301
|
Javidpour L, Tabar MRR, Sahimi M. Molecular simulation of protein dynamics in nanopores. I. Stability and folding. J Chem Phys 2008; 128:115105. [PMID: 18361620 DOI: 10.1063/1.2894299] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Discontinuous molecular dynamics simulations, together with the protein intermediate resolution model, an intermediate-resolution model of proteins, are used to carry out several microsecond-long simulations and study folding transition and stability of alpha-de novo-designed proteins in slit nanopores. Both attractive and repulsive interaction potentials between the proteins and the pore walls are considered. Near the folding temperature T(f) and in the presence of the attractive potential, the proteins undergo a repeating sequence of folding/partially folding/unfolding transitions, with T(f) decreasing with decreasing pore sizes. The unfolded states may even be completely adsorbed on the pore's walls with a negative potential energy. In such pores the energetic effects dominate the entropic effects. As a result, the unfolded state is stabilized, with a folding temperature T(f) which is lower than its value in the bulk and that, compared with the bulk, the folding rate decreases. The opposite is true in the presence of a repulsive interaction potential between the proteins and the walls. Moreover, for short proteins in very tight pores with attractive walls, there exists an unfolded state with only one alpha-helical hydrogen bond and an energy nearly equal to that of the folded state. The proteins have, however, high entropies, implying that they cannot fold onto their native structure, whereas in the presence of repulsive walls the proteins do attain their native structure. There is a pronounced asymmetry between the two termini of the protein with respect to their interaction with the pore walls. The effect of a variety of factors, including the pore size and the proteins' length, as well as the temperature, is studied in detail.
Collapse
Affiliation(s)
- Leili Javidpour
- Department of Physics, Sharif University of Technology, Tehran, Iran
| | | | | |
Collapse
|
302
|
Weiss M. Probing the Interior of Living Cells with Fluorescence Correlation Spectroscopy. Ann N Y Acad Sci 2008; 1130:21-7. [DOI: 10.1196/annals.1430.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
303
|
Koo J, Gutberlet T, Czeslik C. Control of protein interfacial affinity by nonionic cosolvents. J Phys Chem B 2008; 112:6292-5. [PMID: 18416568 DOI: 10.1021/jp801981t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In a biological cell, proteins perform their functions in a highly complex environment comprising crowding and confinement effects as well as interactions with interfaces, cosolvents, and other biomolecules. Cosolvents can stabilize or destabilize the native folded structure of proteins in solution. In this study, we show that nonionic cosolvents also affect the interfacial affinity of proteins. We use bovine ribonuclease A and a planar silica-water interface as model system and apply neutron and optical reflectometry to analyze this system. The degree of protein adsorption and the density profile of adsorbed protein molecules were determined in the absence and the presence of cosolvents. It has been found that both the protein stabilizing glycerol and the protein destabilizing urea cause a distinct reduction in protein interfacial affinity, which may represent a rather unexpected result. However, it is suggested that different mechanisms are underlying the similar effects of glycerol and urea.
Collapse
Affiliation(s)
- Juny Koo
- Technische Universität Dortmund, Fakultät Chemie, D-44221 Dortmund, Germany
| | | | | |
Collapse
|
304
|
Crowley PB, Brett K, Muldoon J. NMR Spectroscopy Reveals Cytochromec–Poly(ethylene glycol) Interactions. Chembiochem 2008; 9:685-8. [DOI: 10.1002/cbic.200700603] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
305
|
Ali MY, Lu H, Bookwalter CS, Warshaw DM, Trybus KM. Myosin V and Kinesin act as tethers to enhance each others' processivity. Proc Natl Acad Sci U S A 2008; 105:4691-6. [PMID: 18347333 PMCID: PMC2290781 DOI: 10.1073/pnas.0711531105] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Indexed: 01/27/2023] Open
Abstract
Organelle transport to the periphery of the cell involves coordinated transport between the processive motors kinesin and myosin V. Long-range transport takes place on microtubule tracks, whereas final delivery involves shorter actin-based movements. The concept that motors only function on their appropriate track required further investigation with the recent observation that myosin V undergoes a diffusional search on microtubules. Here we show, using single-molecule techniques, that a functional consequence of myosin V's diffusion on microtubules is a significant enhancement of the processive run length of kinesin when both motors are present on the same cargo. The degree of run length enhancement correlated with the net positive charge in loop 2 of myosin V. On actin, myosin V also undergoes longer processive runs when kinesin is present on the same cargo. The process that causes run length enhancement on both cytoskeletal tracks is electrostatic. We propose that one motor acts as a tether for the other and prevents its diffusion away from the track, thus allowing more steps to be taken before dissociation. The resulting run length enhancement likely contributes to the successful delivery of cargo in the cell.
Collapse
Affiliation(s)
- M. Yusuf Ali
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - Hailong Lu
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - Carol S. Bookwalter
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - David M. Warshaw
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - Kathleen M. Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| |
Collapse
|
306
|
Gotliv BA, Daube SS, Naaman R. Enhancement of reaction specificity at interfaces. J Phys Chem B 2008; 112:3948-54. [PMID: 18335924 DOI: 10.1021/jp711441q] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A realistic picture of a cell is that of a highly viscous, condensed gel-like substance, crowded with macromolecules that are mostly anchored to membranes and to intricate networks of cytoskeletal elements. Theoretical and experimental approaches to investigating crowding have not considered the role of diffusion through a crowded medium in affecting the selectivity and specificity of reactions. Such diffusion is especially important when one considers interfaces, where at least one reactant must move through the medium and reach the interface. Here, we address this issue by directly investigating how diffusion through a gel medium affects the competition between a single specific reaction and a large number of weak nonspecific interactions, a process that is typical of reactions occurring at interfaces. We present an approach for achieving orientation-controlled interactions based on the configuration-dependent diffusion rate of the reacting molecule through a gel medium. The effectiveness of the method is demonstrated by the high selectivity obtained both in the adsorption of DNA to a surface and in DNA hybridization to preadsorbed single-strand oligomer on a surface.
Collapse
Affiliation(s)
- Bat Ami Gotliv
- Department of Chemical Physics and Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
307
|
Totani K, Ihara Y, Matsuo I, Ito Y. Effects of Macromolecular Crowding on Glycoprotein Processing Enzymes. J Am Chem Soc 2008; 130:2101-7. [DOI: 10.1021/ja077570k] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
308
|
Coarse-grained molecular simulation of diffusion and reaction kinetics in a crowded virtual cytoplasm. Biophys J 2008; 94:3748-59. [PMID: 18234819 DOI: 10.1529/biophysj.107.116053] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We present a general-purpose model for biomolecular simulations at the molecular level that incorporates stochasticity, spatial dependence, and volume exclusion, using diffusing and reacting particles with physical dimensions. To validate the model, we first established the formal relationship between the microscopic model parameters (timestep, move length, and reaction probabilities) and the macroscopic coefficients for diffusion and reaction rate. We then compared simulation results with Smoluchowski theory for diffusion-limited irreversible reactions and the best available approximation for diffusion-influenced reversible reactions. To simulate the volumetric effects of a crowded intracellular environment, we created a virtual cytoplasm composed of a heterogeneous population of particles diffusing at rates appropriate to their size. The particle-size distribution was estimated from the relative abundance, mass, and stoichiometries of protein complexes using an experimentally derived proteome catalog from Escherichia coli K12. Simulated diffusion constants exhibited anomalous behavior as a function of time and crowding. Although significant, the volumetric impact of crowding on diffusion cannot fully account for retarded protein mobility in vivo, suggesting that other biophysical factors are at play. The simulated effect of crowding on barnase-barstar dimerization, an experimentally characterized example of a bimolecular association reaction, reveals a biphasic time course, indicating that crowding exerts different effects over different timescales. These observations illustrate that quantitative realism in biosimulation will depend to some extent on mesoscale phenomena that are not currently well understood.
Collapse
|
309
|
Guo ZF, Jiang M, Zheng S, Guo Z. Suppression of Linear Side Products by Macromolecular Crowding in Nonribosomal Enterobactin Biosynthesis. Org Lett 2008; 10:649-52. [DOI: 10.1021/ol7030153] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zu-Feng Guo
- Department of Chemistry, Center for Cancer Research, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Ming Jiang
- Department of Chemistry, Center for Cancer Research, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Suilan Zheng
- Department of Chemistry, Center for Cancer Research, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhihong Guo
- Department of Chemistry, Center for Cancer Research, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
310
|
Vazquez A, Beg QK, Demenezes MA, Ernst J, Bar-Joseph Z, Barabási AL, Boros LG, Oltvai ZN. Impact of the solvent capacity constraint on E. coli metabolism. BMC SYSTEMS BIOLOGY 2008; 2:7. [PMID: 18215292 PMCID: PMC2270259 DOI: 10.1186/1752-0509-2-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 01/23/2008] [Indexed: 11/18/2022]
Abstract
Background Obtaining quantitative predictions for cellular metabolic activities requires the identification and modeling of the physicochemical constraints that are relevant at physiological growth conditions. Molecular crowding in a cell's cytoplasm is one such potential constraint, as it limits the solvent capacity available to metabolic enzymes. Results Using a recently introduced flux balance modeling framework (FBAwMC) here we demonstrate that this constraint determines a metabolic switch in E. coli cells when they are shifted from low to high growth rates. The switch is characterized by a change in effective optimization strategy, the excretion of acetate at high growth rates, and a global reorganization of E. coli metabolic fluxes, the latter being partially confirmed by flux measurements of central metabolic reactions. Conclusion These results implicate the solvent capacity as an important physiological constraint acting on E. coli cells operating at high metabolic rates and for the activation of a metabolic switch when they are shifted from low to high growth rates. The relevance of this constraint in the context of both the aerobic ethanol excretion seen in fast growing yeast cells (Crabtree effect) and the aerobic glycolysis observed in rapidly dividing cancer cells (Warburg effect) should be addressed in the future.
Collapse
Affiliation(s)
- Alexei Vazquez
- The Simons Center for Systems Biology, Institute for Advanced Study, Princeton, NJ 08540, USA.
| | | | | | | | | | | | | | | |
Collapse
|
311
|
Zhou BR, Zhou Z, Hu QL, Chen J, Liang Y. Mixed macromolecular crowding inhibits amyloid formation of hen egg white lysozyme. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:472-80. [PMID: 18252208 DOI: 10.1016/j.bbapap.2008.01.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 12/20/2007] [Accepted: 01/08/2008] [Indexed: 11/17/2022]
Abstract
The effects of two single macromolecular crowding agents, Ficoll 70 and bovine serum albumin (BSA), and one mixed macromolecular crowding agent containing both BSA and Ficoll 70, on amyloid formation of hen egg white lysozyme have been examined by thioflavin T binding, Congo red binding, transmission electron microscopy, and activity assay, as a function of crowder concentration and composition. Both the mixed crowding agent and the protein crowding agent BSA at 100 g/l almost completely inhibit amyloid formation of lysozyme and stabilize lysozyme activity on the investigated time scale, but Ficoll 70 at the same concentration neither impedes amyloid formation of lysozyme effectively nor stabilizes lysozyme activity. Further kinetic and isothermal titration calorimetry analyses indicate that a mixture of 5 g/l BSA and 95 g/l Ficoll 70 inhibits amyloid formation of lysozyme and maintains lysozyme activity via mixed macromolecular crowding as well as weak, nonspecific interactions between BSA and nonnative lysozyme. Our data demonstrate that BSA and Ficoll 70 cooperatively contribute to both the inhibitory effect and the stabilization effect of the mixed crowding agent, suggesting that mixed macromolecular crowding inside the cell may play a role in posttranslational quality control mechanism.
Collapse
Affiliation(s)
- Bing-Rui Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | |
Collapse
|
312
|
Evidence for a common mode of transcription factor interaction with chromatin as revealed by improved quantitative fluorescence recovery after photobleaching. Biophys J 2008; 94:3323-39. [PMID: 18199661 DOI: 10.1529/biophysj.107.123182] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How site-specific transcription factors scan the genome to locate their target sites is a fundamental question in gene regulation. The in vivo binding interactions of several different transcription factors with chromatin have been investigated recently using quantitative fluorescence recovery after photobleaching (FRAP). These analyses have yielded significantly different estimates of both the binding rates and the number of predicted binding states of the respective transcription factors. We show here that these discrepancies are not due to fundamental differences among the site-specific transcription factors, but rather arise from errors in FRAP modeling. The two principal errors are a neglect of diffusion's role and an oversimplified approximation of the photobleach profile. Accounting for these errors by developing a revised FRAP protocol eliminates most of the previous discrepancies in the binding estimates for the three different transcription factors analyzed here. The new estimates predict that for each of the three transcription factors, approximately 75% of the molecules are freely diffusing within the nucleus, whereas the remainder is bound with an average residence time of approximately 2.5 s to a single type of chromatin binding site. Such consistent predictions for three different molecules suggest that many site-specific transcription factors may exhibit similar in vivo interactions with native chromatin.
Collapse
|
313
|
Zhou HX, Rivas G, Minton AP. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu Rev Biophys 2008; 37:375-97. [PMID: 18573087 PMCID: PMC2826134 DOI: 10.1146/annurev.biophys.37.032807.125817] [Citation(s) in RCA: 1597] [Impact Index Per Article: 93.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Expected and observed effects of volume exclusion on the free energy of rigid and flexible macromolecules in crowded and confined systems, and consequent effects of crowding and confinement on macromolecular reaction rates and equilibria are summarized. Findings from relevant theoretical/simulation and experimental literature published from 2004 onward are reviewed. Additional complexity arising from the heterogeneity of local environments in biological media, and the presence of nonspecific interactions between macromolecules over and above steric repulsion, are discussed. Theoretical and experimental approaches to the characterization of crowding- and confinement-induced effects in systems approaching the complexity of living organisms are suggested.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics and School of Computational Science, Florida State University, Tallahassee, Florida 32306
| | - Germán Rivas
- Departmento de Ciencia de Proteinas, Centro de Investigaciones Biológicas, CSIC, Madrid 28040
| | - Allen P. Minton
- Section on Physical Biochemistry, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland 20892
| |
Collapse
|
314
|
Zhou HX. Protein folding in confined and crowded environments. Arch Biochem Biophys 2008; 469:76-82. [PMID: 17719556 PMCID: PMC2223181 DOI: 10.1016/j.abb.2007.07.013] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 07/12/2007] [Accepted: 07/12/2007] [Indexed: 11/17/2022]
Abstract
Confinement and crowding are two major factors that can potentially impact protein folding in cellular environments. Theories based on considerations of excluded volumes predict disparate effects on protein folding stability for confinement and crowding: confinement can stabilize proteins by over 10k(B)T but crowding has a very modest effect on stability. On the other hand, confinement and crowding are both predicted to favor conformations of the unfolded state which are compact, and consequently may increase the folding rate. These predictions are largely borne out by experimental studies of protein folding under confined and crowded conditions in the test tube. Protein folding in cellular environments is further complicated by interactions with surrounding surfaces and other factors. Concerted theoretical modeling and test-tube and in vivo experiments promise to elucidate the complexity of protein folding in cellular environments.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Physics and Institute of Biophysics and School of Computational Science, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
315
|
Macromolecular crowding at membrane interfaces: adsorption and alignment of membrane peptides. J Mol Biol 2007; 375:376-85. [PMID: 18022193 DOI: 10.1016/j.jmb.2007.10.053] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 10/16/2007] [Accepted: 10/18/2007] [Indexed: 11/21/2022]
Abstract
Association of proteins to cellular membranes is involved in various biological processes. Various theoretical models have been developed to describe this adsorption mechanism, commonly implying the concept of an ideal solution. However, due to the two-dimensional character of membrane surfaces intermolecular interactions between the adsorbed molecules become important. Therefore previously adsorbed molecules can influence the adsorption behavior of additional protein molecules and their membrane-associated structure. Using the model peptide LAH(4), which upon membrane-adsorption can adopt a transmembrane as well as an in-planar configuration, we carried out a systematic study of the correlation between the peptide concentration in the membrane and the topology of this membrane-associated polypeptide. We could describe the observed binding behavior by establishing a concept, which includes intermolecular interactions in terms of a scaled particle theory. High surface concentration of the peptide shifts the molecules from an in-planar into a transmembrane conformation, a process driven by the reduction of occupied surface area per molecule. In a cellular context, the crowding-dependent alignment might provide a molecular switch for a cell to sense and control its membrane occupancy. Furthermore, crowding might have pronounced effects on biological events, such as the cooperative behavior of antimicrobial peptides and the membrane triggered aggregation of amyloidogenic peptides.
Collapse
|
316
|
Makareeva E, Leikin S. Procollagen triple helix assembly: an unconventional chaperone-assisted folding paradigm. PLoS One 2007; 2:e1029. [PMID: 17925877 PMCID: PMC2000351 DOI: 10.1371/journal.pone.0001029] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 09/21/2007] [Indexed: 12/16/2022] Open
Abstract
Fibers composed of type I collagen triple helices form the organic scaffold of bone and many other tissues, yet the energetically preferred conformation of type I collagen at body temperature is a random coil. In fibers, the triple helix is stabilized by neighbors, but how does it fold? The observations reported here reveal surprising features that may represent a new paradigm for folding of marginally stable proteins. We find that human procollagen triple helix spontaneously folds into its native conformation at 30-34 degrees C but not at higher temperatures, even in an environment emulating Endoplasmic Reticulum (ER). ER-like molecular crowding by nonspecific proteins does not affect triple helix folding or aggregation of unfolded chains. Common ER chaperones may prevent aggregation and misfolding of procollagen C-propeptide in their traditional role of binding unfolded polypeptide chains. However, such binding only further destabilizes the triple helix. We argue that folding of the triple helix requires stabilization by preferential binding of chaperones to its folded, native conformation. Based on the triple helix folding temperature measured here and published binding constants, we deduce that HSP47 is likely to do just that. It takes over 20 HSP47 molecules to stabilize a single triple helix at body temperature. The required 50-200 microM concentration of free HSP47 is not unusual for heat-shock chaperones in ER, but it is 100 times higher than used in reported in vitro experiments, which did not reveal such stabilization.
Collapse
Affiliation(s)
- Elena Makareeva
- Section on Physical Biochemistry, Department of Health and Human Services, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sergey Leikin
- Section on Physical Biochemistry, Department of Health and Human Services, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
317
|
Abstract
We use discrete event stochastic simulations to characterize the parameter space of a model of icosahedral viral capsid assembly as functions of monomer-monomer binding rates. The simulations reveal a parameter space characterized by three major assembly mechanisms, a standard nucleation-limited monomer-accretion pathway and two distinct hierarchical assembly pathways, as well as unproductive regions characterized by kinetically trapped species. Much of the productive parameter space also consists of border regions between these domains where hybrid pathways are likely to operate. A simpler octamer system studied for comparison reveals three analogous pathways, but is characterized by much lesser sensitivity to parameter variations in contrast to the sharp changes visible in the icosahedral model. The model suggests that modest changes in assembly conditions, consistent with expected differences between in vitro and in vivo assembly environments, could produce substantial shifts in assembly pathways. These results suggest that we must be cautious in drawing conclusions about in vivo capsid self-assembly dynamics from theoretical or in vitro models, as the nature of the basic assembly mechanisms accessible to a system can substantially differ between simple and complex model systems, between theoretical models and simulation results, and between in vitro and in vivo assembly conditions.
Collapse
|
318
|
Guigas G, Kalla C, Weiss M. The degree of macromolecular crowding in the cytoplasm and nucleoplasm of mammalian cells is conserved. FEBS Lett 2007; 581:5094-8. [DOI: 10.1016/j.febslet.2007.09.054] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 09/14/2007] [Accepted: 09/24/2007] [Indexed: 10/22/2022]
|
319
|
Rippe K. Dynamic organization of the cell nucleus. Curr Opin Genet Dev 2007; 17:373-80. [PMID: 17913491 DOI: 10.1016/j.gde.2007.08.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 08/06/2007] [Accepted: 08/17/2007] [Indexed: 11/19/2022]
Abstract
The dynamic organization of the cell nucleus into subcompartments with distinct biological activities represents an important regulatory layer for cell function. Recent studies provide new insights into the principles, by which nuclear organelles form. This process frequently occurs in a self-organizing manner leading to the assembly of stable but plastic structures from multiple relatively weak interaction forces. These can rearrange into different functional states in response to specific modifications of the constituting components or changes in the nuclear environment.
Collapse
Affiliation(s)
- Karsten Rippe
- Deutsches Krebsforschungszentrum and BIOQUANT, Division of Genome Organization & Function, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| |
Collapse
|
320
|
Tanizaki S, Clifford J, Connelly BD, Feig M. Conformational sampling of peptides in cellular environments. Biophys J 2007; 94:747-59. [PMID: 17905846 PMCID: PMC2186233 DOI: 10.1529/biophysj.107.116236] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biological systems provide a complex environment that can be understood in terms of its dielectric properties. High concentrations of macromolecules and cosolvents effectively reduce the dielectric constant of cellular environments, thereby affecting the conformational sampling of biomolecules. To examine this effect in more detail, the conformational preference of alanine dipeptide, poly-alanine, and melittin in different dielectric environments is studied with computer simulations based on recently developed generalized Born methodology. Results from these simulations suggest that extended conformations are favored over alpha-helical conformations at the dipeptide level at and below dielectric constants of 5-10. Furthermore, lower-dielectric environments begin to significantly stabilize helical structures in poly-alanine at epsilon = 20. In the more complex peptide melittin, different dielectric environments shift the equilibrium between two main conformations: a nearly fully extended helix that is most stable in low dielectrics and a compact, V-shaped conformation consisting of two helices that is preferred in higher dielectric environments. An additional conformation is only found to be significantly populated at intermediate dielectric constants. Good agreement with previous studies of different peptides in specific, less-polar solvent environments, suggest that helix stabilization and shifts in conformational preferences in such environments are primarily due to a reduced dielectric environment rather than specific molecular details. The findings presented here make predictions of how peptide sampling may be altered in dense cellular environments with reduced dielectric response.
Collapse
Affiliation(s)
- Seiichiro Tanizaki
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Jacob Clifford
- Department of Physics, Michigan State University, East Lansing, Michigan
| | - Brian D. Connelly
- Department of Computer Science and Engineering, Michigan State University, East Lansing, Michigan
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
- Department of Computer Science and Engineering, Michigan State University, East Lansing, Michigan
- Department of Chemistry, Michigan State University, East Lansing, Michigan
- Address reprint requests to Michael Feig, Tel.: 517-432-7439; Fax: 517-353-9334.
| |
Collapse
|
321
|
Abstract
Diffusion-mediated searching for interaction partners is an ubiquitous process in cell biology. Transcription factors, for example, search specific DNA sequences, signaling proteins aim at interacting with specific cofactors, and peripheral membrane proteins try to dock to membrane domains. Brownian motion, however, is affected by molecular crowding that induces anomalous diffusion (so-called subdiffusion) of proteins and larger structures, thereby compromising diffusive transport and the associated sampling processes. Contrary to the naive expectation that subdiffusion obstructs cellular processes, we show here by computer simulations that subdiffusion rather increases the probability of finding a nearby target. Consequently, important events like protein complex formation and signal propagation are enhanced as compared to normal diffusion. Hence, cells indeed benefit from their crowded internal state and the associated anomalous diffusion.
Collapse
Affiliation(s)
- Gernot Guigas
- Cellular Biophysics Group (BIOMS), German Cancer Research Center, Heidelberg, Germany
| | | |
Collapse
|
322
|
Willoughby D, Cooper DMF. Organization and Ca2+Regulation of Adenylyl Cyclases in cAMP Microdomains. Physiol Rev 2007; 87:965-1010. [PMID: 17615394 DOI: 10.1152/physrev.00049.2006] [Citation(s) in RCA: 337] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The adenylyl cyclases are variously regulated by G protein subunits, a number of serine/threonine and tyrosine protein kinases, and Ca2+. In some physiological situations, this regulation can be readily incorporated into a hormonal cascade, controlling processes such as cardiac contractility or neurotransmitter release. However, the significance of some modes of regulation is obscure and is likely only to be apparent in explicit cellular contexts (or stages of the cell cycle). The regulation of many of the ACs by the ubiquitous second messenger Ca2+provides an overarching mechanism for integrating the activities of these two major signaling systems. Elaborate devices have been evolved to ensure that this interaction occurs, to guarantee the fidelity of the interaction, and to insulate the microenvironment in which it occurs. Subcellular targeting, as well as a variety of scaffolding devices, is used to promote interaction of the ACs with specific signaling proteins and regulatory factors to generate privileged domains for cAMP signaling. A direct consequence of this organization is that cAMP will exhibit distinct kinetics in discrete cellular domains. A variety of means are now available to study cAMP in these domains and to dissect their components in real time in live cells. These topics are explored within the present review.
Collapse
Affiliation(s)
- Debbie Willoughby
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
323
|
LeDuc P, Schwartz R. Computational models of molecular self-organization in cellular environments. Cell Biochem Biophys 2007; 48:16-31. [PMID: 17703065 DOI: 10.1007/s12013-007-0012-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/08/2023]
Abstract
The cellular environment creates numerous obstacles to efficient chemistry, as molecular components must navigate through a complex, densely crowded, heterogeneous, and constantly changing landscape in order to function at the appropriate times and places. Such obstacles are especially challenging to self-organizing or self-assembling molecular systems, which often need to build large structures in confined environments and typically have high-order kinetics that should make them exquisitely sensitive to concentration gradients, stochastic noise, and other non-ideal reaction conditions. Yet cells nonetheless manage to maintain a finely tuned network of countless molecular assemblies constantly forming and dissolving with a robustness and efficiency generally beyond what human engineers currently can achieve under even carefully controlled conditions. Significant advances in high-throughput biochemistry and genetics have made it possible to identify many of the components and interactions of this network, but its scale and complexity will likely make it impossible to understand at a global, systems level without predictive computational models. It is thus necessary to develop a clear understanding of how the reality of cellular biochemistry differs from the ideal models classically assumed by simulation approaches and how simulation methods can be adapted to accurately reflect biochemistry in the cell, particularly for the self-organizing systems that are most sensitive to these factors. In this review, we present approaches that have been undertaken from the modeling perspective to address various ways in which self-organization in the cell differs from idealized models.
Collapse
Affiliation(s)
- Philip LeDuc
- Department of Mechanical Engineering and Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
324
|
Moorthy J, Burgess R, Yethiraj A, Beebe D. Microfluidic Based Platform for Characterization of Protein Interactions in Hydrogel Nanoenvironments. Anal Chem 2007; 79:5322-7. [PMID: 17569500 DOI: 10.1021/ac070226l] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydrogel posts in microfluidic devices were investigated as reaction environments for characterizing protein interactions with the goal of mimicking the complexity of a biological environment. The hydrogel environment can be easily tuned to study specific properties of the biological environment. In this study, the hydrogel pore size was tuned to mimic the effect of confinement/crowding on protein interactions. Arrays of polyacrylamide posts of different cross-link ratios (4 and 10%) were fabricated inside microfluidic channels via photopolymerization. Fluorescence-labeled proteins (protein A (PA) and immunoglobulins (IgG)) were transported into the posts via diffusion, and their interaction was studied using FRET. As the pore size of the hydrogel decreased, the binding between the proteins was enhanced. The degree to which crowding enhances a binding interaction depends on the intrinsic properties of the proteins; we observed that, inside the hydrogel post, the PA-goat IgG affinity was increased more than PA-rabbit IgG affinity. The integration of controlled nanoenvironments (hydrogels) with controlled microenvironments (microchannels) provides enhanced parametric control for studying protein interactions, which would be beneficial in developing sensors, in diagnostics, and for mimicking the biological environment at both the cell and the tissue level.
Collapse
Affiliation(s)
- Jaisree Moorthy
- Biomedical Engineering Department, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | | | |
Collapse
|
325
|
Trepat X, Deng L, An SS, Navajas D, Tschumperlin DJ, Gerthoffer WT, Butler JP, Fredberg JJ. Universal physical responses to stretch in the living cell. Nature 2007; 447:592-5. [PMID: 17538621 PMCID: PMC2440511 DOI: 10.1038/nature05824] [Citation(s) in RCA: 478] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 04/10/2007] [Indexed: 01/16/2023]
Abstract
With every beat of the heart, inflation of the lung or peristalsis of the gut, cell types of diverse function are subjected to substantial stretch. Stretch is a potent stimulus for growth, differentiation, migration, remodelling and gene expression. Here, we report that in response to transient stretch the cytoskeleton fluidizes in such a way as to define a universal response class. This finding implicates mechanisms mediated not only by specific signalling intermediates, as is usually assumed, but also by non-specific actions of a slowly evolving network of physical forces. These results support the idea that the cell interior is at once a crowded chemical space and a fragile soft material in which the effects of biochemistry, molecular crowding and physical forces are complex and inseparable, yet conspire nonetheless to yield remarkably simple phenomenological laws. These laws seem to be both universal and primitive, and thus comprise a striking intersection between the worlds of cell biology and soft matter physics.
Collapse
Affiliation(s)
- Xavier Trepat
- Program in Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
326
|
Hu Z, Jiang J, Rajagopalan R. Effects of macromolecular crowding on biochemical reaction equilibria: a molecular thermodynamic perspective. Biophys J 2007; 93:1464-73. [PMID: 17513384 PMCID: PMC1948034 DOI: 10.1529/biophysj.107.104646] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A molecular thermodynamic model is developed to investigate the effects of macromolecular crowding on biochemical reactions. Three types of reactions, representing protein folding/conformational isomerization, coagulation/coalescence, and polymerization/association, are considered. The reactants, products, and crowders are modeled as coarse-grained spherical particles or as polymer chains, interacting through hard-sphere interactions with or without nonbonded square-well interactions, and the effects of crowder size and chain length as well as product size are examined. The results predicted by this model are consistent with experimentally observed crowding effects based on preferential binding or preferential exclusion of the crowders. Although simple hard-core excluded-volume arguments do in general predict the qualitative aspects of the crowding effects, the results show that other intermolecular interactions can substantially alter the extent of enhancement or reduction of the equilibrium and can even change the direction of the shift. An advantage of the approach presented here is that competing reactions can be incorporated within the model.
Collapse
Affiliation(s)
- Zhongqiao Hu
- Department of Chemical and Biomolecular Engineering and The Singapore-MIT Alliance, National University of Singapore, Singapore
| | | | | |
Collapse
|
327
|
Ishii N, Suga Y, Hagiya A, Watanabe H, Mori H, Yoshino M, Tomita M. Dynamic simulation of an in vitro multi-enzyme system. FEBS Lett 2007; 581:413-20. [PMID: 17239859 DOI: 10.1016/j.febslet.2006.12.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 11/23/2006] [Accepted: 12/25/2006] [Indexed: 11/16/2022]
Abstract
Parameters often are tuned with metabolite concentration time series data to build a dynamic model of metabolism. However, such tuning may reduce the extrapolation ability (generalization capability) of the model. In this study, we determined detailed kinetic parameters of three purified Escherichia coli glycolytic enzymes using the initial velocity method for individual enzymes; i.e., the parameters were determined independently from metabolite concentration time series data. The metabolite concentration time series calculated by the model using the parameters matched the experimental data obtained in an actual multi-enzyme system consisting of the three purified E. coli glycolytic enzymes. Thus, the results indicate that kinetic parameters can be determined without using an undesirable tuning process.
Collapse
Affiliation(s)
- Nobuyoshi Ishii
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0035, Japan
| | | | | | | | | | | | | |
Collapse
|
328
|
Ignatova Z, Krishnan B, Bombardier JP, Marcelino AMC, Hong J, Gierasch LM. From the test tube to the cell: exploring the folding and aggregation of a beta-clam protein. Biopolymers 2007; 88:157-63. [PMID: 17206628 PMCID: PMC2904568 DOI: 10.1002/bip.20665] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A crucial challenge in present biomedical research is the elucidation of how fundamental processes like protein folding and aggregation occur in the complex environment of the cell. Many new physico-chemical factors like crowding and confinement must be considered, and immense technical hurdles must be overcome in order to explore these processes in vivo. Understanding protein misfolding and aggregation diseases and developing therapeutic strategies to these diseases demand that we gain mechanistic insight into behaviors and misbehaviors of proteins as they fold in vivo. We have developed a fluorescence approach using FlAsH labeling to study the thermodynamics of folding of a model beta-rich protein, cellular retinoic acid binding protein (CRABP) in Escherichia coli cells. The labeling approach has also enabled us to follow aggregation of a modified version of CRABP and chimeras between CRABP and huntingtin exon 1 with its glutamine repeat tract. In this article, we review our recent results using FlAsH labeling to study in-vivo folding and present new observations that hint at fundamental differences between the thermodynamics and kinetics of protein folding in vivo and in vitro.
Collapse
Affiliation(s)
- Zoya Ignatova
- Max Planck Institute for Biochemistry, Martinsreid, Germany
| | - Beena Krishnan
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Jeffrey P. Bombardier
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | | | - Jiang Hong
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Lila M. Gierasch
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003
| |
Collapse
|
329
|
Abstract
Cells faced with dehydration because of increasing extracellular osmotic pressure accumulate solutes through synthesis or transport. Water follows, restoring cellular hydration and volume. Prokaryotes and eukaryotes possess arrays of osmoregulatory genes and enzymes that are responsible for solute accumulation under osmotic stress. In bacteria, osmosensing transporters can detect increasing extracellular osmotic pressure and respond by mediating the uptake of organic osmolytes compatible with cellular functions ("compatible solutes"). This chapter reviews concepts and methods critical to the identification and study of osmosensing transporters. Like some experimental media, cytoplasm is a "nonideal" solution so the estimation of key solution properties (osmotic pressure, osmolality, water activity, osmolarity, and macromolecular crowding) is essential for studies of osmosensing and osmoregulation. Because bacteria vary widely in osmotolerance, techniques for its characterization provide an essential context for the elucidation of osmosensory and osmoregulatory mechanisms. Powerful genetic, molecular biological, and biochemical tools are now available to aid in the identification and characterization of osmosensory transporters, the genes that encode them, and the osmoprotectants that are their substrates. Our current understanding of osmosensory mechanisms is based on measurements of osmosensory transporter activity performed with intact cells, bacterial membrane vesicles, and proteoliposomes reconstituted with purified transporters. In the quest to elucidate the structural mechanisms of osmosensing and osmoregulation, researchers are now applying the full range of available biophysical, biochemical, and molecular biological tools to osmosensory transporter prototypes.
Collapse
Affiliation(s)
- Janet M Wood
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
330
|
Du F, Zhou Z, Mo ZY, Shi JZ, Chen J, Liang Y. Mixed Macromolecular Crowding Accelerates the Refolding of Rabbit Muscle Creatine Kinase: Implications for Protein Folding in Physiological Environments. J Mol Biol 2006; 364:469-82. [PMID: 17027032 DOI: 10.1016/j.jmb.2006.09.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 08/28/2006] [Accepted: 09/03/2006] [Indexed: 11/21/2022]
Abstract
The effects of four single macromolecular crowding agents, Ficoll 70, dextran 70, polyethylene glycol (PEG) 2000, and calf thymus DNA (CT DNA), and three mixed crowding agents containing both CT DNA and polysaccharide (or PEG 2000) on the refolding of guanidine hydrochloride-denatured rabbit muscle creatine kinase (MM-CK) have been examined by activity assay. When the total concentration of the mixed crowding agent is 100 g/l, in which the weight ratio of CT DNA to Ficoll 70 is 1:9, the refolding yield of MM-CK after refolding for 3 h under these conditions increases 23% compared with that in the presence of 10 g/l CT DNA, 18% compared with 100 g/l Ficoll 70, and 19% compared with that in the absence of crowding agents. A remarkable increase in the refolding yield of MM-CK by a mixed crowding agent containing CT DNA and dextran 70 (or PEG 2000) is also observed. Further folding kinetics analyses show that these three mixed crowding agents remarkably accelerate the refolding of MM-CK, compared with single crowding agents. Aggregation of MM-CK in the presence of any of the three mixed crowding agents is less serious than that in the presence of a single crowding agent at the same concentration but more serious than that in the absence of crowding agents. Both the refolding yield and the refolding rate of MM-CK in mixtures of these agents are increased relative to the individual agents by themselves, indicating that mixed macromolecular crowding agents are more favorable to MM-CK folding and can be used to reflect the physiological environment more accurately than single crowding agents.
Collapse
Affiliation(s)
- Fen Du
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | |
Collapse
|
331
|
Ridgway D, Broderick G, Ellison MJ. Accommodating space, time and randomness in network simulation. Curr Opin Biotechnol 2006; 17:493-8. [PMID: 16962764 DOI: 10.1016/j.copbio.2006.08.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 08/10/2006] [Accepted: 08/30/2006] [Indexed: 01/13/2023]
Abstract
Interest in the possibility of dynamically simulating complex cellular processes has escalated markedly in recent years. This interest has been fuelled by three factors: the generally accepted value in understanding living processes as integrated systems; the dramatic increase in computational capability; and the availability of new or improved technology for making the quantitative measurements that are needed to drive and validate cellular simulations. Between the extremes of atom-scale and organism-scale simulation is a vast middle-ground requiring simulation strategies that are capable of dealing with a range of spatial, temporal and molecular abundance scales that are crucial for a comprehensive understanding of integrative cell biology. Although at an early stage, methodological improvements and the development of computational platforms provide some hope that simulations will emerge that can bridge the gap between network models and the true operation of the cell as a complex machine.
Collapse
Affiliation(s)
- Douglas Ridgway
- Institute for Biomolecular Design, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | |
Collapse
|
332
|
Burt MC, Dave BC. Externally Tunable Dynamic Confinement Effect in Organosilica Sol−Gels. J Am Chem Soc 2006; 128:11750-1. [PMID: 16953602 DOI: 10.1021/ja064928o] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The feasibility of using the pores of organosilica sol-gels for dynamic confinement of a luminescent molecule is demonstrated in this paper. The porous organosilica sol-gels act as reversible thermoresponsive materials which exhibit reduced pore volume at higher temperature and enlarged pores at lower temperature, which causes dynamic alterations in the nanoenvironment of encapsulated entities. A particularly remarkable feature of this system is that the temperature-dependent confinement effect provided by the gels is reversible and can be efficiently modulated by simply changing the temperature.
Collapse
Affiliation(s)
- Marci C Burt
- Department of Chemistry and Biochemistry, Southern Illinois University-Carbondale, Carbondale, Illinois 62901-4409, USA
| | | |
Collapse
|