells. However, no tool allows researchers to easily access the information. Thus, in this study, we develop an open-access web portal, ExpressHeart, to visualize scRNA-seq data of nonCMs from five laboratories encompassing three species. ExpressHeart enables comprehensive visualization of major cell types and subtypes in each study; visualizes gene expression in each cell type/subtype in various ways; and facilitates identifying cell-type-specific and species-specific marker genes. ExpressHeart also provides an interface to directly combine information across datasets, for example, generating lists of high confidence DEGs by taking the intersection across different datasets. Moreover, ExpressHeart performs comparisons across datasets. We show that some homolog genes (e.g., Mmp14 in mice and mmp14b in zebrafish) are expressed in different cell types between mice and zebrafish, suggesting different functions across species. We expect ExpressHeart to serve as a valuable portal for investigators, shedding light on the roles of genes on heart development in nonCM cells.
Collapse
Affiliation(s)
- Gang Li
- Department of Statistics and Operations Research, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Changfei Luan
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA; (C.L.); (S.C.Z.)
| | - Yanhan Dong
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (Y.D.); (Y.X.); (J.L.); (L.Q.)
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yifang Xie
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (Y.D.); (Y.X.); (J.L.); (L.Q.)
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Scott C. Zentz
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA; (C.L.); (S.C.Z.)
| | - Rob Zelt
- Research Computing, University of North Carolina, Chapel Hill, NC 27599, USA; (R.Z.); (J.R.)
| | - Jeff Roach
- Research Computing, University of North Carolina, Chapel Hill, NC 27599, USA; (R.Z.); (J.R.)
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (Y.D.); (Y.X.); (J.L.); (L.Q.)
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Li Qian
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (Y.D.); (Y.X.); (J.L.); (L.Q.)
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yun Li
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA; (C.L.); (S.C.Z.)
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yuchen Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (Y.D.); (Y.X.); (J.L.); (L.Q.)
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
305
|
New perspectives of the cardiac cellular landscape: mapping cellular mediators of cardiac fibrosis using single-cell transcriptomics. Biochem Soc Trans 2021; 48:2483-2493. [PMID: 33259583 DOI: 10.1042/bst20191255] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Single-cell transcriptomics enables inference of context-dependent phenotypes of individual cells and determination of cellular diversity of complex tissues. Cardiac fibrosis is a leading factor in the development of heart failure and a major cause of morbidity and mortality worldwide with no effective treatment. Single-cell RNA-sequencing (scRNA-seq) offers a promising new platform to identify new cellular and molecular protagonists that may drive cardiac fibrosis and development of heart failure. This review will summarize the application scRNA-seq for understanding cardiac fibrosis and development of heart failure. We will also discuss some key considerations in interpreting scRNA-seq data and some of its limitations.
Collapse
|
306
|
Guo G, Watterson S, Zhang SD, Bjourson A, McGilligan V, Peace A, Rai TS. The role of senescence in the pathogenesis of atrial fibrillation: A target process for health improvement and drug development. Ageing Res Rev 2021; 69:101363. [PMID: 34023420 DOI: 10.1016/j.arr.2021.101363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/24/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022]
Abstract
Cellular senescence is a state of growth arrest that occurs after cells encounter various stresses. Senescence contributes to tumour suppression, embryonic development, and wound healing. It impacts on the pathology of various diseases by secreting inflammatory chemokines, immune modulators and other bioactive factors. These secretory biosignatures ultimately cause inflammation, tissue fibrosis, immunosenescence and many ageing-related diseases such as atrial fibrillation (AF). Because the molecular mechanisms underpinning AF development remain unclear, current treatments are suboptimal and have serious side effects. In this review, we summarize recent results describing the role of senescence in AF. We propose that senescence factors induce AF and have a causative role. Hence, targeting senescence and its secretory phenotype may attenuate AF.
Collapse
|
307
|
Fukuma N, Hulke ML, Brener MI, Golob S, Zilinyi R, Zhou Z, Tzimas C, Russo I, McGroder C, Pfeiffer R, Chong A, Zhang G, Burkhoff D, Leon MB, Maurer M, Moses JW, Uhlemann AC, Hibshoosh H, Uriel N, Szabolcs MJ, Redfors B, Marboe CC, Baldwin MR, Tucker NR, Tsai EJ. Molecular Pathophysiology of Cardiac Injury and Cardiac Microthrombi in Fatal COVID-19: Insights from Clinico-histopathologic and Single Nuclei RNA Sequencing Analyses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34341789 DOI: 10.1101/2021.07.27.453843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cardiac injury is associated with critical COVID-19, yet its etiology remains debated. To elucidate the pathogenic mechanisms of COVID-19-associated cardiac injury, we conducted a single-center prospective cohort study of 69 COVID-19 decedents. Of six cardiac histopathologic features, microthrombi was the most commonly detected (n=48, 70%). We tested associations of cardiac microthrombi with biomarkers of inflammation, cardiac injury, and fibrinolysis and with in-hospital antiplatelet therapy, therapeutic anticoagulation, and corticosteroid treatment, while adjusting for multiple clinical factors, including COVID-19 therapies. Higher peak ESR and CRP during hospitalization were independently associated with higher odds of microthrombi. Using single nuclei RNA-sequence analysis, we discovered an enrichment of pro-thrombotic/anti-fibrinolytic, extracellular matrix remodeling, and immune-potentiating signaling amongst cardiac fibroblasts in microthrombi-positive COVID-19 hearts relative to microthrombi-negative COVID-19. Non-COVID-19 non-failing hearts were used as reference controls. Our cumulative findings identify the specific transcriptomic changes in cardiac fibroblasts as salient features of COVID-19-associated cardiac microthrombi.
Collapse
|
308
|
Mantri S, Wu SM, Goodyer WR. Molecular Profiling of the Cardiac Conduction System: the Dawn of a New Era. Curr Cardiol Rep 2021; 23:103. [PMID: 34196831 DOI: 10.1007/s11886-021-01536-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Recent technological advances have led to an increased ability to define the gene expression profile of the cardiac conduction system (CCS). Here, we review the most salient studies to emerge in recent years and discuss existing gaps in our knowledge as well as future areas of investigation. RECENT FINDINGS Molecular profiling of the CCS spans several decades. However, the advent of high-throughput sequencing strategies has allowed for the discovery of unique transcriptional programs of the many diverse CCS cell types. The CCS, a diverse structure with significant inter- and intra-component cellular heterogeneity, is essential to the normal function of the heart. Progress in transcriptomic profiling has improved the resolution and depth of characterization of these unique and clinically relevant CCS cell types. Future studies leveraging this big data will play a crucial role in improving our understanding of CCS development and function as well as translating these findings into tangible translational tools for the improved detection, prevention, and treatment of cardiac arrhythmias.
Collapse
Affiliation(s)
- Sruthi Mantri
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sean M Wu
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Division of Pediatric Cardiology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA.,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - William R Goodyer
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA. .,Division of Pediatric Cardiology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA. .,Division of Pediatric Cardiology, Electrophysiology, Department of Pediatrics, Lucile Packard Children's Hospital, Stanford University School of Medicine, Room G1105 Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, 94305, USA.
| |
Collapse
|
309
|
Hallab JC, Nim HT, Stolper J, Chahal G, Waylen L, Bolk F, Elliott DA, Porrello E, Ramialison M. Towards spatio-temporally resolved developmental cardiac gene regulatory networks in zebrafish. Brief Funct Genomics 2021:elab030. [PMID: 34170300 DOI: 10.1093/bfgp/elab030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/13/2021] [Accepted: 05/26/2021] [Indexed: 12/25/2022] Open
Abstract
Heart formation in the zebrafish involves a rapid, complex series of morphogenetic events in three-dimensional space that spans cardiac lineage specification through to chamber formation and maturation. This process is tightly orchestrated by a cardiac gene regulatory network (GRN), which ensures the precise spatio-temporal deployment of genes critical for heart formation. Alterations of the timing or spatial localisation of gene expression can have a significant impact in cardiac ontogeny and may lead to heart malformations. Hence, a better understanding of the cellular and molecular basis of congenital heart disease relies on understanding the behaviour of cardiac GRNs with precise spatiotemporal resolution. Here, we review the recent technical advances that have expanded our capacity to interrogate the cardiac GRN in zebrafish. In particular, we focus on studies utilising high-throughput technologies to systematically dissect gene expression patterns, both temporally and spatially during heart development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mirana Ramialison
- Australian Regenerative Medicine Institute and Systems Biology Institute Australia, Monash University, Clayton, VIC, Australia
| |
Collapse
|
310
|
Stroedecke K, Meinel S, Markwardt F, Kloeckner U, Straetz N, Quarch K, Schreier B, Kopf M, Gekle M, Grossmann C. The mineralocorticoid receptor leads to increased expression of EGFR and T-type calcium channels that support HL-1 cell hypertrophy. Sci Rep 2021; 11:13229. [PMID: 34168192 PMCID: PMC8225817 DOI: 10.1038/s41598-021-92284-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/05/2021] [Indexed: 11/12/2022] Open
Abstract
The EGF receptor (EGFR) has been extensively studied in tumor biology and recently a role in cardiovascular pathophysiology was suggested. The mineralocorticoid receptor (MR) is an important effector of the renin-angiotensin-aldosterone-system and elicits pathophysiological effects in the cardiovascular system; however, the underlying molecular mechanisms are unclear. Our aim was to investigate the importance of EGFR for MR-mediated cardiovascular pathophysiology because MR is known to induce EGFR expression. We identified a SNP within the EGFR promoter that modulates MR-induced EGFR expression. In RNA-sequencing and qPCR experiments in heart tissue of EGFR KO and WT mice, changes in EGFR abundance led to differential expression of cardiac ion channels, especially of the T-type calcium channel CACNA1H. Accordingly, CACNA1H expression was increased in WT mice after in vivo MR activation by aldosterone but not in respective EGFR KO mice. Aldosterone- and EGF-responsiveness of CACNA1H expression was confirmed in HL-1 cells by Western blot and by measuring peak current density of T-type calcium channels. Aldosterone-induced CACNA1H protein expression could be abrogated by the EGFR inhibitor AG1478. Furthermore, inhibition of T-type calcium channels with mibefradil or ML218 reduced diameter, volume and BNP levels in HL-1 cells. In conclusion the MR regulates EGFR and CACNA1H expression, which has an effect on HL-1 cell diameter, and the extent of this regulation seems to depend on the SNP-216 (G/T) genotype. This suggests that the EGFR may be an intermediate for MR-mediated cardiovascular changes and that SNP analysis can help identify subgroups of patients that will benefit most from MR antagonists.
Collapse
Affiliation(s)
- Katharina Stroedecke
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Sandra Meinel
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Fritz Markwardt
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Udo Kloeckner
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Nicole Straetz
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Katja Quarch
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Barbara Schreier
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Michael Kopf
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Michael Gekle
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany
| | - Claudia Grossmann
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06097, Halle, Saale, Germany.
| |
Collapse
|
311
|
Adams E, McCloy R, Jordan A, Falconer K, Dykes IM. Direct Reprogramming of Cardiac Fibroblasts to Repair the Injured Heart. J Cardiovasc Dev Dis 2021; 8:72. [PMID: 34206355 PMCID: PMC8306371 DOI: 10.3390/jcdd8070072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Coronary heart disease is a leading cause of mortality and morbidity. Those that survive acute myocardial infarction are at significant risk of subsequent heart failure due to fibrotic remodelling of the infarcted myocardium. By applying knowledge from the study of embryonic cardiovascular development, modern medicine offers hope for treatment of this condition through regeneration of the myocardium by direct reprogramming of fibrotic scar tissue. Here, we will review mechanisms of cell fate specification leading to the generation of cardiovascular cell types in the embryo and use this as a framework in which to understand direct reprogramming. Driving expression of a network of transcription factors, micro RNA or small molecule epigenetic modifiers can reverse epigenetic silencing, reverting differentiated cells to a state of induced pluripotency. The pluripotent state can be bypassed by direct reprogramming in which one differentiated cell type can be transdifferentiated into another. Transdifferentiating cardiac fibroblasts to cardiomyocytes requires a network of transcription factors similar to that observed in embryonic multipotent cardiac progenitors. There is some flexibility in the composition of this network. These studies raise the possibility that the failing heart could one day be regenerated by directly reprogramming cardiac fibroblasts within post-infarct scar tissue.
Collapse
Affiliation(s)
- Emma Adams
- Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (E.A.); (R.M.); (A.J.); (K.F.)
| | - Rachel McCloy
- Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (E.A.); (R.M.); (A.J.); (K.F.)
| | - Ashley Jordan
- Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (E.A.); (R.M.); (A.J.); (K.F.)
| | - Kaitlin Falconer
- Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (E.A.); (R.M.); (A.J.); (K.F.)
| | - Iain M. Dykes
- Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (E.A.); (R.M.); (A.J.); (K.F.)
- Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
312
|
Larson A, Chin MT. A method for cryopreservation and single nucleus RNA-sequencing of normal adult human interventricular septum heart tissue reveals cellular diversity and function. BMC Med Genomics 2021; 14:161. [PMID: 34130702 PMCID: PMC8207585 DOI: 10.1186/s12920-021-01011-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Single cell sequencing of human heart tissue is technically challenging and methods to cryopreserve heart tissue for obtaining single cell information have not been standardized. Studies published to date have used varying methods to preserve and process human heart tissue, and have generated interesting datasets, but development of a biobanking standard has not yet been achieved. Heart transcription patterns are known to be regionally diverse, and there are few single cell datasets for normal human heart tissue. METHODS Using pig tissue, we developed a rigorous and reproducible method for tissue mincing and cryopreservation that allowed recovery of high quality single nuclei RNA. We subsequently tested this protocol on normal human heart tissue obtained from organ donors and were able to recover high quality nuclei for generation of single nuclei RNA-seq datasets, using a commercially available platform from 10× Genomics. We analyzed these datasets using standard software packages such as CellRanger and Seurat. RESULTS Human heart tissue preserved with our method consistently yielded nuclear RNA with RNA Integrity Numbers of greater than 8.5. We demonstrate the utility of this method for single nuclei RNA-sequencing of the normal human interventricular septum and delineating its cellular diversity. The human IVS showed unexpected diversity with detection of 23 distinct cell clusters that were subsequently categorized into different cell types. Cardiomyocytes and fibroblasts were the most commonly identified cell types and could be further subdivided into 5 different cardiomyocyte subtypes and 6 different fibroblast subtypes that differed by gene expression patterns. Ingenuity Pathway analysis of these gene expression patterns suggested functional diversity in these cell subtypes. CONCLUSIONS Here we report a simple technical method for cryopreservation and subsequent nuclear isolation of human interventricular septum tissue that can be done with common laboratory equipment. We show how this method can be used to generate single nuclei transcriptomic datasets that rival those already published by larger groups in terms of cell diversity and complexity and suggest that this simple method can provide guidance for biobanking of human myocardial tissue for complex genomic analysis.
Collapse
Affiliation(s)
- Amy Larson
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Box 80, Boston, MA, 02111, USA
| | - Michael T Chin
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Box 80, Boston, MA, 02111, USA.
| |
Collapse
|
313
|
Luo X, Yin J, Dwyer D, Yamawaki T, Zhou H, Ge H, Han CY, Shkumatov A, Snyder K, Ason B, Li CM, Homann O, Stolina M. Chamber-enriched gene expression profiles in failing human hearts with reduced ejection fraction. Sci Rep 2021; 11:11839. [PMID: 34088950 PMCID: PMC8178406 DOI: 10.1038/s41598-021-91214-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Heart failure with reduced ejection fraction (HFrEF) constitutes 50% of HF hospitalizations and is characterized by high rates of mortality. To explore the underlying mechanisms of HFrEF etiology and progression, we studied the molecular and cellular differences in four chambers of non-failing (NF, n = 10) and HFrEF (n = 12) human hearts. We identified 333 genes enriched within NF heart subregions and often associated with cardiovascular disease GWAS variants. Expression analysis of HFrEF tissues revealed extensive disease-associated transcriptional and signaling alterations in left atrium (LA) and left ventricle (LV). Common left heart HFrEF pathologies included mitochondrial dysfunction, cardiac hypertrophy and fibrosis. Oxidative stress and cardiac necrosis pathways were prominent within LV, whereas TGF-beta signaling was evident within LA. Cell type composition was estimated by deconvolution and revealed that HFrEF samples had smaller percentage of cardiomyocytes within the left heart, higher representation of fibroblasts within LA and perivascular cells within the left heart relative to NF samples. We identified essential modules associated with HFrEF pathology and linked transcriptome discoveries with human genetics findings. This study contributes to a growing body of knowledge describing chamber-specific transcriptomics and revealed genes and pathways that are associated with heart failure pathophysiology, which may aid in therapeutic target discovery.
Collapse
Affiliation(s)
- Xin Luo
- Genome Analysis Unit, Amgen Research, 1120 Veterans BLVD, South San Francisco, CA, 94010, USA
| | - Jun Yin
- Genome Analysis Unit, Amgen Research, 1120 Veterans BLVD, South San Francisco, CA, 94010, USA
| | - Denise Dwyer
- Department of Cardiometabolic Disorders, Amgen Research, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Tracy Yamawaki
- Genome Analysis Unit, Amgen Research, 1120 Veterans BLVD, South San Francisco, CA, 94010, USA
| | - Hong Zhou
- Genome Analysis Unit, Amgen Research, 1120 Veterans BLVD, South San Francisco, CA, 94010, USA
| | - Hongfei Ge
- Department of Cardiometabolic Disorders, Amgen Research, 1120 Veterans BLVD, South San Francisco, CA, 94010, USA
| | - Chun-Ya Han
- Department of Cardiometabolic Disorders, Amgen Research, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Artem Shkumatov
- TS&BA Pathology, Amgen Research, 1120 Veterans BLVD, South San Francisco, CA, 94010, USA
| | - Karen Snyder
- Clinical Biomarkers, Amgen Research, 1120 Veterans BLVD, South San Francisco, CA, 94010, USA
| | - Brandon Ason
- Department of Cardiometabolic Disorders, Amgen Research, 1120 Veterans BLVD, South San Francisco, CA, 94010, USA
| | - Chi-Ming Li
- Genome Analysis Unit, Amgen Research, 1120 Veterans BLVD, South San Francisco, CA, 94010, USA
| | - Oliver Homann
- Genome Analysis Unit, Amgen Research, 1120 Veterans BLVD, South San Francisco, CA, 94010, USA
| | - Marina Stolina
- Department of Cardiometabolic Disorders, Amgen Research, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA.
| |
Collapse
|
314
|
Shi SY, Luo X, Yamawaki TM, Li CM, Ason B, Furtado MB. Recent Advances in Single-Cell Profiling and Multispecific Therapeutics: Paving the Way for a New Era of Precision Medicine Targeting Cardiac Fibroblasts. Curr Cardiol Rep 2021; 23:82. [PMID: 34081224 PMCID: PMC8175296 DOI: 10.1007/s11886-021-01517-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW Cardiac fibroblast activation contributes to fibrosis, maladaptive remodeling and heart failure progression. This review summarizes the latest findings on cardiac fibroblast activation dynamics derived from single-cell transcriptomic analyses and discusses how this information may aid the development of new multispecific medicines. RECENT FINDINGS Advances in single-cell gene expression technologies have led to the discovery of distinct fibroblast subsets, some of which are more prevalent in diseased tissue and exhibit temporal changes in response to injury. In parallel to the rapid development of single-cell platforms, the advent of multispecific therapeutics is beginning to transform the biopharmaceutical landscape, paving the way for the selective targeting of diseased fibroblast subpopulations. Insights gained from single-cell technologies reveal critical cardiac fibroblast subsets that play a pathogenic role in the progression of heart failure. Combined with the development of multispecific therapeutic agents that have enabled access to previously "undruggable" targets, we are entering a new era of precision medicine.
Collapse
Affiliation(s)
- Sally Yu Shi
- Department of Cardiometabolic Disorders, Amgen Discovery Research, Amgen Inc., 1120 Veterans Blvd, South San Francisco, CA 94080 USA
| | - Xin Luo
- Genome Analysis Unit, Amgen Discovery Research, Amgen Inc., 1120 Veterans Blvd, South San Francisco, CA 94080 USA
| | - Tracy M. Yamawaki
- Genome Analysis Unit, Amgen Discovery Research, Amgen Inc., 1120 Veterans Blvd, South San Francisco, CA 94080 USA
| | - Chi-Ming Li
- Genome Analysis Unit, Amgen Discovery Research, Amgen Inc., 1120 Veterans Blvd, South San Francisco, CA 94080 USA
| | - Brandon Ason
- Department of Cardiometabolic Disorders, Amgen Discovery Research, Amgen Inc., 1120 Veterans Blvd, South San Francisco, CA 94080 USA
| | - Milena B. Furtado
- Department of Cardiometabolic Disorders, Amgen Discovery Research, Amgen Inc., 1120 Veterans Blvd, South San Francisco, CA 94080 USA
| |
Collapse
|
315
|
Ramos-Casals M, Brito-Zerón P, Mariette X. Systemic and organ-specific immune-related manifestations of COVID-19. Nat Rev Rheumatol 2021; 17:315-332. [PMID: 33903743 PMCID: PMC8072739 DOI: 10.1038/s41584-021-00608-z] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 01/08/2023]
Abstract
Immune-related manifestations are increasingly recognized conditions in patients with COVID-19, with around 3,000 cases reported worldwide comprising more than 70 different systemic and organ-specific disorders. Although the inflammation caused by SARS-CoV-2 infection is predominantly centred on the respiratory system, some patients can develop an abnormal inflammatory reaction involving extrapulmonary tissues. The signs and symptoms associated with this excessive immune response are very diverse and can resemble some autoimmune or inflammatory diseases, with the clinical phenotype that is seemingly influenced by epidemiological factors such as age, sex or ethnicity. The severity of the manifestations is also very varied, ranging from benign and self-limiting features to life-threatening systemic syndromes. Little is known about the pathogenesis of these manifestations, and some tend to emerge within the first 2 weeks of SARS-CoV-2 infection, whereas others tend to appear in a late post-infectious stage or even in asymptomatic patients. As the body of evidence comprises predominantly case series and uncontrolled studies, diagnostic and therapeutic decision-making is unsurprisingly often based on the scarcely reported experience and expert opinion. Additional studies are required to learn about the mechanisms involved in the development of these manifestations and apply that knowledge to achieve early diagnosis and the most suitable therapy.
Collapse
Affiliation(s)
- Manuel Ramos-Casals
- Department of Autoimmune Diseases, ICMiD, Hospital Clínic, Barcelona, Spain.
- Department of Medicine, University of Barcelona, Barcelona, Spain.
| | - Pilar Brito-Zerón
- Department of Internal Medicine, Hospital CIMA-Sanitas, Barcelona, Spain
| | - Xavier Mariette
- Department of Rheumatology, Center for Immunology of Viral Infections and Autoimmune Diseases, Université Paris-Saclay, INSERM, Assistance Publique - Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin-Bicêtre, Paris, France
| |
Collapse
|
316
|
Abstract
Cardiac injury remains a major cause of morbidity and mortality worldwide. Despite significant advances, a full understanding of why the heart fails to fully recover function after acute injury, and why progressive heart failure frequently ensues, remains elusive. No therapeutics, short of heart transplantation, have emerged to reliably halt or reverse the inexorable progression of heart failure in the majority of patients once it has become clinically evident. To date, most pharmacological interventions have focused on modifying hemodynamics (reducing afterload, controlling blood pressure and blood volume) or on modifying cardiac myocyte function. However, important contributions of the immune system to normal cardiac function and the response to injury have recently emerged as exciting areas of investigation. Therapeutic interventions aimed at harnessing the power of immune cells hold promise for new treatment avenues for cardiac disease. Here, we review the immune response to heart injury, its contribution to cardiac fibrosis, and the potential of immune modifying therapies to affect cardiac repair.
Collapse
Affiliation(s)
- Joel G Rurik
- Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Haig Aghajanian
- Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Jonathan A Epstein
- Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| |
Collapse
|
317
|
Munawar S, Turnbull IC. Cardiac Tissue Engineering: Inclusion of Non-cardiomyocytes for Enhanced Features. Front Cell Dev Biol 2021; 9:653127. [PMID: 34113613 PMCID: PMC8186263 DOI: 10.3389/fcell.2021.653127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/31/2021] [Indexed: 12/01/2022] Open
Abstract
Engineered cardiac tissues (ECTs) are 3D physiological models of the heart that are created and studied for their potential role in developing therapies of cardiovascular diseases and testing cardio toxicity of drugs. Recreating the microenvironment of the native myocardium in vitro mainly involves the use of cardiomyocytes. However, ECTs with only cardiomyocytes (CM-only) often perform poorly and are less similar to the native myocardium compared to ECTs constructed from co-culture of cardiomyocytes and nonmyocytes. One important goal of co-culture tissues is to mimic the native heart's cellular composition, which can result in better tissue function and maturity. In this review, we investigate the role of nonmyocytes in ECTs and discuss the mechanisms behind the contributions of nonmyocytes in enhancement of ECT features.
Collapse
Affiliation(s)
| | - Irene C. Turnbull
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
318
|
Tian CJ, Zhang JH, Liu J, Ma Z, Zhen Z. Ryanodine receptor and immune-related molecules in diabetic cardiomyopathy. ESC Heart Fail 2021; 8:2637-2646. [PMID: 34013670 PMCID: PMC8318495 DOI: 10.1002/ehf2.13431] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/04/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
Hyperglycaemia is a major aetiological factor in the development of diabetic cardiomyopathy. Excessive hyperglycaemia increases the levels of reactive carbonyl species (RCS), reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the heart and causes derangements in calcium homeostasis, inflammation and immune‐system disorders. Ryanodine receptor 2 (RyR2) plays a key role in excitation–contraction coupling during heart contractions, including rhythmic contraction and relaxation of the heart. Cardiac inflammation has been indicated in part though interleukin 1 (IL‐1) signals, supporting a role for B and T lymphocytes in diabetic cardiomyopathy. Some of the post‐translational modifications of the ryanodine receptor (RyR) by RCS, ROS and RNS stress are known to affect its gating and Ca2+ sensitivity, which contributes to RyR dysregulation in diabetic cardiomyopathy. RyRs and immune‐related molecules are important signalling species in many physiological and pathophysiological processes in various heart and cardiovascular diseases. However, little is known regarding the mechanistic relationship between RyRs and immune‐related molecules in diabetes, as well as the mechanisms mediating complex communication among cardiomyocytes, fibroblasts and immune cells. This review highlights new findings on the complex cellular communications in the pathogenesis and progression of diabetic cardiomyopathy. We discuss potential therapeutic applications targeting RyRs and immune‐related molecules in diabetic complications.
Collapse
Affiliation(s)
- Cheng-Ju Tian
- College of Rehabilitation and Sports Medicine, Jinzhou Medical University, Jinzhou, China
| | - Jing-Hua Zhang
- Department of Psychiatry, Tianjin Anding Hospital, Tianjin, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhuang Ma
- College of Rehabilitation and Sports Medicine, Jinzhou Medical University, Jinzhou, China
| | - Zhong Zhen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
319
|
Integrated transcriptomics and epigenomics reveal chamber-specific and species-specific characteristics of human and mouse hearts. PLoS Biol 2021; 19:e3001229. [PMID: 34003819 PMCID: PMC8130971 DOI: 10.1371/journal.pbio.3001229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/12/2021] [Indexed: 12/02/2022] Open
Abstract
DNA methylation, chromatin accessibility, and gene expression represent different levels information in biological process, but a comprehensive multiomics analysis of the mammalian heart is lacking. Here, we applied nucleosome occupancy and methylome sequencing, which detected DNA methylation and chromatin accessibility simultaneously, as well as RNA-seq, for multiomics analysis of the 4 chambers of adult and fetal human hearts, and adult mouse hearts. Our results showed conserved region-specific patterns in the mammalian heart at transcriptome and DNA methylation level. Adult and fetal human hearts showed distinct features in DNA methylome, chromatin accessibility, and transcriptome. Novel long noncoding RNAs were identified in the human heart, and the gene expression profiles of major cardiovascular diseases associated genes were displayed. Furthermore, cross-species comparisons revealed human-specific and mouse-specific differentially expressed genes between the atria and ventricles. We also reported the relationship among multiomics and found there was a bell-shaped relationship between gene-body methylation and expression in the human heart. In general, our study provided comprehensive spatiotemporal and evolutionary insights into the regulation of gene expression in the heart. Multi-omic analyses of the four chambers of the human and mouse heart, including transcriptome, DNA methylation and chromatin accessibility, reveals characteristic patterns of gene regulation at the level of heart regions.
Collapse
|
320
|
Filbin MR, Mehta A, Schneider AM, Kays KR, Guess JR, Gentili M, Fenyves BG, Charland NC, Gonye AL, Gushterova I, Khanna HK, LaSalle TJ, Lavin-Parsons KM, Lilley BM, Lodenstein CL, Manakongtreecheep K, Margolin JD, McKaig BN, Rojas-Lopez M, Russo BC, Sharma N, Tantivit J, Thomas MF, Gerszten RE, Heimberg GS, Hoover PJ, Lieb DJ, Lin B, Ngo D, Pelka K, Reyes M, Smillie CS, Waghray A, Wood TE, Zajac AS, Jennings LL, Grundberg I, Bhattacharyya RP, Parry BA, Villani AC, Sade-Feldman M, Hacohen N, Goldberg MB. Longitudinal proteomic analysis of severe COVID-19 reveals survival-associated signatures, tissue-specific cell death, and cell-cell interactions. Cell Rep Med 2021; 2:100287. [PMID: 33969320 PMCID: PMC8091031 DOI: 10.1016/j.xcrm.2021.100287] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/08/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
Mechanisms underlying severe coronavirus disease 2019 (COVID-19) disease remain poorly understood. We analyze several thousand plasma proteins longitudinally in 306 COVID-19 patients and 78 symptomatic controls, uncovering immune and non-immune proteins linked to COVID-19. Deconvolution of our plasma proteome data using published scRNA-seq datasets reveals contributions from circulating immune and tissue cells. Sixteen percent of patients display reduced inflammation yet comparably poor outcomes. Comparison of patients who died to severely ill survivors identifies dynamic immune-cell-derived and tissue-associated proteins associated with survival, including exocrine pancreatic proteases. Using derived tissue-specific and cell-type-specific intracellular death signatures, cellular angiotensin-converting enzyme 2 (ACE2) expression, and our data, we infer whether organ damage resulted from direct or indirect effects of infection. We propose a model in which interactions among myeloid, epithelial, and T cells drive tissue damage. These datasets provide important insights and a rich resource for analysis of mechanisms of severe COVID-19 disease.
Collapse
Affiliation(s)
- Michael R. Filbin
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Emergency Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Arnav Mehta
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Alexis M. Schneider
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kyle R. Kays
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Matteo Gentili
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Bánk G. Fenyves
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Emergency Medicine, Semmelweis University, Budapest, Hungary
| | - Nicole C. Charland
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Anna L.K. Gonye
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Irena Gushterova
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hargun K. Khanna
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Thomas J. LaSalle
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Brendan M. Lilley
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Carl L. Lodenstein
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kasidet Manakongtreecheep
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Justin D. Margolin
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Brenna N. McKaig
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Maricarmen Rojas-Lopez
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Brian C. Russo
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Nihaarika Sharma
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jessica Tantivit
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Molly F. Thomas
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Robert E. Gerszten
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- CardioVascular Institute, Department of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Graham S. Heimberg
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Paul J. Hoover
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - David J. Lieb
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Brian Lin
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Center for Regenerative Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Debby Ngo
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Karin Pelka
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Miguel Reyes
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christopher S. Smillie
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Avinash Waghray
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Center for Regenerative Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Thomas E. Wood
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Amanda S. Zajac
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | | | | | - Roby P. Bhattacharyya
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Blair Alden Parry
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Alexandra-Chloé Villani
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Moshe Sade-Feldman
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nir Hacohen
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Marcia B. Goldberg
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
321
|
Abstract
This review provides a comprehensive overview of the past 25+ years of research into the development of left ventricular assist device (LVAD) to improve clinical outcomes in patients with severe end-stage heart failure and basic insights gained into the biology of heart failure gleaned from studies of hearts and myocardium of patients undergoing LVAD support. Clinical aspects of contemporary LVAD therapy, including evolving device technology, overall mortality, and complications, are reviewed. We explain the hemodynamic effects of LVAD support and how these lead to ventricular unloading. This includes a detailed review of the structural, cellular, and molecular aspects of LVAD-associated reverse remodeling. Synergisms between LVAD support and medical therapies for heart failure related to reverse remodeling, remission, and recovery are discussed within the context of both clinical outcomes and fundamental effects on myocardial biology. The incidence, clinical implications and factors most likely to be associated with improved ventricular function and remission of the heart failure are reviewed. Finally, we discuss recognized impediments to achieving myocardial recovery in the vast majority of LVAD-supported hearts and their implications for future research aimed at improving the overall rates of recovery.
Collapse
Affiliation(s)
| | | | - Gabriel Sayer
- Cardiovascular Research Foundation, New York, NY (D.B.)
| | - Nir Uriel
- Cardiovascular Research Foundation, New York, NY (D.B.)
| |
Collapse
|
322
|
Marín-Sedeño E, de Morentin XM, Pérez-Pomares JM, Gómez-Cabrero D, Ruiz-Villalba A. Understanding the Adult Mammalian Heart at Single-Cell RNA-Seq Resolution. Front Cell Dev Biol 2021; 9:645276. [PMID: 34055776 PMCID: PMC8149764 DOI: 10.3389/fcell.2021.645276] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
During the last decade, extensive efforts have been made to comprehend cardiac cell genetic and functional diversity. Such knowledge allows for the definition of the cardiac cellular interactome as a reasonable strategy to increase our understanding of the normal and pathologic heart. Previous experimental approaches including cell lineage tracing, flow cytometry, and bulk RNA-Seq have often tackled the analysis of cardiac cell diversity as based on the assumption that cell types can be identified by the expression of a single gene. More recently, however, the emergence of single-cell RNA-Seq technology has led us to explore the diversity of individual cells, enabling the cardiovascular research community to redefine cardiac cell subpopulations and identify relevant ones, and even novel cell types, through their cell-specific transcriptomic signatures in an unbiased manner. These findings are changing our understanding of cell composition and in consequence the identification of potential therapeutic targets for different cardiac diseases. In this review, we provide an overview of the continuously changing cardiac cellular landscape, traveling from the pre-single-cell RNA-Seq times to the single cell-RNA-Seq revolution, and discuss the utilities and limitations of this technology.
Collapse
Affiliation(s)
- Ernesto Marín-Sedeño
- Department of Animal Biology, Faculty of Sciences, Instituto Malagueño de Biomedicina, University of Málaga, Málaga, Spain
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| | - Xabier Martínez de Morentin
- Traslational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra, Pamplona, Spain
| | - Jose M. Pérez-Pomares
- Department of Animal Biology, Faculty of Sciences, Instituto Malagueño de Biomedicina, University of Málaga, Málaga, Spain
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| | - David Gómez-Cabrero
- Traslational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra, Pamplona, Spain
- Centre of Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Adrián Ruiz-Villalba
- Department of Animal Biology, Faculty of Sciences, Instituto Malagueño de Biomedicina, University of Málaga, Málaga, Spain
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
323
|
Joshi A, Rienks M, Theofilatos K, Mayr M. Systems biology in cardiovascular disease: a multiomics approach. Nat Rev Cardiol 2021; 18:313-330. [PMID: 33340009 DOI: 10.1038/s41569-020-00477-1] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
Omics techniques generate large, multidimensional data that are amenable to analysis by new informatics approaches alongside conventional statistical methods. Systems theories, including network analysis and machine learning, are well placed for analysing these data but must be applied with an understanding of the relevant biological and computational theories. Through applying these techniques to omics data, systems biology addresses the problems posed by the complex organization of biological processes. In this Review, we describe the techniques and sources of omics data, outline network theory, and highlight exemplars of novel approaches that combine gene regulatory and co-expression networks, proteomics, metabolomics, lipidomics and phenomics with informatics techniques to provide new insights into cardiovascular disease. The use of systems approaches will become necessary to integrate data from more than one omic technique. Although understanding the interactions between different omics data requires increasingly complex concepts and methods, we argue that hypothesis-driven investigations and independent validation must still accompany these novel systems biology approaches to realize their full potential.
Collapse
Affiliation(s)
- Abhishek Joshi
- King's British Heart Foundation Centre, King's College London, London, UK
- Bart's Heart Centre, St. Bartholomew's Hospital, London, UK
| | - Marieke Rienks
- King's British Heart Foundation Centre, King's College London, London, UK
| | | | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, UK.
| |
Collapse
|
324
|
Hocker JD, Poirion OB, Zhu F, Buchanan J, Zhang K, Chiou J, Wang TM, Zhang Q, Hou X, Li YE, Zhang Y, Farah EN, Wang A, McCulloch AD, Gaulton KJ, Ren B, Chi NC, Preissl S. Cardiac cell type-specific gene regulatory programs and disease risk association. SCIENCE ADVANCES 2021; 7:eabf1444. [PMID: 33990324 PMCID: PMC8121433 DOI: 10.1126/sciadv.abf1444] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/25/2021] [Indexed: 05/07/2023]
Abstract
Misregulated gene expression in human hearts can result in cardiovascular diseases that are leading causes of mortality worldwide. However, the limited information on the genomic location of candidate cis-regulatory elements (cCREs) such as enhancers and promoters in distinct cardiac cell types has restricted the understanding of these diseases. Here, we defined >287,000 cCREs in the four chambers of the human heart at single-cell resolution, which revealed cCREs and candidate transcription factors associated with cardiac cell types in a region-dependent manner and during heart failure. We further found cardiovascular disease-associated genetic variants enriched within these cCREs including 38 candidate causal atrial fibrillation variants localized to cardiomyocyte cCREs. Additional functional studies revealed that two of these variants affect a cCRE controlling KCNH2/HERG expression and action potential repolarization. Overall, this atlas of human cardiac cCREs provides the foundation for illuminating cell type-specific gene regulation in human hearts during health and disease.
Collapse
Affiliation(s)
- James D Hocker
- Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Olivier B Poirion
- Center for Epigenomics, University of California, San Diego, La Jolla, CA, USA
| | - Fugui Zhu
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Justin Buchanan
- Center for Epigenomics, University of California, San Diego, La Jolla, CA, USA
| | - Kai Zhang
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Joshua Chiou
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA
| | - Tsui-Min Wang
- Departments of Bioengineering and Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Qingquan Zhang
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Xiaomeng Hou
- Center for Epigenomics, University of California, San Diego, La Jolla, CA, USA
| | - Yang E Li
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Yanxiao Zhang
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Elie N Farah
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Allen Wang
- Center for Epigenomics, University of California, San Diego, La Jolla, CA, USA
| | - Andrew D McCulloch
- Departments of Bioengineering and Medicine, University of California, San Diego, La Jolla, CA, USA
- Institute for Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kyle J Gaulton
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, La Jolla, CA, USA.
- Center for Epigenomics, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Neil C Chi
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sebastian Preissl
- Center for Epigenomics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
325
|
Sim CB, Phipson B, Ziemann M, Rafehi H, Mills RJ, Watt KI, Abu-Bonsrah KD, Kalathur RK, Voges HK, Dinh DT, ter Huurne M, Vivien CJ, Kaspi A, Kaipananickal H, Hidalgo A, Delbridge LM, Robker RL, Gregorevic P, dos Remedios CG, Lal S, Piers AT, Konstantinov IE, Elliott DA, El-Osta A, Oshlack A, Hudson JE, Porrello ER. Sex-Specific Control of Human Heart Maturation by the Progesterone Receptor. Circulation 2021; 143:1614-1628. [PMID: 33682422 PMCID: PMC8055196 DOI: 10.1161/circulationaha.120.051921] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Despite in-depth knowledge of the molecular mechanisms controlling embryonic heart development, little is known about the signals governing postnatal maturation of the human heart. METHODS Single-nucleus RNA sequencing of 54 140 nuclei from 9 human donors was used to profile transcriptional changes in diverse cardiac cell types during maturation from fetal stages to adulthood. Bulk RNA sequencing and the Assay for Transposase-Accessible Chromatin using sequencing were used to further validate transcriptional changes and to profile alterations in the chromatin accessibility landscape in purified cardiomyocyte nuclei from 21 human donors. Functional validation studies of sex steroids implicated in cardiac maturation were performed in human pluripotent stem cell-derived cardiac organoids and mice. RESULTS Our data identify the progesterone receptor as a key mediator of sex-dependent transcriptional programs during cardiomyocyte maturation. Functional validation studies in human cardiac organoids and mice demonstrate that the progesterone receptor drives sex-specific metabolic programs and maturation of cardiac contractile properties. CONCLUSIONS These data provide a blueprint for understanding human heart maturation in both sexes and reveal an important role for the progesterone receptor in human heart development.
Collapse
Affiliation(s)
- Choon Boon Sim
- Murdoch Children’s Research Institute (C.B.S., B.P., K.D.A.-B., R.K.R.K., H.K.V., M.t.H., C.J.V., A.H., A.T.P., I.E.K., D.A.E., A.O., E.R.P.), The Royal Children’s Hospital, Melbourne, Victoria, Australia
- Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine (C.B.S., K.D.A.-B., R.K.R.K., M.t.H., C.J.V., L.M.D.D., A.T.P., I.E.K., D.A.E., E.R.P.), The Royal Children’s Hospital, Melbourne, Victoria, Australia
| | - Belinda Phipson
- Murdoch Children’s Research Institute (C.B.S., B.P., K.D.A.-B., R.K.R.K., H.K.V., M.t.H., C.J.V., A.H., A.T.P., I.E.K., D.A.E., A.O., E.R.P.), The Royal Children’s Hospital, Melbourne, Victoria, Australia
- Peter MacCallum Cancer Centre (B.P., A.O.), University of Melbourne, Victoria, Australia
| | - Mark Ziemann
- Department of Diabetes, Central Clinical School, Alfred Centre, Monash University, Melbourne, Victoria, Australia (M.Z., H.R., A.K., H.K., A.E.-O.)
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia (M.Z.)
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.Z., H.R., K.I.W., A.K., H.K., P.G., A.E.-O.)
| | - Haloom Rafehi
- Department of Diabetes, Central Clinical School, Alfred Centre, Monash University, Melbourne, Victoria, Australia (M.Z., H.R., A.K., H.K., A.E.-O.)
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.Z., H.R., K.I.W., A.K., H.K., P.G., A.E.-O.)
| | - Richard J. Mills
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia (R.J.M., J.E.H.)
| | - Kevin I. Watt
- Peter MacCallum Cancer Centre (B.P., A.O.), University of Melbourne, Victoria, Australia
- Centre for Muscle Research (K.I.W., P.G., E.R.P.), University of Melbourne, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.Z., H.R., K.I.W., A.K., H.K., P.G., A.E.-O.)
| | - Kwaku D. Abu-Bonsrah
- Murdoch Children’s Research Institute (C.B.S., B.P., K.D.A.-B., R.K.R.K., H.K.V., M.t.H., C.J.V., A.H., A.T.P., I.E.K., D.A.E., A.O., E.R.P.), The Royal Children’s Hospital, Melbourne, Victoria, Australia
- Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine (C.B.S., K.D.A.-B., R.K.R.K., M.t.H., C.J.V., L.M.D.D., A.T.P., I.E.K., D.A.E., E.R.P.), The Royal Children’s Hospital, Melbourne, Victoria, Australia
- School of Biomedical Sciences, and Department of Paediatrics (K.D.A.-B., H.K.V., A.H., I.E.K., D.A.E.), University of Melbourne, Victoria, Australia
| | - Ravi K.R. Kalathur
- Murdoch Children’s Research Institute (C.B.S., B.P., K.D.A.-B., R.K.R.K., H.K.V., M.t.H., C.J.V., A.H., A.T.P., I.E.K., D.A.E., A.O., E.R.P.), The Royal Children’s Hospital, Melbourne, Victoria, Australia
- Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine (C.B.S., K.D.A.-B., R.K.R.K., M.t.H., C.J.V., L.M.D.D., A.T.P., I.E.K., D.A.E., E.R.P.), The Royal Children’s Hospital, Melbourne, Victoria, Australia
| | - Holly K. Voges
- Murdoch Children’s Research Institute (C.B.S., B.P., K.D.A.-B., R.K.R.K., H.K.V., M.t.H., C.J.V., A.H., A.T.P., I.E.K., D.A.E., A.O., E.R.P.), The Royal Children’s Hospital, Melbourne, Victoria, Australia
- School of Biomedical Sciences, and Department of Paediatrics (K.D.A.-B., H.K.V., A.H., I.E.K., D.A.E.), University of Melbourne, Victoria, Australia
| | - Doan T. Dinh
- Robinson Research Institute, The University of Adelaide, South Australia, Australia (D.T.D., R.L.R.)
| | - Menno ter Huurne
- Murdoch Children’s Research Institute (C.B.S., B.P., K.D.A.-B., R.K.R.K., H.K.V., M.t.H., C.J.V., A.H., A.T.P., I.E.K., D.A.E., A.O., E.R.P.), The Royal Children’s Hospital, Melbourne, Victoria, Australia
- Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine (C.B.S., K.D.A.-B., R.K.R.K., M.t.H., C.J.V., L.M.D.D., A.T.P., I.E.K., D.A.E., E.R.P.), The Royal Children’s Hospital, Melbourne, Victoria, Australia
| | - Celine J. Vivien
- Murdoch Children’s Research Institute (C.B.S., B.P., K.D.A.-B., R.K.R.K., H.K.V., M.t.H., C.J.V., A.H., A.T.P., I.E.K., D.A.E., A.O., E.R.P.), The Royal Children’s Hospital, Melbourne, Victoria, Australia
- Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine (C.B.S., K.D.A.-B., R.K.R.K., M.t.H., C.J.V., L.M.D.D., A.T.P., I.E.K., D.A.E., E.R.P.), The Royal Children’s Hospital, Melbourne, Victoria, Australia
| | - Antony Kaspi
- Department of Diabetes, Central Clinical School, Alfred Centre, Monash University, Melbourne, Victoria, Australia (M.Z., H.R., A.K., H.K., A.E.-O.)
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.Z., H.R., K.I.W., A.K., H.K., P.G., A.E.-O.)
| | - Harikrishnan Kaipananickal
- Department of Diabetes, Central Clinical School, Alfred Centre, Monash University, Melbourne, Victoria, Australia (M.Z., H.R., A.K., H.K., A.E.-O.)
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.Z., H.R., K.I.W., A.K., H.K., P.G., A.E.-O.)
| | - Alejandro Hidalgo
- Murdoch Children’s Research Institute (C.B.S., B.P., K.D.A.-B., R.K.R.K., H.K.V., M.t.H., C.J.V., A.H., A.T.P., I.E.K., D.A.E., A.O., E.R.P.), The Royal Children’s Hospital, Melbourne, Victoria, Australia
- School of Biomedical Sciences, and Department of Paediatrics (K.D.A.-B., H.K.V., A.H., I.E.K., D.A.E.), University of Melbourne, Victoria, Australia
| | - Leanne M.D. Delbridge
- Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine (C.B.S., K.D.A.-B., R.K.R.K., M.t.H., C.J.V., L.M.D.D., A.T.P., I.E.K., D.A.E., E.R.P.), The Royal Children’s Hospital, Melbourne, Victoria, Australia
- Department of Anatomy and Physiology (K.I.W., L.M.D.D., P.G., E.R.P.), University of Melbourne, Victoria, Australia
| | - Rebecca L. Robker
- Robinson Research Institute, The University of Adelaide, South Australia, Australia (D.T.D., R.L.R.)
| | - Paul Gregorevic
- Department of Anatomy and Physiology (K.I.W., L.M.D.D., P.G., E.R.P.), University of Melbourne, Victoria, Australia
- Centre for Muscle Research (K.I.W., P.G., E.R.P.), University of Melbourne, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.Z., H.R., K.I.W., A.K., H.K., P.G., A.E.-O.)
| | - Cristobal G. dos Remedios
- School of Medical Sciences, The University of Sydney, New South Wales, Australia (C.G.d.R., S.L.)
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia (C.G.d.R.)
| | - Sean Lal
- School of Medical Sciences, The University of Sydney, New South Wales, Australia (C.G.d.R., S.L.)
| | - Adam T. Piers
- Murdoch Children’s Research Institute (C.B.S., B.P., K.D.A.-B., R.K.R.K., H.K.V., M.t.H., C.J.V., A.H., A.T.P., I.E.K., D.A.E., A.O., E.R.P.), The Royal Children’s Hospital, Melbourne, Victoria, Australia
- Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine (C.B.S., K.D.A.-B., R.K.R.K., M.t.H., C.J.V., L.M.D.D., A.T.P., I.E.K., D.A.E., E.R.P.), The Royal Children’s Hospital, Melbourne, Victoria, Australia
| | - Igor E. Konstantinov
- Murdoch Children’s Research Institute (C.B.S., B.P., K.D.A.-B., R.K.R.K., H.K.V., M.t.H., C.J.V., A.H., A.T.P., I.E.K., D.A.E., A.O., E.R.P.), The Royal Children’s Hospital, Melbourne, Victoria, Australia
- Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine (C.B.S., K.D.A.-B., R.K.R.K., M.t.H., C.J.V., L.M.D.D., A.T.P., I.E.K., D.A.E., E.R.P.), The Royal Children’s Hospital, Melbourne, Victoria, Australia
- Department of Cardiac Surgery (I.E.K.), The Royal Children’s Hospital, Melbourne, Victoria, Australia
- School of Biomedical Sciences, and Department of Paediatrics (K.D.A.-B., H.K.V., A.H., I.E.K., D.A.E.), University of Melbourne, Victoria, Australia
| | - David A. Elliott
- Murdoch Children’s Research Institute (C.B.S., B.P., K.D.A.-B., R.K.R.K., H.K.V., M.t.H., C.J.V., A.H., A.T.P., I.E.K., D.A.E., A.O., E.R.P.), The Royal Children’s Hospital, Melbourne, Victoria, Australia
- Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine (C.B.S., K.D.A.-B., R.K.R.K., M.t.H., C.J.V., L.M.D.D., A.T.P., I.E.K., D.A.E., E.R.P.), The Royal Children’s Hospital, Melbourne, Victoria, Australia
- School of Biomedical Sciences, and Department of Paediatrics (K.D.A.-B., H.K.V., A.H., I.E.K., D.A.E.), University of Melbourne, Victoria, Australia
| | - Assam El-Osta
- Murdoch Children’s Research Institute (C.B.S., B.P., K.D.A.-B., R.K.R.K., H.K.V., M.t.H., C.J.V., A.H., A.T.P., I.E.K., D.A.E., A.O., E.R.P.), The Royal Children’s Hospital, Melbourne, Victoria, Australia
| | - Alicia Oshlack
- Department of Diabetes, Central Clinical School, Alfred Centre, Monash University, Melbourne, Victoria, Australia (M.Z., H.R., A.K., H.K., A.E.-O.)
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.Z., H.R., K.I.W., A.K., H.K., P.G., A.E.-O.)
- Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, Li Ka Shing Institute of Health Sciences, and The Chinese University of Hong Kong, China (A.E.-O.)
| | - James E. Hudson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia (R.J.M., J.E.H.)
- Centre for Cardiac and Vascular Biology, School of Biomedical Sciences, The University of Queensland, Brisbane, Australia (J.E.H., E.R.P.)
| | - Enzo R. Porrello
- Murdoch Children’s Research Institute (C.B.S., B.P., K.D.A.-B., R.K.R.K., H.K.V., M.t.H., C.J.V., A.H., A.T.P., I.E.K., D.A.E., A.O., E.R.P.), The Royal Children’s Hospital, Melbourne, Victoria, Australia
- Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine (C.B.S., K.D.A.-B., R.K.R.K., M.t.H., C.J.V., L.M.D.D., A.T.P., I.E.K., D.A.E., E.R.P.), The Royal Children’s Hospital, Melbourne, Victoria, Australia
- Department of Anatomy and Physiology (K.I.W., L.M.D.D., P.G., E.R.P.), University of Melbourne, Victoria, Australia
- Centre for Muscle Research (K.I.W., P.G., E.R.P.), University of Melbourne, Victoria, Australia
- Centre for Cardiac and Vascular Biology, School of Biomedical Sciences, The University of Queensland, Brisbane, Australia (J.E.H., E.R.P.)
| |
Collapse
|
326
|
Victorino J, Alvarez-Franco A, Manzanares M. Functional genomics and epigenomics of atrial fibrillation. J Mol Cell Cardiol 2021; 157:45-55. [PMID: 33887329 DOI: 10.1016/j.yjmcc.2021.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Atrial fibrillation is a progressive cardiac arrhythmia that increases the risk of hospitalization and adverse cardiovascular events. Despite years of study, we still do not have a full comprehension of the molecular mechanism responsible for the disease. The recent implementation of large-scale approaches in both patient samples, population studies and animal models has helped us to broaden our knowledge on the molecular drivers responsible for AF and on the mechanisms behind disease progression. Understanding genomic and epigenomic changes that take place during chronification of AF will prove essential to design novel treatments leading to improved patient care.
Collapse
Affiliation(s)
- Jesus Victorino
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Spain
| | - Alba Alvarez-Franco
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
327
|
Quantitative proteome comparison of human hearts with those of model organisms. PLoS Biol 2021; 19:e3001144. [PMID: 33872299 PMCID: PMC8084454 DOI: 10.1371/journal.pbio.3001144] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 04/29/2021] [Accepted: 02/12/2021] [Indexed: 01/23/2023] Open
Abstract
Delineating human cardiac pathologies and their basic molecular mechanisms relies on research conducted in model organisms. Yet translating findings from preclinical models to humans present a significant challenge, in part due to differences in cardiac protein expression between humans and model organisms. Proteins immediately determine cellular function, yet their large-scale investigation in hearts has lagged behind those of genes and transcripts. Here, we set out to bridge this knowledge gap: By analyzing protein profiles in humans and commonly used model organisms across cardiac chambers, we determine their commonalities and regional differences. We analyzed cardiac tissue from each chamber of human, pig, horse, rat, mouse, and zebrafish in biological replicates. Using mass spectrometry–based proteomics workflows, we measured and evaluated the abundance of approximately 7,000 proteins in each species. The resulting knowledgebase of cardiac protein signatures is accessible through an online database: atlas.cardiacproteomics.com. Our combined analysis allows for quantitative evaluation of protein abundances across cardiac chambers, as well as comparisons of cardiac protein profiles across model organisms. Up to a quarter of proteins with differential abundances between atria and ventricles showed opposite chamber-specific enrichment between species; these included numerous proteins implicated in cardiac disease. The generated proteomics resource facilitates translational prospects of cardiac studies from model organisms to humans by comparisons of disease-linked protein networks across species. This study provides protein abundance profiles for thousands of proteins across cardiac chambers for humans and five commonly used model organisms. This quantitative proteomics dataset represents the most comprehensive such resource to date, and can be queried via a web browser to identify the most appropriate model organism for future studies.
Collapse
|
328
|
Mills RJ, Humphrey SJ, Fortuna PRJ, Lor M, Foster SR, Quaife-Ryan GA, Johnston RL, Dumenil T, Bishop C, Rudraraju R, Rawle DJ, Le T, Zhao W, Lee L, Mackenzie-Kludas C, Mehdiabadi NR, Halliday C, Gilham D, Fu L, Nicholls SJ, Johansson J, Sweeney M, Wong NCW, Kulikowski E, Sokolowski KA, Tse BWC, Devilée L, Voges HK, Reynolds LT, Krumeich S, Mathieson E, Abu-Bonsrah D, Karavendzas K, Griffen B, Titmarsh D, Elliott DA, McMahon J, Suhrbier A, Subbarao K, Porrello ER, Smyth MJ, Engwerda CR, MacDonald KPA, Bald T, James DE, Hudson JE. BET inhibition blocks inflammation-induced cardiac dysfunction and SARS-CoV-2 infection. Cell 2021; 184:2167-2182.e22. [PMID: 33811809 PMCID: PMC7962543 DOI: 10.1016/j.cell.2021.03.026] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/10/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022]
Abstract
Cardiac injury and dysfunction occur in COVID-19 patients and increase the risk of mortality. Causes are ill defined but could be through direct cardiac infection and/or inflammation-induced dysfunction. To identify mechanisms and cardio-protective drugs, we use a state-of-the-art pipeline combining human cardiac organoids with phosphoproteomics and single nuclei RNA sequencing. We identify an inflammatory "cytokine-storm", a cocktail of interferon gamma, interleukin 1β, and poly(I:C), induced diastolic dysfunction. Bromodomain-containing protein 4 is activated along with a viral response that is consistent in both human cardiac organoids (hCOs) and hearts of SARS-CoV-2-infected K18-hACE2 mice. Bromodomain and extraterminal family inhibitors (BETi) recover dysfunction in hCOs and completely prevent cardiac dysfunction and death in a mouse cytokine-storm model. Additionally, BETi decreases transcription of genes in the viral response, decreases ACE2 expression, and reduces SARS-CoV-2 infection of cardiomyocytes. Together, BETi, including the Food and Drug Administration (FDA) breakthrough designated drug, apabetalone, are promising candidates to prevent COVID-19 mediated cardiac damage.
Collapse
Affiliation(s)
- Richard J Mills
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney 2006, NSW, Australia
| | | | - Mary Lor
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Simon R Foster
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | | | - Rebecca L Johnston
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Troy Dumenil
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Cameron Bishop
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Rajeev Rudraraju
- The WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne, Melbourne 3052, VIC, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, VIC, Australia
| | - Daniel J Rawle
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Thuy Le
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Wei Zhao
- The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, VIC, Australia
| | - Leo Lee
- The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, VIC, Australia
| | | | - Neda R Mehdiabadi
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne 3052, VIC, Australia
| | | | - Dean Gilham
- Resverlogix Corp., Calgary T3E 6L1, AB, Canada
| | - Li Fu
- Resverlogix Corp., Calgary T3E 6L1, AB, Canada
| | - Stephen J Nicholls
- Victorian Heart Hospital, Monash University, Clayton 3168, VIC, Australia
| | | | | | | | | | - Kamil A Sokolowski
- Preclinical Imaging Facility, Translational Research Institute, Brisbane, QLD, Australia
| | - Brian W C Tse
- Preclinical Imaging Facility, Translational Research Institute, Brisbane, QLD, Australia
| | - Lynn Devilée
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Holly K Voges
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Liam T Reynolds
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Sophie Krumeich
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Ellen Mathieson
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Dad Abu-Bonsrah
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne 3052, VIC, Australia; Department of Paediatrics, The University of Melbourne, Melbourne 3052, VIC, Australia
| | - Kathy Karavendzas
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne 3052, VIC, Australia
| | - Brendan Griffen
- Dynomics Inc., San Mateo, CA 94401, USA; Dynomics Pty Ltd, Brisbane 4000, QLD, Australia
| | - Drew Titmarsh
- Dynomics Inc., San Mateo, CA 94401, USA; Dynomics Pty Ltd, Brisbane 4000, QLD, Australia
| | - David A Elliott
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne 3052, VIC, Australia
| | - James McMahon
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne 3004, VIC, Australia; Department of Infectious Diseases, Monash Medical Centre, Clayton 3168, VIC, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia; GVN Center of Excellence, Australian Infectious Diseases Research Centre, Brisbane, QLD, Australia
| | - Kanta Subbarao
- The WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, VIC, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, VIC, Australia
| | - Enzo R Porrello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne 3052, VIC, Australia; Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne 3052, VIC, Australia
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | | | | | - Tobias Bald
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia; Institute of Experimental Oncology, University Hospital Bonn, Bonn 53127, Germany
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney 2006, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney 2006, NSW, Australia
| | - James E Hudson
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia.
| |
Collapse
|
329
|
Zhang JX, Chey Y, Paik DT. Unraveling intricacies of cardiovascular disease at the single-cell resolution. Trends Cardiovasc Med 2021; 32:136-137. [PMID: 33812976 DOI: 10.1016/j.tcm.2021.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Jeffrey X Zhang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, 1291 Welch Road, Rm 3200, Biomedical Innovations Building, Stanford, CA 94305, USA
| | - YoonChung Chey
- Stanford Cardiovascular Institute, Stanford University School of Medicine, 1291 Welch Road, Rm 3200, Biomedical Innovations Building, Stanford, CA 94305, USA
| | - David T Paik
- Stanford Cardiovascular Institute, Stanford University School of Medicine, 1291 Welch Road, Rm 3200, Biomedical Innovations Building, Stanford, CA 94305, USA.
| |
Collapse
|
330
|
Tambi R, Abdel Hameid R, Bankapur A, Nassir N, Begum G, Alsheikh-Ali A, Uddin M, Berdiev BK. Single-cell transcriptomics trajectory and molecular convergence of clinically relevant mutations in Brugada syndrome. Am J Physiol Heart Circ Physiol 2021; 320:H1935-H1948. [PMID: 33797273 DOI: 10.1152/ajpheart.00061.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Brugada syndrome (BrS) is a rare, inherited arrhythmia with high risk of sudden cardiac death. To evaluate the molecular convergence of clinically relevant mutations and to identify developmental cardiac cell types that are associated with BrS etiology, we collected 733 mutations represented by 16 sodium, calcium, potassium channels, and regulatory and structural genes related to BrS. Among the clinically relevant mutations, 266 are unique singletons and 88 mutations are recurrent. We observed an over-representation of clinically relevant mutations (∼80%) in SCN5A gene and also identified several candidate genes, including GPD1L, TRPM4, and SCN10A. Furthermore, protein domain enrichment analysis revealed that a large proportion of the mutations impacted ion transport domains in multiple genes, including SCN5A, TRPM4, and SCN10A. A comparative protein domain analysis of SCN5A further established a significant (P = 0.04) enrichment of clinically relevant mutations within ion transport domain, including a significant (P = 0.02) mutation hotspot within 1321-1380 residue. The enrichment of clinically relevant mutations within SCN5A ion transport domain is stronger (P = 0.00003) among early onset of BrS. Our spatiotemporal cellular heart developmental (prenatal to adult) trajectory analysis applying single-cell transcriptome identified the most frequently BrS-mutated genes (SCN5A and GPD1L) are significantly upregulated in the prenatal cardiomyocytes. A more restrictive cellular expression trajectory is prominent in the adult heart ventricular cardiomyocytes compared to prenatal. Our study suggests that genomic and proteomic hotspots in BrS converge into ion transport pathway and cardiomyocyte as a major BrS-associated cell type that provides insight into the complex genetic etiology of BrS.NEW & NOTEWORTHY Brugada syndrome is a rare inherited arrhythmia with high risk of sudden cardiac death. We present the findings for a molecular convergence of clinically relevant mutations and identification of a single-cell transcriptome-derived cardiac cell types that are associated with the etiology of BrS. Our study suggests that genomic and proteomic hotspots in BrS converge into ion transport pathway and cardiomyocyte as a major BrS-associated cell type that provides insight into the complex genetic etiology of BrS.
Collapse
Affiliation(s)
- Richa Tambi
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Reem Abdel Hameid
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Asma Bankapur
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Nasna Nassir
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Ghausia Begum
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Alawi Alsheikh-Ali
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Mohammed Uddin
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Bakhrom K Berdiev
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
331
|
Taking Data Science to Heart: Next Scale of Gene Regulation. Curr Cardiol Rep 2021; 23:46. [PMID: 33721129 DOI: 10.1007/s11886-021-01467-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE OF REVIEW Technical advances have facilitated high-throughput measurements of the genome in the context of cardiovascular biology. These techniques bring a deluge of gargantuan datasets, which in turn present two fundamentally new opportunities for innovation-data processing and knowledge integration-toward the goal of meaningful basic and translational discoveries. RECENT FINDINGS Big data, integrative analyses, and machine learning have brought cardiac investigations to the cutting edge of chromatin biology, not only to reveal basic principles of gene regulation in the heart, but also to aid in the design of targeted epigenetic therapies. SUMMARY Cardiac studies using big data are only beginning to integrate the millions of recorded data points and the tools of machine learning are aiding this process. Future experimental design should take into consideration insights from existing genomic datasets, thereby focusing on heretofore unexplored epigenomic contributions to disease pathology.
Collapse
|
332
|
Frump AL, Albrecht M, Yakubov B, Breuils-Bonnet S, Nadeau V, Tremblay E, Potus F, Omura J, Cook T, Fisher A, Rodriguez B, Brown RD, Stenmark KR, Rubinstein CD, Krentz K, Tabima DM, Li R, Sun X, Chesler NC, Provencher S, Bonnet S, Lahm T. 17β-Estradiol and estrogen receptor α protect right ventricular function in pulmonary hypertension via BMPR2 and apelin. J Clin Invest 2021; 131:129433. [PMID: 33497359 DOI: 10.1172/jci129433] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 01/22/2021] [Indexed: 12/30/2022] Open
Abstract
Women with pulmonary arterial hypertension (PAH) exhibit better right ventricular (RV) function and survival than men; however, the underlying mechanisms are unknown. We hypothesized that 17β-estradiol (E2), through estrogen receptor α (ER-α), attenuates PAH-induced RV failure (RVF) by upregulating the procontractile and prosurvival peptide apelin via a BMPR2-dependent mechanism. We found that ER-α and apelin expression were decreased in RV homogenates from patients with RVF and from rats with maladaptive (but not adaptive) RV remodeling. RV cardiomyocyte apelin abundance increased in vivo or in vitro after treatment with E2 or ER-α agonist. Studies employing ER-α-null or ER-β-null mice, ER-α loss-of-function mutant rats, or siRNA demonstrated that ER-α is necessary for E2 to upregulate RV apelin. E2 and ER-α increased BMPR2 in pulmonary hypertension RVs and in isolated RV cardiomyocytes, associated with ER-α binding to the Bmpr2 promoter. BMPR2 is required for E2-mediated increases in apelin abundance, and both BMPR2 and apelin are necessary for E2 to exert RV-protective effects. E2 or ER-α agonist rescued monocrotaline pulmonary hypertension and restored RV apelin and BMPR2. We identified what we believe to be a novel cardioprotective E2/ER-α/BMPR2/apelin axis in the RV. Harnessing this axis may lead to novel RV-targeted therapies for PAH patients of either sex.
Collapse
Affiliation(s)
- Andrea L Frump
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Marjorie Albrecht
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Bakhtiyor Yakubov
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sandra Breuils-Bonnet
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Valérie Nadeau
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Eve Tremblay
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Francois Potus
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Junichi Omura
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Todd Cook
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Amanda Fisher
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Brooke Rodriguez
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - R Dale Brown
- Department of Pediatrics, University of Colorado-Denver, Aurora, Colorado, USA
| | - Kurt R Stenmark
- Department of Pediatrics, University of Colorado-Denver, Aurora, Colorado, USA
| | - C Dustin Rubinstein
- Genome Editing and Animal Models Core, University of Wisconsin Biotechnology Center
| | - Kathy Krentz
- Genome Editing and Animal Models Core, University of Wisconsin Biotechnology Center
| | | | - Rongbo Li
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Xin Sun
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Steeve Provencher
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Sebastien Bonnet
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Tim Lahm
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
333
|
Yuan X, Scott IC, Wilson MD. Heart Enhancers: Development and Disease Control at a Distance. Front Genet 2021; 12:642975. [PMID: 33777110 PMCID: PMC7987942 DOI: 10.3389/fgene.2021.642975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
Bound by lineage-determining transcription factors and signaling effectors, enhancers play essential roles in controlling spatiotemporal gene expression profiles during development, homeostasis and disease. Recent synergistic advances in functional genomic technologies, combined with the developmental biology toolbox, have resulted in unprecedented genome-wide annotation of heart enhancers and their target genes. Starting with early studies of vertebrate heart enhancers and ending with state-of-the-art genome-wide enhancer discovery and testing, we will review how studying heart enhancers in metazoan species has helped inform our understanding of cardiac development and disease.
Collapse
Affiliation(s)
- Xuefei Yuan
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ian C. Scott
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michael D. Wilson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
334
|
Translational insights from single-cell technologies across the cardiovascular disease continuum. Trends Cardiovasc Med 2021; 32:127-135. [PMID: 33667644 DOI: 10.1016/j.tcm.2021.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is the leading cause of death worldwide. The societal health burden it represents can be reduced by taking preventive measures and developing more effective therapies. Reaching these goals, however, requires a better understanding of the pathophysiological processes leading to and occurring in the diseased heart. In the last 5 years, several biological advances applying single-cell technologies have enabled researchers to study cardiovascular diseases with unprecedented resolution. This has produced many new insights into how specific cell types change their gene expression level, activation status and potential cellular interactions with the development of cardiovascular disease, but a comprehensive overview of the clinical implications of these findings is lacking. In this review, we summarize and discuss these recent advances and the promise of single-cell technologies from a translational perspective across the cardiovascular disease continuum, covering both animal and human studies, and explore the future directions of the field.
Collapse
|
335
|
Goldspink PH, Warren CM, Kitajewski J, Wolska BM, Solaro RJ. A Perspective on Personalized Therapies in Hypertrophic Cardiomyopathy. J Cardiovasc Pharmacol 2021; 77:317-322. [PMID: 33298734 PMCID: PMC7933064 DOI: 10.1097/fjc.0000000000000968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
ABSTRACT A dominant mechanism of sudden cardiac death in the young is the progression of maladaptive responses to genes encoding proteins linked to hypertrophic cardiomyopathy. Most are mutant sarcomere proteins that trigger the progression by imposing a biophysical defect on the dynamics and levels of myofilament tension generation. We discuss approaches for personalized treatments that are indicated by recent advanced understanding of the progression.
Collapse
Affiliation(s)
- Paul H. Goldspink
- Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612
| | - Chad M. Warren
- Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612
| | - Jan Kitajewski
- Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612
| | - Beata M. Wolska
- Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612
- Department of Medicine, Division of Cardiology, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612
| | - R. John Solaro
- Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612
| |
Collapse
|
336
|
Quadri F, Soman SS, Vijayavenkataraman S. Progress in cardiovascular bioprinting. Artif Organs 2021; 45:652-664. [PMID: 33432583 DOI: 10.1111/aor.13913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/13/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease has been the leading cause of death globally for the past 15 years. Following a major cardiac disease episode, the ideal treatment would be the replacement of the damaged tissue, due to the limited regenerative capacity of cardiac tissues. However, we suffer from a chronic organ donor shortage which causes approximately 20 people to die each day waiting to receive an organ. Bioprinting of tissues and organs can potentially alleviate this burden by fabricating low cost tissue and organ replacements for cardiac patients. Clinical adoption of bioprinting in cardiovascular medicine is currently limited by the lack of systematic demonstration of its effectiveness, high costs, and the complexity of the workflow. Here, we give a concise review of progress in cardiovascular bioprinting and its components. We further discuss the challenges and future prospects of cardiovascular bioprinting in clinical applications.
Collapse
Affiliation(s)
- Faisal Quadri
- Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Soja Saghar Soman
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Sanjairaj Vijayavenkataraman
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE.,Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, USA
| |
Collapse
|
337
|
Single-Cell RNA Sequencing of the Adult Mammalian Heart-State-of-the-Art and Future Perspectives. Curr Heart Fail Rep 2021; 18:64-70. [PMID: 33629280 PMCID: PMC7954708 DOI: 10.1007/s11897-021-00504-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2021] [Indexed: 11/28/2022]
Abstract
Purpose of the Review Cardiovascular disease remains the leading cause of death worldwide, resulting in cardiac dysfunction and, subsequently, heart failure (HF). Single-cell RNA sequencing (scRNA-seq) is a rapidly developing tool for studying the transcriptional heterogeneity in both healthy and diseased hearts. Wide applications of techniques like scRNA-seq could significantly contribute to uncovering the molecular mechanisms involved in the onset and progression to HF and contribute to the development of new, improved therapies. This review discusses several studies that successfully applied scRNA-seq to the mouse and human heart using various methods of tissue processing and downstream analysis. Recent Findings The application of scRNA-seq in the cardiovascular field is continuously expanding, providing new detailed insights into cardiac pathophysiology. Summary Increased understanding of cardiac pathophysiology on the single-cell level will contribute to the development of novel, more effective therapeutic strategies. Here, we summarise the possible application of scRNA-seq to the adult mammalian heart.
Collapse
|
338
|
Delorey TM, Ziegler CGK, Heimberg G, Normand R, Yang Y, Segerstolpe A, Abbondanza D, Fleming SJ, Subramanian A, Montoro DT, Jagadeesh KA, Dey KK, Sen P, Slyper M, Pita-Juárez YH, Phillips D, Bloom-Ackerman Z, Barkas N, Ganna A, Gomez J, Normandin E, Naderi P, Popov YV, Raju SS, Niezen S, Tsai LTY, Siddle KJ, Sud M, Tran VM, Vellarikkal SK, Amir-Zilberstein L, Atri DS, Beechem J, Brook OR, Chen J, Divakar P, Dorceus P, Engreitz JM, Essene A, Fitzgerald DM, Fropf R, Gazal S, Gould J, Grzyb J, Harvey T, Hecht J, Hether T, Jane-Valbuena J, Leney-Greene M, Ma H, McCabe C, McLoughlin DE, Miller EM, Muus C, Niemi M, Padera R, Pan L, Pant D, Pe’er C, Pfiffner-Borges J, Pinto CJ, Plaisted J, Reeves J, Ross M, Rudy M, Rueckert EH, Siciliano M, Sturm A, Todres E, Waghray A, Warren S, Zhang S, Zollinger DR, Cosimi L, Gupta RM, Hacohen N, Hide W, Price AL, Rajagopal J, Tata PR, Riedel S, Szabo G, Tickle TL, Hung D, Sabeti PC, Novak R, Rogers R, Ingber DE, Jiang ZG, Juric D, Babadi M, Farhi SL, Stone JR, Vlachos IS, Solomon IH, Ashenberg O, Porter CB, Li B, Shalek AK, Villani AC, et alDelorey TM, Ziegler CGK, Heimberg G, Normand R, Yang Y, Segerstolpe A, Abbondanza D, Fleming SJ, Subramanian A, Montoro DT, Jagadeesh KA, Dey KK, Sen P, Slyper M, Pita-Juárez YH, Phillips D, Bloom-Ackerman Z, Barkas N, Ganna A, Gomez J, Normandin E, Naderi P, Popov YV, Raju SS, Niezen S, Tsai LTY, Siddle KJ, Sud M, Tran VM, Vellarikkal SK, Amir-Zilberstein L, Atri DS, Beechem J, Brook OR, Chen J, Divakar P, Dorceus P, Engreitz JM, Essene A, Fitzgerald DM, Fropf R, Gazal S, Gould J, Grzyb J, Harvey T, Hecht J, Hether T, Jane-Valbuena J, Leney-Greene M, Ma H, McCabe C, McLoughlin DE, Miller EM, Muus C, Niemi M, Padera R, Pan L, Pant D, Pe’er C, Pfiffner-Borges J, Pinto CJ, Plaisted J, Reeves J, Ross M, Rudy M, Rueckert EH, Siciliano M, Sturm A, Todres E, Waghray A, Warren S, Zhang S, Zollinger DR, Cosimi L, Gupta RM, Hacohen N, Hide W, Price AL, Rajagopal J, Tata PR, Riedel S, Szabo G, Tickle TL, Hung D, Sabeti PC, Novak R, Rogers R, Ingber DE, Jiang ZG, Juric D, Babadi M, Farhi SL, Stone JR, Vlachos IS, Solomon IH, Ashenberg O, Porter CB, Li B, Shalek AK, Villani AC, Rozenblatt-Rosen O, Regev A. A single-cell and spatial atlas of autopsy tissues reveals pathology and cellular targets of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.02.25.430130. [PMID: 33655247 PMCID: PMC7924267 DOI: 10.1101/2021.02.25.430130] [Show More Authors] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The SARS-CoV-2 pandemic has caused over 1 million deaths globally, mostly due to acute lung injury and acute respiratory distress syndrome, or direct complications resulting in multiple-organ failures. Little is known about the host tissue immune and cellular responses associated with COVID-19 infection, symptoms, and lethality. To address this, we collected tissues from 11 organs during the clinical autopsy of 17 individuals who succumbed to COVID-19, resulting in a tissue bank of approximately 420 specimens. We generated comprehensive cellular maps capturing COVID-19 biology related to patients' demise through single-cell and single-nucleus RNA-Seq of lung, kidney, liver and heart tissues, and further contextualized our findings through spatial RNA profiling of distinct lung regions. We developed a computational framework that incorporates removal of ambient RNA and automated cell type annotation to facilitate comparison with other healthy and diseased tissue atlases. In the lung, we uncovered significantly altered transcriptional programs within the epithelial, immune, and stromal compartments and cell intrinsic changes in multiple cell types relative to lung tissue from healthy controls. We observed evidence of: alveolar type 2 (AT2) differentiation replacing depleted alveolar type 1 (AT1) lung epithelial cells, as previously seen in fibrosis; a concomitant increase in myofibroblasts reflective of defective tissue repair; and, putative TP63+ intrapulmonary basal-like progenitor (IPBLP) cells, similar to cells identified in H1N1 influenza, that may serve as an emergency cellular reserve for severely damaged alveoli. Together, these findings suggest the activation and failure of multiple avenues for regeneration of the epithelium in these terminal lungs. SARS-CoV-2 RNA reads were enriched in lung mononuclear phagocytic cells and endothelial cells, and these cells expressed distinct host response transcriptional programs. We corroborated the compositional and transcriptional changes in lung tissue through spatial analysis of RNA profiles in situ and distinguished unique tissue host responses between regions with and without viral RNA, and in COVID-19 donor tissues relative to healthy lung. Finally, we analyzed genetic regions implicated in COVID-19 GWAS with transcriptomic data to implicate specific cell types and genes associated with disease severity. Overall, our COVID-19 cell atlas is a foundational dataset to better understand the biological impact of SARS-CoV-2 infection across the human body and empowers the identification of new therapeutic interventions and prevention strategies.
Collapse
Affiliation(s)
- Toni M. Delorey
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Carly G. K. Ziegler
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Health Sciences & Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA 02115, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Graham Heimberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Rachelly Normand
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yiming Yang
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Asa Segerstolpe
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Domenic Abbondanza
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Stephen J. Fleming
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ayshwarya Subramanian
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | | | - Karthik A. Jagadeesh
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Kushal K. Dey
- Department of Epidemiology, Harvard School of Public Health
| | - Pritha Sen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Michal Slyper
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Yered H. Pita-Juárez
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Harvard Medical School Initiative for RNA Medicine, Boston, MA 02115, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Devan Phillips
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Zohar Bloom-Ackerman
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nick Barkas
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Andrea Ganna
- Institute for Molecular Medicine Finland, Helsinki, Finland
- Analytical & Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - James Gomez
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Erica Normandin
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Pourya Naderi
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Harvard Medical School Initiative for RNA Medicine, Boston, MA 02115, USA
| | - Yury V. Popov
- Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA 02115, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Siddharth S. Raju
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sebastian Niezen
- Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA 02115, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Linus T.-Y. Tsai
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA 02115, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02115
- Boston Nutrition and Obesity Research Center Functional Genomics and Bioinformatics Core Boston, MA 02115, USA
| | - Katherine J. Siddle
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Malika Sud
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Victoria M. Tran
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shamsudheen K. Vellarikkal
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Divisions of Cardiovascular Medicine and Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Liat Amir-Zilberstein
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Deepak S. Atri
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Divisions of Cardiovascular Medicine and Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Olga R. Brook
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Jonathan Chen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Phylicia Dorceus
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Jesse M. Engreitz
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics and BASE Initiative, Stanford University School of Medicine
| | - Adam Essene
- Department of Medicine, Beth Israel Deaconess Medical Center, MA 02115, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02115
- Boston Nutrition and Obesity Research Center Functional Genomics and Bioinformatics Core Boston, MA 02115, USA
| | - Donna M. Fitzgerald
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Robin Fropf
- NanoString Technologies Inc., Seattle, WA 98109, USA
| | - Steven Gazal
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joshua Gould
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - John Grzyb
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
| | - Tyler Harvey
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Jonathan Hecht
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Tyler Hether
- NanoString Technologies Inc., Seattle, WA 98109, USA
| | - Judit Jane-Valbuena
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | | | - Hui Ma
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Cristin McCabe
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Daniel E. McLoughlin
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Christoph Muus
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Mari Niemi
- Institute for Molecular Medicine Finland, Helsinki, Finland
| | - Robert Padera
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard-MIT Division of Health Sciences and Technology, Cambridge MA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Liuliu Pan
- NanoString Technologies Inc., Seattle, WA 98109, USA
| | - Deepti Pant
- Department of Medicine, Beth Israel Deaconess Medical Center, MA 02115, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02115
- Boston Nutrition and Obesity Research Center Functional Genomics and Bioinformatics Core Boston, MA 02115, USA
| | - Carmel Pe’er
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | | | - Christopher J. Pinto
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jacob Plaisted
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
| | - Jason Reeves
- NanoString Technologies Inc., Seattle, WA 98109, USA
| | - Marty Ross
- NanoString Technologies Inc., Seattle, WA 98109, USA
| | - Melissa Rudy
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | | | - Alexander Sturm
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ellen Todres
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Avinash Waghray
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sarah Warren
- NanoString Technologies Inc., Seattle, WA 98109, USA
| | - Shuting Zhang
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Lisa Cosimi
- Infectious Diseases Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Rajat M. Gupta
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Divisions of Cardiovascular Medicine and Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Winston Hide
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Harvard Medical School Initiative for RNA Medicine, Boston, MA 02115, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Alkes L. Price
- Department of Epidemiology, Harvard School of Public Health
| | - Jayaraj Rajagopal
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Stefan Riedel
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Gyongyi Szabo
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA 02115, USA
| | - Timothy L. Tickle
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Deborah Hung
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Pardis C. Sabeti
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA
| | - Richard Novak
- Wyss Institute for Biologically Inspired Engineering, Harvard University
| | - Robert Rogers
- Department of Medicine, Beth Israel Deaconess Medical Center, MA 02115, USA
- Massachusetts General Hospital, MA 02114, USA
| | - Donald E. Ingber
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Wyss Institute for Biologically Inspired Engineering, Harvard University
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Z. Gordon Jiang
- Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA 02115, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Dejan Juric
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Mehrtash Babadi
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Samouil L. Farhi
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - James R. Stone
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ioannis S. Vlachos
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Harvard Medical School Initiative for RNA Medicine, Boston, MA 02115, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Isaac H. Solomon
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Caroline B.M. Porter
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Bo Li
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Alex K. Shalek
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Health Sciences & Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA 02115, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
- Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Program in Computational & Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexandra-Chloé Villani
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
- Current address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Current address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| |
Collapse
|
339
|
Nicin L, Abplanalp WT, Schänzer A, Sprengel A, John D, Mellentin H, Tombor L, Keuper M, Ullrich E, Klingel K, Dettmeyer RB, Hoffmann J, Akintuerk H, Jux C, Schranz D, Zeiher AM, Rupp S, Dimmeler S. Single Nuclei Sequencing Reveals Novel Insights Into the Regulation of Cellular Signatures in Children With Dilated Cardiomyopathy. Circulation 2021; 143:1704-1719. [PMID: 33618539 DOI: 10.1161/circulationaha.120.051391] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a leading cause of death in children with heart failure. The outcome of pediatric heart failure treatment is inconsistent, and large cohort studies are lacking. Progress may be achieved through personalized therapy that takes age- and disease-related pathophysiology, pathology, and molecular fingerprints into account. We present single nuclei RNA sequencing from pediatric patients with DCM as the next step in identifying cellular signatures. METHODS We performed single nuclei RNA sequencing with heart tissues from 6 children with DCM with an age of 0.5, 0.75, 5, 6, 12, and 13 years. Unsupervised clustering of 18 211 nuclei led to the identification of 14 distinct clusters with 6 major cell types. RESULTS The number of nuclei in fibroblast clusters increased with age in patients with DCM, a finding that was confirmed by histological analysis and was consistent with an age-related increase in cardiac fibrosis quantified by cardiac magnetic resonance imaging. Fibroblasts of patients with DCM >6 years of age showed a profoundly altered gene expression pattern with enrichment of genes encoding fibrillary collagens, modulation of proteoglycans, switch in thrombospondin isoforms, and signatures of fibroblast activation. In addition, a population of cardiomyocytes with a high proregenerative profile was identified in infant patients with DCM but was absent in children >6 years of age. This cluster showed high expression of cell cycle activators such as cyclin D family members, increased glycolytic metabolism and antioxidative genes, and alterations in ß-adrenergic signaling genes. CONCLUSIONS Novel insights into the cellular transcriptomes of hearts from pediatric patients with DCM provide remarkable age-dependent changes in the expression patterns of fibroblast and cardiomyocyte genes with less fibrotic but enriched proregenerative signatures in infants.
Collapse
Affiliation(s)
- Luka Nicin
- Institute for Cardiovascular Regeneration (L.N., W.T.A., D.J., H.M., L.T., S.D.), Goethe University, Germany.,German Center for Cardiovascular Research, Frankfurt, Germany (L.N., W.T.A., S.D.).,Cardio-Pulmonary Institute, Frankfurt, Germany (L.N., W.T.A., S.D.)
| | - Wesley T Abplanalp
- Institute for Cardiovascular Regeneration (L.N., W.T.A., D.J., H.M., L.T., S.D.), Goethe University, Germany.,German Center for Cardiovascular Research, Frankfurt, Germany (L.N., W.T.A., S.D.).,Cardio-Pulmonary Institute, Frankfurt, Germany (L.N., W.T.A., S.D.)
| | - Anne Schänzer
- Institute of Neuropathology (A.S., M.K.), University Hospital Giessen, Justus Liebig Universität, Germany
| | - Anke Sprengel
- Pediatric Heart Center, Department of Pediatric Cardiac Surgery (A.S., H.A.), University Hospital Giessen, Justus Liebig Universität, Germany
| | - David John
- Institute for Cardiovascular Regeneration (L.N., W.T.A., D.J., H.M., L.T., S.D.), Goethe University, Germany
| | - Hannah Mellentin
- Institute for Cardiovascular Regeneration (L.N., W.T.A., D.J., H.M., L.T., S.D.), Goethe University, Germany
| | - Lukas Tombor
- Institute for Cardiovascular Regeneration (L.N., W.T.A., D.J., H.M., L.T., S.D.), Goethe University, Germany
| | - Matthias Keuper
- Institute of Neuropathology (A.S., M.K.), University Hospital Giessen, Justus Liebig Universität, Germany
| | - Evelyn Ullrich
- Experimental Immunology, Division of Pediatric Stem Cell Transplantation and Immunology, Children and Adolescents Medicine, University Hospital Frankfurt (E.U.), Goethe University, Germany.,Frankfurt Cancer Institute (E.U.), Goethe University, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tuebingen, Germany (K.K.)
| | | | - Jedrzej Hoffmann
- Internal Medicine Clinic III, Department of Cardiology (J.H., A.M.Z.), Goethe University, Germany
| | - Hakan Akintuerk
- Pediatric Heart Center, Department of Pediatric Cardiac Surgery (A.S., H.A.), University Hospital Giessen, Justus Liebig Universität, Germany
| | - Christian Jux
- Department of Pediatric Cardiology and Congenital Heart Disease (C.J., D.S., S.R.), University Hospital Giessen, Justus Liebig Universität, Germany
| | - Dietmar Schranz
- Department of Pediatric Cardiology and Congenital Heart Disease (C.J., D.S., S.R.), University Hospital Giessen, Justus Liebig Universität, Germany
| | - Andreas M Zeiher
- Internal Medicine Clinic III, Department of Cardiology (J.H., A.M.Z.), Goethe University, Germany
| | - Stefan Rupp
- Department of Pediatric Cardiology and Congenital Heart Disease (C.J., D.S., S.R.), University Hospital Giessen, Justus Liebig Universität, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration (L.N., W.T.A., D.J., H.M., L.T., S.D.), Goethe University, Germany.,German Center for Cardiovascular Research, Frankfurt, Germany (L.N., W.T.A., S.D.).,Cardio-Pulmonary Institute, Frankfurt, Germany (L.N., W.T.A., S.D.)
| |
Collapse
|
340
|
Garnier A, Bork NI, Jacquet E, Zipfel S, Muñoz-Guijosa C, Baczkó I, Reichenspurner H, Donzeau-Gouge P, Maier LS, Dobrev D, Girdauskas E, Nikolaev VO, Fischmeister R, Molina CE. Mapping genetic changes in the cAMP-signaling cascade in human atria. J Mol Cell Cardiol 2021; 155:10-20. [PMID: 33631188 DOI: 10.1016/j.yjmcc.2021.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 11/15/2022]
Abstract
AIM To obtain a quantitative expression profile of the main genes involved in the cAMP-signaling cascade in human control atria and in different cardiac pathologies. METHODS AND RESULTS Expression of 48 target genes playing a relevant role in the cAMP-signaling cascade was assessed by RT-qPCR. 113 samples were obtained from right atrial appendages (RAA) of patients in sinus rhythm (SR) with or without atrium dilation, paroxysmal atrial fibrillation (AF), persistent AF or heart failure (HF); and left atrial appendages (LAA) from patients in SR or with AF. Our results show that right and left atrial appendages in donor hearts or from SR patients have similar expression values except for AC7 and PDE2A. Despite the enormous chamber-dependent variability in the gene-expression changes between pathologies, several distinguishable patterns could be identified. PDE8A, PI3Kγ and EPAC2 were upregulated in AF. Different phosphodiesterase (PDE) families showed specific pathology-dependent changes. CONCLUSION By comparing mRNA-expression patterns of the cAMP-signaling cascade related genes in right and left atrial appendages of human hearts and across different pathologies, we show that 1) gene expression is not significantly affected by cardioplegic solution content, 2) it is appropriate to use SR atrial samples as controls, and 3) many genes in the cAMP-signaling cascade are affected in AF and HF but only few of them appear to be chamber (right or left) specific. TOPIC Genetic changes in human diseased atria. TRANSLATIONAL PERSPECTIVE The cyclic AMP signaling pathway is important for atrial function. However, expression patterns of the genes involved in the atria of healthy and diseased hearts are still unclear. We give here a general overview of how different pathologies affect the expression of key genes in the cAMP signaling pathway in human right and left atria appendages. Our study may help identifying new genes of interest as potential therapeutic targets or clinical biomarkers for these pathologies and could serve as a guide in future gene therapy studies.
Collapse
Affiliation(s)
- Anne Garnier
- Université Paris-Saclay, Inserm, UMR-S 1180, Châtenay-Malabry, France
| | - Nadja I Bork
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany; German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
| | - Eric Jacquet
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Svante Zipfel
- Dept. of Cardiovascular Surgery, University Heart Center Hamburg, Germany
| | | | - Istvan Baczkó
- Dept. Pharmacology and Pharmacotherapy, Univ. of Szeged, Hungary
| | | | | | - Lars S Maier
- Dept. Internal Medicine II, University Heart Center, University Hospital Regensburg, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West-German Heart and Vascular Center, Faculty of Medicine, University Duisburg-, Essen, Germany
| | - Evaldas Girdauskas
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany; Dept. of Cardiovascular Surgery, University Heart Center Hamburg, Germany
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany; German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
| | | | - Cristina E Molina
- Université Paris-Saclay, Inserm, UMR-S 1180, Châtenay-Malabry, France; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany; German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
| |
Collapse
|
341
|
Ex uno, plures-From One Tissue to Many Cells: A Review of Single-Cell Transcriptomics in Cardiovascular Biology. Int J Mol Sci 2021; 22:ijms22042071. [PMID: 33669808 PMCID: PMC7922347 DOI: 10.3390/ijms22042071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 11/17/2022] Open
Abstract
Recent technological advances have revolutionized the study of tissue biology and garnered a greater appreciation for tissue complexity. In order to understand cardiac development, heart tissue homeostasis, and the effects of stress and injury on the cardiovascular system, it is essential to characterize the heart at high cellular resolution. Single-cell profiling provides a more precise definition of tissue composition, cell differentiation trajectories, and intercellular communication, compared to classical bulk approaches. Here, we aim to review how recent single-cell multi-omic studies have changed our understanding of cell dynamics during cardiac development, and in the healthy and diseased adult myocardium.
Collapse
|
342
|
Sukhacheva TV, Nizyaeva NV, Samsonova MV, Cherniaev AL, Burov AA, Iurova MV, Shchegolev AI, Serov RA, Sukhikh GT. Morpho-functional changes of cardiac telocytes in isolated atrial amyloidosis in patients with atrial fibrillation. Sci Rep 2021; 11:3563. [PMID: 33574429 PMCID: PMC7878494 DOI: 10.1038/s41598-021-82554-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Telocytes are interstitial cells with long, thin processes by which they contact each other and form a network in the interstitium. Myocardial remodeling of adult patients with different forms of atrial fibrillation (AF) occurs with an increase in fibrosis, age-related isolated atrial amyloidosis (IAA), cardiomyocyte hypertrophy and myolysis. This study aimed to determine the ultrastructural and immunohistochemical features of cardiac telocytes in patients with AF and AF + IAA. IAA associated with accumulation of atrial natriuretic factor was detected in 4.3-25% biopsies of left (LAA) and 21.7-41.7% of right (RAA) atrial appendage myocardium. Telocytes were identified at ultrastructural level more often in AF + IAA, than in AF group and correlated with AF duration and mitral valve regurgitation. Telocytes had ultrastructural signs of synthetic, proliferative, and phagocytic activity. Telocytes corresponded to CD117+, vimentin+, CD34+, CD44+, CD68+, CD16+, S100-, CD105- immunophenotype. No significant differences in telocytes morphology and immunophenotype were found in patients with various forms of AF. CD68-positive cells were detected more often in AF + IAA than AF group. We assume that in aged AF + IAA patients remodeling of atrial myocardium provoked transformation of telocytes into "transitional forms" combining the morphological and immunohistochemical features with signs of fibroblast-, histiocyte- and endotheliocyte-like cells.
Collapse
Affiliation(s)
- Tatyana V Sukhacheva
- A.N. Bakulev National Medical Research Center of Cardiovascular Surgery, The Ministry of Health of Russian Federation, Moscow, Russia.
| | - Natalia V Nizyaeva
- National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named After Academician V.I. Kulakov of the Ministry of Healthcare of the Russian Federation, Moscow, Russia, 117997
| | - Maria V Samsonova
- Pulmonology Scientific Research Institute under Federal Medical and Biological Agency of Russian Federation, Moscow, 115682, Russia
| | - Andrey L Cherniaev
- Pulmonology Scientific Research Institute under Federal Medical and Biological Agency of Russian Federation, Moscow, 115682, Russia
| | - Artem A Burov
- National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named After Academician V.I. Kulakov of the Ministry of Healthcare of the Russian Federation, Moscow, Russia, 117997
| | - Mariia V Iurova
- National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named After Academician V.I. Kulakov of the Ministry of Healthcare of the Russian Federation, Moscow, Russia, 117997
- First Moscow State Medical University Named After I.M. Sechenov, Moscow, Russia
| | - Aleksandr I Shchegolev
- National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named After Academician V.I. Kulakov of the Ministry of Healthcare of the Russian Federation, Moscow, Russia, 117997
| | - Roman A Serov
- A.N. Bakulev National Medical Research Center of Cardiovascular Surgery, The Ministry of Health of Russian Federation, Moscow, Russia
| | - Gennady T Sukhikh
- National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named After Academician V.I. Kulakov of the Ministry of Healthcare of the Russian Federation, Moscow, Russia, 117997
- First Moscow State Medical University Named After I.M. Sechenov, Moscow, Russia
| |
Collapse
|
343
|
Li X, Garcia-Elias A, Benito B, Nattel S. The effects of cardiac stretch on atrial fibroblasts: Analysis of the evidence and potential role in atrial fibrillation. Cardiovasc Res 2021; 118:440-460. [PMID: 33576384 DOI: 10.1093/cvr/cvab035] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/27/2020] [Accepted: 02/09/2021] [Indexed: 01/06/2023] Open
Abstract
Atrial fibrillation (AF) is an important clinical problem. Chronic pressure/volume overload of the atria promotes AF, particularly via enhanced extracellular matrix (ECM) accumulation manifested as tissue fibrosis. Loading of cardiac cells causes cell-stretch that is generally considered to promote fibrosis by directly activating fibroblasts, the key cell-type responsible for ECM-production. The primary purpose of this article is to review the evidence regarding direct effects of stretch on cardiac fibroblasts, specifically: (i) the similarities and differences among studies in observed effects of stretch on cardiac-fibroblast function; (ii) the signaling-pathways implicated; and (iii) the factors that affect stretch-related phenotypes. Our review summarizes the most important findings and limitations in this area and gives an overview of clinical data and animal models related to cardiac stretch, with particular emphasis on the atria. We suggest that the evidence regarding direct fibroblast activation by stretch is weak and inconsistent, in part because of variability among studies in key experimental conditions that govern the results. Further work is needed to clarify whether, in fact, stretch induces direct activation of cardiac fibroblasts and if so, to elucidate the determining factors to ensure reproducible results. If mechanical load on fibroblasts proves not to be clearly profibrotic by direct actions, other mechanisms like paracrine influences, the effects of systemic mediators and/or the direct consequences of myocardial injury or death, might account for the link between cardiac stretch and fibrosis. Clarity in this area is needed to improve our understanding of AF pathophysiology and assist in therapeutic development.
Collapse
Affiliation(s)
- Xixiao Li
- Department of Medicine and Research Center, Montreal Heart Institute, Montreal, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Anna Garcia-Elias
- Department of Medicine and Research Center, Montreal Heart Institute, Montreal, Canada
| | - Begoña Benito
- Vascular Biology and Metabolism Program, Vall d'Hebrón Research Institute (VHIR), Barcelona, Spain.,Cardiology Department, Hospital Universitari Vall d'Hebrón, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Stanley Nattel
- Department of Medicine and Research Center, Montreal Heart Institute, Montreal, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.,Department of Pharmacology and Physiology of the Université de Montréal Faculty of Medicine, Montreal, Canada.,Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany.,IHU LIRYC and Fondation Bordeaux Université, Bordeaux, France
| |
Collapse
|
344
|
Iqbal F, Lupieri A, Aikawa M, Aikawa E. Harnessing Single-Cell RNA Sequencing to Better Understand How Diseased Cells Behave the Way They Do in Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2021; 41:585-600. [PMID: 33327741 PMCID: PMC8105278 DOI: 10.1161/atvbaha.120.314776] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
The transition of healthy arteries and cardiac valves into dense, cell-rich, calcified, and fibrotic tissues is driven by a complex interplay of both cellular and molecular mechanisms. Specific cell types in these cardiovascular tissues become activated following the exposure to systemic stimuli including circulating lipoproteins or inflammatory mediators. This activation induces multiple cascades of events where changes in cell phenotypes and activation of certain receptors may trigger multiple pathways and specific alterations to the transcriptome. Modifications to the transcriptome and proteome can give rise to pathological cell phenotypes and trigger mechanisms that exacerbate inflammation, proliferation, calcification, and recruitment of resident or distant cells. Accumulating evidence suggests that each cell type involved in vascular and valvular diseases is heterogeneous. Single-cell RNA sequencing is a transforming medical research tool that enables the profiling of the unique fingerprints at single-cell levels. Its applications have allowed the construction of cell atlases including the mammalian heart and tissue vasculature and the discovery of new cell types implicated in cardiovascular disease. Recent advances in single-cell RNA sequencing have facilitated the identification of novel resident cell populations that become activated during disease and has allowed tracing the transition of healthy cells into pathological phenotypes. Furthermore, single-cell RNA sequencing has permitted the characterization of heterogeneous cell subpopulations with unique genetic profiles in healthy and pathological cardiovascular tissues. In this review, we highlight the latest groundbreaking research that has improved our understanding of the pathological mechanisms of atherosclerosis and future directions for calcific aortic valve disease.
Collapse
Affiliation(s)
- Farwah Iqbal
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Adrien Lupieri
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Masanori Aikawa
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Elena Aikawa
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Human Pathology, Sechenov First Moscow State Medical University, Moscow, 119992, Russia
| |
Collapse
|
345
|
Hall C, Gehmlich K, Denning C, Pavlovic D. Complex Relationship Between Cardiac Fibroblasts and Cardiomyocytes in Health and Disease. J Am Heart Assoc 2021; 10:e019338. [PMID: 33586463 PMCID: PMC8174279 DOI: 10.1161/jaha.120.019338] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiac fibroblasts are the primary cell type responsible for deposition of extracellular matrix in the heart, providing support to the contracting myocardium and contributing to a myriad of physiological signaling processes. Despite the importance of fibrosis in processes of wound healing, excessive fibroblast proliferation and activation can lead to pathological remodeling, driving heart failure and the onset of arrhythmias. Our understanding of the mechanisms driving the cardiac fibroblast activation and proliferation is expanding, and evidence for their direct and indirect effects on cardiac myocyte function is accumulating. In this review, we focus on the importance of the fibroblast-to-myofibroblast transition and the cross talk of cardiac fibroblasts with cardiac myocytes. We also consider the current use of models used to explore these questions.
Collapse
Affiliation(s)
- Caitlin Hall
- Institute of Cardiovascular Sciences University of Birmingham United Kingdom
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences University of Birmingham United Kingdom.,Division of Cardiovascular Medicine Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford University of Oxford United Kingdom
| | - Chris Denning
- Biodiscovery Institute University of Nottingham United Kingdom
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences University of Birmingham United Kingdom
| |
Collapse
|
346
|
Epigenetics in atrial fibrillation: A reappraisal. Heart Rhythm 2021; 18:824-832. [PMID: 33440248 DOI: 10.1016/j.hrthm.2021.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/23/2020] [Accepted: 01/01/2021] [Indexed: 11/21/2022]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia and an important cause of morbidity and mortality globally. Atrial remodeling includes changes in ion channel expression and function, structural alterations, and neural remodeling, which create an arrhythmogenic milieu resulting in AF initiation and maintenance. Current therapeutic strategies for AF involving ablation and antiarrhythmic drugs are associated with relatively high recurrence and proarrhythmic side effects, respectively. Over the last 2 decades, in an effort to overcome these issues, research has sought to identify the genetic basis for AF thereby gaining insight into the regulatory mechanisms governing its pathophysiology. Despite identification of multiple gene loci associated with AF, thus far none has led to a therapy, indicating additional contributors to pathology. Recently, in the context of expanding knowledge of the epigenome (DNA methylation, histone modifications, and noncoding RNAs), its potential involvement in the onset and progression of AF pathophysiology has started to emerge. Probing the role of various epigenetic mechanisms that contribute to AF may improve our knowledge of this complex disease, identify potential therapeutic targets, and facilitate targeted therapies. Here, we provide a comprehensive review of growing epigenetic features involved in AF pathogenesis and summarize the emerging epigenomic targets for therapy that have been explored in preclinical models of AF.
Collapse
|
347
|
Oltra E. Epigenetics of muscle disorders. MEDICAL EPIGENETICS 2021:279-308. [DOI: 10.1016/b978-0-12-823928-5.00023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
348
|
Nomura S. Single-cell genomics to understand disease pathogenesis. J Hum Genet 2021; 66:75-84. [PMID: 32951011 PMCID: PMC7728598 DOI: 10.1038/s10038-020-00844-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 01/05/2023]
Abstract
Cells are minimal functional units in biological phenomena, and therefore single-cell analysis is needed to understand the molecular behavior leading to cellular function in organisms. In addition, omics analysis technology can be used to identify essential molecular mechanisms in an unbiased manner. Recently, single-cell genomics has unveiled hidden molecular systems leading to disease pathogenesis in patients. In this review, I summarize the recent advances in single-cell genomics for the understanding of disease pathogenesis and discuss future perspectives.
Collapse
Affiliation(s)
- Seitaro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
349
|
Chen Z, Wei L, Duru F, Chen L. Single-cell RNA Sequencing: In-depth Decoding of Heart Biology and Cardiovascular Diseases. Curr Genomics 2020; 21:585-601. [PMID: 33414680 PMCID: PMC7770632 DOI: 10.2174/1389202921999200604123914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/23/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023] Open
Abstract
Background The cardiac system is a combination of a complex structure, various cells, and versatile specified functions and sophisticated regulatory mechanisms. Moreover, cardiac diseases that encompass a wide range of endogenous conditions, remain a serious health burden worldwide. Recent genome-wide profiling techniques have taken the lead in uncovering a new realm of cell types and molecular programs driving physiological and pathological processes in various organs and diseases. In particular, the emerging technique single-cell RNA sequencing dominates a breakthrough in decoding the cell heterogeneity, phenotype transition, and developmental dynamics in cardiovascular science. Conclusion Herein, we review recent advances in single cellular studies of cardiovascular system and summarize new insights provided by single-cell RNA sequencing in heart developmental sciences, stem-cell researches as well as normal or disease-related working mechanisms.
Collapse
Affiliation(s)
- Zhongli Chen
- 1Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China; 2State Key Laboratory of Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; 3University Heart Center Zurich, University Heart Center, Zurich, Switzerland; 4Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Liang Wei
- 1Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China; 2State Key Laboratory of Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; 3University Heart Center Zurich, University Heart Center, Zurich, Switzerland; 4Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Firat Duru
- 1Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China; 2State Key Laboratory of Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; 3University Heart Center Zurich, University Heart Center, Zurich, Switzerland; 4Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Liang Chen
- 1Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China; 2State Key Laboratory of Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; 3University Heart Center Zurich, University Heart Center, Zurich, Switzerland; 4Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
350
|
Wang Z, Cui M, Shah AM, Tan W, Liu N, Bassel-Duby R, Olson EN. Cell-Type-Specific Gene Regulatory Networks Underlying Murine Neonatal Heart Regeneration at Single-Cell Resolution. Cell Rep 2020; 33:108472. [PMID: 33296652 PMCID: PMC7774872 DOI: 10.1016/j.celrep.2020.108472] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/09/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022] Open
Abstract
The adult mammalian heart has limited capacity for regeneration following injury, whereas the neonatal heart can readily regenerate within a short period after birth. Neonatal heart regeneration is orchestrated by multiple cell types intrinsic to the heart, as well as immune cells that infiltrate the heart after injury. To elucidate the transcriptional responses of the different cellular components of the mouse heart following injury, we perform single-cell RNA sequencing on neonatal hearts at various time points following myocardial infarction and couple the results with bulk tissue RNA-sequencing data collected at the same time points. Concomitant single-cell ATAC sequencing exposes underlying dynamics of open chromatin landscapes and regenerative gene regulatory networks of diverse cardiac cell types and reveals extracellular mediators of cardiomyocyte proliferation, angiogenesis, and fibroblast activation. Together, our data provide a transcriptional basis for neonatal heart regeneration at single-cell resolution and suggest strategies for enhancing cardiac function after injury.
Collapse
Affiliation(s)
- Zhaoning Wang
- Department of Molecular Biology, The Hamon Center for Regenerative Science and Medicine, and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Miao Cui
- Department of Molecular Biology, The Hamon Center for Regenerative Science and Medicine, and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Akansha M Shah
- Department of Molecular Biology, The Hamon Center for Regenerative Science and Medicine, and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Wei Tan
- Department of Molecular Biology, The Hamon Center for Regenerative Science and Medicine, and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ning Liu
- Department of Molecular Biology, The Hamon Center for Regenerative Science and Medicine, and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, The Hamon Center for Regenerative Science and Medicine, and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, The Hamon Center for Regenerative Science and Medicine, and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|