301
|
Newby JM, Bressloff PC. Quasi-steady State Reduction of Molecular Motor-Based Models of Directed Intermittent Search. Bull Math Biol 2010; 72:1840-66. [DOI: 10.1007/s11538-010-9513-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 01/29/2010] [Indexed: 12/22/2022]
|
302
|
Wang X, Perry G, Smith MA, Zhu X. Amyloid-beta-derived diffusible ligands cause impaired axonal transport of mitochondria in neurons. NEURODEGENER DIS 2010; 7:56-9. [PMID: 20160460 DOI: 10.1159/000283484] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent form of dementia predominantly affecting the elderly. It is believed that soluble amyloid-beta (Abeta) oligomers are involved in the pathogenesis of AD, yet the underlying mechanisms remain elusive. OBJECTIVES Emerging evidence suggests that mitochondrial dysfunction likely plays a critical role in Abeta-induced neuronal degeneration. Previously, we demonstrated that Abeta-derived diffusible ligands (ADDLs) induce reduced mitochondrial density in neurites, and we suspect that an impaired mitochondrial trafficking might be involved, which is tested in this study. METHODS Using live cell imaging, anterograde and retrograde transport of mitochondria in primary hippocampal neurons treated with sub-lethal doses of ADDLs was measured. RESULTS We found that ADDLs induced significant impairment in both anterograde and retrograde transport of mitochondria along axons. CONCLUSION These results suggest that an impaired mitochondrial transport likely contributes to ADDL-induced abnormal mitochondrial distribution and dysfunction and also reinforce the idea that axonal transport is likely involved in AD pathogenesis.
Collapse
Affiliation(s)
- Xinglong Wang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | |
Collapse
|
303
|
Rounds CM, Hepler PK, Fuller SJ, Winship LJ. Oscillatory growth in lily pollen tubes does not require aerobic energy metabolism. PLANT PHYSIOLOGY 2010; 152:736-46. [PMID: 20007440 PMCID: PMC2815890 DOI: 10.1104/pp.109.150896] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 12/05/2009] [Indexed: 05/18/2023]
Abstract
Oscillatory tip growth in pollen tubes depends on prodigious amounts of energy. We have tested the hypothesis that oscillations in the electron transport chain lead to growth oscillations in lily (Lilium formosanum). Using three respiratory inhibitors, oligomycin, antimycin A, and cyanide, we find that pollen tube growth is much less sensitive to respiratory inhibition than respiration is. All three block respiration at concentrations severalfold lower than necessary to inhibit growth. Mitochondrial NAD(P)H and potentiometric JC-1 fluorescence, employed as markers for electron transport chain activity, rise rapidly in response to oligomycin, as expected. Pollen tube growth stops for several minutes before resuming. Subsequent growth has a lower mean rate, but continues to oscillate, albeit with a longer period. NAD(P)H fluorescence no longer exhibits coherent oscillations, and mitochondria no longer congregate directly behind the apex: they distribute evenly throughout the cell. Postinhibition growth relies on aerobic fermentation for energy production as revealed by an increase in ethanol in the media. These data suggest that oscillatory growth depends not on a single oscillatory pacemaker but rather is an emergent property arising from a number of stable limit cycles.
Collapse
|
304
|
Animal models of mitochondrial DNA transactions in disease and ageing. Exp Gerontol 2010; 45:489-502. [PMID: 20123011 DOI: 10.1016/j.exger.2010.01.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Revised: 01/11/2010] [Accepted: 01/26/2010] [Indexed: 11/21/2022]
Abstract
Mitochondrial DNA (mtDNA) transactions, processes that include mtDNA replication, repair, recombination and transcription constitute the initial stages of mitochondrial biogenesis, and are at the core of understanding mitochondrial biology and medicine. All of the protein players are encoded in nuclear genes: some are proteins with well-known functions in the nucleus, others are well-known mitochondrial proteins now ascribed new functions, and still others are newly discovered factors. In this article we review recent advances in the field of mtDNA transactions with a special focus on physiological studies. In particular, we consider the expression of variant proteins, or altered expression of factors involved in these processes in powerful model organisms, such as Drosophila melanogaster and the mouse, which have promoted recognition of the broad relevance of oxidative phosphorylation defects resulting from improper maintenance of mtDNA. Furthermore, the animal models recapitulate many phenotypes related to human ageing and a variety of different diseases, a feature that has enhanced our understanding of, and inspired theories about, the molecular mechanisms of such biological processes.
Collapse
|
305
|
Organellar vs cellular control of mitochondrial dynamics. Semin Cell Dev Biol 2010; 21:575-81. [PMID: 20079451 DOI: 10.1016/j.semcdb.2010.01.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 12/23/2009] [Accepted: 01/06/2010] [Indexed: 12/22/2022]
Abstract
Mitochondrial dynamics, the fusion and fission of individual mitochondrial units, is critical to the exchange of the metabolic, genetic and proteomic contents of individual mitochondria. In this regard, fusion and fission events have been shown to modulate mitochondrial bioenergetics, as well as several cellular processes including fuel sensing, ATP production, autophagy, apoptosis, and the cell cycle. Regulation of the dynamic events of fusion and fission occur at two redundant and interactive levels. Locally, the microenvironment of the individual mitochondrion can alter its ability to fuse, divide or move through the cell. Globally, nuclear-encoded processes and cellular ionic and second messenger systems can alter or activate mitochondrial proteins, regulate mitochondrial dynamics and concomitantly change the condition of the mitochondrial population. In this review we investigate the different global and local signals that control mitochondrial biology. This discussion is carried out to clarify the different signals that impact the status of the mitochondrial population.
Collapse
|
306
|
Abstract
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system playing critical roles in basal synaptic transmission and mechanisms of learning and memory. Under normal conditions, glutamate is sequestered within synaptic vesicles (approximately 100 mM) with extracellular glutamate concentrations being limited (<1 microM), via retrieval by plasma-membrane transporters on neuronal and glial cells. In the case of central nervous system trauma, stroke, epilepsy, and in certain neurodegenerative diseases, increased concentrations of extracellular glutamate (by vesicular release, cell lysis and/or decreased glutamate transporter uptake/reversal) stimulate the overactivation of local ionotropic glutamate receptors that trigger neuronal cell death (excitotoxicity). Other natural agonists, such as domoic acid, alcohol and auto-antibodies, have also been reported to induce excitotoxicity.
Collapse
|
307
|
Bereiter-Hahn J, Jendrach M. Mitochondrial dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 284:1-65. [PMID: 20875628 DOI: 10.1016/s1937-6448(10)84001-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial dynamics is a key feature for the interaction of mitochondria with other organelles within a cell and also for the maintenance of their own integrity. Four types of mitochondrial dynamics are discussed: Movement within a cell and interactions with the cytoskeleton, fusion and fission events which establish coherence within the chondriome, the dynamic behavior of cristae and their components, and finally, formation and disintegration of mitochondria (mitophagy). Due to these essential functions, disturbed mitochondrial dynamics are inevitably connected to a variety of diseases. Localized ATP gradients, local control of calcium-based messaging, production of reactive oxygen species, and involvement of other metabolic chains, that is, lipid and steroid synthesis, underline that physiology not only results from biochemical reactions but, in addition, resides on the appropriate morphology and topography. These events and their molecular basis have been established recently and are the topic of this review.
Collapse
Affiliation(s)
- Jürgen Bereiter-Hahn
- Center of Excellence Macromolecular Complexes, Institute for Cell Biology and Neurosciences, Goethe University, Frankfurt am Main, Germany
| | | |
Collapse
|
308
|
Chu CT. Tickled PINK1: mitochondrial homeostasis and autophagy in recessive Parkinsonism. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1802:20-8. [PMID: 19595762 PMCID: PMC2790548 DOI: 10.1016/j.bbadis.2009.06.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 06/24/2009] [Indexed: 01/28/2023]
Abstract
Dysregulation of mitochondrial structure and function has emerged as a central factor in the pathogenesis of Parkinson's disease and related parkinsonian disorders (PD). Toxic and environmental injuries and risk factors perturb mitochondrial complex I function, and gene products linked to familial PD often affect mitochondrial biology. Autosomal recessive mutations in PTEN-induced kinase 1 (PINK1) cause an L-DOPA responsive parkinsonian syndrome, stimulating extensive interest in the normal neuroprotective and mitoprotective functions of PINK1. Recent data from mammalian and invertebrate model systems converge upon interactions between PINK1 and parkin, as well as DJ-1, alpha-synuclein and leucine rich repeat kinase 2 (LRRK2). While all studies to date support a neuroprotective role for wild type, but not mutant PINK1, there is less agreement on subcellular compartmentalization of PINK1 kinase function and whether PINK1 promotes mitochondrial fission or fusion. These controversies are reviewed in the context of the dynamic mitochondrial lifecycle, in which mitochondrial structure and function are continuously modulated not only by the fission-fusion machinery, but also by regulation of biogenesis, axonal/dendritic transport and autophagy. A working model is proposed, in which PINK1 loss-of-function results in mitochondrial reactive oxygen species (ROS), cristae/respiratory dysfunction and destabilization of calcium homeostasis, which trigger compensatory fission, autophagy and biosynthetic repair pathways that dramatically alter mitochondrial structure. Concurrent strategies to identify pathways that mediate normal PINK1 function and to identify factors that facilitate appropriate compensatory responses to its loss are both needed to halt the aging-related penetrance and incidence of familial and sporadic PD.
Collapse
Affiliation(s)
- Charleen T Chu
- Department of Pathology (Division of Neuropathology), Center for Neuroscience and McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, 200 Lothrop St., Pittsburgh, PA, USA.
| |
Collapse
|
309
|
Shi P, Gal J, Kwinter DM, Liu X, Zhu H. Mitochondrial dysfunction in amyotrophic lateral sclerosis. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1802:45-51. [PMID: 19715760 PMCID: PMC2790551 DOI: 10.1016/j.bbadis.2009.08.012] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 08/19/2009] [Accepted: 08/19/2009] [Indexed: 12/12/2022]
Abstract
The etiology of motor neuron degeneration in amyotrophic lateral sclerosis (ALS) remains to be better understood. Based on the studies from ALS patients and transgenic animal models, it is believed that ALS is likely to be a multifactorial and multisystem disease. Many mechanisms have been postulated to be involved in the pathology of ALS, such as oxidative stress, glutamate excitotoxicity, mitochondrial damage, defective axonal transport, glia cell pathology and aberrant RNA metabolism. Mitochondria, which play crucial roles in excitotoxicity, apoptosis and cell survival, have shown to be an early target in ALS pathogenesis and contribute to the disease progression. Morphological and functional defects in mitochondria were found in both human patients and ALS mice overexpressing mutant SOD1. Mutant SOD1 was found to be preferentially associated with mitochondria and subsequently impair mitochondrial function. Recent studies suggest that axonal transport of mitochondria along microtubules and mitochondrial dynamics may also be disrupted in ALS. These results also illustrate the critical importance of maintaining proper mitochondrial function in axons and neuromuscular junctions, supporting the emerging "dying-back" axonopathy model of ALS. In this review, we will discuss how mitochondrial dysfunction has been linked to the ALS variants of SOD1 and the mechanisms by which mitochondrial damage contributes to the disease etiology.
Collapse
Affiliation(s)
- Ping Shi
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40506
| | - Jozsef Gal
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40506
| | - David M. Kwinter
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40506
| | - Xiaoyan Liu
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40506
| | - Haining Zhu
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40506
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40506
| |
Collapse
|
310
|
Control of mitochondrial transport and localization in neurons. Trends Cell Biol 2009; 20:102-12. [PMID: 20006503 DOI: 10.1016/j.tcb.2009.11.002] [Citation(s) in RCA: 281] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 11/17/2009] [Accepted: 11/17/2009] [Indexed: 12/18/2022]
Abstract
Mitochondria play an essential role in ATP generation, calcium buffering and apoptotic signalling. In neurons, the transport of mitochondria to specific locations where they are needed has emerged as an important process for correct nerve cell function. Recent studies have shed light on the mechanisms that control mitochondrial transport and localization in neurons. We describe the machinery that is important for constitutive transport of mitochondria throughout the cell, and highlight recent advances in our understanding of how signalling pathways can converge on this machinery and allow for rapid activity-dependent control of mitochondrial trafficking and localization. Regulation of mitochondrial trafficking might work in concert with mitochondrial tethering systems to give precise control of mitochondrial delivery and localization to regions of high energy and calcium buffering requirements within neurons.
Collapse
|
311
|
Baqri RM, Turner BA, Rheuben MB, Hammond BD, Kaguni LS, Miller KE. Disruption of mitochondrial DNA replication in Drosophila increases mitochondrial fast axonal transport in vivo. PLoS One 2009; 4:e7874. [PMID: 19924234 PMCID: PMC2773408 DOI: 10.1371/journal.pone.0007874] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 10/16/2009] [Indexed: 01/16/2023] Open
Abstract
Mutations in mitochondrial DNA polymerase (pol γ) cause several progressive human diseases including Parkinson's disease, Alper's syndrome, and progressive external ophthalmoplegia. At the cellular level, disruption of pol γ leads to depletion of mtDNA, disrupts the mitochondrial respiratory chain, and increases susceptibility to oxidative stress. Although recent studies have intensified focus on the role of mtDNA in neuronal diseases, the changes that take place in mitochondrial biogenesis and mitochondrial axonal transport when mtDNA replication is disrupted are unknown. Using high-speed confocal microscopy, electron microscopy and biochemical approaches, we report that mutations in pol γ deplete mtDNA levels and lead to an increase in mitochondrial density in Drosophila proximal nerves and muscles, without a noticeable increase in mitochondrial fragmentation. Furthermore, there is a rise in flux of bidirectional mitochondrial axonal transport, albeit with slower kinesin-based anterograde transport. In contrast, flux of synaptic vesicle precursors was modestly decreased in pol γ−α mutants. Our data indicate that disruption of mtDNA replication does not hinder mitochondrial biogenesis, increases mitochondrial axonal transport, and raises the question of whether high levels of circulating mtDNA-deficient mitochondria are beneficial or deleterious in mtDNA diseases.
Collapse
Affiliation(s)
- Rehan M. Baqri
- Department of Zoology, Michigan State University, East Lansing, Michigan, United States of America
- Neuroscience Program, Michigan State University, East Lansing, Michigan, United States of America
- Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Brittany A. Turner
- Department of Zoology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Mary B. Rheuben
- Neuroscience Program, Michigan State University, East Lansing, Michigan, United States of America
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, United States of America
| | - Bradley D. Hammond
- Department of Zoology, Michigan State University, East Lansing, Michigan, United States of America
- Neuroscience Program, Michigan State University, East Lansing, Michigan, United States of America
- Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Laurie S. Kaguni
- Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan, United States of America
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Kyle E. Miller
- Department of Zoology, Michigan State University, East Lansing, Michigan, United States of America
- Neuroscience Program, Michigan State University, East Lansing, Michigan, United States of America
- Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
312
|
Abstract
Newly synthesized synaptic proteins and mitochondria are transported along lengthy neuronal processes to assist in the proper assembly of developing synapses and activity-dependent remodeling of mature synapses. Neuronal transport is mediated by motor proteins that associate with their cargoes via adaptors and travel along the cytoskeleton within neuronal processes. Our previous studies in developing hippocampal neurons revealed that syntabulin acts as a KIF5B motor adaptor and mediates anterograde transport of presynaptic cargoes and mitochondria, presynaptic assembly, and activity-induced plasticity. Here, using cultured superior cervical ganglion neurons combined with manipulation of syntabulin expression or interference with its interaction with KIF5B, we uncover a crucial role for syntabulin in the maintenance of presynaptic function. Syntabulin loss-of-function delayed the appearance of synaptic activity in developing neurons and impaired synaptic transmission in mature neurons, including reduced basal activity, accelerated synaptic depression under high-frequency firing, slowed recovery rates after synaptic vesicle depletion, and impaired presynaptic short-term plasticity. These defects correlated with reduced mitochondrial distribution along neuronal processes and were rescued by the application of ATP within presynaptic neurons. These results suggest that syntabulin supports the axonal transport of mitochondria and concomitant ATP production at presynaptic terminals. ATP supply from locally stationed mitochondria is in turn necessary for the efficient mobilization of synaptic vesicles into the readily releasable pool. These findings emphasize the critical role of KIF5B-syntabulin-mediated axonal transport in the maintenance of presynaptic function and regulation of synaptic plasticity.
Collapse
|
313
|
Rintoul GL, Reynolds IJ. Mitochondrial trafficking and morphology in neuronal injury. Biochim Biophys Acta Mol Basis Dis 2009; 1802:143-50. [PMID: 19747973 DOI: 10.1016/j.bbadis.2009.09.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 09/05/2009] [Accepted: 09/08/2009] [Indexed: 01/05/2023]
Abstract
Alterations in mitochondrial function may have a central role in the pathogenesis of many neurodegenerative diseases. The study of mitochondrial dysfunction has typically focused on ATP generation, calcium homeostasis and the production of reactive oxygen species. However, there is a growing appreciation of the dynamic nature of mitochondria within cells. Mitochondria are highly motile organelles, and also constantly undergo fission and fusion. This raises the possibility that impairment of mitochondrial dynamics could contribute to the pathogenesis of neuronal injury. In this review we describe the mechanisms that govern mitochondrial movement, fission and fusion. The key proteins that are involved in mitochondrial fission and fusion have also been linked to some inherited neurological diseases, including autosomal dominant optic atrophy and Charcot-Marie-Tooth disease 2A. We will discuss the evidence that altered movement, fission and fusion are associated with impaired neuronal viability. There is a growing collection of literature that links impaired mitochondrial dynamics to a number of disease models. Additionally, the concept that the failure to deliver a functional mitochondrion to the appropriate site within a neuron could contribute to neuronal dysfunction provides an attractive framework for understanding the mechanisms underlying neurologic disease. However, it remains difficult to clearly establish that altered mitochondrial dynamics clearly represent a cause of neuronal dysfunction.
Collapse
Affiliation(s)
- Gordon L Rintoul
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A1S6
| | | |
Collapse
|
314
|
Cox RT, Spradling AC. Clueless, a conserved Drosophila gene required for mitochondrial subcellular localization, interacts genetically with parkin. Dis Model Mech 2009; 2:490-9. [PMID: 19638420 PMCID: PMC2737057 DOI: 10.1242/dmm.002378] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 05/27/2009] [Indexed: 01/02/2023] Open
Abstract
Parkinson's disease has been linked to altered mitochondrial function. Mutations in parkin (park), the Drosophila ortholog of a human gene that is responsible for many familial cases of Parkinson's disease, shorten life span, abolish fertility and disrupt mitochondrial structure. However, the role played by Park in mitochondrial function remains unclear. Here, we describe a novel Drosophila gene, clueless (clu), which encodes a highly conserved tetratricopeptide repeat protein that is related closely to the CluA protein of Dictyostelium, Clu1 of Saccharomyces cerevisiae and to similar proteins in diverse metazoan eukaryotes from Arabidopsis to humans. Like its orthologs, loss of Drosophila clu causes mitochondria to cluster within cells. We find that strong clu mutations resemble park mutations in their effects on mitochondrial function and that the two genes interact genetically. Conversely, mitochondria in park homozygotes become highly clustered. We propose that Clu functions in a novel pathway that positions mitochondria within the cell based on their physiological state. Disruption of the Clu pathway may enhance oxidative damage, alter gene expression, cause mitochondria to cluster at microtubule plus ends, and lead eventually to mitochondrial failure.
Collapse
Affiliation(s)
- Rachel T. Cox
- Department of Embryology/Howard Hughes Medical Institute, Carnegie Institution, 3520 San Martin Drive, Baltimore, MD 21218, USA
- Present address: Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Allan C. Spradling
- Department of Embryology/Howard Hughes Medical Institute, Carnegie Institution, 3520 San Martin Drive, Baltimore, MD 21218, USA
| |
Collapse
|
315
|
Abstract
The etiology of Parkinson disease (PD) has been assumed to be a complex combination of environmental factors, intrinsic cellular metabolic properties, and susceptible genetic alleles. The primary obstacles to the development of a neuroprotective therapy in PD include uncertainties with regard to the precise cause(s) of neuronal dysfunction and what to target. The discoveries of Mendelian genes associated with inherited forms of PD in the last 10 years have revolutionized the understanding of the cellular pathways leading to neuronal dysfunction. Common themes of the pathogenesis of PD are beginning to emerge with mitochondrial dysfunction at the center stage. In this review, we summarize our knowledge of the pathogenesis of PD, revisit some aspects of mitochondrial biology, and discuss the insights from the study of Pink1, a familial PD-associated gene. We propose that mitochondrial morphogenesis and distribution might be a novel and potential common paradigm for PD and other neurodegenerative disease research and that modulation of such mitochondrial processes may prove to be a valuable therapeutic avenue for PD.
Collapse
Affiliation(s)
- Yufeng Yang
- Department of Pathology, Stanford University School of Medicine, Stanford; Geriatric Research Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | | |
Collapse
|
316
|
Martinez B, Rodrigues TB, Gine E, Kaninda JP, Perez-Castillo A, Santos A. Hypothyroidism decreases the biogenesis in free mitochondria and neuronal oxygen consumption in the cerebral cortex of developing rats. Endocrinology 2009; 150:3953-9. [PMID: 19389834 DOI: 10.1210/en.2008-1755] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Thyroid hormone plays a critical role in mitochondrial biogenesis in two areas of the developing brain, the cerebral cortex and the striatum. Here we analyzed, in the cerebral cortex of neonatal rats, the effect of hypothyroidism on the biogenesis in free and synaptosomal mitochondria by analyzing, in isolated mitochondria, the activity of respiratory complex I, oxidative phosphorylation, oxygen consumption, and the expression of mitochondrial genome. In addition, we studied the effect of thyroid hormone in oxygen consumption in vivo by determining metabolic flow through (13)C nuclear magnetic resonance spectroscopy. Our results clearly show that in vivo, hypothyroidism markedly reduces oxygen consumption in the neural population of the cerebral cortex. This effect correlates with decreased free mitochondria biogenesis. In contrast, no effect was observed in the biogenesis in synaptosomal mitochondria. The parameters analyzed were markedly improved after T(3) administration. These results suggest that a reduced biogenesis and the subsequent reduction of respiratory capacity in free mitochondria could be the underlying cause of decreased oxygen consumption in the neurons of the cerebral cortex of hypothyroid neonates.
Collapse
Affiliation(s)
- Bienvenida Martinez
- Departamentos de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
317
|
Cai Q, Sheng ZH. Mitochondrial transport and docking in axons. Exp Neurol 2009; 218:257-67. [PMID: 19341731 PMCID: PMC2710402 DOI: 10.1016/j.expneurol.2009.03.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 03/16/2009] [Accepted: 03/18/2009] [Indexed: 01/06/2023]
Abstract
Proper transport and distribution of mitochondria in axons and at synapses are critical for the normal physiology of neurons. Mitochondria in axons display distinct motility patterns and undergo saltatory and bidirectional movement, where mitochondria frequently stop, start moving again, and change direction. While approximately one-third of axonal mitochondria are mobile in mature neurons, a large proportion remains stationary. Their net movement is significantly influenced by recruitment to stationary or motile states. In response to the diverse physiological states of axons and synapses, the mitochondrial balance between motile and stationary phases is a possible target of regulation by intracellular signals and synaptic activity. Efficient control of mitochondrial retention (docking) at particular stations, where energy production and calcium homeostasis capacity are highly demanded, is likely essential for neuronal development and function. In this review, we introduce the molecular and cellular mechanisms underlying the complex mobility patterns of axonal mitochondria and discuss how motor adaptor complexes and docking machinery contribute to mitochondrial transport and distribution in axons and at synapses. In addition, we briefly discuss the physiological evidence how axonal mitochondrial mobility impacts synaptic function.
Collapse
Affiliation(s)
- Qian Cai
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, USA.
| | | |
Collapse
|
318
|
Van Laar VS, Berman SB. Mitochondrial dynamics in Parkinson's disease. Exp Neurol 2009; 218:247-56. [PMID: 19332061 PMCID: PMC2752687 DOI: 10.1016/j.expneurol.2009.03.019] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 03/11/2009] [Accepted: 03/13/2009] [Indexed: 12/21/2022]
Abstract
The unique energy demands of neurons require well-orchestrated distribution and maintenance of mitochondria. Thus, dynamic properties of mitochondria, including fission, fusion, trafficking, biogenesis, and degradation, are critical to all cells, but may be particularly important in neurons. Dysfunction in mitochondrial dynamics has been linked to neuropathies and is increasingly being linked to several neurodegenerative diseases, but the evidence is particularly strong, and continuously accumulating, in Parkinson's disease (PD). The unique characteristics of neurons that degenerate in PD may predispose those neuronal populations to susceptibility to alterations in mitochondrial dynamics. In addition, evidence from PD-related toxins supports that mitochondrial fission, fusion, and transport may be involved in pathogenesis. Furthermore, rapidly increasing evidence suggests that two proteins linked to familial forms of the disease, parkin and PINK1, interact in a common pathway to regulate mitochondrial fission/fusion. Parkin may also play a role in maintaining mitochondrial homeostasis through targeting damaged mitochondria for mitophagy. Taken together, the current data suggests that mitochondrial dynamics may play a role in PD pathogenesis, and a better understanding of mitochondrial dynamics within the neuron may lead to future therapeutic treatments for PD, potentially aimed at some of the earliest pathogenic events.
Collapse
Affiliation(s)
- Victor S. Van Laar
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| | - Sarah B. Berman
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| |
Collapse
|
319
|
Li Y, Lim S, Hoffman D, Aspenstrom P, Federoff HJ, Rempe DA. HUMMR, a hypoxia- and HIF-1alpha-inducible protein, alters mitochondrial distribution and transport. ACTA ACUST UNITED AC 2009; 185:1065-81. [PMID: 19528298 PMCID: PMC2711615 DOI: 10.1083/jcb.200811033] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mitochondrial transport is critical for maintenance of normal neuronal function. Here, we identify a novel mitochondria protein, hypoxia up-regulated mitochondrial movement regulator (HUMMR), which is expressed in neurons and is markedly induced by hypoxia-inducible factor 1 α (HIF-1α). Interestingly, HUMMR interacts with Miro-1 and Miro-2, mitochondrial proteins that are critical for mediating mitochondrial transport. Interestingly, knockdown of HUMMR or HIF-1 function in neurons exposed to hypoxia markedly reduces mitochondrial content in axons. Because mitochondrial transport and distribution are inextricably linked, the impact of reduced HUMMR function on the direction of mitochondrial transport was also explored. Loss of HUMMR function in hypoxia diminished the percentage of motile mitochondria moving in the anterograde direction and enhanced the percentage moving in the retrograde direction. Thus, HUMMR, a novel mitochondrial protein induced by HIF-1 and hypoxia, biases mitochondria transport in the anterograde direction. These findings have broad implications for maintenance of neuronal viability and function during physiological and pathological states.
Collapse
Affiliation(s)
- Yan Li
- Department of Neurology, Center for Neural Development and Disease, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
320
|
Magrané J, Manfredi G. Mitochondrial function, morphology, and axonal transport in amyotrophic lateral sclerosis. Antioxid Redox Signal 2009; 11:1615-26. [PMID: 19344253 PMCID: PMC2789440 DOI: 10.1089/ars.2009.2604] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 04/03/2009] [Indexed: 01/12/2023]
Abstract
Perturbation of organellar axonal transport is increasingly recognized as an important contributor in a number of neurodegenerative diseases. Although the specificity of this impairment remains to be elucidated, growing evidence suggests that in certain disease conditions, mitochondria are affected primarily by transport defects. Many hypotheses have been formulated to explain the pathogenic mechanisms involved in amyotrophic lateral sclerosis (ALS). The mutations described so far in genetic forms of ALS (familial ALS, fALS) affect proteins involved in a wide variety of cellular mechanisms, including free radical scavenging, energy metabolism, axonal transport, RNA processing, DNA repair, vesicular transport, and angiogenesis. Here we review the current knowledge on mitochondrial transport and its role in ALS.
Collapse
Affiliation(s)
- Jordi Magrané
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10065, USA.
| | | |
Collapse
|
321
|
Sotelo-Silveira JR, Lepanto P, Elizondo V, Horjales S, Palacios F, Martinez-Palma L, Marin M, Beckman JS, Barbeito L. Axonal mitochondrial clusters containing mutant SOD1 in transgenic models of ALS. Antioxid Redox Signal 2009; 11:1535-45. [PMID: 19344250 PMCID: PMC2842590 DOI: 10.1089/ars.2009.2614] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 04/03/2009] [Indexed: 12/31/2022]
Abstract
We studied the subcellular distribution of mitochondria and superoxide dismutase-1 (SOD1) in whole mounts of microdissected motor axons of rats expressing the ALS-linked SOD1-G93A mutation. The rationale was to determine whether physical interactions between the enzyme and mitochondria were linked to the axonopathy of motor fibers occurring in amyotrophic lateral sclerosis (ALS). Mitochondria and SOD1 displayed a homogeneous distribution along motor axons both in nontransgenic rats and in those overexpressing wild-type SOD1. In contrast, axons from SOD1-G93A rats (older than 35 days) showed accumulation of mitochondria in discrete clusters located at regular intervals. Most of SOD1 immunoreactivity was enriched in these clusters and colocalized with mitochondria, suggesting a recruitment of SOD1-G93A to the organelle. The SOD1/mitochondrial clusters were abundant in motor axons but scarcely seen in sensory axons. Clusters also were stained for neuronal nitric oxide synthase, nitrotyrosine, and cytochrome c. The later also was detected surrounding clusters. Ubiquitin colocalized with clusters only at late stages of the disease. The cytoskeleton was not overtly altered in clusters. These results suggest that mutant SOD1 and defective mitochondria create localized dysfunctional domains in motor axons, which may lead to progressive axonopathy in ALS.
Collapse
Affiliation(s)
- Jose R. Sotelo-Silveira
- Department of Cell and Molecular Neurobiology, Instituto de Investigaciones Biologicas Clemente Estable, Montevideo, Uruguay
- Department of Cell and Molecular Biology, Facultad de Ciencias, Montevideo, Uruguay
- Present address of Dr. Sotelo-Silveira: Laboratory of Molecular Technology, ATP, SAIC-National Cancer Institute, Frederick, Maryland
| | - Paola Lepanto
- Department of Cell and Molecular Neurobiology, Instituto de Investigaciones Biologicas Clemente Estable, Montevideo, Uruguay
| | - Victoria Elizondo
- Department of Cell and Molecular Neurobiology, Instituto de Investigaciones Biologicas Clemente Estable, Montevideo, Uruguay
| | - Sofia Horjales
- Department of Cell and Molecular Biology, Facultad de Ciencias, Montevideo, Uruguay
| | - Florencia Palacios
- Department of Cell and Molecular Biology, Facultad de Ciencias, Montevideo, Uruguay
| | - Laura Martinez-Palma
- Department of Cell and Molecular Neurobiology, Instituto de Investigaciones Biologicas Clemente Estable, Montevideo, Uruguay
| | - Monica Marin
- Department of Cell and Molecular Biology, Facultad de Ciencias, Montevideo, Uruguay
| | - Joseph S. Beckman
- Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon
| | - Luis Barbeito
- Department of Cell and Molecular Neurobiology, Instituto de Investigaciones Biologicas Clemente Estable, Montevideo, Uruguay
- Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
322
|
Welzel O, Boening D, Stroebel A, Reulbach U, Klingauf J, Kornhuber J, Groemer TW. Determination of axonal transport velocities via image cross- and autocorrelation. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 38:883-9. [PMID: 19404633 DOI: 10.1007/s00249-009-0458-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 03/31/2009] [Accepted: 04/07/2009] [Indexed: 12/19/2022]
Abstract
On their way to the synapse and back, neuronal proteins are carried in cargo vesicles along axons and dendrites. Here, we demonstrate that the key parameters of axonal transport, i.e., particle velocities and pausing times can be read out from CCD-camera images automatically. In the present study, this is achieved via cross- and autocorrelation of kymograph columns. The applicability of the method was measured on simulated kymographs and data from axonal transport timeseries of mRFP-labeled synaptophysin. In comparing outcomes of velocity determinations via a performance parameter that is analogous to the signal-to-noise ratio (SNR) definition, we find that outcomes are dependent on sampling, particle numbers and signal to noise of the kymograph. Autocorrelation of individual columns allows exact determination of pausing time populations. In contrast to manual tracking, correlation does not require experience, a priori assumptions or disentangling of individual particle trajectories and can operate at low SNR.
Collapse
Affiliation(s)
- Oliver Welzel
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
323
|
Russo GJ, Louie K, Wellington A, Macleod GT, Hu F, Panchumarthi S, Zinsmaier KE. Drosophila Miro is required for both anterograde and retrograde axonal mitochondrial transport. J Neurosci 2009; 29:5443-55. [PMID: 19403812 PMCID: PMC2693725 DOI: 10.1523/jneurosci.5417-08.2009] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 03/09/2009] [Accepted: 03/30/2009] [Indexed: 12/31/2022] Open
Abstract
Microtubule-based transport of mitochondria into dendrites and axons is vital for sustaining neuronal function. Transport along microtubule tracks proceeds in a series of plus and minus end-directed movements that are facilitated by kinesin and dynein motors. How the opposing movements are controlled to achieve effective transport over large distances remains unclear. Previous studies showed that the conserved mitochondrial GTPase Miro is required for mitochondrial transport into axons and dendrites and serves as a Ca(2+) sensor that controls mitochondrial mobility. To directly examine Miro's significance for kinesin- and/or dynein-mediated mitochondrial motility, we live-imaged movements of GFP-tagged mitochondria in larval Drosophila motor axons upon genetic manipulations of Miro. Loss of Drosophila Miro (dMiro) reduced the effectiveness of both anterograde and retrograde mitochondrial transport by selectively impairing kinesin- or dynein-mediated movements, depending on the direction of net transport. Net anterogradely transported mitochondria exhibited reduced kinesin- but normal dynein-mediated movements. Net retrogradely transported mitochondria exhibited much shorter dynein-mediated movements, whereas kinesin-mediated movements were minimally affected. In both cases, the duration of short stationary phases increased proportionally. Overexpression (OE) of dMiro also impaired the effectiveness of mitochondrial transport. Finally, loss and OE of dMiro altered the length of mitochondria in axons through a mechanistically separate pathway. We suggest that dMiro promotes effective antero- and retrograde mitochondrial transport by extending the processivity of kinesin and dynein motors according to a mitochondrion's programmed direction of transport.
Collapse
Affiliation(s)
- Gary J. Russo
- Arizona Research Laboratories Division of Neurobiology
- Graduate Program in Biochemistry and Molecular & Cellular Biology, University of Arizona, Tucson, Arizona 85721-0077
| | - Kathryn Louie
- Arizona Research Laboratories Division of Neurobiology
| | | | | | - Fangle Hu
- Arizona Research Laboratories Division of Neurobiology
| | - Sarvari Panchumarthi
- Arizona Research Laboratories Division of Neurobiology
- Graduate Program in Biochemistry and Molecular & Cellular Biology, University of Arizona, Tucson, Arizona 85721-0077
| | - Konrad E. Zinsmaier
- Arizona Research Laboratories Division of Neurobiology
- Department of Molecular and Cellular Biology, and
| |
Collapse
|
324
|
Mironov SL. Complexity of mitochondrial dynamics in neurons and its control by ADP produced during synaptic activity. Int J Biochem Cell Biol 2009; 41:2005-14. [PMID: 19379829 DOI: 10.1016/j.biocel.2009.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 04/07/2009] [Accepted: 04/09/2009] [Indexed: 12/20/2022]
Abstract
This review focuses on different aspects of dynamics of mitochondria in neuronal cytoplasm which play an important role in the life and fate of neurons. It starts with description of the energy supply in the brain; considers the typical patterns of mitochondrial movements; relates them to the neuronal activity and in particular at the synapses; extends to the analysis of the origin of local ATP changes in the cytoplasm; considers main features of motor-assisted movements of mitochondria and their role in determining a transport velocity; describes the measurements of ATP gradients in neuronal processes and relates them to spatial variations in the mobility of mitochondria that occur in the vicinity of synapses due to the local ADP increases; considers the influence of hypoxia and intracellular signalling pathways on mitochondria movements. Finally, the recent views on the mechanisms and possible functional role of mitochondrial network as a whole in neurons are discussed and unresolved issues and future perspectives in this field of research are delineated.
Collapse
Affiliation(s)
- Sergei L Mironov
- DFG-Center of Molecular Physiology of the Brain, Georg-August-University, Department of Neuro- and Sensory Physiology, Humboldtallee 23, Göttingen, 37075, Germany.
| |
Collapse
|
325
|
Camões F, Bonekamp NA, Delille HK, Schrader M. Organelle dynamics and dysfunction: A closer link between peroxisomes and mitochondria. J Inherit Metab Dis 2009; 32:163-80. [PMID: 19067229 DOI: 10.1007/s10545-008-1018-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 10/30/2008] [Accepted: 11/04/2008] [Indexed: 12/23/2022]
Abstract
Mitochondria and peroxisomes are ubiquitous subcellular organelles, which fulfil an indispensable role in the cellular metabolism of higher eukaryotes. Moreover, they are highly dynamic and display large plasticity. There is growing evidence now that both organelles exhibit a closer interrelationship than previously appreciated. This connection includes metabolic cooperations and cross-talk, a novel putative mitochondria-to-peroxisome vesicular trafficking pathway, as well as an overlap in key components of their fission machinery. Thus, peroxisomal alterations in metabolism, biogenesis, dynamics and proliferation can potentially influence mitochondrial functions, and vice versa. In this review, we present the latest progress in the emerging field of peroxisomal and mitochondrial interrelationship with a particular emphasis on organelle dynamics and its implication in diseases.
Collapse
Affiliation(s)
- F Camões
- Centre for Cell Biology & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | | | | | | |
Collapse
|
326
|
Kuznetsov AV, Hermann M, Saks V, Hengster P, Margreiter R. The cell-type specificity of mitochondrial dynamics. Int J Biochem Cell Biol 2009; 41:1928-39. [PMID: 19703655 DOI: 10.1016/j.biocel.2009.03.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/26/2009] [Accepted: 03/07/2009] [Indexed: 12/22/2022]
Abstract
Recent advances in mitochondrial imaging have revealed that in many cells mitochondria can be highly dynamic. They can undergo fission/fusion processes modulated by various mitochondria-associated proteins and also by conformational transitions in the inner mitochondrial membrane. Moreover, precise mitochondrial distribution can be achieved by their movement along the cytoskeleton, recruiting various connector and motor proteins. Such movement is evident in various cell types ranging from yeast to mammalian cells and serves to direct mitochondria to cellular regions of high ATP demand or to transport mitochondria destined for elimination. Existing data also demonstrate that many aspects of mitochondrial dynamics, morphology, regulation and intracellular organization can be cell type-/tissue-specific. In many cells like neurons, pancreatic cells, HL-1 cells, etc., complex dynamics of mitochondria include fission, fusion, small oscillatory movements of mitochondria, larger movements like filament extension, retraction, fast branching in the mitochondrial network and rapid long-distance intracellular translocation of single mitochondria. Alternatively, mitochondria can be rather fixed in other cells and tissues like adult cardiomyocytes or skeletal muscles with a very regular organelle organization between myofibrils, providing the bioenergetic basis for contraction. Adult cardiac cells show no displacement of mitochondria with only very small-amplitude rapid vibrations, demonstrating remarkable, cell type-dependent differences in the dynamics and spatial arrangement of mitochondria. These variations and the cell-type specificity of mitochondrial dynamics could be related to specific cellular functions and demands, also indicating a significant role of integrations of mitochondria with other intracellular systems like the cytoskeleton, nucleus and endoplasmic reticulum (ER).
Collapse
Affiliation(s)
- Andrey V Kuznetsov
- Daniel Swarovski Research Laboratory, Center of Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University (IMU), Innrain 66, A-6020 Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
327
|
Kuznetsov AV, Hermann M, Troppmair J, Margreiter R, Hengster P. Complex patterns of mitochondrial dynamics in human pancreatic cells revealed by fluorescent confocal imaging. J Cell Mol Med 2009; 14:417-25. [PMID: 19382913 PMCID: PMC3837585 DOI: 10.1111/j.1582-4934.2009.00750.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mitochondrial morphology and intracellular organization are tightly controlled by the processes of mitochondrial fission-fusion. Moreover, mitochondrial movement and redistribution provide a local ATP supply at cellular sites of particular demands. Here we analysed mitochondrial dynamics in isolated primary human pancreatic cells. Using real time confocal microscopy and mitochondria-specific fluorescent probes tetramethylrhodamine methyl ester and MitoTracker Green we documented complex and novel patterns of spatial and temporal organization of mitochondria, mitochondrial morphology and motility. The most commonly observed types of mitochondrial dynamics were (i) fast fission and fusion; (ii) small oscillating movements of the mitochondrial network; (iii) larger movements, including filament extension, retraction, fast (0.1-0.3 mum/sec.) and frequent oscillating (back and forth) branching in the mitochondrial network; (iv) as well as combinations of these actions and (v) long-distance intracellular translocation of single spherical mitochondria or separated mitochondrial filaments with velocity up to 0.5 mum/sec. Moreover, we show here for the first time, a formation of unusual mitochondrial shapes like rings, loops, and astonishingly even knots created from one or more mitochondrial filaments. These data demonstrate the presence of extensive heterogeneity in mitochondrial morphology and dynamics in living cells under primary culture conditions. In summary, this study reports new patterns of morphological changes and dynamic motion of mitochondria in human pancreatic cells, suggesting an important role of integrations of mitochondria with other intracellular structures and systems.
Collapse
Affiliation(s)
- Andrey V Kuznetsov
- Daniel Swarovski Research Laboratory, Center of Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innrain, Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
328
|
Saunter CD, Perng MD, Love GD, Quinlan RA. Stochastically determined directed movement explains the dominant small-scale mitochondrial movements within non-neuronal tissue culture cells. FEBS Lett 2009; 583:1267-73. [PMID: 19265695 DOI: 10.1016/j.febslet.2009.02.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 02/13/2009] [Accepted: 02/26/2009] [Indexed: 12/26/2022]
Abstract
The apparently stationary phase of mitochondrial motion was investigated in epithelial cells by spinning disk confocal light microscopy combined with image correlation based single particle tracking using custom software producing sub-pixel accuracy measurements (approximately 5 nm) at 10-12 Hz frame-rates. The analysis of these data suggests that the previously described stationary, or anchored phase, in mitochondrial movement actually comprise Brownian diffusion, interspersed with frequent and brief motor-driven events whose duration are stochastically determined. We have therefore discovered a new aspect of mitochondrial behavior, which we call stochastically determined, directed movement.
Collapse
Affiliation(s)
- Christopher D Saunter
- Biophysical Sciences Institute, Department of Physics, South Road, Durham University, Durham DH1 3LE, UK
| | | | | | | |
Collapse
|
329
|
MacAskill AF, Rinholm JE, Twelvetrees AE, Arancibia-Carcamo IL, Muir J, Fransson A, Aspenstrom P, Attwell D, Kittler JT. Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 2009; 61:541-55. [PMID: 19249275 PMCID: PMC2670979 DOI: 10.1016/j.neuron.2009.01.030] [Citation(s) in RCA: 519] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 10/09/2008] [Accepted: 01/27/2009] [Indexed: 01/02/2023]
Abstract
Energy use, mainly to reverse ion movements in neurons, is a fundamental constraint on brain information processing. Trafficking of mitochondria to locations in neurons where there are large ion fluxes is essential for powering neural function. Mitochondrial trafficking is regulated by Ca2+ entry through ionotropic glutamate receptors, but the underlying mechanism is unknown. We show that the protein Miro1 links mitochondria to KIF5 motor proteins, allowing mitochondria to move along microtubules. This linkage is inhibited by micromolar levels of Ca2+ binding to Miro1. With the EF hand domains of Miro1 mutated to prevent Ca2+ binding, Miro1 could still facilitate mitochondrial motility, but mitochondrial stopping induced by glutamate or neuronal activity was blocked. Activating neuronal NMDA receptors with exogenous or synaptically released glutamate led to Miro1 positioning mitochondria at the postsynaptic side of synapses. Thus, Miro1 is a key determinant of how energy supply is matched to energy usage in neurons.
Collapse
Affiliation(s)
- Andrew F. MacAskill
- Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Johanne E. Rinholm
- Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Alison E. Twelvetrees
- Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - I. Lorena Arancibia-Carcamo
- Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - James Muir
- Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Asa Fransson
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala University, SE-751 24, Sweden
| | - Pontus Aspenstrom
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala University, SE-751 24, Sweden
| | - David Attwell
- Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Josef T. Kittler
- Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
330
|
Abstract
Mitochondrial dynamics and transport have emerged as key factors in the regulation of neuronal differentiation and survival. Mitochondria are dynamically transported in and out of axons and dendrites to maintain neuronal and synaptic function. Transport proceeds through a controlled series of plus- and minus-end directed movements along microtubule tracks (MTs) that are often interrupted by short stops. This bidirectional motility of mitochondria is facilitated by plus end-directed kinesin and minus end-directed dynein motors, and may be coordinated and controlled by a number of mechanisms that integrate intracellular signals to ensure efficient transport and targeting of mitochondria. In this chapter, we discuss our understanding of mechanisms that facilitate mitochondrial transport and delivery to specific target sites in dendrites and axons.
Collapse
|
331
|
Calcium regulation of mitochondria motility and morphology. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1787:1363-73. [PMID: 19138660 DOI: 10.1016/j.bbabio.2008.12.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 12/10/2008] [Accepted: 12/10/2008] [Indexed: 12/21/2022]
Abstract
In the Fifties, electron microscopy studies on neuronal cells showed that mitochondria typically cluster at synaptic terminals, thereby introducing the concept that proper mitochondria trafficking and partitioning inside the cell could provide functional support to the execution of key physiological processes. Today, the notion that a central event in the life of every eukaryotic cell is to configure, maintain, and reorganize the mitochondrial network at sites of high energy demand in response to environmental and cellular cues is well established, and the challenge ahead is to define the underlying molecular mechanisms and regulatory pathways. Recent pioneering studies have further contributed to place mitochondria at the center of the cell biology by showing that the machinery governing remodeling of mitochondria shape and structure regulates the functional output of the organelle as the powerhouse of the cell, the gateway to programmed cell death, and the platform for Ca(2+) signaling. Thus, a raising issue is to identify the cues integrating mitochondria trafficking and dynamics into cell physiology and metabolism. Given the versatile function of calcium as a second messenger and of the role of mitochondria as a major calcium store, evidences are emerging linking Ca(2+) transients to the modulation of mitochondrial activities. This review focuses on calcium as a switch controlling mitochondria motility and morphology in steady state, stressed, and pathological conditions.
Collapse
|
332
|
Mattson MP, Gleichmann M, Cheng A. Mitochondria in neuroplasticity and neurological disorders. Neuron 2008; 60:748-66. [PMID: 19081372 PMCID: PMC2692277 DOI: 10.1016/j.neuron.2008.10.010] [Citation(s) in RCA: 802] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 09/29/2008] [Accepted: 10/03/2008] [Indexed: 12/12/2022]
Abstract
Mitochondrial electron transport generates the ATP that is essential for the excitability and survival of neurons, and the protein phosphorylation reactions that mediate synaptic signaling and related long-term changes in neuronal structure and function. Mitochondria are highly dynamic organelles that divide, fuse, and move purposefully within axons and dendrites. Major functions of mitochondria in neurons include the regulation of Ca(2+) and redox signaling, developmental and synaptic plasticity, and the arbitration of cell survival and death. The importance of mitochondria in neurons is evident in the neurological phenotypes in rare diseases caused by mutations in mitochondrial genes. Mitochondria-mediated oxidative stress, perturbed Ca(2+) homeostasis, and apoptosis may also contribute to the pathogenesis of prominent neurological diseases including Alzheimer's, Parkinson's, and Huntington's diseases; stroke; amyotrophic lateral sclerosis; and psychiatric disorders. Advances in understanding the molecular and cell biology of mitochondria are leading to novel approaches for the prevention and treatment of neurological disorders.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
333
|
Melli G, Taiana M, Camozzi F, Triolo D, Podini P, Quattrini A, Taroni F, Lauria G. Alpha-lipoic acid prevents mitochondrial damage and neurotoxicity in experimental chemotherapy neuropathy. Exp Neurol 2008; 214:276-84. [PMID: 18809400 DOI: 10.1016/j.expneurol.2008.08.013] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/08/2008] [Accepted: 08/21/2008] [Indexed: 01/14/2023]
Abstract
The study investigates if alpha-lipoic acid is neuroprotective against chemotherapy induced neurotoxicity, if mitochondrial damage plays a critical role in toxic neurodegenerative cascade, and if neuroprotective effects of alpha-lipoic acid depend on mitochondria protection. We used an in vitro model of chemotherapy induced peripheral neuropathy that closely mimic the in vivo condition by exposing primary cultures of dorsal root ganglion (DRG) sensory neurons to paclitaxel and cisplatin, two widely used and highly effective chemotherapeutic drugs. This approach allowed investigating the efficacy of alpha-lipoic acid in preventing axonal damage and apoptosis and the function and ultrastructural morphology of mitochondria after exposure to toxic agents and alpha-lipoic acid. Our results demonstrate that both cisplatin and paclitaxel cause early mitochondrial impairment with loss of membrane potential and induction of autophagic vacuoles in neurons. Alpha-lipoic acid exerts neuroprotective effects against chemotherapy induced neurotoxicity in sensory neurons: it rescues the mitochondrial toxicity and induces the expression of frataxin, an essential mitochondrial protein with anti-oxidant and chaperone properties. In conclusion mitochondrial toxicity is an early common event both in paclitaxel and cisplatin induced neurotoxicity. Alpha-lipoic acid protects sensory neurons through its anti-oxidant and mitochondrial regulatory functions, possibly inducing the expression of frataxin. These findings suggest that alpha-lipoic acid might reduce the risk of developing peripheral nerve toxicity in patients undergoing chemotherapy and encourage further confirmatory clinical trials.
Collapse
Affiliation(s)
- Giorgia Melli
- Neuromuscular Diseases Unit, IRCCS Foundation Neurological Institute Carlo Besta, Via Celoria, 11 20133, Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
334
|
Measurement of instantaneous velocity vectors of organelle transport: mitochondrial transport and bioenergetics in hippocampal neurons. Biophys J 2008; 95:3079-99. [PMID: 18757564 DOI: 10.1529/biophysj.108.135657] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Impaired transport of mitochondria, in dendrites and axons of neurons, and bioenergetic deficit are increasingly recognized to be of pathological importance in neurodegenerative diseases. To study the relationship between transport and bioenergetics, we have developed what to our knowledge is a novel technique to quantify organelle velocity in cultured cells. The aim was to combine measurement of motion and bioenergetic parameters while minimizing photodynamic oxidative artifacts evoked by fluorescence excitation. Velocity determination from sequential fluorescence images is not trivial, and here we describe an application of "optical flow", the flow of gray values in grayscale images, to this problem. Based on the principles of photon shot noise occurring in low light level fluorescence microscopy, we describe and validate here an optical flow-based, robust method to measure velocity vectors for organelles expressing fluorescent proteins. This method features instantaneous velocity determination from a pair of images by detecting motion of edges, with no assumptions about the separation or shapes of the objects in the image. Optical flow was used in combination with single mitochondrion assay of mitochondrial thiol redox status by mitochondrially targeted redox-sensitive green fluorescent protein and measurement of mitochondrial membrane potential by tetramethylrhodamine methyl ester. Mitochondrial populations of resting cultured hippocampal neurons were analyzed. It was found that mitochondria with more oxidized thiol redox status have lower membrane potentials and are smaller in size. These mitochondria are more motile than the average; however, mitochondrial motility is only slightly dependent on the observed bioenergetic parameters and is correlated the best to the size of the mitochondria.
Collapse
|
335
|
Li GN, Hoffman-Kim D. Evaluation of neurite outgrowth anisotropy using a novel application of circular analysis. J Neurosci Methods 2008; 174:202-14. [PMID: 18674559 PMCID: PMC2587349 DOI: 10.1016/j.jneumeth.2008.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 07/01/2008] [Accepted: 07/02/2008] [Indexed: 01/17/2023]
Abstract
Precise axon growth is required for making proper connections in development and after injury. One method of studying axon guidance and growth is through in vitro outgrowth assays that present controlled microenvironments. In this study, we applied circular statistical methods to evaluate directional neurite response. Visualization of data on a circular scale allows more accurate representation of the data, as neurite angles are inherently expressed on a circle. Here, the direction of neurite outgrowth from dorsal root ganglia derived neurons on different substrate types was quantitatively measured. Further, simulations of datasets with known circular parameters reflecting expected neurite angle distributions from different substrate types were also generated. Circular statistical methods were utilized and compared to linear statistical models widely used in the neuroscience literature. For small samples, Rao's spacing test showed the smallest occurrence of Type I errors (false positives) when tested against simulated uniform distributions. V-test and Rayleigh's test showed highest statistical power when tested against a unimodal distribution with known and unknown mean direction, respectively. For bimodal samples, Watson's U(2)-test showed the highest statistical power. Overall, circular statistical uniformity tests showed higher statistical power than linear non-parametric tests, particularly for small samples (n=5). Circular analysis methods represent a useful tool for evaluation of directionality of neurite outgrowth with applications including: (1) assessment of neurite outgrowth potential; (2) determination of isotropy of cellular responses to single and multiple cues and (3) determination of the relative strengths of cues present in a complex environment.
Collapse
Affiliation(s)
- Grace NgaYin Li
- Department of Molecular Pharmacology, Physiology, and Biotechnology and Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
336
|
O'Toole M, Latham R, Baqri RM, Miller KE. Modeling mitochondrial dynamics during in vivo axonal elongation. J Theor Biol 2008; 255:369-77. [PMID: 18845167 DOI: 10.1016/j.jtbi.2008.09.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 09/03/2008] [Accepted: 09/04/2008] [Indexed: 01/05/2023]
Abstract
Many models of axonal elongation are based on the assumption that the rate of lengthening is driven by the production of cellular materials in the soma. These models make specific predictions about transport and concentration gradients of proteins both over time and along the length of the axon. In vivo, it is well accepted that for a particular neuron the length and rate of growth are controlled by the body size and rate of growth of the animal. In terms of modeling axonal elongation this radically changes the relationships between key variables. It raises fundamental questions. For example, during in vivo lengthening is the production of material constant or does it change over time? What is the density profile of material along the nerve during in vivo elongation? Does density change over time or vary along the nerve? To answer these questions we measured the length, mitochondrial density, and estimated the half-life of mitochondria in the axons of the medial segmental nerves of 1st, 2nd, and 3rd instar Drosophila larvae. The nerves were found to linearly increase in length at an average rate of 9.24 microm h(-1) over the 96 h period of larval life. Further, mitochondrial density increases over this period at an average rate of 4.49x10(-3) (mitochondria microm(-1))h(-1). Mitochondria in the nerves had a half-life of 35.2h. To account for the distribution of the mitochondria we observe, we derived a mathematical model which suggests that cellular production of mitochondria increases quadratically over time and that a homeostatic mechanism maintains a constant density of mitochondria along the nerve. These data suggest a complex relationship between axonal length and mass production and that the neuron may have an "axonal length sensor."
Collapse
Affiliation(s)
- Matthew O'Toole
- Department of Mathematics, Michigan State University, A-106 Wells Hall, East Lansing, MI 48824-1115, USA
| | | | | | | |
Collapse
|
337
|
Hermann M, Kuznetsov A, Maglione M, Smigelskaite J, Margreiter R, Troppmair J. Cytoplasmic signaling in the control of mitochondrial uproar? Cell Commun Signal 2008; 6:4. [PMID: 18713454 PMCID: PMC2546410 DOI: 10.1186/1478-811x-6-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 08/19/2008] [Indexed: 11/25/2022] Open
Abstract
The concept of a pre-emptive strike as a good means to prevent greater harm may be frequently over-stressed in daily life. However, biological systems in a homeostatic balance are prepared to withstand a certain degree of hostile fire by rather passive means. This also applies to the maintenance of cell survival, where a plethora of protective proteins provide safeguard against erroneous activation of death pathways. Apart from these mechanisms active processes are also essential for the maintenance of cellular homeostasis, commonly referred to as survival signaling. Frequently their targets may be mitochondrial, assuring organelle integrity, which is essential for continued energy production and survival. Transient or permanent failures in these cellular defense strategies result in pathophysiological conditions, which manifest themselves e.g. as cancer or ischemia/reperfusion-associated organ damage.
Collapse
Affiliation(s)
- Martin Hermann
- KMT Laboratory, Innsbruck Medical University (IMU), Innrain 66, A-6020 Innsbruck, Austria
| | - Andrey Kuznetsov
- Daniel Swarovski Research Laboratory, Innsbruck Medical University (IMU), Innrain 66, A-6020 Innsbruck, Austria
| | - Manuel Maglione
- Daniel Swarovski Research Laboratory, Innsbruck Medical University (IMU), Innrain 66, A-6020 Innsbruck, Austria
- Center of Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery, Anichstrasse 35, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Julija Smigelskaite
- Daniel Swarovski Research Laboratory, Innsbruck Medical University (IMU), Innrain 66, A-6020 Innsbruck, Austria
| | - Raimund Margreiter
- Daniel Swarovski Research Laboratory, Innsbruck Medical University (IMU), Innrain 66, A-6020 Innsbruck, Austria
- Center of Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery, Anichstrasse 35, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Jakob Troppmair
- Daniel Swarovski Research Laboratory, Innsbruck Medical University (IMU), Innrain 66, A-6020 Innsbruck, Austria
| |
Collapse
|
338
|
Verburg J, Hollenbeck PJ. Mitochondrial membrane potential in axons increases with local nerve growth factor or semaphorin signaling. J Neurosci 2008; 28:8306-15. [PMID: 18701693 PMCID: PMC2597466 DOI: 10.1523/jneurosci.2614-08.2008] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 07/01/2008] [Indexed: 12/11/2022] Open
Abstract
Neurons concentrate mitochondria at sites in the cell that have a high demand for ATP and/or calcium buffering. To accomplish this, mitochondrial transport and docking are thought to respond to intracellular signaling pathways. However, the cell might also concentrate mitochondrial function by locally modulating mitochondrial activity. We tested this hypothesis by measuring the membrane potential of individual mitochondria throughout the axons of chick sensory neurons using the dye tetramethylrhodamine methylester (TMRM). We found no difference in the TMRM mitochondrial-to-cytoplasmic fluorescence ratio (F(m)/F(c)) among three functionally distinct regions: axonal branch points, distal axons, and the remaining axon shaft. In addition, we found no difference in F(m)/F(c) among stationary, retrogradely moving, or anterogradely moving mitochondria. However, F(m)/F(c) was significantly higher in the lamellipodia of growth cones, and among a small fraction of mitochondria throughout the axon. To identify possible signals controlling membrane potential, we used beads covalently coupled to survival and guidance cues to provide a local stimulus along the axon shaft. NGF- or semaphorin 3A-coupled beads caused a significant increase in F(m)/F(c) in the immediately adjacent region of axon, and this was diminished in the presence of the PI3 (phosphatidylinositol-3) kinase inhibitor LY294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one] or the MAP (mitogen-activated protein) kinase inhibitor U0126 (1,4-diamino-2,3-dicyano-1,4-bis[2-amino-phenylthio]butadiene), demonstrating that signaling pathways downstream of both ligands affect the DeltaPsi(m) of mitochondria. In addition, general inhibition of receptor tyrosine kinase activity produced a profound global decrease in F(m)/F(c). Thus, two guidance molecules that exert different effects on growth cone motility both elicit local, receptor-mediated increases in membrane potential.
Collapse
Affiliation(s)
- Jessica Verburg
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47906
| | - Peter J. Hollenbeck
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47906
| |
Collapse
|
339
|
Edgar JM, McCulloch MC, Thomson CE, Griffiths IR. Distribution of mitochondria along small-diameter myelinated central nervous system axons. J Neurosci Res 2008; 86:2250-7. [PMID: 18381760 DOI: 10.1002/jnr.21672] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Small-diameter myelinated CNS axons are preferentially affected in multiple sclerosis (MS) and in the hereditary spastic paraplegias (HSP), in which the distal axon degenerates. Mitochondrial dysfunction has been implicated in the pathogenesis of these and other disorders involving axonal degeneration. The aim of this study was to determine whether the frequency of axonal mitochondria changes along the length of small-diameter fibers and whether there is a preferential localization to the region of the node of Ranvier. We find that mitochondrial numbers do not change along the length of a myelinated small-diameter fiber, and, in contrast to the peripheral nervous system, there is no tendency for mitochondrial numbers to increase at the node.
Collapse
Affiliation(s)
- Julia M Edgar
- Applied Neurobiology Group, Institute of Comparative Medicine, University of Glasgow, Bearsden, Glasgow, Scotland.
| | | | | | | |
Collapse
|
340
|
Nasr P, Sullivan PG, Smith GM. Mitochondrial imaging in dorsal root ganglion neurons following the application of inducible adenoviral vector expressing two fluorescent proteins. J Neurosci Methods 2008; 172:185-94. [PMID: 18541307 PMCID: PMC2657596 DOI: 10.1016/j.jneumeth.2008.04.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 04/06/2008] [Accepted: 04/22/2008] [Indexed: 01/31/2023]
Abstract
Mitochondrial morphology and dynamics are known to vary considerably depending on the cell type and organism studied. The objective of this study was to assess the potential application of adenoviral-fluorescent protein constructs for long-term tracking of mitochondria in neurons. An adenoviral vector containing two fluorescent proteins, the enhanced green fluorescent protein (eGFP) targeted to the cytoplasm to highlight the neuronal processes, and the red fluorescent protein (RFP) directed to mitochondria under the control of an inducible promoter, facilitated an efficient and accurate method to study mitochondrial dynamics in long-term studies. Dorsal root ganglion neurons from rat embryos were cultured and infected. The infected neurons exhibited green fluorescence after 24h, while 16 h following induction with doxycycline, red fluorescence protein began to localize within mitochondria. The red fluorescent protein was transported into mitochondria at the cell body followed by distribution within processes. As the neurons aged, the expression of red fluorescent protein was confined to cytoplasmic vacuoles and not mitochondria. Further analysis suggested that the cytoplasmic vacuoles were likely of lysosomal origin. Taken together, the current study presents novel strategies to study the life history of cellular organelles such as mitochondria in long-term studies.
Collapse
Affiliation(s)
- Payman Nasr
- Department of Biological Sciences, Kent State University, Ashtabula, OH 44004, United States.
| | | | | |
Collapse
|
341
|
Soubannier V, McBride HM. Positioning mitochondrial plasticity within cellular signaling cascades. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:154-70. [PMID: 18694785 DOI: 10.1016/j.bbamcr.2008.07.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 07/08/2008] [Accepted: 07/10/2008] [Indexed: 01/06/2023]
Abstract
Mitochondria evolved from alpha-proteobacteria captured within a host between two and three billion years ago. This origin resulted in the formation of a double-layered organelle resulting in four distinct sub-compartments: the outer membrane, the intermembrane space, the inner membrane and the matrix. The inner membrane is organized in cristae, harboring the respiratory chain and ATP synthase complexes responsible of the oxidative phosphorylation, the main energy-generating system of the cell. It is generally considered that the ultrastructure of the inner membrane provides a large variety of morphologies that facilitate metabolic output. This classical view of mitochondria as bean-shaped organelles was static until in the last decade when new imaging studies and genetic screens provided a more accurate description of a dynamic mitochondrial reticulum that fuse and divide continuously. Since then significant findings have been made in the study of machineries responsible for fusion, fission and motility, however the mechanisms and signals that regulate mitochondrial dynamics are only beginning to emerge. A growing body of evidence indicates that metabolic and cellular signals influence mitochondrial dynamics, leading to a new understanding of how changes in mitochondrial shape can have a profound impact on the functional output of the organelle. The mechanisms that regulate mitochondrial morphology are incompletely understood, but evidence to date suggests that the morphology machinery is modulated through the use of post-translational modifications, including nucleotide-binding proteins, phosphorylation, ubiquitination, SUMOylation, and changes in the lipid environment. This review focuses on the molecular switches that control mitochondrial dynamics and the integration of mitochondrial morphology within cellular signaling cascades.
Collapse
Affiliation(s)
- Vincent Soubannier
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, Canada K1Y 4W7
| | | |
Collapse
|
342
|
Kiselyov K, Muallem S. Mitochondrial Ca2+ homeostasis in lysosomal storage diseases. Cell Calcium 2008; 44:103-11. [PMID: 18242695 PMCID: PMC2517575 DOI: 10.1016/j.ceca.2007.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 12/10/2007] [Accepted: 12/12/2007] [Indexed: 11/18/2022]
Abstract
Lysosomal storage diseases (LSDs) are a class of genetic disorders in which proteins responsible for digestion or absorption of endocytosed material do not function or do not localize properly. The resulting cellular "indigestion" causes buildup of intracellular storage inclusions that contain unprocessed lipids and proteins that form macromolecular complexes. The buildup of storage material is associated with degenerative processes that are observed in all LSDs, albeit the correlation between the amount of storage inclusions and the severity of the degenerative processes is not always evident. The latter suggests that a specific mechanism set in motion by aberrant lysosomal function drives the degenerative processes in LSDs. It is becoming increasingly clear that in addition to their function in degrading endocytosed material, lysosomes are essential housekeeping organelles responsible for maintaining healthy population of intracellular organelles, in particular mitochondria. The present review surveys the current knowledge on the lysosomal-mitochondrial axis and its possible role as a contributing factor to mitochondrial Ca(2+) homeostasis and to cell death in LSDs.
Collapse
Affiliation(s)
- Kirill Kiselyov
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA.
| | | |
Collapse
|
343
|
Mitochondrial diseases mimicking neurotransmitter defects. Mitochondrion 2008; 8:273-8. [DOI: 10.1016/j.mito.2008.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 04/21/2008] [Accepted: 05/14/2008] [Indexed: 12/23/2022]
|
344
|
Bereiter-Hahn J, Vöth M, Mai S, Jendrach M. Structural implications of mitochondrial dynamics. Biotechnol J 2008; 3:765-80. [DOI: 10.1002/biot.200800024] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
345
|
Salinas S, Bilsland LG, Schiavo G. Molecular landmarks along the axonal route: axonal transport in health and disease. Curr Opin Cell Biol 2008; 20:445-53. [PMID: 18495455 DOI: 10.1016/j.ceb.2008.04.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 03/28/2008] [Accepted: 04/02/2008] [Indexed: 01/18/2023]
Abstract
Axonal transport of organelles has emerged as a key process in the regulation of neuronal differentiation and survival. Several components of this specialised transport machinery, their regulators and vesicular cargoes are mutated or altered in many neurodegenerative conditions. The molecular characterisation of these mechanisms has furthered our understanding of neuronal homeostasis, providing insights into the spatio-temporal control of membrane traffic and signalling in neurons with a precision not achievable in other cellular systems. Here, we summarise the recent advances in the field of axonal trafficking of different organelles, and the essential role of motor and adaptor proteins in this process.
Collapse
Affiliation(s)
- Sara Salinas
- Molecular NeuroPathobiology Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | |
Collapse
|
346
|
Amiott EA, Lott P, Soto J, Kang PB, McCaffery JM, DiMauro S, Abel ED, Flanigan KM, Lawson VH, Shaw JM. Mitochondrial fusion and function in Charcot-Marie-Tooth type 2A patient fibroblasts with mitofusin 2 mutations. Exp Neurol 2008; 211:115-27. [PMID: 18316077 PMCID: PMC2409111 DOI: 10.1016/j.expneurol.2008.01.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 01/06/2008] [Accepted: 01/11/2008] [Indexed: 01/10/2023]
Abstract
Charcot-Marie-Tooth Type 2A is a dominantly inherited peripheral neuropathy characterized by axonal degeneration of sensory and motor nerves. The disease is caused by mutations in the mitochondrial fusion gene MFN2. Mfn2 is an integral outer mitochondrial membrane protein composed of a large GTPase domain and two heptad repeat (HR) domains that face the cytoplasm. Mitochondrial membrane fusion and division are balanced processes that are necessary to maintain tubular mitochondrial morphology, respiratory function, and uniform distribution of the organelle throughout the cell. We have utilized primary fibroblasts from CMT2A patients to survey mitochondrial phenotypes associated with heterozygous MFN2 alleles expressed at physiological levels. Our results indicate that, in fibroblasts, mitofusin expression, mitochondrial morphology, ultrastructure, mtDNA content, and respiratory capacity are not affected by the presence of mutant Mfn2 protein. Consistent with a lack of mitochondrial dysfunction, we also show that mitochondrial fusion occurs efficiently in CMT2A patient-derived fibroblasts. Our observations are in agreement with the neuronal specificity of the disease and are consistent with a recent finding that mitochondrial fusion can be maintained in cells that express mutant Mfn2 protein due to complementation by a second mitofusin, Mfn1. We discuss our results and those of others in terms of a comprehensive model for the mechanism(s) by which mutations in MFN2 may lead to CMT2A disease.
Collapse
Affiliation(s)
- Elizabeth A Amiott
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Paul Lott
- Departments of Neurology, Human Genetics, Pathology, and Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Jamie Soto
- Division of Endocrinology Metabolism and Diabetes and Program in Human Molecular Biology and Genetics, University of Utah, School of Medicine, Salt Lake City, UT 84112
| | - Peter B Kang
- Department of Neurology, Children’s Hospital Boston and Harvard Medical School, Boston, MA 02115
| | - J Michael McCaffery
- Integrated Imaging Center, Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - Salvatore DiMauro
- Department of Neurology, Columbia University Medical Center, New York, NY 10032
| | - E Dale Abel
- Division of Endocrinology Metabolism and Diabetes and Program in Human Molecular Biology and Genetics, University of Utah, School of Medicine, Salt Lake City, UT 84112
| | - Kevin M Flanigan
- Departments of Neurology, Human Genetics, Pathology, and Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Victoria H Lawson
- Departments of Neurology, Human Genetics, Pathology, and Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Janet M Shaw
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112
| |
Collapse
|
347
|
Wang S, Jiang C, Zhang Y, Chen J, Wang B, Chen Q, Long M. Membrane Deformability and Membrane Tension of Single Isolated Mitochondria. Cell Mol Bioeng 2008. [DOI: 10.1007/s12195-008-0002-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
348
|
Kang JS, Tian JH, Pan PY, Zald P, Li C, Deng C, Sheng ZH. Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell 2008; 132:137-48. [PMID: 18191227 PMCID: PMC2259239 DOI: 10.1016/j.cell.2007.11.024] [Citation(s) in RCA: 463] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 07/17/2007] [Accepted: 11/09/2007] [Indexed: 01/20/2023]
Abstract
Proper distribution of mitochondria within axons and at synapses is critical for neuronal function. While one-third of axonal mitochondria are mobile, a large proportion remains in a stationary phase. However, the mechanisms controlling mitochondrial docking within axons remain elusive. Here, we report a role for axon-targeted syntaphilin (SNPH) in mitochondrial docking through its interaction with microtubules. Axonal mitochondria that contain exogenously or endogenously expressed SNPH lose mobility. Deletion of the mouse snph gene results in a substantially higher proportion of axonal mitochondria in the mobile state and reduces the density of mitochondria in axons. The snph mutant neurons exhibit enhanced short-term facilitation during prolonged stimulation, probably by affecting calcium signaling at presynaptic boutons. This phenotype is fully rescued by reintroducing the snph gene into the mutant neurons. These findings demonstrate a molecular mechanism for controlling mitochondrial docking in axons that has a physiological impact on synaptic function.
Collapse
Affiliation(s)
- Jian-Sheng Kang
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 35, Room 3B203, 35 Convent Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
349
|
Abstract
Many major human neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS), display axonal pathologies including abnormal accumulations of proteins and organelles. Such pathologies highlight damage to the axon as part of the pathogenic process and, in particular, damage to transport of cargoes through axons. Indeed, we now know that disruption of axonal transport is an early and perhaps causative event in many of these diseases. Here, we review the role of axonal transport in neurodegenerative disease.
Collapse
Affiliation(s)
- Kurt J De Vos
- MRC Center for Neurodegeneration Research, Institute of Psychiatry, King's College, London SE5 8AF, United Kingdom.
| | | | | | | |
Collapse
|
350
|
De Vos KJ, Chapman AL, Tennant ME, Manser C, Tudor EL, Lau KF, Brownlees J, Ackerley S, Shaw PJ, McLoughlin DM, Shaw CE, Leigh PN, Miller CC, Grierson AJ. Familial amyotrophic lateral sclerosis-linked SOD1 mutants perturb fast axonal transport to reduce axonal mitochondria content. Hum Mol Genet 2007; 16:2720-2728. [PMID: 17725983 PMCID: PMC4516806 DOI: 10.1093/hmg/ddm226] [Citation(s) in RCA: 318] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset neurological disorder characterized by death of motoneurons. Mutations in Cu/Zn superoxide dismutase-1 (SOD1) cause familial ALS but the mechanisms whereby they induce disease are not fully understood. Here, we use time-lapse microscopy to monitor for the first time the effect of mutant SOD1 on fast axonal transport (FAT) of bona fide cargoes in living neurons. We analyzed FAT of mitochondria that are a known target for damage by mutant SOD1 and also of membrane-bound organelles (MBOs) using EGFP-tagged amyloid precursor protein as a marker. We studied FAT in motor neurons derived from SOD1G93A transgenic mice that are a model of ALS and also in cortical neurons transfected with SOD1G93A and three further ALS-associated SOD1 mutants. We find that mutant SOD1 damages transport of both mitochondria and MBOs, and that the precise details of this damage are cargo-specific. Thus, mutant SOD1 reduces transport of MBOs in both anterograde and retrograde directions, whereas mitochondrial transport is selectively reduced in the anterograde direction. Analyses of the characteristics of mitochondrial FAT revealed that reduced anterograde movement involved defects in anterograde motor function. The selective inhibition of anterograde mitochondrial FAT enhanced their net retrograde movement to deplete mitochondria in axons. Mitochondria in mutant SOD1 expressing cells also displayed features of damage. Together, such changes to mitochondrial function and distribution are likely to compromise axonal function. These alterations represent some of the earliest pathological features so far reported in neurons of mutant SOD1 transgenic mice.
Collapse
Affiliation(s)
- Kurt J. De Vos
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King’s College London, Denmark Hill, London SE5 8AF, UK
- Academic Unit of Neurology, School of Medicine and Biochemical Sciences, University of Sheffield, Sheffield S10 2RX, UK
| | - Anna L. Chapman
- Academic Unit of Neurology, School of Medicine and Biochemical Sciences, University of Sheffield, Sheffield S10 2RX, UK
| | - Maria E. Tennant
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King’s College London, Denmark Hill, London SE5 8AF, UK
| | - Catherine Manser
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King’s College London, Denmark Hill, London SE5 8AF, UK
| | - Elizabeth L. Tudor
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King’s College London, Denmark Hill, London SE5 8AF, UK
| | - Kwok-Fai Lau
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Janet Brownlees
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King’s College London, Denmark Hill, London SE5 8AF, UK
| | - Steven Ackerley
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King’s College London, Denmark Hill, London SE5 8AF, UK
| | - Pamela J. Shaw
- Academic Unit of Neurology, School of Medicine and Biochemical Sciences, University of Sheffield, Sheffield S10 2RX, UK
| | - Declan M. McLoughlin
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King’s College London, Denmark Hill, London SE5 8AF, UK
| | - Christopher E. Shaw
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King’s College London, Denmark Hill, London SE5 8AF, UK
| | - P. Nigel Leigh
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King’s College London, Denmark Hill, London SE5 8AF, UK
| | - Christopher C.J. Miller
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King’s College London, Denmark Hill, London SE5 8AF, UK
| | - Andrew J. Grierson
- Academic Unit of Neurology, School of Medicine and Biochemical Sciences, University of Sheffield, Sheffield S10 2RX, UK
| |
Collapse
|