301
|
Ben-David O, Pewzner-Jung Y, Brenner O, Laviad EL, Kogot-Levin A, Weissberg I, Biton IE, Pienik R, Wang E, Kelly S, Alroy J, Raas-Rothschild A, Friedman A, Brügger B, Merrill AH, Futerman AH. Encephalopathy caused by ablation of very long acyl chain ceramide synthesis may be largely due to reduced galactosylceramide levels. J Biol Chem 2011; 286:30022-33. [PMID: 21705317 PMCID: PMC3191043 DOI: 10.1074/jbc.m111.261206] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/22/2011] [Indexed: 01/08/2023] Open
Abstract
Sphingolipids (SLs) act as signaling molecules and as structural components in both neuronal cells and myelin. We now characterize the biochemical, histological, and behavioral abnormalities in the brain of a mouse lacking very long acyl (C22-C24) chain SLs. This mouse, which is defective in the ability to synthesize C22-C24-SLs due to ablation of ceramide synthase 2, has reduced levels of galactosylceramide (GalCer), a major component of myelin, and in particular reduced levels of non-hydroxy-C22-C24-GalCer and 2-hydroxy-C22-C24- GalCer. Noteworthy brain lesions develop with a time course consistent with a vital role for C22-C24-GalCer in myelin stability. Myelin degeneration and detachment was observed as was abnormal motor behavior originating from a subcortical region. Additional abnormalities included bilateral and symmetrical vacuolization and gliosis in specific brain areas, which corresponded to some extent to the pattern of ceramide synthase 2 expression, with astrogliosis considerably more pronounced than microglial activation. Unexpectedly, unidentified storage materials were detected in lysosomes of astrocytes, reminiscent of the accumulation that occurs in lysosomal storage disorders. Together, our data demonstrate a key role in the brain for SLs containing very long acyl chains and in particular GalCer with a reduction in their levels leading to distinctive morphological abnormalities in defined brain regions.
Collapse
Affiliation(s)
| | | | - Ori Brenner
- Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Aviram Kogot-Levin
- Department of Human Genetics and Metabolic Diseases, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Itai Weissberg
- Department of Physiology and Neurobiology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Inbal E. Biton
- Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Reut Pienik
- From the Departments of Biological Chemistry and
| | - Elaine Wang
- School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0230
| | - Samuel Kelly
- School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0230
| | - Joseph Alroy
- Department of Pathology, Tufts University Schools of Medicine and Veterinary Medicine and Tufts Medical Center, Boston, Massachusetts 01536, and
| | - Annick Raas-Rothschild
- Department of Human Genetics and Metabolic Diseases, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Alon Friedman
- Department of Physiology and Neurobiology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Britta Brügger
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Alfred H. Merrill
- School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0230
| | | |
Collapse
|
302
|
Peer M, Bach M, Mueller MJ, Waller F. Free sphingobases induce RBOHD-dependent reactive oxygen species production in Arabidopsis leaves. FEBS Lett 2011; 585:3006-10. [DOI: 10.1016/j.febslet.2011.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 08/06/2011] [Indexed: 12/28/2022]
|
303
|
Hejazi L, Wong JWH, Cheng D, Proschogo N, Ebrahimi D, Garner B, Don AS. Mass and relative elution time profiling: two-dimensional analysis of sphingolipids in Alzheimer's disease brains. Biochem J 2011; 438:165-75. [PMID: 21639855 DOI: 10.1042/bj20110566] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Current lipidomic profiling methods rely mainly on MS to identify unknown lipids within a complex sample. We describe a new approach, involving LC×MS/MS (liquid chromatography×tandem MS) analysis of sphingolipids based on both mass and hydrophobicity, and use this method to characterize the SM (sphingomyelin), ceramide and GalCer (galactosylceramide) content of hippocampus from AD (Alzheimer's disease) and control subjects. Using a mathematical relationship we exclude the influence of sphingolipid mass on retention time, and generate two-dimensional plots that facilitate accurate visualization and characterization of the different ceramide moieties within a given sphingolipid class, because related molecules align horizontally or vertically on the plots. Major brain GalCer species that differ in mass by only 0.04 Da were easily differentiated on the basis of their hydrophobicity. The importance of our method's capacity to define all of the major GalCer species in the brain samples is illustrated by the novel observation that the proportion of GalCer with hydroxylated fatty acids increased approximately 2-fold in the hippocampus of AD patients, compared with age- and gender-matched controls. This suggests activation of fatty acid hydroxylase in AD. Our method greatly improves the clarity of data obtained in a lipid profiling experiment and can be expanded to other lipid classes.
Collapse
Affiliation(s)
- Leila Hejazi
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | | | | | |
Collapse
|
304
|
Scherer M, Böttcher A, Liebisch G. Lipid profiling of lipoproteins by electrospray ionization tandem mass spectrometry. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:918-24. [PMID: 21745591 DOI: 10.1016/j.bbalip.2011.06.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 05/30/2011] [Accepted: 06/14/2011] [Indexed: 10/18/2022]
Abstract
Lipoproteins are of fundamental importance for the lipid transport and cardiovascular disease. The function and metabolism of lipoproteins is intimately linked to the biophysical properties of their surface lipids. Although a number of disease associations were found for lipid species in plasma, only a few studies reported lipid profiles of lipoproteins. Here, we provide an overview of techniques for lipoprotein separation, methods for lipid species analysis based on electrospray ionization tandem mass spectrometry (ESI-MS/MS) as well as data from recent lipidomic studies on lipoprotein fractions. We also discuss the different analytical strategies and how lipid profiling can expand our understanding of the biology and structures of lipoproteins.
Collapse
|
305
|
Huang WC, Tsai CC, Chen CL, Chen TY, Chen YP, Lin YS, Lu PJ, Lin CM, Wang SH, Tsao CW, Wang CY, Cheng YL, Hsieh CY, Tseng PC, Lin CF. Glucosylceramide synthase inhibitor PDMP sensitizes chronic myeloid leukemia T315I mutant to Bcr-Abl inhibitor and cooperatively induces glycogen synthase kinase-3-regulated apoptosis. FASEB J 2011; 25:3661-73. [PMID: 21705667 DOI: 10.1096/fj.10-180190] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Inactivation of glycogen synthase kinase (GSK)-3 has been implicated in cancer progression. Previously, we showed an abundance of inactive GSK-3 in the human chronic myeloid leukemia (CML) cell line. CML is a hematopoietic malignancy caused by an oncogenic Bcr-Abl tyrosine kinase. In Bcr-Abl signaling, the role of GSK-3 is not well defined. Here, we report that enforced expression of constitutively active GSK-3 reduced proliferation and increased Bcr-Abl inhibition-induced apoptosis by nearly 1-fold. Bcr-Abl inhibition activated GSK-3 and GSK-3-dependent apoptosis. Inactivation of GSK-3 by Bcr-Abl activity is, therefore, confirmed. To reactivate GSK-3, we used glucosylceramide synthase (GCS) inhibitor PDMP to accumulate endogenous ceramide, a tumor-suppressor sphingolipid and a potent GSK-3 activator. We found that either PDMP or silence of GCS increased Bcr-Abl inhibition-induced GSK-3 activation and apoptosis. Furthermore, PDMP sensitized the most clinical problematic drug-resistant CML T315I mutant to Bcr-Abl inhibitor GNF-2-, imatinib-, or nilotinib-induced apoptosis by >5-fold. Combining PDMP and GNF-2 eliminated transplanted-CML-T315I-mutants in vivo and dose dependently sensitized primary cells from CML T315I patients to GNF-2-induced proliferation inhibition and apoptosis. The synergistic efficacy was Bcr-Abl restricted and correlated to increased intracellular ceramide levels and acted through GSK-3-mediated apoptosis. This study suggests a feasible novel anti-CML strategy by accumulating endogenous ceramide to reactivate GSK-3 and abrogate drug resistance.
Collapse
Affiliation(s)
- Wei-Ching Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
306
|
Murphy RC, Gaskell SJ. New applications of mass spectrometry in lipid analysis. J Biol Chem 2011; 286:25427-33. [PMID: 21632539 DOI: 10.1074/jbc.r111.233478] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mass spectrometry has emerged as a powerful tool for the analysis of all lipids. Lipidomic analysis of biological systems using various approaches is now possible with a quantitative measurement of hundreds of lipid molecular species. Although availability of reference and internal standards lags behind the field, approaches using stable isotope-labeled derivative tagging permit precise determination of specific phospholipids in an experimental series. The use of reactivity of ozone has enabled assessment of double bond positions in fatty acyl groups even when species remain in complex lipid mixtures. Rapid scanning tandem mass spectrometers are capable of quantitative analysis of hundreds of targeted lipids at high sensitivity in a single on-line chromatographic separation. Imaging mass spectrometry of lipids in tissues has opened new insights into the distribution of lipid molecular species with promising application to study pathophysiological events and diseases.
Collapse
Affiliation(s)
- Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado 80045, USA.
| | | |
Collapse
|
307
|
Highkin MK, Yates MP, Nemirovskiy OV, Lamarr WA, Munie GE, Rains JW, Masferrer JL, Nagiec MM. High-throughput screening assay for sphingosine kinase inhibitors in whole blood using RapidFire® mass spectrometry. ACTA ACUST UNITED AC 2011; 16:272-7. [PMID: 21297110 DOI: 10.1177/1087057110391656] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To facilitate discovery of compounds modulating sphingosine-1-phosphate (S1P) signaling, the authors used high-throughput mass spectrometry technology to measure S1P formation in human whole blood. Since blood contains endogenous sphingosine (SPH) and S1P, mass spectrometry was chosen to detect the conversion of an exogenously added 17-carbon-long variant of sphingosine, C17SPH, into C17S1P. The authors developed procedures to achieve homogeneous mixing of whole blood in 384-well plates and for a method requiring minimal manipulations to extract S1P from blood in 96- and 384-well plates prior to analyses using the RapidFire(®) mass spectrometry system.
Collapse
|
308
|
Haynes CA, Allegood JC, Wang EW, Kelly SL, Sullards MC, Merrill AH. Factors to consider in using [U-C]palmitate for analysis of sphingolipid biosynthesis by tandem mass spectrometry. J Lipid Res 2011; 52:1583-94. [PMID: 21586681 DOI: 10.1194/jlr.d015586] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This study describes the use of a stable-isotope labeled precursor ([U-¹³C]palmitate) to analyze de novo sphingolipid biosynthesis by tandem mass spectrometry. It also describes factors to consider in interpreting the data, including the isotope's location (¹³C appears in three isotopomers and isotopologues: [M + 16] for the sphingoid base or N-acyl fatty acid, and [M + 32] for both); the isotopic enrichment of palmitoyl-CoA; and its elongation, desaturation, and incorporation into N-acyl-sphingolipids. For HEK293 cells incubated with 0.1 mM [U-¹³C]palmitic acid, ∼60% of the total palmitoyl-CoA was ¹³C-labeled by 3 h (which was near isotopic equilibrium); with this correction, the rates of de novo biosynthesis of C16:0-ceramide, C16:0-monohexosylceramide, and C16:0-sphingomyelins were 62 ± 3, 13 ± 2, and 60 ± 11 pmol/h per mg protein, respectively, which are consistent with an estimated rate of appearance of C16:0-ceramide using exponential growth modeling (119 ± 11 pmol/h per mg protein). Including estimates for the very long-chain fatty acyl-CoAs, the overall rate of sphingolipid biosynthesis can be estimated to be at least ∼1.6-fold higher. Thus, consideration of these factors gives a more accurate picture of de novo sphingolipid biosynthesis than has been possible to-date, while acknowledging that there are inherent limitations to such approximations.
Collapse
Affiliation(s)
- Christopher A Haynes
- Newborn Screening and Molecular Biology Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | | | | | | |
Collapse
|
309
|
Nabetani T, Makino A, Hullin-Matsuda F, Hirakawa TA, Takeoka S, Okino N, Ito M, Kobayashi T, Hirabayashi Y. Multiplex analysis of sphingolipids using amine-reactive tags (iTRAQ). J Lipid Res 2011; 52:1294-1302. [PMID: 21487068 DOI: 10.1194/jlr.d014621] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ceramides play a crucial role in divergent signaling events, including differentiation, senescence, proliferation, and apoptosis. Ceramides are a minor lipid component in terms of content; thus, highly sensitive detection is required for accurate quantification. The recently developed isobaric tags for relative and absolute quantitation (iTRAQ) method enables a precise comparison of both protein and aminophospholipids. However, iTRAQ tagging had not been applied to the determination of sphingolipids. Here we report a method for the simultaneous measurement of multiple ceramide and monohexosylceramide samples using iTRAQ tags. Samples were hydrolyzed with sphingolipid ceramide N-deacylase (SCDase) to expose the free amino group of the sphingolipids, to which the N-hydroxysuccinimide group of iTRAQ reagent was conjugated. The reaction was performed in the presence of a cleavable detergent, 3-[3-(1,1-bisalkyloxyethyl)pyridine-1-yl]propane-1-sulfonate (PPS) to both improve the hydrolysis and ensure the accuracy of the mass spectrometry analysis performed after iTRAQ labeling. This method was successfully applied to the profiling of ceramides and monohexosylceramides in sphingomyelinase-treated Madin Darby canine kidney (MDCK) cells and apoptotic Jurkat cells.
Collapse
Affiliation(s)
- Takuji Nabetani
- Lipid Biology Laboratory, Advanced Science Institute, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
| | - Asami Makino
- Lipid Biology Laboratory, Advanced Science Institute, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
| | - Françoise Hullin-Matsuda
- Lipid Biology Laboratory, Advanced Science Institute, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan; INSERM U1060, université Lyon1, INSA-Lyon, 69621 Villeurbanne, France
| | - Taka-Aki Hirakawa
- Lipid Biology Laboratory, Advanced Science Institute, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan; Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Shinjuku-ku, Tokyo 162-8480, Japan
| | - Shinji Takeoka
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Shinjuku-ku, Tokyo 162-8480, Japan
| | - Nozomu Okino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan
| | - Makoto Ito
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan
| | - Toshihide Kobayashi
- Lipid Biology Laboratory, Advanced Science Institute, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan; INSERM U1060, université Lyon1, INSA-Lyon, 69621 Villeurbanne, France.
| | - Yoshio Hirabayashi
- Laboratory for Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
310
|
van Smeden J, Hoppel L, van der Heijden R, Hankemeier T, Vreeken RJ, Bouwstra JA. LC/MS analysis of stratum corneum lipids: ceramide profiling and discovery. J Lipid Res 2011; 52:1211-1221. [PMID: 21444759 DOI: 10.1194/jlr.m014456] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ceramides (CERs) in the upper layer of the skin, the stratum corneum (SC), play a key role in the skin barrier function. In human SC, the literature currently reports 11 CER subclasses that have been identified. In this paper, a novel quick and robust LC/MS method is presented that allows the separation and analysis of all known human SC CER subclasses using only limited sample preparation. Besides all 11 known and identified subclasses, a 3D multi-mass chromatogram shows the presence of other lipid subclasses. Using LC/MS/MS with an ion trap (IT) system, a Fourier transform-ion cyclotron resonance system, and a triple quadrupole system, we were able to identify one of these lipid subclasses as a new CER subclass: the ester-linked ω-hydroxy fatty acid with a dihydrosphingosine base (CER [EOdS]). Besides the identification of a new CER subclass, this paper also describes the applicability and robustness of the developed LC/MS method by analyzing three (biological) SC samples: SC from human dermatomed skin, human SC obtained by tape stripping, and SC from full-thickness skin explants. All three biological samples showed all known CER subclasses and slight differences were observed in CER profile.
Collapse
Affiliation(s)
- Jeroen van Smeden
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands
| | - Louise Hoppel
- Division of Analytical Biosciences, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands
| | - Rob van der Heijden
- Division of Analytical Biosciences, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands
| | - Thomas Hankemeier
- Division of Analytical Biosciences, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands; Netherlands Metabolomics Centre, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands
| | - Rob J Vreeken
- Division of Analytical Biosciences, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands; Netherlands Metabolomics Centre, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands
| | - Joke A Bouwstra
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands.
| |
Collapse
|
311
|
Momin AA, Park H, Portz BJ, Haynes CA, Shaner RL, Kelly SL, Jordan IK, Merrill JAH. A method for visualization of "omic" datasets for sphingolipid metabolism to predict potentially interesting differences. J Lipid Res 2011; 52:1073-1083. [PMID: 21415121 PMCID: PMC3090229 DOI: 10.1194/jlr.m010454] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Sphingolipids are structurally diverse and their metabolic pathways highly complex, which makes it difficult to follow all of the subspecies in a biological system, even using “lipidomic” approaches. This report describes a method to use transcriptomic data to visualize and predict potential differences in sphingolipid composition, and it illustrates its use with published data for cancer cell lines and tumors. In addition, several novel sphingolipids that were predicted to differ between MDA-MB-231 and MCF7 cells based on published microarray data for these breast cancer cell lines were confirmed by mass spectrometry. For the data that we were able to find for these comparisons, there was a significant match between the gene expression data and sphingolipid composition (P < 0.001 by Fisher's exact test). Upon considering the large number of gene expression datasets produced in recent years, this simple integration of two types of “omic” technologies (“transcriptomics” to direct “sphingolipidomics”) might facilitate the discovery of useful relationships between sphingolipid metabolism and disease, such as the identification of new biomarkers.
Collapse
Affiliation(s)
- Amin A Momin
- School of Biology, Georgia Institute of Technology, Atlanta, GA
| | - Hyejung Park
- School of Biology, Georgia Institute of Technology, Atlanta, GA
| | - Brent J Portz
- School of Biology, Georgia Institute of Technology, Atlanta, GA
| | | | - Rebecca L Shaner
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA; School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA
| | - Samuel L Kelly
- School of Biology, Georgia Institute of Technology, Atlanta, GA
| | - I King Jordan
- School of Biology, Georgia Institute of Technology, Atlanta, GA
| | - Jr Alfred H Merrill
- School of Biology, Georgia Institute of Technology, Atlanta, GA; School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA; School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA.
| |
Collapse
|
312
|
Betz J, Bielaszewska M, Thies A, Humpf HU, Dreisewerd K, Karch H, Kim KS, Friedrich AW, Müthing J. Shiga toxin glycosphingolipid receptors in microvascular and macrovascular endothelial cells: differential association with membrane lipid raft microdomains. J Lipid Res 2011; 52:618-34. [PMID: 21252262 DOI: 10.1194/jlr.m010819] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vascular damage caused by Shiga toxin (Stx)-producing Escherichia coli is largely mediated by Stxs, which in particular, injure microvascular endothelial cells in the kidneys and brain. The majority of Stxs preferentially bind to the glycosphingolipid (GSL) globotriaosylceramide (Gb3Cer) and, to a lesser extent, to globotetraosylceramide (Gb4Cer). As clustering of receptor GSLs in lipid rafts is a functional requirement for Stxs, we analyzed the distribution of Gb3Cer and Gb4Cer to membrane microdomains of human brain microvascular endothelial cells (HBMECs) and macrovascular EA.hy 926 endothelial cells by means of anti-Gb3Cer and anti-Gb4Cer antibodies. TLC immunostaining coupled with infrared matrix-assisted laser desorption/ionization (IR-MALDI) mass spectrometry revealed structural details of various lipoforms of Stx receptors and demonstrated their major distribution in detergent-resistant membranes (DRMs) compared with nonDRM fractions of HBMECs and EA.hy 926 cells. A significant preferential partition of different receptor lipoforms carrying C24:0/C24:1 or C16:0 fatty acid and sphingosine to DRMs was not detected in either cell type. Methyl-β-cyclodextrin (MβCD)-mediated cholesterol depletion resulted in only partial destruction of lipid rafts, accompanied by minor loss of GSLs in HBMECs. In contrast, almost entire disintegration of lipid rafts accompanied by roughly complete loss of GSLs was detected in EA.hy 926 cells after removal of cholesterol, indicating more stable microdomains in HBMECs. Our findings provide first evidence for differently stable microdomains in human endothelial cells from different vascular beds and should serve as the basis for further exploring the functional role of lipid raft-associated Stx receptors in different cell types.
Collapse
Affiliation(s)
- Josefine Betz
- Institutes for Hygiene, Food Chemistry, University of Münster, Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
313
|
Dennis EA, Deems RA, Harkewicz R, Quehenberger O, Brown HA, Milne SB, Myers DS, Glass CK, Hardiman G, Reichart D, Merrill AH, Sullards MC, Wang E, Murphy RC, Raetz CRH, Garrett TA, Guan Z, Ryan AC, Russell DW, McDonald JG, Thompson BM, Shaw WA, Sud M, Zhao Y, Gupta S, Maurya MR, Fahy E, Subramaniam S. A mouse macrophage lipidome. J Biol Chem 2010; 285:39976-85. [PMID: 20923771 PMCID: PMC3000979 DOI: 10.1074/jbc.m110.182915] [Citation(s) in RCA: 241] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 10/01/2010] [Indexed: 12/14/2022] Open
Abstract
We report the lipidomic response of the murine macrophage RAW cell line to Kdo(2)-lipid A, the active component of an inflammatory lipopolysaccharide functioning as a selective TLR4 agonist and compactin, a statin inhibitor of cholesterol biosynthesis. Analyses of lipid molecular species by dynamic quantitative mass spectrometry and concomitant transcriptomic measurements define the lipidome and demonstrate immediate responses in fatty acid metabolism represented by increases in eicosanoid synthesis and delayed responses characterized by sphingolipid and sterol biosynthesis. Lipid remodeling of glycerolipids, glycerophospholipids, and prenols also take place, indicating that activation of the innate immune system by inflammatory mediators leads to alterations in a majority of mammalian lipid categories, including unanticipated effects of a statin drug. Our studies provide a systems-level view of lipid metabolism and reveal significant connections between lipid and cell signaling and biochemical pathways that contribute to innate immune responses and to pharmacological perturbations.
Collapse
Affiliation(s)
- Edward A. Dennis
- From the Department of Chemistry and Biochemistry
- Department of Pharmacology, School of Medicine, and
| | | | | | - Oswald Quehenberger
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093
| | - H. Alex Brown
- the Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Stephen B. Milne
- the Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - David S. Myers
- the Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Christopher K. Glass
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093
- the Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Gary Hardiman
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Donna Reichart
- the Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Alfred H. Merrill
- the Schools of Biology, Chemistry and Biochemistry and the Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - M. Cameron Sullards
- the Schools of Biology, Chemistry and Biochemistry and the Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Elaine Wang
- the Schools of Biology, Chemistry and Biochemistry and the Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Robert C. Murphy
- the Department of Pharmacology, University of Colorado Denver, Aurora, Colorado 80045
| | - Christian R. H. Raetz
- the Department of Biochemistry, Duke University, Medical Center, Durham, North Carolina 27710
| | - Teresa A. Garrett
- the Department of Biochemistry, Duke University, Medical Center, Durham, North Carolina 27710
| | - Ziqiang Guan
- the Department of Biochemistry, Duke University, Medical Center, Durham, North Carolina 27710
| | - Andrea C. Ryan
- the Department of Biochemistry, Duke University, Medical Center, Durham, North Carolina 27710
| | - David W. Russell
- the Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Jeffrey G. McDonald
- the Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Bonne M. Thompson
- the Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Walter A. Shaw
- Avanti Polar Lipids, Inc., Alabaster, Alabama 35007-9105, and
| | | | | | | | | | - Eoin Fahy
- the San Diego Supercomputer Center and
| | - Shankar Subramaniam
- From the Department of Chemistry and Biochemistry
- the Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093
- the San Diego Supercomputer Center and
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
314
|
Bornancin F. Ceramide kinase: the first decade. Cell Signal 2010; 23:999-1008. [PMID: 21111813 DOI: 10.1016/j.cellsig.2010.11.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 11/16/2010] [Accepted: 11/16/2010] [Indexed: 11/20/2022]
Abstract
It has been some 20 years since the initial discovery of ceramide 1-phosphate (C1P) and nearly a decade since ceramide kinase (CERK) was cloned. Many studies have shown that C1P is important for membrane biology and for the regulation of membrane-bound proteins, and the CERK enzyme has appeared to be tightly regulated in order to control both ceramide levels and production of C1P. Furthermore, C1P made by CERK has emerged as a genuine signalling entity. However, it represents only part of the C1P pool that is available in the cell, therefore suggesting that alternative unknown C1P-producing mechanisms may also play a role. Recent technological developments for measuring complex sphingolipids in biological samples, together with the availability of Cerk-deficient animals as well as potent CERK inhibitors, have now provided new grounds for investigating C1P biology further. Here, we will review the current understanding of CERK and C1P in terms of biochemistry and functional implications, with particular attention to C1P produced by CERK.
Collapse
Affiliation(s)
- Frédéric Bornancin
- Novartis Institutes for BioMedical Research, CH-4056 Basle, Switzerland.
| |
Collapse
|
315
|
García-Álvarez I, Egido-Gabás M, Romero-Ramírez L, Doncel-Pérez E, Nieto-Sampedro M, Casas J, Fernández-Mayoralas A. Lipid and ganglioside alterations in tumor cells treated with antimitotic oleyl glycoside. MOLECULAR BIOSYSTEMS 2010; 7:129-38. [PMID: 21057675 DOI: 10.1039/c0mb00125b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oleyl 2-acetamido-2-deoxy-α-D-glucopyranoside (1) was previously shown to exhibit antimitotic activity on glioma (C6) and melanoma (A375) cell lines. Preliminary studies about its mechanism of action using (1)H MAS NMR suggested that 1 may be altering the metabolism of lipids. We have now studied the effect of 1 on the fatty acid, sphingolipid and ganglioside content in a line of carcinomic human alveolar epithelial cells (A549) using UPLC-MS. Oleic acid and NB-DNJ were used as positive controls for inhibition of fatty acid and ganglioside synthesis, respectively. Compound 1 (10 μM) was more efficient than oleic acid in reducing fatty acid levels of A549 cells, producing a decrease in the range of 40-15%, depending on the acyl chain length and the number of insaturations. In addition, glycoside 1 caused a reduction on ganglioside content of A549 tumor cell line and accumulation of lactosylceramide, the common metabolic precursor for ganglioside biosynthesis. Alteration of ganglioside metabolism was also observed with two galactosylated derivatives of 1, which caused a more pronounced increase in lactosylceramide levels. Compound 1 at higher concentrations (above 30 μM) produced drastic alterations in glycosphingolipid metabolism, leading to cell metabolic profiles very different from those obtained at 10 μM. These biochemical changes were ascribed to activation of endoplasmic reticulum stress pathways.
Collapse
|
316
|
Bou Khalil M, Hou W, Zhou H, Elisma F, Swayne LA, Blanchard AP, Yao Z, Bennett SAL, Figeys D. Lipidomics era: accomplishments and challenges. MASS SPECTROMETRY REVIEWS 2010; 29:877-929. [PMID: 20931646 DOI: 10.1002/mas.20294] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Lipid mediators participate in signal transduction pathways, proliferation, apoptosis, and membrane trafficking in the cell. Lipids are highly complex and diverse owing to the various combinations of polar headgroups, fatty acyl chains, and backbone structures. This structural diversity continues to pose a challenge for lipid analysis. Here we review the current state of the art in lipidomics research and discuss the challenges facing this field. The latest technological developments in mass spectrometry, the role of bioinformatics, and the applications of lipidomics in lipid metabolism and cellular physiology and pathology are also discussed.
Collapse
Affiliation(s)
- Maroun Bou Khalil
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5
| | | | | | | | | | | | | | | | | |
Collapse
|
317
|
Rovina P, Jaritz M, Bornancin F. Transcriptional repression of ceramide kinase in LPS-challenged macrophages. Biochem Biophys Res Commun 2010; 401:164-7. [DOI: 10.1016/j.bbrc.2010.09.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Accepted: 09/09/2010] [Indexed: 11/25/2022]
|
318
|
Sims K, Haynes CA, Kelly S, Allegood JC, Wang E, Momin A, Leipelt M, Reichart D, Glass CK, Sullards MC, Merrill AH. Kdo2-lipid A, a TLR4-specific agonist, induces de novo sphingolipid biosynthesis in RAW264.7 macrophages, which is essential for induction of autophagy. J Biol Chem 2010; 285:38568-79. [PMID: 20876532 PMCID: PMC2992289 DOI: 10.1074/jbc.m110.170621] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of RAW264.7 cells with a lipopolysaccharide specific for the TLR4 receptor, Kdo2-lipid A (KLA), causes a large increase in cellular sphingolipids, from 1.5 to 2.6 × 109 molecules per cell in 24 h, based on the sum of subspecies analyzed by “lipidomic” mass spectrometry. Thus, this study asked the following question. What is the cause of this increase and is there a cell function connected with it? The sphingolipids arise primarily from de novo biosynthesis based on [U-13C]palmitate labeling, inhibition by ISP1 (myriocin), and an apparent induction of many steps of the pathway (according to the distribution of metabolites and microarray analysis), with the exception of ceramide, which is also produced from pre-existing sources. Nonetheless, the activated RAW264.7 cells have a higher number of sphingolipids per cell because KLA inhibits cell division; thus, the cells are larger and contain increased numbers of membrane vacuoles termed autophagosomes, which were detected by the protein marker GFP-LC3. Indeed, de novo biosynthesis of sphingolipids performs an essential structural and/or signaling function in autophagy because autophagosome formation was eliminated by ISP1 in KLA-stimulated RAW264.7 cells (and mutation of serine palmitoyltransferase in CHO-LYB cells); furthermore, an anti-ceramide antibody co-localizes with autophagosomes in activated RAW264.7 cells versus the Golgi in unstimulated or ISP1-inhibited cells. These findings establish that KLA induces profound changes in sphingolipid metabolism and content in this macrophage-like cell line, apparently to produce sphingolipids that are necessary for formation of autophagosomes, which are thought to play important roles in the mechanisms of innate immunity.
Collapse
Affiliation(s)
- Kacee Sims
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
319
|
Raman MCC, Johnson KA, Clarke DJ, Naismith JH, Campopiano DJ. The serine palmitoyltransferase from Sphingomonas wittichii RW1: An interesting link to an unusual acyl carrier protein. Biopolymers 2010; 93:811-22. [PMID: 20578000 DOI: 10.1002/bip.21482] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Serine palmitoyltransferase (SPT) catalyses the first step in the de novo biosynthesis of sphingolipids (SLs). It uses a decarboxylative Claisen-like condensation reaction to couple L-serine with palmitoyl-CoA to generate a long-chain base product, 3-ketodihydrosphingosine. SLs are produced by mammals, plants, yeast, and some bacteria, and we have exploited the complete genome sequence of Sphingomonas wittichii to begin a complete analysis of bacterial sphingolipid biosynthesis. Here, we describe the enzymatic characterization of the SPT from this organism and present its high-resolution x-ray structure. Moreover, we identified an open reading frame with high sequence homology to acyl carrier proteins (ACPs) that are common to fatty acid biosynthetic pathways. This small protein was co-expressed with the SPT and we isolated and characterised the apo- and holo-forms of the ACP. Our studies suggest a link between fatty acid and sphingolipid metabolism.
Collapse
Affiliation(s)
- Marine C C Raman
- School of Chemistry, EaStCHEM, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ
| | | | | | | | | |
Collapse
|
320
|
Peer M, Stegmann M, Mueller MJ, Waller F. Pseudomonas syringaeinfection triggers de novo synthesis of phytosphingosine from sphinganine inArabidopsis thaliana. FEBS Lett 2010; 584:4053-6. [DOI: 10.1016/j.febslet.2010.08.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/17/2010] [Accepted: 08/17/2010] [Indexed: 10/19/2022]
|
321
|
Chen Y, Liu Y, Sullards MC, Merrill AH. An introduction to sphingolipid metabolism and analysis by new technologies. Neuromolecular Med 2010; 12:306-19. [PMID: 20680704 PMCID: PMC2982954 DOI: 10.1007/s12017-010-8132-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 07/20/2010] [Indexed: 01/20/2023]
Abstract
Sphingolipids (SP) are a complex class of molecules found in essentially all eukaryotes and some prokaryotes and viruses where they influence membrane structure, intracellular signaling, and interactions with the extracellular environment. Because of the combinatorial nature of their biosynthesis, there are thousands of SP subspecies varying in the lipid backbones and complex phospho- and glycoheadgroups. Therefore, comprehensive or “sphingolipidomic” analyses (structure-specific, quantitative analyses of all SP, or at least all members of a critical subset) are needed to know which and how much of these subspecies are present in a system as a step toward understanding their functions. Mass spectrometry and related novel techniques are able to quantify a small fraction, but nonetheless a substantial number, of SP and are beginning to provide information about their localization. This review summarizes the basic metabolism of SP and state-of-art mass spectrometric techniques that are producing insights into SP structure, metabolism, functions, and some of the dysfunctions of relevance to neuromedicine.
Collapse
Affiliation(s)
- Yanfeng Chen
- School of Chemistry and Biochemistry, The Wallace H. Coulter Department of Biomedical Engineering and the Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | |
Collapse
|
322
|
Schweppe CH, Hoffmann P, Nofer JR, Pohlentz G, Mormann M, Karch H, Friedrich AW, Müthing J. Neutral glycosphingolipids in human blood: a precise mass spectrometry analysis with special reference to lipoprotein-associated Shiga toxin receptors. J Lipid Res 2010; 51:2282-94. [PMID: 20444989 PMCID: PMC2903809 DOI: 10.1194/jlr.m006759] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/05/2010] [Indexed: 12/14/2022] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli are the leading cause of hemorrhagic colitis and life-threatening extraintestinal complications in humans. Stx1 and Stx2 are transferred by yet to be delineated mechanisms from the intestine to the circulation where they injure microvascular endothelial cells. The resulting vascular lesions cause renal failure and brain damage. Because lipoproteins are potential carriers of Stx through the circulation, we investigated human lipoprotein-associated neutral glycosphingolipids (GSLs) with emphasis on high (globotriaosylceramide) and low (globotetraosylceramide) affinity Stx-receptors. TLC overlay employing Stx1, Stx2, and anti-GSL antibodies demonstrated preferential distribution of globo-series GSLs to very low- and low-density lipoproteins compared with minor association with high-density lipoproteins. Electrospray ionization quadrupole time-of-flight mass spectrometry portrayed C24:0/C24:1 and C16:0 as the major fatty acid of the ceramide moieties of Stx-receptors carrying nonvarying d18:1 sphingosine. This structural heterogeneity was also found in precursor lactosylceramide, glucosylceramide, and galactosylceramide, the last showing an exceptionally high degree of hydroxylated C24 fatty acids. Our findings provide the basis for exploring the functional role of lipoprotein-associated Stx-receptors in human blood.
Collapse
Affiliation(s)
| | - Petra Hoffmann
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Jerzy-Roch Nofer
- Institute for Clinical Chemistry and Laboratory Medicine, University of Münster, D-48149 Münster, Germany
| | - Gottfried Pohlentz
- Institute for Medical Physics and Biophysics, University of Münster, D-48149 Münster, Germany
| | - Michael Mormann
- Institute for Medical Physics and Biophysics, University of Münster, D-48149 Münster, Germany
| | - Helge Karch
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Alexander W. Friedrich
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
- Interdisciplinary Center for Clinical Research (IZKF) Münster, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
- Interdisciplinary Center for Clinical Research (IZKF) Münster, D-48149 Münster, Germany
| |
Collapse
|
323
|
Regulation of sphingolipid biosynthesis de novo by novel mechanisms of substrate supply and membrane trafficking. Chem Phys Lipids 2010. [DOI: 10.1016/j.chemphyslip.2010.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
324
|
Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS, Merrill AH, Bandyopadhyay S, Jones KN, Kelly S, Shaner RL, Sullards CM, Wang E, Murphy RC, Barkley RM, Leiker TJ, Raetz CRH, Guan Z, Laird GM, Six DA, Russell DW, McDonald JG, Subramaniam S, Fahy E, Dennis EA. Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res 2010; 51:3299-305. [PMID: 20671299 DOI: 10.1194/jlr.m009449] [Citation(s) in RCA: 1021] [Impact Index Per Article: 68.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The focus of the present study was to define the human plasma lipidome and to establish novel analytical methodologies to quantify the large spectrum of plasma lipids. Partial lipid analysis is now a regular part of every patient's blood test and physicians readily and regularly prescribe drugs that alter the levels of major plasma lipids such as cholesterol and triglycerides. Plasma contains many thousands of distinct lipid molecular species that fall into six main categories including fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, and prenols. The physiological contributions of these diverse lipids and how their levels change in response to therapy remain largely unknown. As a first step toward answering these questions, we provide herein an in-depth lipidomics analysis of a pooled human plasma obtained from healthy individuals after overnight fasting and with a gender balance and an ethnic distribution that is representative of the US population. In total, we quantitatively assessed the levels of over 500 distinct molecular species distributed among the main lipid categories. As more information is obtained regarding the roles of individual lipids in health and disease, it seems likely that future blood tests will include an ever increasing number of these lipid molecules.
Collapse
Affiliation(s)
- Oswald Quehenberger
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0601, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
325
|
Liu Y, Chen Y, Momin A, Shaner R, Wang E, Bowen NJ, Matyunina LV, Walker LD, McDonald JF, Sullards MC, Merrill AH. Elevation of sulfatides in ovarian cancer: an integrated transcriptomic and lipidomic analysis including tissue-imaging mass spectrometry. Mol Cancer 2010; 9:186. [PMID: 20624317 PMCID: PMC2913985 DOI: 10.1186/1476-4598-9-186] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 07/12/2010] [Indexed: 12/22/2022] Open
Abstract
Background Sulfatides (ST) are a category of sulfated galactosylceramides (GalCer) that are elevated in many types of cancer including, possibly, ovarian cancer. Previous evidence for elevation of ST in ovarian cancer was based on a colorimetric reagent that does not provide structural details and can also react with other lipids. Therefore, this study utilized mass spectrometry for a structure-specific and quantitative analysis of the types, amounts, and tissue localization of ST in ovarian cancer, and combined these findings with analysis of mRNAs for the relevant enzymes of ST metabolism to explore possible mechanisms. Results Analysis of 12 ovarian tissues graded as histologically normal or having epithelial ovarian tumors by liquid chromatography electrospray ionization-tandem mass spectrometry (LC ESI-MS/MS) established that most tumor-bearing tissues have higher amounts of ST. Because ovarian cancer tissues are comprised of many different cell types, histological tissue slices were analyzed by matrix-assisted laser desorption ionization-tissue-imaging MS (MALDI-TIMS). The regions where ST were detected by MALDI-TIMS overlapped with the ovarian epithelial carcinoma as identified by H & E staining and histological scoring. Furthermore, the structures for the most prevalent species observed via MALDI-TIMS (d18:1/C16:0-, d18:1/C24:1- and d18:1/C24:0-ST) were confirmed by MALDI-TIMS/MS, whereas, a neighboring ion(m/z 885.6) that was not tumor specific was identified as a phosphatidylinositol. Microarray analysis of mRNAs collected using laser capture microdissection revealed that expression of GalCer synthase and Gal3ST1 (3'-phosphoadenosine-5'-phosphosulfate:GalCer sulfotransferase) were approximately 11- and 3.5-fold higher, respectively, in the ovarian epithelial carcinoma cells versus normal ovarian stromal tissue, and they were 5- and 2.3-fold higher in comparison with normal surface ovarian epithelial cells, which is a likely explanation for the higher ST. Conclusions This study combined transcriptomic and lipidomic approaches to establish that sulfatides are elevated in ovarian cancer and should be evaluated further as factors that might be important in ovarian cancer biology and, possibly, as biomarkers.
Collapse
Affiliation(s)
- Ying Liu
- School of Biology and the Petit Institute for Bioscience and Bioengineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, Georgia 30332-0363, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
326
|
Abstract
Lipids, abundant constituents of both the vascular plaque and lipoproteins, play a pivotal role in atherosclerosis. Mass spectrometry-based analysis of lipids, called lipidomics, presents a number of opportunities not only for understanding the cellular processes in health and disease but also in enabling personalized medicine. Lipidomics in its most advanced form is able to quantify hundreds of different molecular lipid species with various structural and functional roles. Unraveling this complexity will improve our understanding of diseases such as atherosclerosis at a level of detail not attainable with classical analytical methods. Improved patient selection, biomarkers for gauging treatment efficacy and safety, and translational models will be facilitated by the lipidomic deliverables. Importantly, lipid-based biomarkers and targets should lead the way as we progress toward more specialized therapeutics.
Collapse
Affiliation(s)
- Kim Ekroos
- Zora Biosciences Oy, Biologinkuja 1, FI-02150 Espoo, Finland
| | - Minna Jänis
- Zora Biosciences Oy, Biologinkuja 1, FI-02150 Espoo, Finland
| | - Kirill Tarasov
- Zora Biosciences Oy, Biologinkuja 1, FI-02150 Espoo, Finland
| | - Reini Hurme
- Zora Biosciences Oy, Biologinkuja 1, FI-02150 Espoo, Finland
| | - Reijo Laaksonen
- Zora Biosciences Oy, Biologinkuja 1, FI-02150 Espoo, Finland
| |
Collapse
|
327
|
Liou YB, Sheu MT, Liu DZ, Lin SY, Ho HO. Quantitation of ceramides in nude mouse skin by normal-phase liquid chromatography and atmospheric pressure chemical ionization mass spectrometry. Anal Biochem 2010; 401:107-13. [DOI: 10.1016/j.ab.2010.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 10/19/2022]
|
328
|
Li Y, Arigi E, Eichert H, Levery SB. Mass spectrometry of fluorocarbon-labeled glycosphingolipids. JOURNAL OF MASS SPECTROMETRY : JMS 2010; 45:504-519. [PMID: 20301184 DOI: 10.1002/jms.1734] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A method for generation of novel fluorocarbon derivatives of glycosphingolipids (GSLs) with high affinity for fluorocarbon phases has been developed, and their potential applications to mass spectrometry (MS)-based methodologies for glycosphingolipidomics have been investigated. Sphingolipid ceramide N-deacylase (SCDase) is used to remove the fatty acid from the ceramide moiety, after which a fluorocarbon-rich substituent (F-Tag) is incorporated at the free amine of the sphingoid. In initial trials, a neutral GSL, globotriaosylceramide (Gb(3)Cer), three purified bovine brain gangliosides, and four fungal glycosylinositol phosphorylceramides (GIPCs) were de-N-acylated, derivatized by prototype F-Tags, and recovered by solid phase extraction on fluorocarbon-derivatized silica (F-SPE). The efficacy of SCDase treatment of GIPCs was here demonstrated for the first time. Compatibility with subsequent per-N,O-methylation was established for the F-tagged Gb(3) Cer and purified gangliosides, and extensive mass spectra (MS(1) and MS(2)) consistent with all of the expected products were acquired. The potential use of F-tagged derivatives for a comprehensive MS based profiling application was then demonstrated on a crude ganglioside mixture extracted from bovine brain. Finally, a simple trial in microarray format demonstrated fixation of F-tagged G(M1) ganglioside to a fluorous glass surface, with the glycan intact and available for interaction with a fluorescent derivative of cholera toxin B chain. The methods described thus provide a new avenue for rapid GSL recovery or cleanup, potentially compatible with a variety of platforms for mass spectrometric profiling and structure analysis, as well as parallel analysis of functional interactions.
Collapse
Affiliation(s)
- Yunsen Li
- University of New Hampshire, Durham, NH 03824-3598, USA
| | | | | | | |
Collapse
|
329
|
Sugawara T, Duan J, Aida K, Tsuduki T, Hirata T. Identification of Glucosylceramides Containing Sphingatrienine in Maize and Rice Using Ion Trap Mass Spectrometry. Lipids 2010; 45:451-5. [DOI: 10.1007/s11745-010-3417-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 04/12/2010] [Indexed: 12/01/2022]
|
330
|
Scherer M, Leuthäuser-Jaschinski K, Ecker J, Schmitz G, Liebisch G. A rapid and quantitative LC-MS/MS method to profile sphingolipids. J Lipid Res 2010; 51:2001-11. [PMID: 20228220 DOI: 10.1194/jlr.d005322] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Sphingolipids comprise a highly diverse and complex class of molecules that serve not only as structural components of membranes but also as signaling molecules. To understand the differential role of sphingolipids in a regulatory network, it is important to use specific and quantitative methods. We developed a novel LC-MS/MS method for the rapid, simultaneous quantification of sphingolipid metabolites, including sphingosine, sphinganine, phyto-sphingosine, di- and trimethyl-sphingosine, sphingosylphosphorylcholine, hexosylceramide, lactosylceramide, ceramide-1-phosphate, and dihydroceramide-1-phosphate. Appropriate internal standards (ISs) were added prior to lipid extraction. In contrast to most published methods based on reversed phase chromatography, we used hydrophilic interaction liquid chromatography and achieved good peak shapes, a short analysis time of 4.5 min, and, most importantly, coelution of analytes and their respective ISs. To avoid an overestimation of species concentrations, peak areas were corrected regarding isotopic overlap where necessary. Quantification was achieved by standard addition of naturally occurring sphingolipid species to the sample matrix. The method showed excellent precision, accuracy, detection limits, and robustness. As an example, sphingolipid species were quantified in fibroblasts treated with myriocin or sphingosine-kinase inhibitor. In summary, this method represents a valuable tool to evaluate the role of sphingolipids in the regulation of cell functions.
Collapse
Affiliation(s)
- Max Scherer
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | | | | | | | | |
Collapse
|
331
|
Abstract
Evidence has consistently indicated that activation of sphingomyelinases and/or ceramide synthases and the resulting accumulation of ceramide mediate cellular responses to stressors such as lipopolysaccharide, interleukin 1beta, tumor necrosis factor alpha, serum deprivation, irradiation and various antitumor treatments. Recent studies had identified the genes encoding most of the enzymes responsible for the generation of ceramide and ongoing research is aimed at characterizing their individual functions in cellular response to stress. This chapter discusses the seminal and more recent discoveries in regards to the pathways responsible for the accumulation of ceramide during stress and the mechanisms by which ceramide affects cell functions. The former group includes the roles of neutral sphingomyelinase 2, serine palmitoyltransferase, ceramide synthases, as well as the secretory and endosomal/lysosomal forms of acid sphingomyelinase. The latter summarizes the mechanisms by which ceramide activate its direct targets, PKCzeta, PP2A and cathepsin D. The ability of ceramide to affect membrane organization is discussed in the light of its relevance to cell signaling. Emerging evidence to support the previously assumed notion that ceramide acts in a strictly structure-specific manner are also included. These findings are described in the context of several physiological and pathophysiological conditions, namely septic shock, obesity-induced insulin resistance, aging and apoptosis of tumor cells in response to radiation and chemotherapy.
Collapse
|
332
|
Sugawara T, Aida K, Duan J, Hirata T. Analysis of Glucosylceramides from Various Sources by Liquid Chromatography-Ion Trap Mass Spectrometry. J Oleo Sci 2010; 59:387-94. [DOI: 10.5650/jos.59.387] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
333
|
Normal phase liquid chromatography coupled to quadrupole time of flight atmospheric pressure chemical ionization mass spectrometry for separation, detection and mass spectrometric profiling of neutral sphingolipids and cholesterol. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:2976-82. [DOI: 10.1016/j.jchromb.2009.07.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 07/01/2009] [Accepted: 07/07/2009] [Indexed: 11/19/2022]
|
334
|
Park H, Haynes CA, Nairn AV, Kulik M, Dalton S, Moremen K, Merrill AH. Transcript profiling and lipidomic analysis of ceramide subspecies in mouse embryonic stem cells and embryoid bodies. J Lipid Res 2009; 51:480-9. [PMID: 19786568 PMCID: PMC2817578 DOI: 10.1194/jlr.m000984] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ceramides (Cers) are important in embryogenesis, but no comprehensive analysis of gene expression for Cer metabolism nor the Cer amounts and subspecies has been conducted with an often used model: mouse embryonic stem cells (mESCs) versus embroid bodies (EBs). Measuring the mRNA levels by quantitative RT-PCR and the amounts of the respective metabolites by LC-ESI/MS/MS, notable differences between R1 mESCs and EBs were: EBs have higher mRNAs for CerS1 and CerS3, which synthesize C18- and C>or=24-carbons dihydroceramides (DH)Cer, respectively; EBs have higher CerS2 (for C24:0- and C24:1-); and EBs have lower CerS5 + CerS6 (for C16-). In agreement with these findings, EBs have (DH)Cer with higher proportions of C18-, C24- and C26- and less C16-fatty acids, and longer (DH)Cer are also seen in monohexosyl Cers and sphingomyelins. EBs had higher mRNAs for fatty acyl-CoA elongases that produce C18-, C24-, and C26-fatty acyl-CoAs (Elovl3 and Elovl6), and higher amounts of these cosubstrates for CerS. Thus, these studies have found generally good agreement between genomic and metabolomic data in defining that conversion of mESCs to EBs is accompanied by a large number of changes in gene expression and subspecies distributions for both sphingolipids and fatty acyl-CoAs.
Collapse
Affiliation(s)
- Hyejung Park
- School of Biology & Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | | | | | |
Collapse
|
335
|
Haynes CA, Allegood JC, Park H, Sullards MC. Sphingolipidomics: methods for the comprehensive analysis of sphingolipids. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:2696-708. [PMID: 19147416 PMCID: PMC2765038 DOI: 10.1016/j.jchromb.2008.12.057] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 12/23/2008] [Accepted: 12/24/2008] [Indexed: 01/04/2023]
Abstract
Sphingolipids comprise a highly diverse and complex class of molecules that serve as both structural components of cellular membranes and signaling molecules capable of eliciting apoptosis, differentiation, chemotaxis, and other responses in mammalian cells. Comprehensive or "sphingolipidomic" analyses (structure specific, quantitative analyses of all sphingolipids, or at least all members of a critical subset) are required in order to elucidate the role(s) of sphingolipids in a given biological context because so many of the sphingolipids in a biological system are inter-converted structurally and metabolically. Despite the experimental challenges posed by the diversity of sphingolipid-regulated cellular responses, the detection and quantitation of multiple sphingolipids in a single sample has been made possible by combining classical analytical separation techniques such as high-performance liquid chromatography (HPLC) with state-of-the-art tandem mass spectrometry (MS/MS) techniques. As part of the Lipid MAPS consortium an internal standard cocktail was developed that comprises the signaling metabolites (i.e. sphingoid bases, sphingoid base-1-phosphates, ceramides, and ceramide-1-phosphates) as well as more complex species such as mono- and di-hexosylceramides and sphingomyelin. Additionally, the number of species that can be analyzed is growing rapidly with the addition of fatty acyl Co-As, sulfatides, and other complex sphingolipids as more internal standards are becoming available. The resulting LC-MS/MS analyses are one of the most analytically rigorous technologies that can provide the necessary sensitivity, structural specificity, and quantitative precision with high-throughput for "sphingolipidomic" analyses in small sample quantities. This review summarizes historical and state-of-the-art analytical techniques used for the identification, structure determination, and quantitation of sphingolipids from free sphingoid bases through more complex sphingolipids such as sphingomyelins, lactosylceramides, and sulfatides including those intermediates currently considered sphingolipid "second messengers". Also discussed are some emerging techniques and other issues remaining to be resolved for the analysis of the full sphingolipidome.
Collapse
Affiliation(s)
- Christopher A. Haynes
- School of Biology, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, U.S.A
| | - Jeremy C. Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-5048, U.S.A
| | - Hyejung Park
- School of Biology, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, U.S.A
| | - M. Cameron Sullards
- School of Biology, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, U.S.A
- School of Chemistry & Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, U.S.A
| |
Collapse
|
336
|
Wijesinghe DS, Allegood JC, Gentile LB, Fox TE, Kester M, Chalfant CE. Use of high performance liquid chromatography-electrospray ionization-tandem mass spectrometry for the analysis of ceramide-1-phosphate levels. J Lipid Res 2009; 51:641-51. [PMID: 19654423 DOI: 10.1194/jlr.d000430] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ceramide-1-phosphate (C1P) is a bioactive sphingolipid with roles in several biological processes. Currently, high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC ESI-MS/MS) offers the most efficient method of quantifying C1P. However, the published protocols have several drawbacks causing overestimations and carryovers. Here, the reported overestimation of C1P was shown to be due to incomplete neutralization of base hydrolyzed lipid extracts leading to the hydrolysis of SM to C1P. Actual quantity of C1P in cells (6 pmols/10(6) cells) was much lower than previously reported. Also, the major species of C1P produced by ceramide kinase (CERK) was found to be d(18:1/16:0) with a minority of d(18:1/24:1) and d(18:1/24:0). The artifactual production of C1P from SM was used for generating C1Ps as retention time markers. Elimination of carryovers between samples and a 2-fold enhancement in the signal strength was achieved by heating the chromatographic column to 60 (degrees) C. The role of ceramide transport protein (CERT) in supplying substrate to CERK was also revalidated using this new assay. Finally, our results demonstrate the presence of additional pathway(s) for generation of the C1P subspecies, d(18:1/18:0) C1P, as well as a significant portion of d(18:1/16:0), d(18:1/24:1), and d(18:1/24:0). In conclusion, this study introduces a much improved and validated method for detection of C1P by mass spectrometry and demonstrates specific changes in the C1P subspecies profiles upon downregulation of CERK and CERT.
Collapse
Affiliation(s)
- Dayanjan S Wijesinghe
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
337
|
Momin AA, Park H, Allegood JC, Leipelt M, Kelly SL, Merrill AH, Hanada K. Characterization of mutant serine palmitoyltransferase 1 in LY-B cells. Lipids 2009; 44:725-32. [PMID: 19536577 DOI: 10.1007/s11745-009-3316-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 05/26/2009] [Indexed: 01/19/2023]
Abstract
CHO-LY-B cells have been useful in studies of sphingolipid metabolism and function because they lack serine palmitoyltransferase (SPT) activity. Cloning and sequencing of the SPT1 transcript of LY-B cells identified the mutation as a guanine to adenine change at nucleotide 738, causing a G246R transformation. Western blots revealed low expression of the mutant SPT1 peptide, but activity was not detectable by mass spectrometric analysis of [(13)C]-palmitate incorporation into sphinganine, sphingosine, 1-deoxysphinganine, or 1-desoxymethylsphinganine. Treatment of LY-B cells with chemical chaperones (DMSO or glycerol) increased the amounts of mutant SPT1 as well as SPT2, but SPT activity was not restored. This study has established that G246R mutation in hamster SPT1 results in the loss of SPT activity.
Collapse
Affiliation(s)
- Amin A Momin
- School of Biology, The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | | | | | |
Collapse
|