301
|
Whitehead J, Pandey GK, Kanduri C. Regulation of the mammalian epigenome by long noncoding RNAs. Biochim Biophys Acta Gen Subj 2008; 1790:936-47. [PMID: 19015002 DOI: 10.1016/j.bbagen.2008.10.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 10/09/2008] [Accepted: 10/12/2008] [Indexed: 01/19/2023]
Abstract
Genomic analyses have demonstrated that although less than 2% of the mammalian genome encodes proteins, at least two thirds is transcribed. Many nontranslated RNAs have now been characterized, and several long transcripts, ranging from 0.5 to over 100 kb, have been shown to regulate gene expression by modifying chromatin structure. Functions uncovered at a few well characterized loci demonstrate a wide diversity of mechanisms by which long noncoding RNAs can regulate chromatin over a single promoter, a gene cluster, or an entire chromosome, in order to activate or silence genes in cis or in trans. In reviewing the activities of these ncRNAs, we will look for common features in their interactions with the chromatin modifying machinery, and highlight new experimental approaches by which to address outstanding issues in ncRNA-dependent regulation of gene expression in development, disease and evolution.
Collapse
|
302
|
Abstract
Non-protein-coding sequences increasingly dominate the genomes of multicellular organisms as their complexity increases, in contrast to protein-coding genes, which remain relatively static. Most of the mammalian genome and indeed that of all eukaryotes is expressed in a cell- and tissue-specific manner, and there is mounting evidence that much of this transcription is involved in the regulation of differentiation and development. Different classes of small and large noncoding RNAs (ncRNAs) have been shown to regulate almost every level of gene expression, including the activation and repression of homeotic genes and the targeting of chromatin-remodeling complexes. ncRNAs are involved in developmental processes in both simple and complex eukaryotes, and we illustrate this in the latter by focusing on the animal germline, brain, and eye. While most have yet to be systematically studied, the emerging evidence suggests that there is a vast hidden layer of regulatory ncRNAs that constitutes the majority of the genomic programming of multicellular organisms and plays a major role in controlling the epigenetic trajectories that underlie their ontogeny.
Collapse
|
303
|
Garaulet DL, Foronda D, Calleja M, Sánchez-Herrero E. Polycomb-dependentUltrabithoraxHox gene silencing induced by high Ultrabithorax levels inDrosophila. Development 2008; 135:3219-28. [DOI: 10.1242/dev.025809] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Ultrabithorax (Ubx) gene of Drosophilaspecifies the third thoracic and first abdominal segments. Ubxexpression is controlled by several mechanisms, including negative regulation by its own product. We show here that if Ubx expression levels are inappropriately elevated, overriding the auto-regulatory control, a permanent repression of Ubx is established. This continuous repression becomes independent of the presence of exogenous Ubx and leads to the paradoxical result that an excess of Ubx results in a phenotype of Ubx loss. The mechanism of permanent repression depends on Polycomb-group genes. Absence of endogenous Ubxtranscription when Ubx levels are highly elevated probably activates Polycomb complexes on a Polycomb response element located in the Ubx major intron. This, in turn, brings about permanent repression of Ubx transcription. Similar results are obtained with the gene engrailed, showing that this mechanism of permanent repression may be a general one for genes with negative auto-regulation when levels of expression are transitorily elevated.
Collapse
Affiliation(s)
- Daniel L. Garaulet
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.),Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco,28049 Madrid, Spain
| | - David Foronda
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.),Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco,28049 Madrid, Spain
| | - Manuel Calleja
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.),Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco,28049 Madrid, Spain
| | - Ernesto Sánchez-Herrero
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.),Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco,28049 Madrid, Spain
| |
Collapse
|
304
|
Laue K, Daujat S, Crump JG, Plaster N, Roehl HH, Kimmel CB, Schneider R, Hammerschmidt M. The multidomain protein Brpf1 binds histones and is required for Hox gene expression and segmental identity. Development 2008; 135:1935-46. [PMID: 18469222 DOI: 10.1242/dev.017160] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Trithorax group (TrxG) is composed of diverse, evolutionary conserved proteins that form chromatin-associated complexes accounting for epigenetic transcriptional memory. However, the molecular mechanisms by which particular loci are marked for reactivation after mitosis are only partially understood. Here, based on genetic analyses in zebrafish, we identify the multidomain protein Brpf1 as a novel TrxG member with a central role during development. brpf1 mutants display anterior transformations of pharyngeal arches due to progressive loss of anterior Hox gene expression. Brpf1 functions in association with the histone acetyltransferase Moz (Myst3), an interaction mediated by the N-terminal domain of Brpf1, and promotes histone acetylation in vivo. Brpf1 recruits Moz to distinct sites of active chromatin and remains at chromosomes during mitosis, mediated by direct histone binding of its bromodomain, which has a preference for acetylated histones, and its PWWP domain, which binds histones independently of their acetylation status. This is the first demonstration of histone binding for PWWP domains. Mutant analyses further show that the PWWP domain is absolutely essential for Brpf1 function in vivo. We conclude that Brpf1, coordinated by its particular set of domains, acts by multiple mechanisms to mediate Moz-dependent histone acetylation and to mark Hox genes for maintained expression throughout vertebrate development.
Collapse
Affiliation(s)
- Kathrin Laue
- Georges-Koehler-Laboratory, Max-Planck-Institute of Immunobiology, Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
305
|
Rogulja-Ortmann A, Renner S, Technau GM. Antagonistic roles for Ultrabithorax and Antennapedia in regulating segment-specific apoptosis of differentiated motoneurons in the Drosophila embryonic central nervous system. Development 2008; 135:3435-45. [PMID: 18799545 DOI: 10.1242/dev.023986] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The generation of morphological diversity among segmental units of the nervous system is crucial for correct matching of neurons with their targets and for formation of functional neuromuscular networks. However, the mechanisms leading to segment diversity remain largely unknown. We report here that the Hox genes Ultrabithorax (Ubx) and Antennapedia (Antp) regulate segment-specific survival of differentiated motoneurons in the ventral nerve cord of Drosophila embryos. We show that Ubx is required to activate segment-specific apoptosis in these cells, and that their survival depends on Antp. Expression of the Ubx protein is strongly upregulated in the motoneurons shortly before they undergo apoptosis, and our results indicate that this late upregulation is required to activate reaper-dependent cell death. We further demonstrate that Ubx executes this role by counteracting the function of Antp in promoting cell survival. Thus, two Hox genes contribute to segment patterning and diversity in the embryonic CNS by carrying out opposing roles in the survival of specific differentiated motoneurons.
Collapse
|
306
|
Blanco E, Pignatelli M, Beltran S, Punset A, Pérez-Lluch S, Serras F, Guigó R, Corominas M. Conserved chromosomal clustering of genes governed by chromatin regulators in Drosophila. Genome Biol 2008; 9:R134. [PMID: 18783608 PMCID: PMC2592712 DOI: 10.1186/gb-2008-9-9-r134] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 09/04/2008] [Accepted: 09/10/2008] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The trithorax group (trxG) and Polycomb group (PcG) proteins are responsible for the maintenance of stable transcriptional patterns of many developmental regulators. They bind to specific regions of DNA and direct the post-translational modifications of histones, playing a role in the dynamics of chromatin structure. RESULTS We have performed genome-wide expression studies of trx and ash2 mutants in Drosophila melanogaster. Using computational analysis of our microarray data, we have identified 25 clusters of genes potentially regulated by TRX. Most of these clusters consist of genes that encode structural proteins involved in cuticle formation. This organization appears to be a distinctive feature of the regulatory networks of TRX and other chromatin regulators, since we have observed the same arrangement in clusters after experiments performed with ASH2, as well as in experiments performed by others with NURF, dMyc, and ASH1. We have also found many of these clusters to be significantly conserved in D. simulans, D. yakuba, D. pseudoobscura and partially in Anopheles gambiae. CONCLUSION The analysis of genes governed by chromatin regulators has led to the identification of clusters of functionally related genes conserved in other insect species, suggesting this chromosomal organization is biologically important. Moreover, our results indicate that TRX and other chromatin regulators may act globally on chromatin domains that contain transcriptionally co-regulated genes.
Collapse
Affiliation(s)
- Enrique Blanco
- Departament de Genètica and Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
307
|
Hallson G, Syrzycka M, Beck SA, Kennison JA, Dorsett D, Page SL, Hunter SM, Keall R, Warren WD, Brock HW, Sinclair DAR, Honda BM. The Drosophila cohesin subunit Rad21 is a trithorax group (trxG) protein. Proc Natl Acad Sci U S A 2008; 105:12405-10. [PMID: 18713858 PMCID: PMC2527924 DOI: 10.1073/pnas.0801698105] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Indexed: 12/19/2022] Open
Abstract
The cohesin complex is a key player in regulating cell division. Cohesin proteins SMC1, SMC3, Rad21, and stromalin (SA), along with associated proteins Nipped-B, Pds5, and EcoI, maintain sister chromatid cohesion before segregation to daughter cells during anaphase. Recent chromatin immunoprecipitation (ChIP) data reveal extensive overlap of Nipped-B and cohesin components with RNA polymerase II binding at active genes in Drosophila. These and other data strongly suggest a role for cohesion in transcription; however, there is no clear evidence for any specific mechanisms by which cohesin and associated proteins regulate transcription. We report here a link between cohesin components and trithorax group (trxG) function, thus implicating these proteins in transcription activation and/or elongation. We show that the Drosophila Rad21 protein is encoded by verthandi (vtd), a member of the trxG gene family that is also involved in regulating the hedgehog (hh) gene. In addition, mutations in the associated protein Nipped-B show similar trxG activity i.e., like vtd, they act as dominant suppressors of Pc and hh(Mrt) without impairing cell division. Our results provide a framework to further investigate how cohesin and associated components might regulate transcription.
Collapse
Affiliation(s)
- Graham Hallson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Monika Syrzycka
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Samantha A. Beck
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - James A. Kennison
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2785
| | - Dale Dorsett
- Department of Biochemistry and Molecular Biology, School of Medicine, St. Louis University, St. Louis, MO 63104; and
| | - Scott L. Page
- Comparative Genomics Centre, James Cook University, Townsville 4811, Queensland, Australia
| | - Sally M. Hunter
- Comparative Genomics Centre, James Cook University, Townsville 4811, Queensland, Australia
| | - Rebecca Keall
- Comparative Genomics Centre, James Cook University, Townsville 4811, Queensland, Australia
| | - William D. Warren
- Comparative Genomics Centre, James Cook University, Townsville 4811, Queensland, Australia
| | - Hugh W. Brock
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Donald A. R. Sinclair
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Barry M. Honda
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| |
Collapse
|
308
|
Abstract
How cells partition the genome into active and inactive genes and how that information is established and propagated during embryonic development are fundamental to maintaining the normal differentiated state. The molecular mechanisms of epigenetic action and cellular memory are increasingly amenable to study primarily as a result of the rapid progress in the area of chromatin biology. Methylation of DNA and modification of histones are critical epigenetic marks that establish active and silent chromatin domains. During development of the kidney, DNA-binding factors such as Pax2/8, which are essential for the intermediate mesoderm and the renal epithelial lineage, could provide the locus and tissue specificity for histone methylation and chromatin remodeling and thus establish a kidney-specific fate. The role of epigenetic modifications in development and disease is under intense investigation and has already affected our view of cancer and aging.
Collapse
Affiliation(s)
- Gregory R Dressler
- Department of Pathology, 2049 BSRB 2200, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
309
|
Szumska D, Pieles G, Essalmani R, Bilski M, Mesnard D, Kaur K, Franklyn A, El Omari K, Jefferis J, Bentham J, Taylor JM, Schneider JE, Arnold SJ, Johnson P, Tymowska-Lalanne Z, Stammers D, Clarke K, Neubauer S, Morris A, Brown SD, Shaw-Smith C, Cama A, Capra V, Ragoussis J, Constam D, Seidah NG, Prat A, Bhattacharya S. VACTERL/caudal regression/Currarino syndrome-like malformations in mice with mutation in the proprotein convertase Pcsk5. Genes Dev 2008; 22:1465-77. [PMID: 18519639 DOI: 10.1101/gad.479408] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have identified an ethylnitrosourea (ENU)-induced recessive mouse mutation (Vcc) with a pleiotropic phenotype that includes cardiac, tracheoesophageal, anorectal, anteroposterior patterning defects, exomphalos, hindlimb hypoplasia, a presacral mass, renal and palatal agenesis, and pulmonary hypoplasia. It results from a C470R mutation in the proprotein convertase PCSK5 (PC5/6). Compound mutants (Pcsk5(Vcc/null)) completely recapitulate the Pcsk5(Vcc/Vcc) phenotype, as does an epiblast-specific conditional deletion of Pcsk5. The C470R mutation ablates a disulfide bond in the P domain, and blocks export from the endoplasmic reticulum and proprotein convertase activity. We show that GDF11 is cleaved and activated by PCSK5A, but not by PCSK5A-C470R, and that Gdf11-deficient embryos, in addition to having anteroposterior patterning defects and renal and palatal agenesis, also have a presacral mass, anorectal malformation, and exomphalos. Pcsk5 mutation results in abnormal expression of several paralogous Hox genes (Hoxa, Hoxc, and Hoxd), and of Mnx1 (Hlxb9). These include known Gdf11 targets, and are necessary for caudal embryo development. We identified nonsynonymous mutations in PCSK5 in patients with VACTERL (vertebral, anorectal, cardiac, tracheoesophageal, renal, limb malformation OMIM 192350) and caudal regression syndrome, the phenotypic features of which resemble the mouse mutation. We propose that Pcsk5, at least in part via GDF11, coordinately regulates caudal Hox paralogs, to control anteroposterior patterning, nephrogenesis, skeletal, and anorectal development.
Collapse
Affiliation(s)
- Dorota Szumska
- Department of Cardiovascular Medicine and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
310
|
Vasanthi D, Mishra RK. Epigenetic regulation of genes during development: A conserved theme from flies to mammals. J Genet Genomics 2008; 35:413-29. [DOI: 10.1016/s1673-8527(08)60059-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 06/04/2008] [Accepted: 06/05/2008] [Indexed: 01/16/2023]
|
311
|
Fedorova E, Sadoni N, Dahlsveen IK, Koch J, Kremmer E, Eick D, Paro R, Zink D. The nuclear organization of Polycomb/Trithorax group response elements in larval tissues of Drosophila melanogaster. Chromosome Res 2008; 16:649-73. [PMID: 18560994 DOI: 10.1007/s10577-008-1218-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 02/27/2008] [Accepted: 02/27/2008] [Indexed: 01/28/2023]
Abstract
We analysed the nuclear organization of the Polycomb/Trithorax group response element (PRE/TRE) Fab-7 and of other PRE/TREs in larval tissues of D. melanogaster. The results show that pairing/clustering of transgenic and endogenous Fab-7 elements and of other endogenous PRE/TREs occurs only to a limited degree in a highly locus-specific and tissue-specific manner. However, transgenic Fab-7 elements as well as the Fab-7-regulated Abd-B gene and other endogenous loci preferentially occupied defined nuclear regions. Preferred association with the nuclear periphery was observed in the inactive state. However, also in the active state, Fab-7 was often found associated with the nuclear periphery as well as with the boundary of heterochromatin in a fly line- and tissue-specific manner. The boundary between heterochromatin and euchromatin revealed a highly complex architecture in the three-dimensional nuclear space with a close juxtaposition of active and repressed domains. The results suggest that such complex architectures create nuclear microenvironments sustaining specific states of activity of defined PRE/TREs. However, the data also show that the positional behaviour of the transgenic Fab-7 element does not apply to PRE/TREs in general. Altogether, this finding and the highly locus-, tissue-, and fly line-specific behaviour with regard to nuclear positioning and pairing/clustering suggest that the relationships between nuclear organization and functional regulation of PRE/TREs are highly complex and that simple models making general predictions might not be appropriate.
Collapse
Affiliation(s)
- Elena Fedorova
- Department Biologie II, Ludwig-Maximilians-Universität München, Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
312
|
Abstract
Noncoding RNA has arrived at centre stage in recent years with the discovery of "hidden transcriptomes" in many higher organisms. Over two decades ago, noncoding transcripts were discovered in Drosophila Hox complexes, but their function has remained elusive. Recent studies1-3 have examined the role of these noncoding RNAs in Hox gene regulation, and have generated a fierce debate as to whether the noncoding transcripts are important for silencing or activation. Here we review the evidence, and show that, by taking developmental timing into account, some of these apparently conflicting results can be resolved. We examine current models that explain these data and explore alternative interpretations.
Collapse
|
313
|
Mohn F, Weber M, Rebhan M, Roloff TC, Richter J, Stadler MB, Bibel M, Schübeler D. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell 2008; 30:755-66. [PMID: 18514006 DOI: 10.1016/j.molcel.2008.05.007] [Citation(s) in RCA: 686] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 05/10/2008] [Accepted: 05/16/2008] [Indexed: 12/22/2022]
Abstract
Cellular differentiation entails loss of pluripotency and gain of lineage- and cell-type-specific characteristics. Using a murine system that progresses from stem cells to lineage-committed progenitors to terminally differentiated neurons, we analyzed DNA methylation and Polycomb-mediated histone H3 methylation (H3K27me3). We show that several hundred promoters, including pluripotency and germline-specific genes, become DNA methylated in lineage-committed progenitor cells, suggesting that DNA methylation may already repress pluripotency in progenitor cells. Conversely, we detect loss and acquisition of H3K27me3 at additional targets in both progenitor and terminal states. Surprisingly, many neuron-specific genes that become activated upon terminal differentiation are Polycomb targets only in progenitor cells. Moreover, promoters marked by H3K27me3 in stem cells frequently become DNA methylated during differentiation, suggesting context-dependent crosstalk between Polycomb and DNA methylation. These data suggest a model how de novo DNA methylation and dynamic switches in Polycomb targets restrict pluripotency and define the developmental potential of progenitor cells.
Collapse
Affiliation(s)
- Fabio Mohn
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
314
|
Soshnikova N, Duboule D. Epigenetic regulation of Hox gene activation: the waltz of methyls. Bioessays 2008; 30:199-202. [PMID: 18293357 DOI: 10.1002/bies.20724] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Genetic studies have revealed that the antagonistic interplay between PcG and TrxG/MLL complexes is essential for the proper maintenance of vertebrate Hox gene expression in time and space. Hox genes must be silenced in totipotent embryonic stem cells and, in contrast, rapidly activated during embryogenesis. Here we discuss some recently published articles that propose a novel mechanism for the induction of Hox gene transcription. These studies report a new family of histone demethylases that remove H3K27me3/me2 repressive marks at Hox promoters during differentiation of stem cells. Though the overall importance of these enzymes for proper embryogenesis was demonstrated, their precise role in Hox gene epigenetic regulation during development still remains to be firmly established.
Collapse
Affiliation(s)
- Natalia Soshnikova
- National Research Centre Frontiers in Genetics, Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
315
|
Collas P, Noer A, Sørensen AL. Epigenetic Basis for the Differentiation Potential of Mesenchymal and Embryonic Stem Cells. ACTA ACUST UNITED AC 2008; 35:205-215. [PMID: 21547118 DOI: 10.1159/000127449] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 02/06/2008] [Indexed: 12/13/2022]
Abstract
SUMMARY: Stem cells have the ability to self-renew, and give rise to one or more differentiated cell types. Embryonic stem cells can differentiate into all cell types of the body and have unlimited self-renewal capacity. Somatic stem cells are found in many adult tissues. They have an extensive but finite lifespan and can differentiate into a more restricted range of cell types. Increasing evidence indicates that the multilineage differentiation ability of stem cells is defined by the potential for expression of developmentally regulated transcription factors and of lineage specification genes. Gene expression, or as emphasized here, the potential for gene expression, is largely controlled by epigenetic modifications of DNA (DNA methylation) and chromatin (such as post-translational histone modifications) in the regulatory regions of specific genes. Epigenetic modifications can also influence the timing of DNA replication. We highlight here how mechanisms by which genes are poised for transcription in undifferentiated stem cells are being uncovered through the mapping of DNA methylation profiles on differentiation-regulated promoters and at the genome-wide level, histone modifications, and transcription factor binding. Epigenetic marks on developmentally regulated and lineage specification genes in stem cells seem to define a state of pluripotency.
Collapse
Affiliation(s)
- Philippe Collas
- Institute of Basic Medical Sciences, Department of Biochemistry, Faculty of Medicine, University of Oslo, Norway
| | | | | |
Collapse
|
316
|
Polycomb complexes and epigenetic states. Curr Opin Cell Biol 2008; 20:266-73. [PMID: 18439810 DOI: 10.1016/j.ceb.2008.03.002] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 03/11/2008] [Indexed: 11/22/2022]
Abstract
Important advances in the study of Polycomb Group (PcG) complexes in the past two years have focused on the role of this repressive system in programing the genome. Genome-wide analyses have shown that PcG mechanisms control a large number of genes regulating many cellular functions and all developmental pathways. Current evidence shows that, contrary to the classical picture of their role, PcG complexes do not set a repressed chromatin state that is maintained throughout development but have a much more dynamic role. PcG target genes can become repressed or be reactivated or exist in intermediate states. What controls the balance between repression and derepression is a crucial question in understanding development and differentiation in higher organisms.
Collapse
|
317
|
Zhang J, Goodson ML, Hong Y, Sarge KD. MEL-18 interacts with HSF2 and the SUMO E2 UBC9 to inhibit HSF2 sumoylation. J Biol Chem 2008; 283:7464-9. [PMID: 18211895 PMCID: PMC2274900 DOI: 10.1074/jbc.m707122200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 01/11/2008] [Indexed: 01/08/2023] Open
Abstract
In a previous study we found that sumoylation of the DNA-binding protein heat shock factor 2 (HSF2) is up-regulated during mitosis, but the mechanism that mediates this regulation was unknown. Here we show that HSF2 interacts with the polycomb protein MEL-18, that this interaction decreases during mitosis, and that overexpression and RNA interference-mediated reduction of MEL-18 result in decreased and increased HSF2 sumoylation, respectively. Other results suggest that MEL-18 may also function to inhibit the sumoylation of other cellular proteins. The results also show that MEL-18 is able to interact with the small ubiquitin-like modifier (SUMO) ubiquitin carrier protein (E2) enzyme UBC9 and that MEL-18 inhibits the ability of UBC9 to transfer the SUMO protein to target proteins. Together, the results in this work suggest a mechanism in which MEL-18 bound to HSF2 inhibits its sumoylation by binding to and inhibiting the activity of UBC9 enzymes in the vicinity of HSF2. These results provide an explanation for how mitotic HSF2 sumoylation is regulated and suggest that MEL-18, in contrast to the sumoylation-stimulating activities of the polycomb protein PC2, actually functions like an anti-SUMO ubiquitin-protein isopeptide ligase (E3), interacting both with HSF2 and the SUMO E2 UBC9 but acting to inhibit UBC9 activity to decrease sumoylation of a target protein, in this case that of HSF2.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Molecular and Cellular Biochemistry, Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | |
Collapse
|
318
|
Kozma G, Bender W, Sipos L. Replacement of a Drosophila Polycomb response element core, and in situ analysis of its DNA motifs. Mol Genet Genomics 2008; 279:595-603. [PMID: 18350319 DOI: 10.1007/s00438-008-0336-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 02/27/2008] [Indexed: 11/25/2022]
Abstract
Long-term repression of homeotic genes in the fruit fly is accomplished by proteins of the Polycomb Group, acting at Polycomb response elements (PREs). Here we use gene conversion to mutate specific DNA motifs within a PRE to test their relevance, and we exchange PREs to test their specificity. Previously we showed that removal of a 185 bp core sequence from the bithoraxoid PRE of the bithorax complex results in posteriorly directed segmental transformations. Mutating multiple binding sites for either the PHO or the GAF proteins separately in the core bithoraxoid PRE resulted in only rare and subtle transformations in adult flies. However, when both sets of sites were mutated, the transformations were similar in strength and penetrance to those caused by the deletion of the 185 bp core region. In contrast, mutating the singly occurring binding site of another DNA-binding protein, DSP1 (reportedly essential for PRE-activity), had no similar effect in combination with mutated PHO or GAF sites. Two minimal PREs from other segment-specific regulatory domains of the bithorax complex could substitute for the bithoraxoid PRE core. Our in situ analysis suggests that core PREs are interchangeable, and the cooperation between PHO and GAF binding sites is indispensable for silencing.
Collapse
Affiliation(s)
- Gabriella Kozma
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged 6701, Hungary
| | | | | |
Collapse
|
319
|
SWI/SNF mediates polycomb eviction and epigenetic reprogramming of the INK4b-ARF-INK4a locus. Mol Cell Biol 2008; 28:3457-64. [PMID: 18332116 DOI: 10.1128/mcb.02019-07] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Stable silencing of the INK4b-ARF-INK4a tumor suppressor locus occurs in a variety of human cancers, including malignant rhabdoid tumors (MRTs). MRTs are extremely aggressive cancers caused by the loss of the hSNF5 subunit of the SWI/SNF chromatin-remodeling complex. We found previously that, in MRT cells, hSNF5 is required for p16(INK4a) induction, mitotic checkpoint activation, and cellular senescence. Here, we investigated how the balance between Polycomb group (PcG) silencing and SWI/SNF activation affects epigenetic control of the INK4b-ARF-INK4a locus in MRT cells. hSNF5 reexpression in MRT cells caused SWI/SNF recruitment and activation of p15(INK4b) and p16(INK4a), but not of p14(ARF). Gene activation by hSNF5 is strictly dependent on the SWI/SNF motor subunit BRG1. SWI/SNF mediates eviction of the PRC1 and PRC2 PcG silencers and extensive chromatin reprogramming. Concomitant with PcG complex removal, the mixed lineage leukemia 1 (MLL1) protein is recruited and active histone marks supplant repressive ones. Strikingly, loss of PcG complexes is accompanied by DNA methyltransferase DNMT3B dissociation and reduced DNA methylation. Thus, various chromatin states can be modulated by SWI/SNF action. Collectively, these findings emphasize the close interconnectivity and dynamics of diverse chromatin modifications in cancer and gene control.
Collapse
|
320
|
The enhancer of trithorax and polycomb corto interacts with cyclin G in Drosophila. PLoS One 2008; 3:e1658. [PMID: 18286205 PMCID: PMC2243016 DOI: 10.1371/journal.pone.0001658] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 01/21/2008] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Polycomb (PcG) and trithorax (trxG) genes encode proteins involved in the maintenance of gene expression patterns, notably Hox genes, throughout development. PcG proteins are required for long-term gene repression whereas TrxG proteins are positive regulators that counteract PcG action. PcG and TrxG proteins form large complexes that bind chromatin at overlapping sites called Polycomb and Trithorax Response Elements (PRE/TRE). A third class of proteins, so-called "Enhancers of Trithorax and Polycomb" (ETP), interacts with either complexes, behaving sometimes as repressors and sometimes as activators. The role of ETP proteins is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS In a two-hybrid screen, we identified Cyclin G (CycG) as a partner of the Drosophila ETP Corto. Inactivation of CycG by RNA interference highlights its essential role during development. We show here that Corto and CycG directly interact and bind to each other in embryos and S2 cells. Moreover, CycG is targeted to polytene chromosomes where it co-localizes at multiple sites with Corto and with the PcG factor Polyhomeotic (PH). We observed that corto is involved in maintaining Abd-B repression outside its normal expression domain in embryos. This could be achieved by association between Corto and CycG since both proteins bind the regulatory element iab-7 PRE and the promoter of the Abd-B gene. CONCLUSIONS/SIGNIFICANCE Our results suggest that CycG could regulate the activity of Corto at chromatin and thus be involved in changing Corto from an Enhancer of TrxG into an Enhancer of PcG.
Collapse
|
321
|
Jacob E, Hod-Dvorai R, Schif-Zuck S, Avni O. Unconventional association of the polycomb group proteins with cytokine genes in differentiated T helper cells. J Biol Chem 2008; 283:13471-81. [PMID: 18285333 DOI: 10.1074/jbc.m709886200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The cytokine transcription profiles of developing T helper 1 and T helper 2 cells are imprinted and induced appropriately following stimulation of differentiated cells. Epigenetic regulation combines several mechanisms to ensure the inheritance of transcriptional programs. We found that the expression of the polycomb group proteins, whose role in maintaining gene silencing is well documented, was induced during development in both T helper lineages. Nevertheless, the polycomb proteins, YY1, Mel-18, Ring1A, Ezh2, and Eed, bound to the Il4 and Ifng loci in a differential pattern. In contrast to the prevailing dogma, the binding activity of the polycomb proteins in differentiated T helper cells was associated with cytokine transcription. The polycomb proteins bound to the cytokine genes under resting conditions, and their binding was induced dynamically following stimulation. The recruitment of the polycomb proteins Mel-18 and Ezh2 to the cytokine promoters was inhibited in the presence of cyclosporine A, suggesting the involvement of NFAT. Considering their binding pattern at the cytokine genes and their known function in higher order folding of regulatory elements, we propose a model whereby the polycomb proteins, in some contexts, positively regulate gene expression by mediating long-distance chromosomal interactions.
Collapse
Affiliation(s)
- Eyal Jacob
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | | | | | |
Collapse
|
322
|
Abstract
The Latin word "facultas" literally means "opportunity." Facultative heterochromatin (fHC) then designates genomic regions in the nucleus of a eukaryotic cell that have the opportunity to adopt open or compact conformations within temporal and spatial contexts. This review focuses on the molecular and functional aspects of fHC that distinguish it from constitutive heterochromatin (cHC) and euchromatin (EC) and discusses various concepts regarding the regulation of fHC structure. We begin by revisiting the historical developments that gave rise to our current appreciation of fHC.
Collapse
Affiliation(s)
- Patrick Trojer
- Howard Hughes Medical Institute, New York University Medical School, 522 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
323
|
Diop SB, Bertaux K, Vasanthi D, Sarkeshik A, Goirand B, Aragnol D, Tolwinski NS, Cole MD, Pradel J, Yates JR, Mishra RK, Graba Y, Saurin AJ. Reptin and Pontin function antagonistically with PcG and TrxG complexes to mediate Hox gene control. EMBO Rep 2008; 9:260-6. [PMID: 18259215 DOI: 10.1038/embor.2008.8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 12/19/2007] [Accepted: 12/21/2007] [Indexed: 11/09/2022] Open
Abstract
Pontin (Pont) and Reptin (Rept) are paralogous ATPases that are evolutionarily conserved from yeast to human. They are recruited in multiprotein complexes that function in various aspects of DNA metabolism. They are essential for viability and have antagonistic roles in tissue growth, cell signalling and regulation of the tumour metastasis suppressor gene, KAI1, indicating that the balance of Pont and Rept regulates epigenetic programmes critical for development and cancer progression. Here, we describe Pont and Rept as antagonistic mediators of Drosophila Hox gene transcription, functioning with Polycomb group (PcG) and Trithorax group proteins to maintain correct patterns of expression. We show that Rept is a component of the PRC1 PcG complex, whereas Pont purifies with the Brahma complex. Furthermore, the enzymatic functions of Rept and Pont are indispensable for maintaining Hox gene expression states, highlighting the importance of these two antagonistic factors in transcriptional output.
Collapse
Affiliation(s)
- Soda Balla Diop
- Institut de Biologie du Développement de Marseille-Luminy, CNRS UMR6216/Université de la Méditerranée, Parc Scientifique de Luminy, Case 907, 13288 Marseille Cedex 9, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
324
|
DeVido SK, Kwon D, Brown JL, Kassis JA. The role of Polycomb-group response elements in regulation of engrailed transcription in Drosophila. Development 2008; 135:669-76. [PMID: 18199580 DOI: 10.1242/dev.014779] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Polycomb group proteins are required for long-term repression of many genes in Drosophila and all metazoans. In Drosophila, DNA fragments called Polycomb-group response elements (PREs) have been identified that mediate the action of Polycomb-group proteins. Previous studies have shown that a 2 kb fragment located from -2.4 kb to -395 bp upstream of the Drosophila engrailed promoter contains a multipartite PRE that can mediate mini-white silencing and act as a PRE in an Ubx-reporter construct. Here, we study the role of this 2 kb fragment in the regulation of the engrailed gene itself. Our results show that within this 2 kb fragment, there are two subfragments that can act as PREs in embryos. In addition to their role in gene silencing, these two adjacent PRE fragments can facilitate the activation of the engrailed promoter by distant enhancers. The repressive action of the engrailed PRE can also act over a distance. A 181 bp subfragment can act as a PRE and also mediate positive effects in an enhancer-detector construct. Finally, a deletion of 530 bp of the 2 kb PRE fragment within the endogenous engrailed gene causes a loss-of-function phenotype, showing the importance of the positive regulatory effects of this PRE-containing fragment. Our data are consistent with the model that engrailed PREs bring chromatin together, allowing both positive and negative regulatory interactions between distantly located DNA fragments.
Collapse
Affiliation(s)
- Sarah K DeVido
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20982, USA
| | | | | | | |
Collapse
|
325
|
Henikoff S. Nucleosome destabilization in the epigenetic regulation of gene expression. Nat Rev Genet 2008; 9:15-26. [DOI: 10.1038/nrg2206] [Citation(s) in RCA: 351] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
326
|
Meinhardt H. Models of Biological Pattern Formation: From Elementary Steps to the Organization of Embryonic Axes. Curr Top Dev Biol 2008; 81:1-63. [DOI: 10.1016/s0070-2153(07)81001-5] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
327
|
Chapter 2 Polycomb Group Proteins and Long‐Range Gene Regulation. LONG-RANGE CONTROL OF GENE EXPRESSION 2008; 61:45-66. [DOI: 10.1016/s0065-2660(07)00002-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
328
|
Guo M, Thomas J, Collins G, Timmermans MCP. Direct repression of KNOX loci by the ASYMMETRIC LEAVES1 complex of Arabidopsis. THE PLANT CELL 2008; 20:48-58. [PMID: 18203921 PMCID: PMC2254922 DOI: 10.1105/tpc.107.056127] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Revised: 12/05/2007] [Accepted: 12/30/2007] [Indexed: 05/18/2023]
Abstract
KNOTTED1-like homeobox (KNOX) genes promote stem cell activity and must be repressed to form determinate lateral organs. Stable KNOX gene silencing during organogenesis is known to involve the predicted DNA binding proteins ASYMMETRIC LEAVES1 (AS1) and AS2 as well as the chromatin-remodeling factor HIRA. However, the mechanism of silencing is unknown. Here, we show that AS1 and AS2 form a repressor complex that binds directly to the regulatory motifs CWGTTD and KMKTTGAHW present at two sites in the promoters of the KNOX genes BREVIPEDICELLUS (BP) and KNAT2. The two binding sites act nonredundantly, and interaction between AS1-AS2 complexes at these sites is required to repress BP. Promoter deletion analysis further indicates that enhancer elements required for BP expression in the leaf are located between the AS1-AS2 complex binding sites. We propose that AS1-AS2 complexes interact to create a loop in the KNOX promoter and, likely through recruitment of HIRA, form a repressive chromatin state that blocks enhancer activity during organogenesis. Our model for AS1-AS2-mediated KNOX gene silencing is conceptually similar to the action of an insulator. This regulatory mechanism may be conserved in simple leafed species of monocot and dicot lineages and constitutes a potential key determinant in the evolution of compound leaves.
Collapse
Affiliation(s)
- Mengjuan Guo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | |
Collapse
|
329
|
Kinyamu HK, Jefferson WN, Archer TK. Intersection of nuclear receptors and the proteasome on the epigenetic landscape. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2008; 49:83-95. [PMID: 18095329 PMCID: PMC2482603 DOI: 10.1002/em.20360] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nuclear receptors (NRs) represent a class of transcription factors that associate with both positive and negative chromatin modifying complexes to activate or repress gene transcription. The 26S proteasome plays a major role in NR-regulated gene transcription by tightly regulating the levels of the receptor and coregulator complexes. Recent evidence suggests a robust nonproteolytic role for specific proteasome subunits in gene transcription mediated via alterations in specific histone modifications. The involvement of nuclear receptors and the proteasome with chromatin modifying complexes or proteins, particularly those that modify DNA and histone proteins, provides an opportunity to review two critical epigenetic mechanisms that control gene expression and heritable biological processes. Both nuclear receptors and the proteasome are targets of environmental factors including some which lead to epigenetic changes that can influence human diseases such as cancer. In this review, we will explore molecular mechanisms by which NR-mediated gene expression, under the control of the proteasome, can result in altered epigenetic landscapes.
Collapse
Affiliation(s)
| | | | - Trevor K. Archer
- Correspondence to: Trevor K. Archer, Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, 111 Alexander Drive, P.O. Box 12233 (MD C4−06), Research Triangle Park, NC 27709, USA. E-mail:
| |
Collapse
|
330
|
Ryakhovskiy AA, Tillib SV. S/MAR and TRE can be found co-localized within regulatory chromosome regions of some tissue-specifically expressed genes of Drosophila melanogaster. DOKL BIOCHEM BIOPHYS 2007; 416:264-7. [PMID: 18064828 DOI: 10.1134/s1607672907050109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- A A Ryakhovskiy
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, Moscow, 119334, Russia
| | | |
Collapse
|
331
|
Mazo A, Hodgson JW, Petruk S, Sedkov Y, Brock HW. Transcriptional interference: an unexpected layer of complexity in gene regulation. J Cell Sci 2007; 120:2755-61. [PMID: 17690303 DOI: 10.1242/jcs.007633] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Much of the genome is transcribed into long untranslated RNAs, mostly of unknown function. Growing evidence suggests that transcription of sense and antisense untranslated RNAs in eukaryotes can repress a neighboring gene by a phenomenon termed transcriptional interference. Transcriptional interference by the untranslated RNA may prevent recruitment of the initiation complex or prevent transcriptional elongation. Recent work in yeast, mammals, and Drosophila highlights the diverse roles that untranslated RNAs play in development. Previously, untranslated RNAs of the bithorax complex of Drosophila were proposed to be required for its activation. Recent studies show that these untranslated RNAs in fact silence Ultrabithorax in early embryos, probably by transcriptional interference.
Collapse
Affiliation(s)
- Alexander Mazo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
332
|
A stage-specific factor confers Fab-7 boundary activity during early embryogenesis in Drosophila. Mol Cell Biol 2007; 28:1047-60. [PMID: 18039839 DOI: 10.1128/mcb.01622-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Fab-7 boundary is required to ensure that the iab-6 and iab-7 cis-regulatory domains in the Drosophila Bithorax complex can function autonomously. Though Fab-7 functions as a boundary from early embryogenesis through to the adult stage, this constitutive boundary activity depends on subelements whose activity is developmentally restricted. In the studies reported here, we have identified a factor, called early boundary activity (Elba), that confers Fab-7 boundary activity during early embryogenesis. The Elba factor binds to a recognition sequence within a Fab-7 subelement that has enhancer-blocking activity during early embryogenesis, but not during mid-embryogenesis or in the adult. We found that the Elba factor is present in early embryos but largely disappears during mid-embryogenesis. We show that mutations in the Elba recognition sequence that eliminate Elba binding in nuclear extracts disrupt the early boundary activity of the Fab-7 subelement. Conversely, we find that early boundary activity can be reconstituted by multimerizing the Elba recognition site.
Collapse
|
333
|
Chen S, Birve A, Rasmuson-Lestander A. In vivo analysis of Drosophila SU(Z)12 function. Mol Genet Genomics 2007; 279:159-70. [PMID: 18034266 DOI: 10.1007/s00438-007-0304-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 10/24/2007] [Indexed: 10/22/2022]
Abstract
Polycomb group (PcG) proteins are required to maintain a stable repression of the homeotic genes during Drosophila development. Mutants in the PcG gene Supressor of zeste 12 (Su(z)12) exhibit strong homeotic transformations caused by widespread misexpression of several homeotic genes in embryos and larvae. Su(z)12 has also been suggested to be involved in position effect variegation and in regulation of the white gene expression in combination with zeste. To elucidate whether SU(Z)12 has any such direct functions we investigated the binding pattern to polytene chromosomes and compared the localization to other proteins. We found that SU(Z)12 binds to about 90 specific eukaryotic sites, however, not the white locus. We also find staining at the chromocenter and the nucleolus. The binding along chromosome arms is mostly in interbands and these sites correlate precisely with those of Enhancer-of-zeste and other components of the PRC2 silencing complex. This implies that SU(Z)12 mainly exists in complex with PRC2. Comparisons with other PcG protein-binding patterns reveal extensive overlap. However, SU(Z)12 binding sites and histone 3 trimethylated lysine 27 residues (3meK27 H3) do not correlate that well. Still, we show that Su(z)12 is essential for tri-methylation of the lysine 27 residue of histone H3 in vivo, and that overexpression of SU(Z)12 in somatic clones results in higher levels of histone methylation, indicating that SU(Z)12 is rate limiting for the enzymatic activity of PRC2. In addition, we analyzed the binding pattern of Heterochromatin Protein 1 (HP1) and found that SU(Z)12 and HP1 do not co-localize.
Collapse
Affiliation(s)
- Sa Chen
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | | |
Collapse
|
334
|
Abstract
In opposition to terminally differentiated cells, stem cells can self-renew and give rise to multiple cell types. Embryonic stem cells retain the ability of the inner cell mass of blastocysts to differentiate into all cell types of the body and have acquired in culture unlimited self-renewal capacity. Somatic stem cells are found in many adult tissues, have an extensive but finite lifespan and can differentiate into a more restricted array of cell types. A growing body of evidence indicates that multi-lineage differentiation ability of stem cells can be defined by the potential for expression of lineage-specification genes. Gene expression, or as emphasized here, potential for gene expression, is largely controlled by epigenetic modifications of DNA and chromatin on genomic regulatory and coding regions. These modifications modulate chromatin organization not only on specific genes but also at the level of the whole nucleus; they can also affect timing of DNA replication. This review highlights how mechanisms by which genes are poised for transcription in undifferentiated stem cells are being uncovered through primarily the mapping of DNA methylation, histone modifications and transcription factor binding throughout the genome. The combinatorial association of epigenetic marks on developmentally regulated and lineage-specifying genes in undifferentiated cells seems to define a pluripotent state.
Collapse
Affiliation(s)
- Philippe Collas
- Institute of Basic Medical Sciences, Department of Biochemistry, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway.
| | | | | |
Collapse
|
335
|
Finnegan EJ, Dennis ES. Vernalization-Induced Trimethylation of Histone H3 Lysine 27 at FLC Is Not Maintained in Mitotically Quiescent Cells. Curr Biol 2007; 17:1978-83. [DOI: 10.1016/j.cub.2007.10.026] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 10/03/2007] [Accepted: 10/04/2007] [Indexed: 11/16/2022]
|
336
|
Rajasekhar VK, Begemann M. Concise Review: Roles of Polycomb Group Proteins in Development and Disease: A Stem Cell Perspective. Stem Cells 2007; 25:2498-510. [PMID: 17600113 DOI: 10.1634/stemcells.2006-0608] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The acquisition and maintenance of cell fate are essential for metazoan growth and development. A strict coordination between genetic and epigenetic programs regulates cell fate determination and maintenance. Polycomb group (PcG) genes are identified as essential in these epigenetic developmental processes. These genes encode components of multimeric transcriptional repressor complexes that are crucial in maintaining cell fate. PcG proteins have also been shown to play a central role in stem cell maintenance and lineage specification. PcG proteins, together with a battery of components including sequence-specific DNA binding/accessory factors, chromatin remodeling factors, signaling pathway intermediates, noncoding small RNAs, and RNA interference machinery, generally define a dynamic cellular identity through tight regulation of specific gene expression patterns. Epigenetic modification of chromatin structure that results in expression silencing of specific genes is now emerging as an important molecular mechanism in this process. In embryonic stem (ES) cells and adult stem cells, such specific genes represent those associated with differentiation and development, and silencing of these genes in a PcG protein-dependent manner confers stemness. ES cells also contain novel chromatin motifs enriched in epigenetic modifications associated with both activation and repression of genes, suggesting that certain genes are poised for activation or repression. Interestingly, these chromatin domains are highly coincident with the promoters of developmental regulators, which are also found to be occupied by PcG proteins. The epigenetic integrity is compromised, however, by mutations or other alterations that affect the function of PcG proteins in stem cells leading to aberrant cell proliferation and tissue transformation, a hallmark of cancer. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Vinagolu K Rajasekhar
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Rockefeller Research Laboratories, Room #945, New York, New York 10021, USA.
| | | |
Collapse
|
337
|
Ryakhovskiy AA, Tillib SV. Immunoprecipitation mapping of TRX-associated chromosome elements in the fork head gene promoter in Drosophila melanogaster salivary gland cells. RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407090037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
338
|
Bonk AJ, Cheong HT, Li R, Lai L, Hao Y, Liu Z, Samuel M, Fergason EA, Whitworth KM, Murphy CN, Antoniou E, Prather RS. Correlation of developmental differences of nuclear transfer embryos cells to the methylation profiles of nuclear transfer donor cells in Swine. Epigenetics 2007; 2:179-86. [PMID: 17965590 PMCID: PMC2517257 DOI: 10.4161/epi.2.3.4844] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Methylation of DNA is the most commonly studied epigenetic mechanism of developmental competence and somatic cell nuclear transfer (SCNT). Previous studies of epigenetics and the SCNT procedures have examined the effects of different culture media on donor cells and reconstructed embryos, and the methylation status of specific genes in the fetus or live offspring. Here we used a microarray based approach to identify the methylation profiles of SCNT donor cells including three clonal porcine fetal fibroblast-like cell sublines and adult somatic cells selected from kidney and mammary tissues. The methylation profiles of the donor cells were then analyzed with respect to their ability to direct development to the blastocyst stage after nuclear transfer. Clonal cell lines A2, A7 and A8 had blastocyst rates of 11.7%(a), 16.7%(ab) and 20.0%(b), respectively ((ab) p < 0.05). Adult somatic cells included kidney, mammary (large), and mammary (small) also had different blastocyst rates (ab p < 0.05) of 4.2% (a), 10.7% (ab) and 18.3% (b), respectively. For clonal donor cells and for adult somatic cell groups the donor cells with the highest blastocyst rates also had methylation profiles with the lowest similarity to the methylation profiles of the in vivo-produced blastocysts. Conversely, the donor cells with the lowest blastocyst rates had methylation profiles with the highest similarity to the methylation profiles of the in vivo-produced blastocysts. Our findings show there is an inverse correlation to the similarity of the methylation profiles of the donor cells and the in vivo-produced embryos, and to the blastocyst rates following SCNT.
Collapse
Affiliation(s)
- Aaron J Bonk
- Division of Animal Science, University of Missouri-Columbia, Columbia, Missouri, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
339
|
Agger K, Cloos PAC, Christensen J, Pasini D, Rose S, Rappsilber J, Issaeva I, Canaani E, Salcini AE, Helin K. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 2007; 449:731-4. [PMID: 17713478 DOI: 10.1038/nature06145] [Citation(s) in RCA: 1047] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 08/03/2007] [Indexed: 02/07/2023]
Abstract
The trithorax and the polycomb group proteins are chromatin modifiers, which play a key role in the epigenetic regulation of development, differentiation and maintenance of cell fates. The polycomb repressive complex 2 (PRC2) mediates transcriptional repression by catalysing the di- and tri-methylation of Lys 27 on histone H3 (H3K27me2/me3). Owing to the essential role of the PRC2 complex in repressing a large number of genes involved in somatic processes, the H3K27me3 mark is associated with the unique epigenetic state of stem cells. The rapid decrease of the H3K27me3 mark during specific stages of embryogenesis and stem-cell differentiation indicates that histone demethylases specific for H3K27me3 may exist. Here we show that the human JmjC-domain-containing proteins UTX and JMJD3 demethylate tri-methylated Lys 27 on histone H3. Furthermore, we demonstrate that ectopic expression of JMJD3 leads to a strong decrease of H3K27me3 levels and causes delocalization of polycomb proteins in vivo. Consistent with the strong decrease in H3K27me3 levels associated with HOX genes during differentiation, we show that UTX directly binds to the HOXB1 locus and is required for its activation. Finally mutation of F18E9.5, a Caenorhabditis elegans JMJD3 orthologue, or inhibition of its expression, results in abnormal gonad development. Taken together, these results suggest that H3K27me3 demethylation regulated by UTX/JMJD3 proteins is essential for proper development. Moreover, the recent demonstration that UTX associates with the H3K4me3 histone methyltransferase MLL2 (ref. 8) supports a model in which the coordinated removal of repressive marks, polycomb group displacement, and deposition of activating marks are important for the stringent regulation of transcription during cellular differentiation.
Collapse
Affiliation(s)
- Karl Agger
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
340
|
Onnebo SMN, Saiardi A. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007; 129:647-9. [PMID: 17512396 DOI: 10.1016/j.cell.2007.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Noncoding RNAs (ncRNA) participate in epigenetic regulation but are poorly understood. Here we characterize the transcriptional landscape of the four human HOX loci at five base pair resolution in 11 anatomic sites and identify 231 HOX ncRNAs that extend known transcribed regions by more than 30 kilobases. HOX ncRNAs are spatially expressed along developmental axes and possess unique sequence motifs, and their expression demarcates broad chromosomal domains of differential histone methylation and RNA polymerase accessibility. We identified a 2.2 kilobase ncRNA residing in the HOXC locus, termed HOTAIR, which represses transcription in trans across 40 kilobases of the HOXD locus. HOTAIR interacts with Polycomb Repressive Complex 2 (PRC2) and is required for PRC2 occupancy and histone H3 lysine-27 trimethylation of HOXD locus. Thus, transcription of ncRNA may demarcate chromosomal domains of gene silencing at a distance; these results have broad implications for gene regulation in development and disease states.
Collapse
Affiliation(s)
- Sara Maria Nancy Onnebo
- Medical Research Council (MRC) Cell Biology Unit and Laboratory for Molecular Cell Biology, Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
341
|
Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007; 129:1311-23. [PMID: 17604720 PMCID: PMC2084369 DOI: 10.1016/j.cell.2007.05.022] [Citation(s) in RCA: 3368] [Impact Index Per Article: 187.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 03/28/2007] [Accepted: 05/09/2007] [Indexed: 02/09/2023]
Abstract
Noncoding RNAs (ncRNA) participate in epigenetic regulation but are poorly understood. Here we characterize the transcriptional landscape of the four human HOX loci at five base pair resolution in 11 anatomic sites and identify 231 HOX ncRNAs that extend known transcribed regions by more than 30 kilobases. HOX ncRNAs are spatially expressed along developmental axes and possess unique sequence motifs, and their expression demarcates broad chromosomal domains of differential histone methylation and RNA polymerase accessibility. We identified a 2.2 kilobase ncRNA residing in the HOXC locus, termed HOTAIR, which represses transcription in trans across 40 kilobases of the HOXD locus. HOTAIR interacts with Polycomb Repressive Complex 2 (PRC2) and is required for PRC2 occupancy and histone H3 lysine-27 trimethylation of HOXD locus. Thus, transcription of ncRNA may demarcate chromosomal domains of gene silencing at a distance; these results have broad implications for gene regulation in development and disease states.
Collapse
Affiliation(s)
- John L Rinn
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
342
|
Ringrose L. Polycomb comes of age: genome-wide profiling of target sites. Curr Opin Cell Biol 2007; 19:290-7. [PMID: 17481880 DOI: 10.1016/j.ceb.2007.04.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 04/16/2007] [Indexed: 10/23/2022]
Abstract
The Polycomb group proteins are best known for their role as epigenetic regulators of the fly homeotic (Hox) gene clusters, but it has long been clear that these well conserved proteins have many other targets. For example, they are vital for maintaining both the pluripotency of stem cells and the identity of differentiated cells. However, a comprehensive list of experimentally defined targets has been lacking. Six new studies use genome wide profiling techniques to map Polycomb targets in stem cells and differentiated cells in vertebrates and flies. The findings of these studies demand that we rethink some of our current assumptions about Polycomb function.
Collapse
Affiliation(s)
- Leonie Ringrose
- IMBA - Institute of Molecular Biotechnology GmbH, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
343
|
Abstract
SUMMARY
It is usually thought that the development of complex organisms is controlled by protein regulatory factors and morphogenetic signals exchanged between cells and differentiating tissues during ontogeny. However, it is now evident that the majority of all animal genomes is transcribed, apparently in a developmentally regulated manner, suggesting that these genomes largely encode RNA machines and that there may be a vast hidden layer of RNA regulatory transactions in the background. I propose that the epigenetic trajectories of differentiation and development are primarily programmed by feed-forward RNA regulatory networks and that most of the information required for multicellular development is embedded in these networks, with cell–cell signalling required to provide important positional information and to correct stochastic errors in the endogenous RNA-directed program.
Collapse
Affiliation(s)
- John S Mattick
- ARC Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia QLD 4072, Australia.
| |
Collapse
|
344
|
Abstract
Over the past few years we have seen an odd change, or extension, in the use of the word 'epigenetic' when describing matters of gene regulation in eukaryotes. Although it may generally be that it is not worth arguing over definitions, this is true only insofar as the participants in the discussion know what each other means. I believe the altered use of the term carries baggage from the standard definition that can have misleading implications. Here I wish to probe our use of language in this way, and to show how such a discussion leads to some more general considerations concerning gene regulation.
Collapse
Affiliation(s)
- Mark Ptashne
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA.
| |
Collapse
|