301
|
Frese S, Ruebner M, Suhr F, Konou TM, Tappe KA, Toigo M, Jung HH, Henke C, Steigleder R, Strissel PL, Huebner H, Beckmann MW, van der Keylen P, Schoser B, Schiffer T, Frese L, Bloch W, Strick R. Long-Term Endurance Exercise in Humans Stimulates Cell Fusion of Myoblasts along with Fusogenic Endogenous Retroviral Genes In Vivo. PLoS One 2015; 10:e0132099. [PMID: 26154387 PMCID: PMC4495930 DOI: 10.1371/journal.pone.0132099] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/10/2015] [Indexed: 11/21/2022] Open
Abstract
Myogenesis is defined as growth, differentiation and repair of muscles where cell fusion of myoblasts to multinucleated myofibers is one major characteristic. Other cell fusion events in humans are found with bone resorbing osteoclasts and placental syncytiotrophoblasts. No unifying gene regulation for natural cell fusions has been found. We analyzed skeletal muscle biopsies of competitive cyclists for muscle-specific attributes and expression of human endogenous retrovirus (ERV) envelope genes due to their involvement in cell fusion of osteoclasts and syncytiotrophoblasts. Comparing muscle biopsies from post- with the pre-competitive seasons a significant 2.25-fold increase of myonuclei/mm fiber, a 2.38-fold decrease of fiber area/nucleus and a 3.1-fold decrease of satellite cells (SCs) occurred. We propose that during the pre-competitive season SC proliferation occurred following with increased cell fusion during the competitive season. Expression of twenty-two envelope genes of muscle biopsies demonstrated a significant increase of putative muscle-cell fusogenic genes Syncytin-1 and Syncytin-3, but also for the non-fusogenic erv3. Immunohistochemistry analyses showed that Syncytin-1 mainly localized to the sarcolemma of myofibers positive for myosin heavy-chain isotypes. Cellular receptors SLC1A4 and SLC1A5 of Syncytin-1 showed significant decrease of expression in post-competitive muscles compared with the pre-competitive season, but only SLC1A4 protein expression localized throughout the myofiber. Erv3 protein was strongly expressed throughout the myofiber, whereas envK1-7 localized to SC nuclei and myonuclei. Syncytin-1 transcription factors, PPARγ and RXRα, showed no protein expression in the myofiber, whereas the pCREB-Ser133 activator of Syncytin-1 was enriched to SC nuclei and myonuclei. Syncytin-1, Syncytin-3, SLC1A4 and PAX7 gene regulations along with MyoD1 and myogenin were verified during proliferating or actively-fusing human primary myoblast cell cultures, resembling muscle biopsies of cyclists. Myoblast treatment with anti-Synycytin-1 abrogated cell fusion in vitro. Our findings support functional roles for ERV envelope proteins, especially Syncytin-1, contributing to cell fusion of myotubes.
Collapse
Affiliation(s)
- Sebastian Frese
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Am Sportpark Muengersdorf, Cologne, Germany
- University Hospital Zurich, Department of Neurology, Frauenklinikstrasse, Zurich, Switzerland
- Institute of Human Movement Sciences and Sport, Exercise Physiology, ETH Zurich, Winterthurerstrasse, Zurich, Switzerland
| | - Matthias Ruebner
- Friedrich-Alexander University Erlangen-Nürnberg, University-Clinic Erlangen, Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, Erlangen, Universitaetsstrasse, Erlangen, Germany
| | - Frank Suhr
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Am Sportpark Muengersdorf, Cologne, Germany
| | - Thierry M. Konou
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Am Sportpark Muengersdorf, Cologne, Germany
| | - Kim A. Tappe
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Am Sportpark Muengersdorf, Cologne, Germany
| | - Marco Toigo
- Institute of Human Movement Sciences and Sport, Exercise Physiology, ETH Zurich, Winterthurerstrasse, Zurich, Switzerland
- University of Zurich, Balgrist University Hospital, Department of Orthopaedics, Forchstrasse, Zurich, Switzerland
| | - Hans H. Jung
- University Hospital Zurich, Department of Neurology, Frauenklinikstrasse, Zurich, Switzerland
| | - Christine Henke
- Friedrich-Alexander University Erlangen-Nürnberg, University-Clinic Erlangen, Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, Erlangen, Universitaetsstrasse, Erlangen, Germany
| | - Ruth Steigleder
- Friedrich-Alexander University Erlangen-Nürnberg, University-Clinic Erlangen, Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, Erlangen, Universitaetsstrasse, Erlangen, Germany
| | - Pamela L. Strissel
- Friedrich-Alexander University Erlangen-Nürnberg, University-Clinic Erlangen, Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, Erlangen, Universitaetsstrasse, Erlangen, Germany
| | - Hanna Huebner
- Friedrich-Alexander University Erlangen-Nürnberg, University-Clinic Erlangen, Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, Erlangen, Universitaetsstrasse, Erlangen, Germany
| | - Matthias W. Beckmann
- Friedrich-Alexander University Erlangen-Nürnberg, University-Clinic Erlangen, Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, Erlangen, Universitaetsstrasse, Erlangen, Germany
| | - Piet van der Keylen
- Institute of Anatomy, Friedrich-Alexander University of Erlangen-Nürnberg, Krankenhausstrasse, Erlangen, Germany
| | - Benedikt Schoser
- Ludwig Maximilian University Munich, Department of Neurology, Friedrich Baur Institute, Ziemssenstrasse, Munich, Germany
| | - Thorsten Schiffer
- German Sport University Cologne, Outpatient Clinic for Sports Traumatology and Public Health Consultation, Am Sportpark Muengersdorf, Cologne, Germany
| | - Laura Frese
- University Hospital and University Zurich, Division of Surgical Research, Raemistrasse, Zurich, Switzerland
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Am Sportpark Muengersdorf, Cologne, Germany
- The German Research Centre of Elite Sport, German Sport University Cologne, Am Sportpark Muengersdorf, Cologne, Germany
| | - Reiner Strick
- Friedrich-Alexander University Erlangen-Nürnberg, University-Clinic Erlangen, Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, Erlangen, Universitaetsstrasse, Erlangen, Germany
- * E-mail:
| |
Collapse
|
302
|
Bakhtiari N, Hosseinkhani S, Tashakor A, Hemmati R. Ursolic acid ameliorates aging-metabolic phenotype through promoting of skeletal muscle rejuvenation. Med Hypotheses 2015; 85:1-6. [PMID: 25976755 DOI: 10.1016/j.mehy.2015.02.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/17/2015] [Accepted: 02/25/2015] [Indexed: 12/25/2022]
Abstract
Ursolic acid (UA) is a lipophilic compound, which highly found in apple peels. UA has some certain features, of the most important is its anabolic effects on skeletal muscles, which in turn plays a prominent role in the aging process, encouraged us to evaluate skeletal muscle rejuvenation. This study seeks to address the two following questions: primarily, we wonder to know if UA increases anti-aging biomarkers (SIRT1 and PGC-1α) in the isolated satellite cells, to pave the way for satellite cells proliferation. The results revealed that UA elevated the expression of SIRT1 (∼ 35 folds) and PGC-1α (∼ 175 folds) genes. The other question that needs to be asked, however, is to understand whether it is possible to generalize the in vitro findings to in vivo. For this, a study was designed to investigate the effects of UA on the cellular energy status in the animal models (C57BL/6 mice). We found that UA decreased cellular energy charges such as ATP (∼ 3 times) and ADP (∼ 18 times). With respect to the role of UA in energy expenditure and as an anti-aging biomarker, one might wonder to elucidate skeletal muscle rejuvenation as well as satellite cells proliferation and neomyogenesis. The results illustrated that UA boosted neomyogenesis through enhancing the number of satellite cells. In addition, rejuvenation effects of UA on the skeletal muscle promptly encouraged us to reexamine the performance of skeletal muscles. The results indicated that UA through increasing myoglobin expression (∼ 2 folds) accompanied with transforming of glycolytic to fast oxidative status chiefly and slow-twitch muscle fibers. To the best of our knowledge, it seems that UA might be considered as a potential candidate for treatment of pathological conditions associated with muscular atrophy and dysfunction, including skeletal muscle atrophy, amyotrophic lateral sclerosis (ALS), sarcopenia and metabolic diseases of the muscles.
Collapse
Affiliation(s)
- Nuredin Bakhtiari
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Amin Tashakor
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Iran
| | - Roohullah Hemmati
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
303
|
Kashi VP, Hatley ME, Galindo RL. Probing for a deeper understanding of rhabdomyosarcoma: insights from complementary model systems. Nat Rev Cancer 2015; 15:426-39. [PMID: 26105539 PMCID: PMC4599785 DOI: 10.1038/nrc3961] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rhabdomyosarcoma (RMS) is a mesenchymal malignancy composed of neoplastic primitive precursor cells that exhibit histological features of myogenic differentiation. Despite intensive conventional multimodal therapy, patients with high-risk RMS typically suffer from aggressive disease. The lack of directed therapies against RMS emphasizes the need to further uncover the molecular underpinnings of the disease. In this Review, we discuss the notable advances in the model systems now available to probe for new RMS-targetable pathogenetic mechanisms, and the possibilities for enhanced RMS therapeutics and improved clinical outcomes.
Collapse
Affiliation(s)
- Venkatesh P Kashi
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9072, USA
| | - Mark E Hatley
- Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Rene L Galindo
- 1] Department of Pathology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9072, USA. [2] Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9148, USA. [3] Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9063, USA
| |
Collapse
|
304
|
Rodal AA, Del Signore SJ, Martin AC. Drosophila comes of age as a model system for understanding the function of cytoskeletal proteins in cells, tissues, and organisms. Cytoskeleton (Hoboken) 2015; 72:207-24. [PMID: 26074334 DOI: 10.1002/cm.21228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 06/11/2015] [Accepted: 06/11/2015] [Indexed: 01/30/2023]
Abstract
For the last 100 years, Drosophila melanogaster has been a powerhouse genetic system for understanding mechanisms of inheritance, development, and behavior in animals. In recent years, advances in imaging and genetic tools have led to Drosophila becoming one of the most effective systems for unlocking the subcellular functions of proteins (and particularly cytoskeletal proteins) in complex developmental settings. In this review, written for non-Drosophila experts, we will discuss critical technical advances that have enabled these cell biological insights, highlighting three examples of cytoskeletal discoveries that have arisen as a result: (1) regulation of Arp2/3 complex in myoblast fusion, (2) cooperation of the actin filament nucleators Spire and Cappuccino in establishment of oocyte polarity, and (3) coordination of supracellular myosin cables. These specific examples illustrate the unique power of Drosophila both to uncover new cytoskeletal structures and functions, and to place these discoveries in a broader in vivo context, providing insights that would have been impossible in a cell culture model or in vitro. Many of the cellular structures identified in Drosophila have clear counterparts in mammalian cells and tissues, and therefore elucidating cytoskeletal functions in Drosophila will be broadly applicable to other organisms.
Collapse
Affiliation(s)
- Avital A Rodal
- Department of Biology, Brandeis University, Waltham, Massachusetts
| | | | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
305
|
Le Bihan MC, Barrio-Hernandez I, Mortensen TP, Henningsen J, Jensen SS, Bigot A, Blagoev B, Butler-Browne G, Kratchmarova I. Cellular Proteome Dynamics during Differentiation of Human Primary Myoblasts. J Proteome Res 2015; 14:3348-61. [DOI: 10.1021/acs.jproteome.5b00397] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Marie-Catherine Le Bihan
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Inigo Barrio-Hernandez
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Tenna Pavia Mortensen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Jeanette Henningsen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Søren Skov Jensen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Anne Bigot
- Center
for Research in Myology, Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS975, CNRS FRE3617, 75013 Paris, France
| | - Blagoy Blagoev
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Gillian Butler-Browne
- Center
for Research in Myology, Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS975, CNRS FRE3617, 75013 Paris, France
| | - Irina Kratchmarova
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
306
|
Lojk J, Čibej U, Karlaš D, Šajn L, Pavlin M. Comparison of two automatic cell-counting solutions for fluorescent microscopic images. J Microsc 2015; 260:107-16. [PMID: 26098834 DOI: 10.1111/jmi.12272] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 04/30/2015] [Indexed: 01/15/2023]
Abstract
Cell counting in microscopic images is one of the fundamental analysis tools in life sciences, but is usually tedious, time consuming and prone to human error. Several programs for automatic cell counting have been developed so far, but most of them demand additional training or data input from the user. Most of them do not allow the users to online monitor the counting results, either. Therefore, we designed two straightforward, simple-to-use cell-counting programs that also allow users to correct the detection results. In this paper, we present the Cellcounter and Learn123 programs for automatic and semiautomatic counting of objects in fluorescent microscopic images (cells or cell nuclei) with a user-friendly interface. Although Cellcounter is based on predefined and fine-tuned set of filters optimized on sets of chosen experiments, Learn123 uses an evolutionary algorithm to determine the adapt filter parameters based on a learning set of images. Cellcounter also includes an extension for analysis of overlaying images. The efficiency of both programs was assessed on images of cells stained with different fluorescent dyes by comparing automatically obtained results with results that were manually annotated by an expert. With both programs, the correlation between automatic and manual counting was very high (R(2) < 0.9), although Cellcounter had some difficulties processing images with no cells or weakly stained cells, where sometimes the background noise was recognized as an object of interest. Nevertheless, the differences between manual and automatic counting were small compared to variations between experimental repeats. Both programs significantly reduced the time required to process the acquired images from hours to minutes. The programs enable consistent, robust, fast and accurate detection of fluorescent objects and can therefore be applied to a range of different applications in different fields of life sciences where fluorescent labelling is used for quantification of various phenomena. Moreover, Cellcounter overlay extension also enables fast analysis of related images that would otherwise require image merging for accurate analysis, whereas Learn123's evolutionary algorithm can adapt counting parameters to specific sets of images of different experimental settings.
Collapse
Affiliation(s)
- J Lojk
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - U Čibej
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - D Karlaš
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - L Šajn
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - M Pavlin
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
307
|
Dudin O, Bendezú FO, Groux R, Laroche T, Seitz A, Martin SG. A formin-nucleated actin aster concentrates cell wall hydrolases for cell fusion in fission yeast. ACTA ACUST UNITED AC 2015; 208:897-911. [PMID: 25825517 PMCID: PMC4384723 DOI: 10.1083/jcb.201411124] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The formin Fus1 nucleates a novel actin structure in fission yeast, named the actin fusion focus, which consists of an aster of actin filaments whose barbed ends are focalized at a membrane proximal site and serves to focalize cell wall hydrolase delivery for cell fusion. Cell–cell fusion is essential for fertilization. For fusion of walled cells, the cell wall must be degraded at a precise location but maintained in surrounding regions to protect against lysis. In fission yeast cells, the formin Fus1, which nucleates linear actin filaments, is essential for this process. In this paper, we show that this formin organizes a specific actin structure—the actin fusion focus. Structured illumination microscopy and live-cell imaging of Fus1, actin, and type V myosins revealed an aster of actin filaments whose barbed ends are focalized near the plasma membrane. Focalization requires Fus1 and type V myosins and happens asynchronously always in the M cell first. Type V myosins are essential for fusion and concentrate cell wall hydrolases, but not cell wall synthases, at the fusion focus. Thus, the fusion focus focalizes cell wall dissolution within a broader cell wall synthesis zone to shift from cell growth to cell fusion.
Collapse
Affiliation(s)
- Omaya Dudin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Felipe O Bendezú
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Raphael Groux
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Thierry Laroche
- Bioimaging and Optics Core Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Arne Seitz
- Bioimaging and Optics Core Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Sophie G Martin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
308
|
Ogawa M, Kitakaze T, Harada N, Yamaji R. Female-specific regulation of skeletal muscle mass by USP19 in young mice. J Endocrinol 2015; 225:135-45. [PMID: 25901042 DOI: 10.1530/joe-15-0128] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/21/2015] [Indexed: 01/31/2023]
Abstract
17β-Estradiol (E₂) is thought to be responsible for sex-specific differences in skeletal muscle mass. The biological function of E₂ is exerted through its binding to estrogen receptor α (ERα). The expression of ubiquitin-specific peptidase 19 (USP19) is upregulated during muscle atrophy and by E₂-activated ERα. Here, we investigated the involvement of USP19 in sex difference in muscle mass in young mice. Knockdown of USP19 in hindlimb muscles increased the mass and fiber size in soleus muscle in females but not males. Using Usp19 promoter reporter constructs, a functional half-estrogen response element (hERE) was identified in intron 1 of Usp19. ERα bound to hERE in an E₂-dependent manner in C2C12 myoblasts and in soleus muscle in ovariectomized (OVX) female mice. Furthermore, under normal physiological conditions, ERα bound to hERE in soleus muscle only in females. In contrast, administration of E₂ resulted in increased Usp19 mRNA expression, decreased muscle mass, and recruitment of ERα to hERE in soleus muscle in males. Knockdown of ERα in hindlimb muscles decreased Usp19 mRNA expression and increased the mass of soleus muscle only in females. Knockdown of USP19 resulted in increased levels of ubiquitin conjugates in soleus muscle in females. OVX increased the levels of ubiquitin conjugates and administration of E₂ decreased OVX-induced levels of ubiquitin conjugates. These results demonstrate that in soleus muscle in young female mice under physiological conditions, E₂ upregulates USP19 expression through ERα and consequently leads to decreases in ubiquitin conjugates and muscle mass.
Collapse
Affiliation(s)
- Masahiro Ogawa
- Division of Applied Life SciencesGraduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 5998531, Japan
| | - Tomoya Kitakaze
- Division of Applied Life SciencesGraduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 5998531, Japan
| | - Naoki Harada
- Division of Applied Life SciencesGraduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 5998531, Japan
| | - Ryoichi Yamaji
- Division of Applied Life SciencesGraduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 5998531, Japan
| |
Collapse
|
309
|
Kim JH, Jin P, Duan R, Chen EH. Mechanisms of myoblast fusion during muscle development. Curr Opin Genet Dev 2015; 32:162-70. [PMID: 25989064 DOI: 10.1016/j.gde.2015.03.006] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/13/2015] [Accepted: 03/17/2015] [Indexed: 01/24/2023]
Abstract
The development and regeneration of skeletal muscle require the fusion of mononucleated muscle cells to form multinucleated, contractile muscle fibers. Studies using a simple genetic model, Drosophila melanogaster, have discovered many evolutionarily conserved fusion-promoting factors in vivo. Recent work in zebrafish and mouse also identified several vertebrate-specific factors required for myoblast fusion. Here, we integrate progress in multiple in vivo systems and highlight conceptual advance in understanding how muscle cell membranes are brought together for fusion. We focus on the molecular machinery at the fusogenic synapse and present a three-step model to describe the molecular and cellular events leading to fusion pore formation.
Collapse
Affiliation(s)
- Ji Hoon Kim
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Peng Jin
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Rui Duan
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Elizabeth H Chen
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
310
|
Brunetti TM, Fremin BJ, Cripps RM. Identification of singles bar as a direct transcriptional target of Drosophila Myocyte enhancer factor-2 and a regulator of adult myoblast fusion. Dev Biol 2015; 401:299-309. [PMID: 25797154 PMCID: PMC4424145 DOI: 10.1016/j.ydbio.2015.02.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 01/29/2015] [Accepted: 02/14/2015] [Indexed: 11/17/2022]
Abstract
In Drosophila, myoblast fusion is a conserved process in which founder cells (FCs) and fusion competent myoblasts (FCMs) fuse to form a syncytial muscle fiber. Mutants for the myogenic regulator Myocyte enhancer factor-2 (MEF2) show a failure of myoblast fusion, indicating that MEF2 regulates the fusion process. Indeed, chromatin immunoprecipitation studies show that several genes involved in myoblast fusion are bound by MEF2 during embryogenesis. Of these, the MARVEL domain gene singles bar (sing), is down-regulated in MEF2 knockdown pupae, and has five consensus MEF2 binding sites within a 9000-bp region. To determine if MEF2 is an essential and direct regulator of sing during pupal muscle development, we identified a 315-bp myoblast enhancer of sing. This enhancer was active during myoblast fusion, and mutation of two MEF2 sites significantly decreased enhancer activity. We show that lack of sing expression resulted in adult lethality and muscle loss, due to a failure of fusion during the pupal stage. Additionally, we sought to determine if sing was required in either FCs or FCMs to support fusion. Interestingly, knockdown of sing in either population did not significantly affect fusion, however, knockdown in both FCs and FCMs resulted in muscles with significantly reduced nuclei numbers, provisionally indicating that sing function is required in either cell type, but not both. Finally, we found that MEF2 regulated sing expression at the embryonic stage through the same 315-bp enhancer, indicating that sing is a MEF2 target at both critical stages of myoblast fusion. Our studies define for the first time how MEF2 directly controls fusion at multiple stages of the life cycle, and provide further evidence that the mechanisms of fusion characterized in Drosophila embryos is also used in the formation of the more complex adult muscles.
Collapse
Affiliation(s)
- Tonya M Brunetti
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Brayon J Fremin
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Richard M Cripps
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
311
|
Haralalka S, Abmayr SM. Tracing myoblast fusion in Drosophila embryos by fluorescent actin probes. Methods Mol Biol 2015; 1313:149-64. [PMID: 25947663 DOI: 10.1007/978-1-4939-2703-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Myoblast fusion in the Drosophila embryo is a highly elaborate process that is initiated by Founder Cells and Fusion-Competent Myoblasts (FCMs). It occurs through an asymmetric event in which actin foci assemble in the FCMs at points of cell-cell contact and direct the formation of membrane protrusions that drive fusion. Herein, we describe the approach that we have used to image in living embryos the highly dynamic actin foci and actin-rich projections that precede myoblast fusion. We discuss resources currently available for imaging actin and myogenesis, and our experience with these resources if available. This technical report is not intended to be comprehensive on providing instruction on standard microscopy practices or software utilization. However, we discuss microscope parameters that we have used in data collection, and our experience with image processing tools in data analysis.
Collapse
Affiliation(s)
- Shruti Haralalka
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| | | |
Collapse
|
312
|
Maartens AP, Brown NH. The many faces of cell adhesion during Drosophila muscle development. Dev Biol 2015; 401:62-74. [DOI: 10.1016/j.ydbio.2014.12.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
|
313
|
Søe K, Hobolt-Pedersen AS, Delaisse JM. The elementary fusion modalities of osteoclasts. Bone 2015; 73:181-9. [PMID: 25527420 DOI: 10.1016/j.bone.2014.12.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/08/2014] [Accepted: 12/12/2014] [Indexed: 01/04/2023]
Abstract
The last step of the osteoclast differentiation process is cell fusion. Most efforts to understand the fusion mechanism have focused on the identification of molecules involved in the fusion process. Surprisingly, the basic fusion modalities, which are well known for fusion of other cell types, are not known for the osteoclast. Here we show that osteoclast fusion partners are characterized by differences in mobility, nuclearity, and differentiation level. Our demonstration was based on time-laps videos of human osteoclast preparations from three donors where 656 fusion events were analyzed. Fusions between a mobile and an immobile partner were most frequent (62%), while fusion between two mobile (26%) or two immobile partners (12%) was less frequent (p<0.001). In general, the immobile fusion partner contained more nuclei than the mobile one (p<0.01). Furthermore, enrichment in nuclei of an osteoclast with three or more nuclei resulted from fusion with a mono-nucleated cell in 67% of the cases (p<0.001), while mono-nucleated cells fused with a multinucleated cell in 61% of the cases (p<0.05). This observation suggested that a more mature osteoclast prefers to fuse with a less mature pre-osteoclast. This hypothesis was supported by a nucleus-tracing approach in a co-culture of more and less differentiated pre-osteoclasts/osteoclasts. Furthermore, we found that osteoclast fusion proceeds through primarily two different types of cell contacts: phagocytic-cup and broad-contact-surfaces (>80% of all fusions). We conclude that osteoclasts most often gain nuclei by addition of one nucleus at a time, and that this nucleus is most often delivered by a moving cell to an immobile cell. These characteristics fit the in vivo observations where mono-nucleated precursors migrating from the bone marrow fuse with more mature osteoclasts sitting on the bone surface. They also fit the fusion modalities of other cell types.
Collapse
Affiliation(s)
- Kent Søe
- Clinical Cell Biology, Vejle Hospital/Lillebaelt Hospital, Institute of Regional Health Research, University of Southern Denmark, Kabbeltoft 25, 7100 Vejle, Denmark.
| | - Anne-Sofie Hobolt-Pedersen
- Clinical Cell Biology, Vejle Hospital/Lillebaelt Hospital, Institute of Regional Health Research, University of Southern Denmark, Kabbeltoft 25, 7100 Vejle, Denmark.
| | - Jean-Marie Delaisse
- Clinical Cell Biology, Vejle Hospital/Lillebaelt Hospital, Institute of Regional Health Research, University of Southern Denmark, Kabbeltoft 25, 7100 Vejle, Denmark.
| |
Collapse
|
314
|
Simionescu-Bankston A, Pichavant C, Canner JP, Apponi LH, Wang Y, Steeds C, Olthoff JT, Belanto JJ, Ervasti JM, Pavlath GK. Creatine kinase B is necessary to limit myoblast fusion during myogenesis. Am J Physiol Cell Physiol 2015; 308:C919-31. [PMID: 25810257 DOI: 10.1152/ajpcell.00029.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/19/2015] [Indexed: 11/22/2022]
Abstract
Myoblast fusion is critical for proper muscle growth and regeneration. During myoblast fusion, the localization of some molecules is spatially restricted; however, the exact reason for such localization is unknown. Creatine kinase B (CKB), which replenishes local ATP pools, localizes near the ends of cultured primary mouse myotubes. To gain insights into the function of CKB, we performed a yeast two-hybrid screen to identify CKB-interacting proteins. We identified molecules with a broad diversity of roles, including actin polymerization, intracellular protein trafficking, and alternative splicing, as well as sarcomeric components. In-depth studies of α-skeletal actin and α-cardiac actin, two predominant muscle actin isoforms, demonstrated their biochemical interaction and partial colocalization with CKB near the ends of myotubes in vitro. In contrast to other cell types, specific knockdown of CKB did not grossly affect actin polymerization in myotubes, suggesting other muscle-specific roles for CKB. Interestingly, knockdown of CKB resulted in significantly increased myoblast fusion and myotube size in vitro, whereas knockdown of creatine kinase M had no effect on these myogenic parameters. Our results suggest that localized CKB plays a key role in myotube formation by limiting myoblast fusion during myogenesis.
Collapse
Affiliation(s)
- Adriana Simionescu-Bankston
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, Georgia; Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia; and
| | - Christophe Pichavant
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia; and
| | - James P Canner
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia; and
| | - Luciano H Apponi
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia; and
| | - Yanru Wang
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia; and
| | - Craig Steeds
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia; and
| | - John T Olthoff
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Joseph J Belanto
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Grace K Pavlath
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia; and
| |
Collapse
|
315
|
Wang JH, Wang QJ, Wang C, Reinholt B, Grant AL, Gerrard DE, Kuang S. Heterogeneous activation of a slow myosin gene in proliferating myoblasts and differentiated single myofibers. Dev Biol 2015; 402:72-80. [PMID: 25794679 DOI: 10.1016/j.ydbio.2015.02.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
Abstract
Each skeletal muscle contains a fixed ratio of fast and slow myofibers that are distributed in a stereotyped pattern to achieve a specific motor function. How myofibers are specified during development and regeneration is poorly understood. Here we address this question using transgenic reporter mice that indelibly mark the myofiber lineages based on activation of fast or slow myosin. Lineage tracing indicates that during development all muscles have activated the fast myosin gene Myl1, but not the slow myosin gene Myh7, which is activated in all slow but a subset of fast myofibers. Similarly, most nascent myofibers do not activate Myh7 during fast muscle regeneration, but the ratio and pattern of fast and slow myofibers are restored at the completion of regeneration. At the single myofiber level, most mature fast myofibers are heterogeneous in nuclear composition, manifested by mosaic activation of Myh7. Strikingly, Myh7 is activated in a subpopulation of proliferating myoblasts that co-express the myogenic progenitor marker Pax7. When induced to differentiate, the Myh7-activated myoblasts differentiate more readily than the non-activated myoblasts, and have a higher tendency, but not restricted, to become slow myotubes. Together, our data reveal significant nuclear heterogeneity within a single myofiber, and challenge the conventional view that myosin genes are only expressed after myogenic differentiation. These results provide novel insights into the regulation of muscle fiber type specification.
Collapse
Affiliation(s)
- Jing-Hua Wang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Qiao-Jing Wang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Chao Wang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Brad Reinholt
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Alan L Grant
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - David E Gerrard
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
316
|
Frickenhaus M, Wagner M, Mallik M, Catinozzi M, Storkebaum E. Highly efficient cell-type-specific gene inactivation reveals a key function for the Drosophila FUS homolog cabeza in neurons. Sci Rep 2015; 5:9107. [PMID: 25772687 PMCID: PMC5390904 DOI: 10.1038/srep09107] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 02/19/2015] [Indexed: 12/14/2022] Open
Abstract
To expand the rich genetic toolkit of Drosophila melanogaster, we evaluated whether introducing FRT or LoxP sites in endogenous genes could allow for cell-type-specific gene inactivation in both dividing and postmitotic cells by GAL4-driven expression of FLP or Cre recombinase. For proof of principle, conditional alleles were generated for cabeza (caz), the Drosophila homolog of human FUS, a gene implicated in the neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Upon selective expression in neurons or muscle, both FLP and Cre mediated caz inactivation in all neurons or muscle cells, respectively. Neuron-selective caz inactivation resulted in failure of pharate adult flies to eclose from the pupal case, and adult escapers displayed motor performance defects and reduced life span. Due to Cre-toxicity, FLP/FRT is the preferred system for cell-type-specific gene inactivation, and this strategy outperforms RNAi-mediated knock-down. Furthermore, the GAL80 target system allowed for temporal control over gene inactivation, as induction of FLP expression from the adult stage onwards still inactivated caz in >99% of neurons. Remarkably, selective caz inactivation in adult neurons did not affect motor performance and life span, indicating that neuronal caz is required during development, but not for maintenance of adult neuronal function.
Collapse
Affiliation(s)
- Marie Frickenhaus
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
- Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Marina Wagner
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
- Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Moushami Mallik
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
- Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Marica Catinozzi
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
- Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Erik Storkebaum
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
- Faculty of Medicine, University of Münster, 48149 Münster, Germany
| |
Collapse
|
317
|
Schulman VK, Dobi KC, Baylies MK. Morphogenesis of the somatic musculature in Drosophila melanogaster. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:313-34. [PMID: 25758712 DOI: 10.1002/wdev.180] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 12/22/2022]
Abstract
In Drosophila melanogaster, the somatic muscle system is first formed during embryogenesis, giving rise to the larval musculature. Later during metamorphosis, this system is destroyed and replaced by an entirely new set of muscles in the adult fly. Proper formation of the larval and adult muscles is critical for basic survival functions such as hatching and crawling (in the larva), walking and flying (in the adult), and feeding (at both larval and adult stages). Myogenesis, from mononucleated muscle precursor cells to multinucleated functional muscles, is driven by a number of cellular processes that have begun to be mechanistically defined. Once the mesodermal cells destined for the myogenic lineage have been specified, individual myoblasts fuse together iteratively to form syncytial myofibers. Combining cytoplasmic contents demands a level of intracellular reorganization that, most notably, leads to redistribution of the myonuclei to maximize internuclear distance. Signaling from extending myofibers induces terminal tendon cell differentiation in the ectoderm, which results in secure muscle-tendon attachments that are critical for muscle contraction. Simultaneously, muscles become innervated and undergo sarcomerogenesis to establish the contractile apparatus that will facilitate movement. The cellular mechanisms governing these morphogenetic events share numerous parallels to mammalian development, and the basic unit of all muscle, the myofiber, is conserved from flies to mammals. Thus, studies of Drosophila myogenesis and comparisons to muscle development in other systems highlight conserved regulatory programs of biomedical relevance to general muscle biology and studies of muscle disease.
Collapse
Affiliation(s)
- Victoria K Schulman
- Cell and Developmental Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA.,Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA
| | - Krista C Dobi
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA
| | - Mary K Baylies
- Cell and Developmental Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA.,Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA
| |
Collapse
|
318
|
WNT/β-Catenin Signaling Regulates Multiple Steps of Myogenesis by Regulating Step-Specific Targets. Mol Cell Biol 2015; 35:1763-76. [PMID: 25755281 DOI: 10.1128/mcb.01180-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 02/27/2015] [Indexed: 12/23/2022] Open
Abstract
Molecules involved in WNT/β-catenin signaling show specific spatiotemporal expression and play vital roles in myogenesis; however, it is still largely unknown how WNT/β-catenin signaling regulates each step of myogenesis. Here, we show that WNT/β-catenin signaling can control diverse biological processes of myogenesis by regulating step-specific molecules. In order to identify the temporally specific roles of WNT/β-catenin signaling molecules in muscle development and homeostasis, we used in vitro culture systems for both primary mouse myoblasts and C2C12 cells, which can differentiate into myofibers. We found that a blockade of WNT/β-catenin signaling in the proliferating cells decreases proliferation activity, but does not induce cell death, through the regulation of genes cyclin A2 (Ccna2) and cell division cycle 25C (Cdc25c). During muscle differentiation, the inhibition of WNT/β-catenin signaling blocks myoblast fusion through the inhibition of the Fermitin family homolog 2 (Fermt2) gene. Blocking WNT/β-catenin signaling in the well-differentiated myofibers results in the failure of maintenance of their structure by disruption of cadherin/β-catenin/actin complex formation, which plays a crucial role in connecting a myofiber's cytoskeleton to the surrounding extracellular matrix. Thus, our results indicate that WNT/β-catenin signaling can regulate multiple steps of myogenesis, including cell proliferation, myoblast fusion, and homeostasis, by targeting step-specific molecules.
Collapse
|
319
|
Kumar RP, Dobi KC, Baylies MK, Abmayr SM. Muscle cell fate choice requires the T-box transcription factor midline in Drosophila. Genetics 2015; 199:777-91. [PMID: 25614583 PMCID: PMC4349071 DOI: 10.1534/genetics.115.174300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 01/11/2015] [Indexed: 11/18/2022] Open
Abstract
Drosophila Midline (Mid) is an ortholog of vertebrate Tbx20, which plays roles in the developing heart, migrating cranial motor neurons, and endothelial cells. Mid functions in cell-fate specification and differentiation of tissues that include the ectoderm, cardioblasts, neuroblasts, and egg chambers; however, a role in the somatic musculature has not been described. We identified mid in genetic and molecular screens for factors contributing to somatic muscle morphogenesis. Mid is expressed in founder cells (FCs) for several muscle fibers, and functions cooperatively with the T-box protein H15 in lateral oblique muscle 1 and the segment border muscle. Mid is particularly important for the specification and development of the lateral transverse (LT) muscles LT3 and LT4, which arise by asymmetric division of a single muscle progenitor. Mid is expressed in this progenitor and its two sibling FCs, but is maintained only in the LT4 FC. Both muscles were frequently missing in mid mutant embryos, and LT4-associated expression of the transcription factor Krüppel (Kr) was lost. When present, LT4 adopted an LT3-like morphology. Coordinately, mid misexpression caused LT3 to adopt an LT4-like morphology and was associated with ectopic Kr expression. From these data, we concluded that mid functions first in the progenitor to direct development of LT3 and LT4, and later in the FCs to influence whichever of these differentiation profiles is selected. Mid is the first T-box factor shown to influence LT3 and LT4 muscle identity and, along with the T-box protein Optomotor-blind-related-gene 1 (Org-1), is representative of a new class of transcription factors in muscle specification.
Collapse
Affiliation(s)
- Ram P Kumar
- Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Krista C Dobi
- Program in Developmental Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Mary K Baylies
- Program in Developmental Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Susan M Abmayr
- Stowers Institute for Medical Research, Kansas City, Missouri 64110 Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas 66160
| |
Collapse
|
320
|
Poussard S, Decossas M, Le Bihan O, Mornet S, Naudin G, Lambert O. Internalization and fate of silica nanoparticles in C2C12 skeletal muscle cells: evidence of a beneficial effect on myoblast fusion. Int J Nanomedicine 2015; 10:1479-92. [PMID: 25733836 PMCID: PMC4340375 DOI: 10.2147/ijn.s74158] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The use of silica nanoparticles for their cellular uptake capability opens up new fields in biomedical research. Among the toxicological effects associated with their internalization, silica nanoparticles induce apoptosis that has been recently reported as a biochemical cue required for muscle regeneration. To assess whether silica nanoparticles could affect muscle regeneration, we used the C2C12 muscle cell line to study the uptake of fluorescently labeled NPs and their cellular trafficking over a long period. Using inhibitors of endocytosis, we determined that the NP uptake was an energy-dependent process mainly involving macropinocytosis and clathrin-mediated pathway. NPs were eventually clustered in lysosomal structures. Myoblasts containing NPs were capable of differentiation into myotubes, and after 7 days, electron microscopy revealed that the NPs remained primarily within lysosomes. The presence of NPs stimulated the formation of myotubes in a dose-dependent manner. NP internalization induced an increase of apoptotic myoblasts required for myoblast fusion. At noncytotoxic doses, the NP uptake by skeletal muscle cells did not prevent their differentiation into myotubes but, instead, enhanced the cell fusion.
Collapse
Affiliation(s)
- Sylvie Poussard
- Institute of Chemistry and Biology of Membranes and Nanoobjects, University of Bordeaux, UMR5248, Pessac, France ; Institute of Chemistry and Biology of Membranes and Nanoobjects, Centre National de la Recherche Scientifique, Institute of Chemistry and Biology of Membranes and Nanoobjects, UMR5248, Pessac, France
| | - Marion Decossas
- Institute of Chemistry and Biology of Membranes and Nanoobjects, University of Bordeaux, UMR5248, Pessac, France ; Institute of Chemistry and Biology of Membranes and Nanoobjects, Centre National de la Recherche Scientifique, Institute of Chemistry and Biology of Membranes and Nanoobjects, UMR5248, Pessac, France
| | - Olivier Le Bihan
- Institute of Chemistry and Biology of Membranes and Nanoobjects, University of Bordeaux, UMR5248, Pessac, France ; Institute of Chemistry and Biology of Membranes and Nanoobjects, Centre National de la Recherche Scientifique, Institute of Chemistry and Biology of Membranes and Nanoobjects, UMR5248, Pessac, France
| | - Stéphane Mornet
- ICMCB, Institut de Chimie de la Matière Condensée de Bordeaux, CNRS UPR9048, Université de Bordeaux, Pessac, France
| | - Grégoire Naudin
- Institute of Chemistry and Biology of Membranes and Nanoobjects, University of Bordeaux, UMR5248, Pessac, France ; Institute of Chemistry and Biology of Membranes and Nanoobjects, Centre National de la Recherche Scientifique, Institute of Chemistry and Biology of Membranes and Nanoobjects, UMR5248, Pessac, France
| | - Olivier Lambert
- Institute of Chemistry and Biology of Membranes and Nanoobjects, University of Bordeaux, UMR5248, Pessac, France ; Institute of Chemistry and Biology of Membranes and Nanoobjects, Centre National de la Recherche Scientifique, Institute of Chemistry and Biology of Membranes and Nanoobjects, UMR5248, Pessac, France
| |
Collapse
|
321
|
Jiang H, Wang Y, Viniegra A, Sima C, McCulloch CA, Glogauer M. Adseverin plays a role in osteoclast differentiation and periodontal disease-mediated bone loss. FASEB J 2015; 29:2281-91. [PMID: 25681458 DOI: 10.1096/fj.14-265744] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/23/2015] [Indexed: 01/27/2023]
Abstract
Osteoclast differentiation and function are highly dependent on the assembly and turnover of actin filaments, but little is known about the roles of actin binding proteins in these processes. Adseverin (Ads), a member of the gelsolin superfamily of actin capping and severing proteins, regulates actin filament turnover and can regulate the turnover of cortical actin filaments of chromaffin cells during exocytosis. Using a conditional Ads knockout mouse model, we confirmed our previous finding in cultured cells that Ads plays a role in osteoclastogenesis (OCG) and actin cytoskeletal organization in osteoclasts. Here we show that Ads is required for osteoclast formation and that when alveolar bone resorption is experimentally induced in mice, genetic deletion of Ads prevents osteoclast-mediated bone loss. Further, when Ads-null osteoclasts are cultured, they exhibit defective OCG, disorganized podosome-based actin filament superstructures, and decreased bone resorption. Reintroduction of Ads into Ads-null osteoclast precursor cells restored these osteoclast defects. Collectively, these data demonstrate a unique and osteoclast-specific role for Ads in OCG and osteoclast function.
Collapse
Affiliation(s)
- Hongwei Jiang
- *Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Ontario, Canada; and Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yongqiang Wang
- *Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Ontario, Canada; and Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Ana Viniegra
- *Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Ontario, Canada; and Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Corneliu Sima
- *Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Ontario, Canada; and Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Christopher A McCulloch
- *Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Ontario, Canada; and Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Michael Glogauer
- *Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Ontario, Canada; and Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
322
|
Kim JH, Ren Y, Ng WP, Li S, Son S, Kee YS, Zhang S, Zhang G, Fletcher DA, Robinson DN, Chen EH. Mechanical tension drives cell membrane fusion. Dev Cell 2015; 32:561-73. [PMID: 25684354 DOI: 10.1016/j.devcel.2015.01.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 11/14/2014] [Accepted: 01/10/2015] [Indexed: 01/05/2023]
Abstract
Membrane fusion is an energy-consuming process that requires tight juxtaposition of two lipid bilayers. Little is known about how cells overcome energy barriers to bring their membranes together for fusion. Previously, we have shown that cell-cell fusion is an asymmetric process in which an "attacking" cell drills finger-like protrusions into the "receiving" cell to promote cell fusion. Here, we show that the receiving cell mounts a Myosin II (MyoII)-mediated mechanosensory response to its invasive fusion partner. MyoII acts as a mechanosensor, which directs its force-induced recruitment to the fusion site, and the mechanosensory response of MyoII is amplified by chemical signaling initiated by cell adhesion molecules. The accumulated MyoII, in turn, increases cortical tension and promotes fusion pore formation. We propose that the protrusive and resisting forces from fusion partners put the fusogenic synapse under high mechanical tension, which helps to overcome energy barriers for membrane apposition and drives cell membrane fusion.
Collapse
Affiliation(s)
- Ji Hoon Kim
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yixin Ren
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Win Pin Ng
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shuo Li
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sungmin Son
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yee-Seir Kee
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shiliang Zhang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Guofeng Zhang
- Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD 20892, USA
| | - Daniel A Fletcher
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elizabeth H Chen
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
323
|
Lunt SY, Muralidhar V, Hosios AM, Israelsen WJ, Gui DY, Newhouse L, Ogrodzinski M, Hecht V, Xu K, Acevedo PNM, Hollern DP, Bellinger G, Dayton TL, Christen S, Elia I, Dinh AT, Stephanopoulos G, Manalis SR, Yaffe MB, Andrechek ER, Fendt SM, Vander Heiden MG. Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation. Mol Cell 2015; 57:95-107. [PMID: 25482511 PMCID: PMC4289430 DOI: 10.1016/j.molcel.2014.10.027] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 08/19/2014] [Accepted: 10/28/2014] [Indexed: 01/15/2023]
Abstract
Metabolic regulation influences cell proliferation. The influence of pyruvate kinase isoforms on tumor cells has been extensively studied, but whether PKM2 is required for normal cell proliferation is unknown. We examine how PKM2 deletion affects proliferation and metabolism in nontransformed, nonimmortalized PKM2-expressing primary cells. We find that deletion of PKM2 in primary cells results in PKM1 expression and proliferation arrest. PKM1 expression, rather than PKM2 loss, is responsible for this effect, and proliferation arrest cannot be explained by cell differentiation, senescence, death, changes in gene expression, or prevention of cell growth. Instead, PKM1 expression impairs nucleotide production and the ability to synthesize DNA and progress through the cell cycle. Nucleotide biosynthesis is limiting, as proliferation arrest is characterized by severe thymidine depletion, and supplying exogenous thymine rescues both nucleotide levels and cell proliferation. Thus, PKM1 expression promotes a metabolic state that is unable to support DNA synthesis.
Collapse
Affiliation(s)
- Sophia Y Lunt
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Vinayak Muralidhar
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-MIT Health Sciences and Technology Division, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron M Hosios
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - William J Israelsen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dan Y Gui
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lauren Newhouse
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Martin Ogrodzinski
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Vivian Hecht
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kali Xu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Paula N Marín Acevedo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel P Hollern
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Gary Bellinger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Talya L Dayton
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stefan Christen
- Vesalius Research Center, VIB, 3000 Leuven, Belgium; Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Ilaria Elia
- Vesalius Research Center, VIB, 3000 Leuven, Belgium; Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Anh T Dinh
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Scott R Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael B Yaffe
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eran R Andrechek
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah-Maria Fendt
- Vesalius Research Center, VIB, 3000 Leuven, Belgium; Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
324
|
Wu M, Yang G, Chen Y, Zhou X, Chen H, Li M, Yu K, Zhang X, Xie S, Zhang Y, Chu G, Mo D. CEP2 attenuates myoblast differentiation but does not affect proliferation. Int J Biol Sci 2015; 11:99-108. [PMID: 25552934 PMCID: PMC4278259 DOI: 10.7150/ijbs.8621] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 03/11/2014] [Indexed: 12/30/2022] Open
Abstract
CEP2 (CDC42EP2) is a member of the CDC42 subfamily that belongs to the Rho family. The Rho family plays an important role in a variety of cellular processes including skeletal myogenesis. Here, we find the expression of CEP2 increased significantly during C2C12 myogenesis. Overexpression of CEP2 could attenuate myoblast differentiation, while knockdown of CEP2 by siRNA results in enhancing myogenesis. Furthermore, we demonstrate for the first time that CEP2 attenuates myoblast differentiation via suppression of muscle regulatory factors (MRFs) rather than influencing myoblast proliferation. These results indicate that CEP2 acts as a repressor during myogenesis, which provides new insights into the role of CEP2 in muscle development.
Collapse
Affiliation(s)
- Ming Wu
- 1. State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Gongshe Yang
- 2. Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yaosheng Chen
- 1. State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xingyu Zhou
- 1. State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Hu Chen
- 1. State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Mingsen Li
- 1. State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Kaifan Yu
- 1. State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xumeng Zhang
- 1. State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Shuihua Xie
- 1. State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ying Zhang
- 1. State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Guiyan Chu
- 2. Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Delin Mo
- 1. State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
325
|
Abstract
The fusion of myoblasts, the skeletal muscle progenitors, is critical for skeletal muscle formation, function, and repair after muscle injury. Recognition of the phospholipid phosphatidylserine (PtdSer) exposed on certain myoblasts is required during fusion into multinuclear myofibers. Cell surface exposure of PtdSer is also a feature of cells dying through the process of apoptosis. Here, we describe the use of PtdSer exposing apoptotic cells as stimulators of myoblast fusion.
Collapse
|
326
|
Abstract
Cell fusion events are essential for the maintenance of skeletal muscle tissue and during its repair processes after damage. However, these mechanisms have not come much into focus in the recent years. Different methods can be used to assess ongoing cell fusion events in adult skeletal muscle tissue. Among these methods, confocal microscopy, western blotting, and quantitative polymerase chain reactions are ideal, since they provide concerted information about cell fusion events going on in skeletal muscle tissue at both qualitative and quantitative levels. Confocal microscopy allows for the visualization of exact localizations of cell fusion events in adult skeletal muscle. Western blotting allows for a semiquantitative evaluation of protein levels involved and associated with cell fusions events. Finally, quantitative polymerase chain reaction is a valuable tool to precisely assess mRNA levels of genes involved and associated with cell fusions events. In addition to the investigation if cell fusion markers in skeletal muscle tissue, in vitro cell culture systems (e.g., C2C12 cells) can be used to study cell fusions events in a highly standardized system in order to obtain detailed information about genes and proteins involved in these processes. Here, confocal microscopy, western blotting, and quantitative polymerase chain reaction are described as methods to investigate cell fusion events and how a C2C12 cell culture system can be run to support the studies of adult muscle tissue.
Collapse
|
327
|
Gurevich D, Siegel A, Currie PD. Skeletal myogenesis in the zebrafish and its implications for muscle disease modelling. Results Probl Cell Differ 2015; 56:49-76. [PMID: 25344666 DOI: 10.1007/978-3-662-44608-9_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Current evidence indicates that post-embryonic muscle growth and regeneration in amniotes is mediated almost entirely by stem cells derived from muscle progenitor cells (MPCs), known as satellite cells. Exhaustion and impairment of satellite cell activity is involved in the severe muscle loss associated with degenerative muscle diseases such as Muscular Dystrophies and is the main cause of age-associated muscle wasting. Understanding the molecular and cellular basis of satellite cell function in muscle generation and regeneration (myogenesis) is critical to the broader goal of developing treatments that may ameliorate such conditions. Considerable knowledge exists regarding the embryonic stages of amniote myogenesis. Much less is known about how post-embryonic amniote myogenesis proceeds, how adult myogenesis relates to embryonic myogenesis on a cellular or genetic level. Of the studies focusing on post-embryonic amniote myogenesis, most are post-mortem and in vitro analyses, precluding the understanding of cellular behaviours and genetic mechanisms in an undisturbed in vivo setting. Zebrafish are optically clear throughout much of their post-embryonic development, facilitating their use in live imaging of cellular processes. Zebrafish also possess a compartment of MPCs, which appear similar to satellite cells and persist throughout the post-embryonic development of the fish, permitting their use in examining the contribution of these cells to muscle tissue growth and regeneration.
Collapse
Affiliation(s)
- David Gurevich
- Australian Regenerative Medicine Institute, Monash University, Level 1, Building 75, Wellington Road, Clayton, VIC, 3800, Australia
| | | | | |
Collapse
|
328
|
Suzuki A, Scruggs A, Iwata J. The temporal specific role of WNT/β-catenin signaling during myogenesis. JOURNAL OF NATURE AND SCIENCE 2015; 1:e143. [PMID: 26176019 PMCID: PMC4499510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Disruption of WNT/β-catenin signaling causes muscle developmental defects. However, it has been unclear how WNT/β-catenin signaling regulates each step of myogenesis. The in vitro culture of primary myoblasts and C2C12 cells (a myoblast cell line) has the ability to differentiate into myofibers in culture with differentiation inducers. These in vitro systems are useful to investigate each step of muscle development, ranging from cell proliferation to homeostasis, under the control of experimental conditions. Our recent study shows that WNT/β-catenin signaling can regulate myogenesis in a temporal specific manner by controlling the gene expression of cyclin A2 (Ccna2) and cell division cycle 25C (Cdc25c) during myoblast proliferation and fermitin family homolog 2 (Fermt2) during myoblast fusion and differentiation, respectively. In the well-differentiated myofibers, WNT/β-catenin signaling plays a role in the maintenance of their structure through a cadherin/β-catenin/actin complex formation, which is important for connecting a myofiber's cytoskeleton to the surrounding extracellular matrix. Thus, our recent study coupled with previous findings indicates that WNT/β-catenin signaling regulates myogenesis in a variety of ways, and any failure of these steps of myogenesis causes muscle developmental defects.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, the University of Texas Health Science Center at Houston School of Dentistry, USA
- Center for Craniofacial Research, the University of Texas Health Science Center at Houston School of Dentistry, USA
| | - Anne Scruggs
- Department of Diagnostic & Biomedical Sciences, the University of Texas Health Science Center at Houston School of Dentistry, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, the University of Texas Health Science Center at Houston School of Dentistry, USA
- Center for Craniofacial Research, the University of Texas Health Science Center at Houston School of Dentistry, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, USA
| |
Collapse
|
329
|
Identification of novel Kirrel3 gene splice variants in adult human skeletal muscle. BMC PHYSIOLOGY 2014; 14:11. [PMID: 25488023 PMCID: PMC4269076 DOI: 10.1186/s12899-014-0011-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 11/19/2014] [Indexed: 01/08/2023]
Abstract
Background Multiple cell types including trophoblasts, osteoclasts and myoblasts require somatic cell fusion events as part of their physiological functions. In Drosophila Melanogaster the paralogus type 1 transmembrane receptors and members of the immunoglobulin superfamily Kin of Irre (Kirre) and roughest (Rst) regulate myoblast fusion during embryonic development. Present within the human genome are three homologs to Kirre termed Kin of Irre like (Kirrel) 1, 2 and 3. Currently it is unknown if Kirrel3 is expressed in adult human skeletal muscle. Results We investigated (using PCR and Western blot) Kirrel3 in adult human skeletal muscle samples taken at rest and after mild exercise induced muscle damage. Kirrel3 mRNA expression was verified by sequencing and protein presence via blotting with 2 different anti-Kirrel3 protein antibodies. Evidence for three alternatively spliced Kirrel3 mRNA transcripts in adult human skeletal muscle was obtained. Kirrel3 mRNA in adult human skeletal muscle was detected at low or moderate levels, or not at all. This sporadic expression suggests that Kirrel3 is expressed in a pulsatile manner. Several anti Kirrel3 immunoreactive proteins were detected in all adult human skeletal muscle samples analysed and results suggest the presence of different isoforms or posttranslational modification, or both. Conclusion The results presented here demonstrate for the first time that there are at least 3 splice variants of Kirrel3 expressed in adult human skeletal muscle, two of which have never previously been identified in human muscle. Importantly, mRNA of all splice variants was not always present, a finding with potential physiological relevance. These initial discoveries highlight the need for more molecular and functional studies to understand the role of Kirrel3 in human skeletal muscle.
Collapse
|
330
|
Haralalka S, Shelton C, Cartwright HN, Guo F, Trimble R, Kumar RP, Abmayr SM. Live imaging provides new insights on dynamic F-actin filopodia and differential endocytosis during myoblast fusion in Drosophila. PLoS One 2014; 9:e114126. [PMID: 25474591 PMCID: PMC4256407 DOI: 10.1371/journal.pone.0114126] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/28/2014] [Indexed: 11/29/2022] Open
Abstract
The process of myogenesis includes the recognition, adhesion, and fusion of committed myoblasts into multinucleate syncytia. In the larval body wall muscles of Drosophila, this elaborate process is initiated by Founder Cells and Fusion-Competent Myoblasts (FCMs), and cell adhesion molecules Kin-of-IrreC (Kirre) and Sticks-and-stones (Sns) on their respective surfaces. The FCMs appear to provide the driving force for fusion, via the assembly of protrusions associated with branched F-actin and the WASp, SCAR and Arp2/3 pathways. In the present study, we utilize the dorsal pharyngeal musculature that forms in the Drosophila embryo as a model to explore myoblast fusion and visualize the fusion process in live embryos. These muscles rely on the same cell types and genes as the body wall muscles, but are amenable to live imaging since they do not undergo extensive morphogenetic movement during formation. Time-lapse imaging with F-actin and membrane markers revealed dynamic FCM-associated actin-enriched protrusions that rapidly extend and retract into the myotube from different sites within the actin focus. Ultrastructural analysis of this actin-enriched area showed that they have two morphologically distinct structures: wider invasions and/or narrow filopodia that contain long linear filaments. Consistent with this, formin Diaphanous (Dia) and branched actin nucleator, Arp3, are found decorating the filopodia or enriched at the actin focus, respectively, indicating that linear actin is present along with branched actin at sites of fusion in the FCM. Gain-of-function Dia and loss-of-function Arp3 both lead to fusion defects, a decrease of F-actin foci and prominent filopodia from the FCMs. We also observed differential endocytosis of cell surface components at sites of fusion, with actin reorganizing factors, WASp and SCAR, and Kirre remaining on the myotube surface and Sns preferentially taken up with other membrane proteins into early endosomes and lysosomes in the myotube.
Collapse
Affiliation(s)
- Shruti Haralalka
- Stowers Institute for Medical Research, Kansas City, Missouri, 64110, United States of America
| | - Claude Shelton
- Stowers Institute for Medical Research, Kansas City, Missouri, 64110, United States of America
| | - Heather N. Cartwright
- Stowers Institute for Medical Research, Kansas City, Missouri, 64110, United States of America
| | - Fengli Guo
- Stowers Institute for Medical Research, Kansas City, Missouri, 64110, United States of America
| | - Rhonda Trimble
- Stowers Institute for Medical Research, Kansas City, Missouri, 64110, United States of America
| | - Ram P. Kumar
- Stowers Institute for Medical Research, Kansas City, Missouri, 64110, United States of America
| | - Susan M. Abmayr
- Stowers Institute for Medical Research, Kansas City, Missouri, 64110, United States of America
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, 66160, United States of America
- * E-mail:
| |
Collapse
|
331
|
Teng S, Stegner D, Chen Q, Hongu T, Hasegawa H, Chen L, Kanaho Y, Nieswandt B, Frohman MA, Huang P. Phospholipase D1 facilitates second-phase myoblast fusion and skeletal muscle regeneration. Mol Biol Cell 2014; 26:506-17. [PMID: 25428992 PMCID: PMC4310741 DOI: 10.1091/mbc.e14-03-0802] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Phospholipase D1 and its product, phosphatidic acid, facilitate muscle fiber regeneration in vivo and are required by mononuclear myocytes to fuse with nascent myotubes during second-phase myoblast fusion in vitro. Myoblast differentiation and fusion is a well-orchestrated multistep process that is essential for skeletal muscle development and regeneration. Phospholipase D1 (PLD1) has been implicated in the initiation of myoblast differentiation in vitro. However, whether PLD1 plays additional roles in myoblast fusion and exerts a function in myogenesis in vivo remains unknown. Here we show that PLD1 expression is up-regulated in myogenic cells during muscle regeneration after cardiotoxin injury and that genetic ablation of PLD1 results in delayed myofiber regeneration. Myoblasts derived from PLD1-null mice or treated with PLD1-specific inhibitor are unable to form mature myotubes, indicating defects in second-phase myoblast fusion. Concomitantly, the PLD1 product phosphatidic acid is transiently detected on the plasma membrane of differentiating myocytes, and its production is inhibited by PLD1 knockdown. Exogenous lysophosphatidylcholine, a key membrane lipid for fusion pore formation, partially rescues fusion defect resulting from PLD1 inhibition. Thus these studies demonstrate a role for PLD1 in myoblast fusion during myogenesis in which PLD1 facilitates the fusion of mononuclear myocytes with nascent myotubes.
Collapse
Affiliation(s)
- Shuzhi Teng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115 The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - David Stegner
- University Hospital and Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Qin Chen
- Department of Pharmacology, Stony Brook University, Stony Brook, NY 11794
| | - Tsunaki Hongu
- Department of Physiological Chemistry, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hiroshi Hasegawa
- Department of Physiological Chemistry, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Li Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yasunori Kanaho
- Department of Physiological Chemistry, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Bernhard Nieswandt
- University Hospital and Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Michael A Frohman
- Department of Pharmacology, Stony Brook University, Stony Brook, NY 11794
| | - Ping Huang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115
| |
Collapse
|
332
|
Global epigenomic analysis indicates protocadherin-7 activates osteoclastogenesis by promoting cell-cell fusion. Biochem Biophys Res Commun 2014; 455:305-11. [PMID: 25446128 DOI: 10.1016/j.bbrc.2014.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/06/2014] [Indexed: 12/19/2022]
Abstract
Gene expression is dependent not only on genomic sequences, but also epigenetic control, in which the regulation of chromatin by histone modification plays a crucial role. Histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 27 trimethylation (H3K27me3) are related to transcriptionally activated and silenced sequences, respectively. Osteoclasts, the multinucleated cells that resorb bone, are generated by the fusion of precursor cells of monocyte/macrophage lineage. To elucidate the molecular and epigenetic regulation of osteoclast differentiation, we performed a chromatin immunoprecipitation sequencing (ChIP-seq) analysis for H3K4me3 and H3K27me3 in combination with RNA sequencing. We focused on the histone modification change from H3K4me3(+)H3K27me3(+) to H3K4me3(+)H3K27me3(-) and identified the protocadherin-7 gene (Pcdh7) to be among the genes epigenetically regulated during osteoclastogenesis. Pcdh7 was induced by RANKL stimulation in an NFAT-dependent manner. The knockdown of Pcdh7 inhibited RANKL-induced osteoclast differentiation due to the impairment of cell-cell fusion, accompanied by a decreased expression of the fusion-related genes Dcstamp, Ocstamp and Atp6v0d2. This study demonstrates that Pcdh7 plays a key role in osteoclastogenesis by promoting cell-cell fusion.
Collapse
|
333
|
Yi P, Chew LL, Zhang Z, Ren H, Wang F, Cong X, Zheng L, Luo Y, Ouyang H, Low BC, Zhou YT. KIF5B transports BNIP-2 to regulate p38 mitogen-activated protein kinase activation and myoblast differentiation. Mol Biol Cell 2014; 26:29-42. [PMID: 25378581 PMCID: PMC4279227 DOI: 10.1091/mbc.e14-03-0797] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cdo bridges scaffold proteins BNIP-2 and JLP to activate p38MAPK during myoblast differentiation. KIF5B is a novel interacting partner of BNIP-2 and promotes myogenic differentiation. KIF5B-dependent transport of BNIP-2 is essential for its promyogenic effects. The Cdo-p38MAPK (p38 mitogen-activated protein kinase) signaling pathway plays important roles in regulating skeletal myogenesis. During myogenic differentiation, the cell surface receptor Cdo bridges scaffold proteins BNIP-2 and JLP and activates p38MAPK, but the spatial-temporal regulation of this process is largely unknown. We here report that KIF5B, the heavy chain of kinesin-1 motor, is a novel interacting partner of BNIP-2. Coimmunoprecipitation and far-Western study revealed that BNIP-2 directly interacted with the motor and tail domains of KIF5B via its BCH domain. By using a range of organelle markers and live microscopy, we determined the endosomal localization of BNIP-2 and revealed the microtubule-dependent anterograde transport of BNIP-2 in C2C12 cells. The anterograde transport of BNIP-2 was disrupted by a dominant-negative mutant of KIF5B. In addition, knockdown of KIF5B causes aberrant aggregation of BNIP-2, confirming that KIF5B is critical for the anterograde transport of BNIP-2 in cells. Gain- and loss-of-function experiments further showed that KIF5B modulates p38MAPK activity and in turn promotes myogenic differentiation. Of importance, the KIF5B-dependent anterograde transport of BNIP-2 is critical for its promyogenic effects. Our data reveal a novel role of KIF5B in the spatial regulation of Cdo–BNIP-2–p38MAPK signaling and disclose a previously unappreciated linkage between the intracellular transporting system and myogenesis regulation.
Collapse
Affiliation(s)
- Peng Yi
- Center for Stem Cell and Tissue Engineering, Department of Biochemistry and Molecular Biology, and Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Li Li Chew
- Department of Biological Sciences and Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Ziwang Zhang
- Center for Stem Cell and Tissue Engineering, Department of Biochemistry and Molecular Biology, and Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hao Ren
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Feiya Wang
- Center for Stem Cell and Tissue Engineering, Department of Biochemistry and Molecular Biology, and Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaoxia Cong
- Center for Stem Cell and Tissue Engineering, Department of Biochemistry and Molecular Biology, and Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Liling Zheng
- Center for Stem Cell and Tissue Engineering, Department of Biochemistry and Molecular Biology, and
| | - Yan Luo
- Center for Stem Cell and Tissue Engineering, Department of Biochemistry and Molecular Biology, and
| | - Hongwei Ouyang
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Boon Chuan Low
- Department of Biological Sciences and Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Yi Ting Zhou
- Center for Stem Cell and Tissue Engineering, Department of Biochemistry and Molecular Biology, and Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
334
|
Banjade S, Rosen MK. Phase transitions of multivalent proteins can promote clustering of membrane receptors. eLife 2014; 3. [PMID: 25321392 PMCID: PMC4238058 DOI: 10.7554/elife.04123] [Citation(s) in RCA: 430] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/16/2014] [Indexed: 12/14/2022] Open
Abstract
Clustering of proteins into micrometer-sized structures at membranes is observed in many signaling pathways. Most models of clustering are specific to particular systems, and relationships between physical properties of the clusters and their molecular components are not well understood. We report biochemical reconstitution on supported lipid bilayers of protein clusters containing the adhesion receptor Nephrin and its cytoplasmic partners, Nck and N-WASP. With Nephrin attached to the bilayer, multivalent interactions enable these proteins to polymerize on the membrane surface and undergo two-dimensional phase separation, producing micrometer-sized clusters. Dynamics and thermodynamics of the clusters are modulated by the valencies and affinities of the interacting species. In the presence of the Arp2/3 complex, the clusters assemble actin filaments, suggesting that clustering of regulatory factors could promote local actin assembly at membranes. Interactions between multivalent proteins could be a general mechanism for cytoplasmic adaptor proteins to organize membrane receptors into micrometer-scale signaling zones. DOI:http://dx.doi.org/10.7554/eLife.04123.001 The membrane that surrounds a cell is made up of a mixture of lipid molecules and proteins. Membrane proteins perform a wide range of roles, including transmitting signals into, and out of, cells and helping neighboring cells to stick together. To perform these tasks, these proteins commonly need to bind to other molecules—collectively known as ligands—that are found either inside or outside the cell. Membrane proteins are able to move around within the membrane, and in many systems, ligand binding causes the membrane proteins to cluster together. Although this clustering has been seen in many different systems, no general principles that describe how clustering occurs had been found. Now, Banjade and Rosen have constructed an artificial cell membrane to investigate the clustering of a membrane protein called Nephrin, which is essential for kidneys to function correctly. When it is activated, Nephrin interacts with protein ligands called Nck and N-WASP that are found inside cells and helps filaments of a protein called actin to form. These filaments perform a number of roles including enabling cells to adhere to each other and to move. In Banjade and Rosen's artificial system, when a critical concentration of ligands was exceeded, clusters of Nephrin, Nck and N-WASP suddenly formed. This suggests that the clusters form through a physical process known as ‘phase separation’. Banjade and Rosen found that this critical concentration depends on how strongly the proteins interact and the number of sites they possess to bind each other. Within the clusters, the three proteins formed large polymer chains. The clusters were mobile and, over time, small clusters coalesced into larger clusters. Even though the clusters persisted for hours, individual proteins did not stay in a given cluster for long and instead continuously exchanged back-and-forth between the cluster and its surroundings. When actin and another protein complex that interacts with N-WASP were added to the artificial membrane system, actin filaments began to form at the protein clusters. Banjade and Rosen suggest that such clusters act as ‘signaling zones’ that coordinate the construction of the actin filaments. Regions that are also found in many other signaling proteins mediate the interactions between Nephrin, Nck and N-WASP. Banjade and Rosen therefore suggest that phase separation and protein polymer formation could explain how many different types of membrane proteins form clusters. DOI:http://dx.doi.org/10.7554/eLife.04123.002
Collapse
Affiliation(s)
- Sudeep Banjade
- Department of Biophysics, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Michael K Rosen
- Department of Biophysics, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
335
|
A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution. PLoS One 2014; 9:e109780. [PMID: 25329559 PMCID: PMC4199604 DOI: 10.1371/journal.pone.0109780] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/02/2014] [Indexed: 01/24/2023] Open
Abstract
Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.
Collapse
|
336
|
Affiliation(s)
- Benjamin Podbilewicz
- Department of Biology, Technion–Israel Institute of Technology, Haifa 32000, Israel;
| |
Collapse
|
337
|
Shin NY, Choi H, Neff L, Wu Y, Saito H, Ferguson SM, De Camilli P, Baron R. Dynamin and endocytosis are required for the fusion of osteoclasts and myoblasts. ACTA ACUST UNITED AC 2014; 207:73-89. [PMID: 25287300 PMCID: PMC4195819 DOI: 10.1083/jcb.201401137] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dynamin function is essential for cell–cell fusion in both osteoclast precursors and myoblasts in part through its effects on endocytosis. Cell–cell fusion is an evolutionarily conserved process that leads to the formation of multinucleated myofibers, syncytiotrophoblasts and osteoclasts, allowing their respective functions. Although cell–cell fusion requires the presence of fusogenic membrane proteins and actin-dependent cytoskeletal reorganization, the precise machinery allowing cells to fuse is still poorly understood. Using an inducible knockout mouse model to generate dynamin 1– and 2–deficient primary osteoclast precursors and myoblasts, we found that fusion of both cell types requires dynamin. Osteoclast and myoblast cell–cell fusion involves the formation of actin-rich protrusions closely associated with clathrin-mediated endocytosis in the apposed cell. Furthermore, impairing endocytosis independently of dynamin also prevented cell–cell fusion. Since dynamin is involved in both the formation of actin-rich structures and in endocytosis, our results indicate that dynamin function is central to the osteoclast precursors and myoblasts fusion process, and point to an important role of endocytosis in cell–cell fusion.
Collapse
Affiliation(s)
- Nah-Young Shin
- Department of Medicine, Harvard Medical School, Boston, MA 02115 Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115
| | - Hyewon Choi
- Department of Medicine, Harvard Medical School, Boston, MA 02115 Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115
| | - Lynn Neff
- Department of Medicine, Harvard Medical School, Boston, MA 02115 Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115
| | - Yumei Wu
- Department of Cell Biology and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510 Department of Cell Biology and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510
| | - Hiroaki Saito
- Department of Medicine, Harvard Medical School, Boston, MA 02115 Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115
| | - Shawn M Ferguson
- Department of Cell Biology and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510 Department of Cell Biology and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510
| | - Pietro De Camilli
- Department of Cell Biology and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510 Department of Cell Biology and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510 Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Roland Baron
- Department of Medicine, Harvard Medical School, Boston, MA 02115 Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115
| |
Collapse
|
338
|
Kannan R, Kuzina I, Wincovitch S, Nowotarski SH, Giniger E. The Abl/enabled signaling pathway regulates Golgi architecture in Drosophila photoreceptor neurons. Mol Biol Cell 2014; 25:2993-3005. [PMID: 25103244 PMCID: PMC4230588 DOI: 10.1091/mbc.e14-02-0729] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/04/2014] [Accepted: 07/29/2014] [Indexed: 11/24/2022] Open
Abstract
The Golgi apparatus is optimized separately in different tissues for efficient protein trafficking, but we know little of how cell signaling shapes this organelle. We now find that the Abl tyrosine kinase signaling pathway controls the architecture of the Golgi complex in Drosophila photoreceptor (PR) neurons. The Abl effector, Enabled (Ena), selectively labels the cis-Golgi in developing PRs. Overexpression or loss of function of Ena increases the number of cis- and trans-Golgi cisternae per cell, and Ena overexpression also redistributes Golgi to the most basal portion of the cell soma. Loss of Abl or its upstream regulator, the adaptor protein Disabled, lead to the same alterations of Golgi as does overexpression of Ena. The increase in Golgi number in Abl mutants arises in part from increased frequency of Golgi fission events and a decrease in fusions, as revealed by live imaging. Finally, we demonstrate that the effects of Abl signaling on Golgi are mediated via regulation of the actin cytoskeleton. Together, these data reveal a direct link between cell signaling and Golgi architecture. Moreover, they raise the possibility that some of the effects of Abl signaling may arise, in part, from alterations of protein trafficking and secretion.
Collapse
Affiliation(s)
- Ramakrishnan Kannan
- Axon Guidance and Neural Connectivity Unit, Basic Neuroscience Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Irina Kuzina
- Axon Guidance and Neural Connectivity Unit, Basic Neuroscience Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Stephen Wincovitch
- Cytogenetics and Microscopy Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Stephanie H Nowotarski
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Edward Giniger
- Axon Guidance and Neural Connectivity Unit, Basic Neuroscience Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
339
|
Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis. Exp Cell Res 2014; 331:292-308. [PMID: 25281303 DOI: 10.1016/j.yexcr.2014.09.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/16/2014] [Accepted: 09/23/2014] [Indexed: 02/04/2023]
Abstract
We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast-myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube-myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube-myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle.
Collapse
|
340
|
Caine C, Kasherov P, Silber J, Lalouette A. Mef2 interacts with the Notch pathway during adult muscle development in Drosophila melanogaster. PLoS One 2014; 9:e108149. [PMID: 25247309 PMCID: PMC4172597 DOI: 10.1371/journal.pone.0108149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 08/03/2014] [Indexed: 12/22/2022] Open
Abstract
Myogenesis of indirect flight muscles (IFMs) in Drosophila melanogaster follows a well-defined cellular developmental scheme. During embryogenesis, a set of cells, the Adult Muscle Precursors (AMPs), are specified. These cells will become proliferating myoblasts during the larval stages which will then give rise to the adult IFMs. Although the cellular aspect of this developmental process is well studied, the molecular biology behind the different stages is still under investigation. In particular, the interactions required during the transition from proliferating myoblasts to differentiated myoblasts ready to fuse to the muscle fiber. It has been previously shown that the Notch pathway is active in proliferating myoblasts, and that this pathway is inhibited in developing muscle fibers. Furthermore, the Myocyte Enhancing Factor 2 (Mef2), Vestigial (Vg) and Scalloped (Sd) transcription factors are necessary for IFM development and that Vg is required for Notch pathway repression in differentiating fibers. Here we examine the interactions between Notch and Mef2 and mechanisms by which the Notch pathway is inhibited during differentiation. We show that Mef2 is capable of inhibiting the Notch pathway in non myogenic cells. A previous screen for Mef2 potential targets identified Delta a component of the Notch pathway. Dl is expressed in Mef2 and Sd-positive developing fibers. Our results show that Mef2 and possibly Sd regulate a Dl enhancer specifically expressed in the developing IFMs and that Mef2 is required for Dl expression in developing IFMs.
Collapse
Affiliation(s)
- Charlotte Caine
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Petar Kasherov
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Joël Silber
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Alexis Lalouette
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
341
|
Poliakova K, Adebola A, Leung CL, Favre B, Liem RKH, Schepens I, Borradori L. BPAG1a and b associate with EB1 and EB3 and modulate vesicular transport, Golgi apparatus structure, and cell migration in C2.7 myoblasts. PLoS One 2014; 9:e107535. [PMID: 25244344 PMCID: PMC4171495 DOI: 10.1371/journal.pone.0107535] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 08/18/2014] [Indexed: 11/19/2022] Open
Abstract
BPAG1a and BPAG1b (BPAG1a/b) constitute two major isoforms encoded by the dystonin (Dst) gene and show homology with MACF1a and MACF1b. These proteins are members of the plakin family, giant multi-modular proteins able to connect the intermediate filament, microtubule and microfilament cytoskeletal networks with each other and to distinct cell membrane sites. They also serve as scaffolds for signaling proteins that modulate cytoskeletal dynamics. To gain better insights into the functions of BPAG1a/b, we further characterized their C-terminal region important for their interaction with microtubules and assessed the role of these isoforms in the cytoskeletal organization of C2.7 myoblast cells. Our results show that alternative splicing does not only occur at the 5′ end of Dst and Macf1 pre-mRNAs, as previously reported, but also at their 3′ end, resulting in expression of additional four mRNA variants of BPAG1 and MACF1. These isoform-specific C-tails were able to bundle microtubules and bound to both EB1 and EB3, two microtubule plus end proteins. In the C2.7 cell line, knockdown of BPAG1a/b had no major effect on the organization of the microtubule and microfilament networks, but negatively affected endocytosis and maintenance of the Golgi apparatus structure, which became dispersed. Finally, knockdown of BPAG1a/b caused a specific decrease in the directness of cell migration, but did not impair initial cell adhesion. These data provide novel insights into the complexity of alternative splicing of Dst pre-mRNAs and into the role of BPAG1a/b in vesicular transport, Golgi apparatus structure as well as in migration in C2.7 myoblasts.
Collapse
Affiliation(s)
- Kseniia Poliakova
- Department of Clinical Research, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
- * E-mail:
| | - Adijat Adebola
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Conrad L. Leung
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Bertrand Favre
- Department of Clinical Research, University of Bern, Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Ronald K. H. Liem
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Isabelle Schepens
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Luca Borradori
- Department of Clinical Research, University of Bern, Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
342
|
The need to more precisely define aspects of skeletal muscle regeneration. Int J Biochem Cell Biol 2014; 56:56-65. [PMID: 25242742 DOI: 10.1016/j.biocel.2014.09.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 12/11/2022]
Abstract
A more precise definition of the term 'skeletal muscle regeneration' is required to reduce confusion and misconceptions. In this paper the term is used only for events that follow myofibre necrosis, to result in myogenesis and new muscle formation: other key events include early inflammation and revascularisation, and later fibrosis and re-innervation. The term 'muscle regeneration' is sometimes used casually for situations that do not involve myonecrosis; such as restoration of muscle mass by hypertrophy after atrophy, and other forms of damage to muscle tissue components. These situations are excluded from the definition in this paper which is focussed on mammalian muscles with the long-term aim of clinical translation to enhance new muscle formation after acute or chronic injury or during surgery to replace whole muscles. The paper briefly outlines the cellular events involved in myogenesis during development and post-natal muscle growth, discusses the role of satellite cells in mature normal muscles, and the likely incidence of myofibre necrosis/regeneration in healthy ageing mammals (even when subjected to exercise). The importance of the various components of regeneration is outlined to emphasise that problems in each of these aspects can influence overall new muscle formation; thus care is needed for correct interpretation of altered kinetics. Various markers used to identify regenerating myofibres are critically discussed and, since these can all occur in other conditions, caution is required for accurate interpretation of these cellular events. Finally, clinical situations are outlined where there is a need to enhance skeletal muscle regeneration: these include acute and chronic injuries or transplantation with bioengineering to form new muscles, therapeutic approaches to muscular dystrophies, and comment on proposed stem cell therapies to reduce age-related loss of muscle mass and function. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation.
Collapse
|
343
|
Fachal L, Gómez-Caamaño A, Barnett GC, Peleteiro P, Carballo AM, Calvo-Crespo P, Kerns SL, Sánchez-García M, Lobato-Busto R, Dorling L, Elliott RM, Dearnaley DP, Sydes MR, Hall E, Burnet NG, Carracedo Á, Rosenstein BS, West CML, Dunning AM, Vega A. A three-stage genome-wide association study identifies a susceptibility locus for late radiotherapy toxicity at 2q24.1. Nat Genet 2014; 46:891-4. [PMID: 24974847 DOI: 10.1038/ng.3020] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 06/05/2014] [Indexed: 12/11/2022]
Abstract
There is increasing evidence supporting the role of genetic variants in the development of radiation-induced toxicity. However, previous candidate gene association studies failed to elucidate the common genetic variation underlying this phenotype, which could emerge years after the completion of treatment. We performed a genome-wide association study on a Spanish cohort of 741 individuals with prostate cancer treated with external beam radiotherapy (EBRT). The replication cohorts consisted of 633 cases from the UK and 368 cases from North America. One locus comprising TANC1 (lowest unadjusted P value for overall late toxicity=6.85×10(-9), odds ratio (OR)=6.61, 95% confidence interval (CI)=2.23-19.63) was replicated in the second stage (lowest unadjusted P value for overall late toxicity=2.08×10(-4), OR=6.17, 95% CI=2.25-16.95; Pcombined=4.16×10(-10)). The inclusion of the third cohort gave unadjusted Pcombined=4.64×10(-11). These results, together with the role of TANC1 in regenerating damaged muscle, suggest that the TANC1 locus influences the development of late radiation-induced damage.
Collapse
Affiliation(s)
- Laura Fachal
- 1] Fundación Pública Galega de Medicina Xenómica, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain. [2] Grupo de Medicina Xenómica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Antonio Gómez-Caamaño
- Department of Radiation Oncology, USC University Hospital Complex, SERGAS, Santiago de Compostela, Spain
| | - Gillian C Barnett
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Paula Peleteiro
- Department of Radiation Oncology, USC University Hospital Complex, SERGAS, Santiago de Compostela, Spain
| | - Ana M Carballo
- Department of Radiation Oncology, USC University Hospital Complex, SERGAS, Santiago de Compostela, Spain
| | - Patricia Calvo-Crespo
- Department of Radiation Oncology, USC University Hospital Complex, SERGAS, Santiago de Compostela, Spain
| | - Sarah L Kerns
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Manuel Sánchez-García
- Department of Medical Physics, USC University Hospital Complex, SERGAS, Santiago de Compostela, Spain
| | - Ramón Lobato-Busto
- Department of Medical Physics, USC University Hospital Complex, SERGAS, Santiago de Compostela, Spain
| | - Leila Dorling
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Rebecca M Elliott
- Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - David P Dearnaley
- Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, UK
| | - Matthew R Sydes
- Cancer and Other Non-Infectious Diseases, Medical Research Council (MRC) Clinical Trials Unit, London, UK
| | - Emma Hall
- Clinical Trials and Statistics Unit, Institute of Cancer Research, London, UK
| | - Neil G Burnet
- Department of Oncology, University of Cambridge, Oncology Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ángel Carracedo
- 1] Fundación Pública Galega de Medicina Xenómica, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain. [2] Grupo de Medicina Xenómica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain. [3] Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Barry S Rosenstein
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Catharine M L West
- Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Ana Vega
- 1] Fundación Pública Galega de Medicina Xenómica, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain. [2] Grupo de Medicina Xenómica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| |
Collapse
|
344
|
Önel SF, Rust MB, Jacob R, Renkawitz-Pohl R. Tethering membrane fusion: common and different players in myoblasts and at the synapse. J Neurogenet 2014; 28:302-15. [PMID: 24957080 PMCID: PMC4245166 DOI: 10.3109/01677063.2014.936014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Drosophila Membrane fusion is essential for the communication of membrane-defined compartments, development of multicellular organisms and tissue homeostasis. Although membrane fusion has been studied extensively, still little is known about the molecular mechanisms. Especially the intercellular fusion of cells during development and tissue homeostasis is poorly understood. Somatic muscle formation in Drosophila depends on the intercellular fusion of myoblasts. In this process, myoblasts recognize each other and adhere, thereby triggering a protein machinery that leads to electron-dense plaques, vesicles and F-actin formation at apposing membranes. Two models of how local membrane stress is achieved to induce the merging of the myoblast membranes have been proposed: the electron-dense vesicles transport and release a fusogen and F-actin bends the plasma membrane. In this review, we highlight cell-adhesion molecules and intracellular proteins known to be involved in myoblast fusion. The cell-adhesion proteins also mediate the recognition and adhesion of other cell types, such as neurons that communicate with each other via special intercellular junctions, termed chemical synapses. At these synapses, neurotransmitters are released through the intracellular fusion of synaptic vesicles with the plasma membrane. As the targeting of electron-dense vesicles in myoblasts shares some similarities with the targeting of synaptic vesicle fusion, we compare molecules required for synaptic vesicle fusion to recently identified molecules involved in myoblast fusion.
Collapse
Affiliation(s)
- Susanne Filiz Önel
- Developmental Biology, Philipps University of Marburg , 35043 Marburg , Germany
| | | | | | | |
Collapse
|
345
|
Role of the mTORC1 complex in satellite cell activation by RNA-induced mitochondrial restoration: dual control of cyclin D1 through microRNAs. Mol Cell Biol 2014; 34:3594-606. [PMID: 25047835 DOI: 10.1128/mcb.00742-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During myogenesis, satellite stem cells (SCs) are induced to proliferate and differentiate to myogenic precursors. The role of energy sensors such as the AMP-activated protein kinase (AMPK) and the mammalian Target of Rapamycin (mTOR) in SC activation is unclear. We previously observed that upregulation of ATP through RNA-mediated mitochondrial restoration (MR) accelerates SC activation following skeletal muscle injury. We show here that during regeneration, the AMPK-CRTC2-CREB and Raptor-mTORC-4EBP1 pathways were rapidly activated. The phosho-CRTC2-CREB complex was essential for myogenesis and activated transcription of the critical cell cycle regulator cyclin D1 (Ccnd1). Knockdown (KD) of either mTORC or its subunit Raptor delayed SC activation without influencing the differentiation program. KD of 4EBP1 had no effect on SC activation but enhanced myofiber size. mTORC1 positively regulated Ccnd1 translation but destabilized Ccnd1 mRNA. These antithetical effects of mTORC1 were mediated by two microRNAs (miRs) targeted to the 3' untranslated region (UTR) of Ccnd1 mRNA: miR-1 was downregulated in mTORC-KD muscle, and depletion of miR-1 resulted in increased levels of mRNA without any effect on Ccnd1 protein. In contrast, miR-26a was upregulated upon mTORC depletion, while anti-miR-26a oligonucleotide specifically stimulated Ccnd1 protein expression. Thus, mTORC may act as a timer of satellite cell proliferation during myogenesis.
Collapse
|
346
|
Luo W, Wu H, Ye Y, Li Z, Hao S, Kong L, Zheng X, Lin S, Nie Q, Zhang X. The transient expression of miR-203 and its inhibiting effects on skeletal muscle cell proliferation and differentiation. Cell Death Dis 2014; 5:e1347. [PMID: 25032870 PMCID: PMC4123083 DOI: 10.1038/cddis.2014.289] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/01/2014] [Accepted: 06/03/2014] [Indexed: 01/08/2023]
Abstract
Previous studies have shown that miR-203 is a skin-specific microRNA (miRNA) with a profound role in skin cell differentiation. However, emerging microarray and deep sequencing data revealed that miR-203 is also expressed in embryonic skeletal muscle and myoblasts. In this study, we found that miR-203 was transiently upregulated in chicken embryos on days 10 to 16 (E10-E16) and was sharply downregulated and even not expressed after E16 in chicken embryonic skeletal muscle. Histological profiles and weight variations of embryo skeletal muscle revealed that miR-203 expression is correlated with muscle development. In vitro experiments showed that miR-203 exhibited downregulated expression during myoblast differentiation into myotubes. miR-203 overexpression inhibited myoblast proliferation and differentiation, whereas its loss-of-function increased myoblast proliferation and differentiation. During myogenesis, miR-203 can target and inhibit the expression of c-JUN and MEF2C, which were important for cell proliferation and muscle development, respectively. The overexpression of c-JUN significantly promoted myoblast proliferation. Conversely, knockdown of c-JUN by siRNA suppressed myoblast proliferation. In addition, the knockdown of MEF2C by siRNA significantly inhibited myoblast differentiation. Altogether, these data not only suggested that the expression of miR-203 is transitory during chicken skeletal muscle development but also showed a novel role of miR-203 in inhibiting skeletal muscle cell proliferation and differentiation by repressing c-JUN and MEF2C, respectively.
Collapse
Affiliation(s)
- W Luo
- 1] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China [2] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - H Wu
- 1] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China [2] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Y Ye
- Department of Veterinary Biomedicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Z Li
- 1] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China [2] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - S Hao
- 1] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China [2] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - L Kong
- 1] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China [2] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - X Zheng
- 1] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China [2] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - S Lin
- Department of Animal Science, College of Life Science, Foshan University, Foshan, Guangdong 528231, China
| | - Q Nie
- 1] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China [2] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - X Zhang
- 1] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China [2] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
347
|
Costa MSA, Machado MCR, Vieceli FM, Amistá L, Baroneza JE, Yan CYI, Ramos RGP. The Rst-Neph family of cell adhesion molecules in Gallus gallus. J Neurogenet 2014; 28:270-81. [PMID: 24914768 DOI: 10.3109/01677063.2014.933220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Rst-Neph family comprises an evolutionarily conserved group of single-pass transmembrane glycoproteins that belong to the immunoglobulin superfamily and participate in a wide range of cell adhesion and recognition events in both vertebrates and invertebrates. In mammals and fish, three Rst-Neph members, named Neph1-3, are present. Besides being widely expressed in the embryo, particularly in the developing nervous system, they also contribute to the formation and integrity of the urine filtration apparatus in the slit diaphragm of kidney glomerular podocytes, where they form homodimers, as well as heterodimers with Nephrin, another immunoglobulin-like cell adhesion molecule. In mice, absence of Neph1 causes severe proteinuria, podocyte effacement and perinatal death, while in humans, a mutated form of Nephrin leads to congenital nephrotic syndrome of the Finnish type. Intriguingly, neither Nephrin nor Neph3 are present in birds, which nevertheless have typical vertebrate kidneys with mammalian-like slit diaphragms. These characteristics make, in principle, avian systems very helpful for understanding the evolution and functional significance of the complex interactions displayed by Rst-Neph proteins. To this end we have started a systematic study of chicken Neph embryonic and post-embryonic expression, both at mRNA and protein level. RT-qPCR mRNA quantification of the two Neph paralogues in adult tissues showed that both are expressed in heart, brain, and retina. Neph1 is additionally present in kidney, liver, pancreas, lungs, and testicles, while Neph2 mRNA is barely detected in kidney, testicles, pancreas and absent in liver and lungs. In embryos, mRNA from both genes can already be detected at as early as stage HH14, and remain expressed until at least HH28. Finally, we used a specific antibody to examine the spatial dynamics and subcellular distribution of ggNeph2 between stages HH20-28, particularly in the mesonephros, dermomyotomes, developing heart, and retina.
Collapse
Affiliation(s)
- Mara Silvia A Costa
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto , Brazil
| | | | | | | | | | | | | |
Collapse
|
348
|
Distinct genetic programs guide Drosophila circular and longitudinal visceral myoblast fusion. BMC Cell Biol 2014; 15:27. [PMID: 25000973 PMCID: PMC4169254 DOI: 10.1186/1471-2121-15-27] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 06/25/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The visceral musculature of Drosophila larvae comprises circular visceral muscles tightly interwoven with longitudinal visceral muscles. During myogenesis, the circular muscles arise by one-to-one fusion of a circular visceral founder cell (FC) with a visceral fusion-competent myoblast (FCM) from the trunk visceral mesoderm, and longitudinal muscles arise from FCs of the caudal visceral mesoderm. Longitudinal FCs migrate anteriorly under guidance of fibroblast growth factors during embryogenesis; it is proposed that they fuse with FCMs from the trunk visceral mesoderm to give rise to syncytia containing up to six nuclei. RESULTS Using fluorescence in situ hybridization and immunochemical analyses, we investigated whether these fusion events during migration use the same molecular repertoire and cellular components as fusion-restricted myogenic adhesive structure (FuRMAS), the adhesive signaling center that mediates myoblast fusion in the somatic mesoderm. Longitudinal muscles were formed by the fusion of one FC with Sns-positive FCMs, and defects in FCM specification led to defects in longitudinal muscle formation. At the fusion sites, Duf/Kirre and the adaptor protein Rols7 accumulated in longitudinal FCs, and Blow and F-actin accumulated in FCMs. The accumulation of these four proteins at the fusion sites argues for FuRMAS-like adhesion and signaling centers. Longitudinal fusion was disturbed in rols and blow single, and scar wip double mutants. Mutants of wasp or its interaction partner wip had no defects in longitudinal fusion. CONCLUSIONS Our results indicated that all embryonic fusion events depend on the same cell-adhesion molecules, but that the need for Rols7 and regulators of F-actin distinctly differs. Rols7 was required for longitudinal visceral and somatic myoblast fusion but not for circular visceral fusion. Importantly, longitudinal fusion depended on Kette and SCAR/Wave but was independent of WASp-dependent Arp2/3 activation. Thus, the complexity of the players involved in muscle formation increases from binucleated circular muscles to longitudinal visceral muscles to somatic muscles.
Collapse
|
349
|
Wei C, Li L, Su H, Xu L, Lu J, Zhang L, Liu W, Ren H, Du L. Identification of the crucial molecular events during the large-scale myoblast fusion in sheep. Physiol Genomics 2014; 46:429-40. [DOI: 10.1152/physiolgenomics.00184.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
It is well known that in sheep most myofibers are formed before birth; however, the crucial myogenic stage and the cellular and molecular mechanisms underpinning phenotypic variation of fetal muscle development remain to be ascertained. We used histological, microarray, and quantitative real-time PCR (qPCR) methods to examine the developmental characteristics of fetal muscle at 70, 85, 100, 120, and 135 days of gestation in sheep. We show that day 100 is an important checkpoint for change in muscle transcriptome and histomorphology in fetal sheep and that the period of 85–100 days is the vital developmental stage for large-scale myoblast fusion. Furthermore, we identified the cis-regulatory motifs for E2F1 or MEF2A in a list of decreasingly or increasingly expressed genes between 85 and 100 days, respectively. Further analysis demonstrated that the mRNA and phosphorylated protein levels of E2F1 and MEF2A significantly declined with myogenic progression in vivo and in vitro. qRT-PCR analysis indicated that PI3K and FST, as targets of E2F1, may be involved in myoblast differentiation and fusion and that downregulation of MEF2A contributes to transition of myofiber types by differential regulation of the target genes involved at the stage of 85–100 days. We clarify for the first time the timing of myofiber proliferation and development during gestation in sheep, which would be beneficial to meat sheep production. Our findings present a repertoire of gene expression in muscle during large-scale myoblast fusion at transcriptome-wide level, which contributes to elucidate the regulatory network of myogenic differentiation.
Collapse
Affiliation(s)
- Caihong Wei
- National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Li
- National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China; and
| | - Hongwei Su
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Lingyang Xu
- National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Lu
- National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Zhang
- National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenzhong Liu
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Hangxing Ren
- National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, China
| | - Lixin Du
- National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
350
|
Shimizu K, Uematsu A, Imai Y, Sawasaki T. Pctaire1/Cdk16 promotes skeletal myogenesis by inducing myoblast migration and fusion. FEBS Lett 2014; 588:3030-7. [PMID: 24931367 DOI: 10.1016/j.febslet.2014.05.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/29/2014] [Accepted: 05/29/2014] [Indexed: 01/17/2023]
Abstract
The Cdk-related protein kinase Pctaire1/Cdk16 is abundantly expressed in brain, testis and skeletal muscle. Functional roles of Pctaire1 such as regulation of neuron migration and neurite outgrowth thus far have been mainly elucidated in the field of nervous system development. Although these regulations based on cytoskeletal rearrangements evoke a possible role of Pctaire1 in the development of skeletal muscle, little is known in this regard. In this study, we demonstrated that myogenic differentiation and subsequent fusion is promoted in Pctaire1 overexpressing cells, and conversely, is inhibited in the knockdown cells. Furthermore, our findings suggest that Pctaire1 exerts promyogenic effects by regulating myoblast migration and process formation during skeletal myogenesis.
Collapse
Affiliation(s)
- Kouhei Shimizu
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan
| | - Atsushi Uematsu
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Graduate School of Medicine, Ehime University, Toon 791-0295, Japan
| | - Tatsuya Sawasaki
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; The Venture Business Laboratory, Ehime University, Matsuyama 790-8577, Japan.
| |
Collapse
|