301
|
Tewari A, Grage MML, Harrison GI, Sarkany R, Young AR. UVA1 is skin deep: molecular and clinical implications. Photochem Photobiol Sci 2013. [PMID: 23192740 DOI: 10.1039/c2pp25323b] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Long wavelength UVA1 (340-400 nm) is the main component of terrestrial UVR and is increasingly used in skin phototherapy. Its damage to critical biomolecules such as DNA has been widely attributed to its ability to generate reactive oxygen species (ROS) via other chromophores. However recent studies in vitro and in vivo have shown that UVA1 has a specific ability to generate cyclobutane pyrimidine dimers (CPD), especially thymine dimers (T<>T), and that this is probably due to direct absorption of UVR. The CPD has been implicated in many aspects of skin cancer. Measuring UVB-induced CPD in the epidermis and dermis in vivo shows that, as expected, the skin attenuates UVB. In contrast, our data show that this is not the case with UVA1: in fact there is more damage with increased skin depth. This suggests that the basal layer, which contains keratinocyte stem cells and melanocytes, is more vulnerable to the carcinogenic effects of UVA1 than would be predicted by mouse models. These data support the continuing trend for better UVA1 protection by sunscreens.
Collapse
Affiliation(s)
- Angela Tewari
- King's College London (KCL), King's College London School of Medicine, Division of Genetics and Molecular Medicine, St John's Institute of Dermatology, London, UK.
| | | | | | | | | |
Collapse
|
302
|
Elsner P, Blome O, Diepgen TL. UV-induced occupational skin cancer: possibilities of secondary individual prevention in the "Dermatologist's Procedure". J Dtsch Dermatol Ges 2013; 11:625-30. [PMID: 23668257 DOI: 10.1111/ddg.12118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 03/25/2013] [Indexed: 11/28/2022]
Abstract
Invasive squamous cell carcinoma (SCC) as a "quasi occupational disease" according to §9 Section 2 of the German Social Code Book (SGB) VII typically develops on chronically UV-damaged skin from actinic keratoses. After the Medical Scientific Committee of the Federal Ministry of Labor and Social Affairs has confirmed the legal criteria for acknowledging UV-induced SCC as an occupational disease, it is expected that the condition will be added to the official list of occupational diseases issued by the Federal Government in the near future. The Social Accident Insurance is required by law (§3 Occupational Disease Regulation) to prevent these tumors by "all appropriate means". There are excellent therapeutic and preventive measures for the management of actinic keratoses to avoid the development of SCC. The "Dermatologist's Procedure" according to §§ 41-43 of the agreement between the Social Accident Insurance and the Federal Medical Association was established in Germany in 1972 to take preventive measures in insured persons with skin lesions possibly developing into an occupational disease, or worsening it, or leading to a recurrence of it This procedure proved to be very successful in the prevention of severe and/or recurring skin diseases forcing a worker to leave his job. On the basis of this agreement, the Social Accident Insurance has the instruments to independently provide preventive measures for the new occupational skin disease SCC induced by natural UV light according to §9 Section 2 of the German Social Code Book (SGB) VII.
Collapse
Affiliation(s)
- Peter Elsner
- Dept. of Dermatology, University Hospital Jena, Germany.
| | | | | |
Collapse
|
303
|
Vendrell-Criado V, Rodríguez-Muñiz GM, Cuquerella MC, Lhiaubet-Vallet V, Miranda MA. Photosensitization of DNA by 5-Methyl-2-Pyrimidone Deoxyribonucleoside: (6-4) Photoproduct as a Possible Trojan Horse. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302176] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
304
|
Vendrell-Criado V, Rodríguez-Muñiz GM, Cuquerella MC, Lhiaubet-Vallet V, Miranda MA. Photosensitization of DNA by 5-methyl-2-pyrimidone deoxyribonucleoside: (6-4) photoproduct as a possible Trojan horse. Angew Chem Int Ed Engl 2013; 52:6476-9. [PMID: 23657994 DOI: 10.1002/anie.201302176] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Victoria Vendrell-Criado
- Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | | | | | | | | |
Collapse
|
305
|
Fischer C, Ahlrichs WH, Buma AGJ, van de Poll WH, Bininda-Emonds ORP. How does the 'ancient' asexual Philodina roseola (Rotifera: Bdelloidea) handle potential UVB-induced mutations? ACTA ACUST UNITED AC 2013; 216:3090-5. [PMID: 23619410 DOI: 10.1242/jeb.087064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Like other obligate asexuals, bdelloid rotifers are expected to suffer from degradation of their genomes through processes including the accumulation of deleterious mutations. However, sequence-based analyses in this regard remain inconclusive. Instead of looking for historical footprints of mutations in these ancient asexuals, we directly examined the susceptibility and ability to repair point mutations by the bdelloid Philodina roseola by inducing cyclobutane-pyrimidine dimers (CPDs) via exposure to UVB radiation (280-320 nm). For comparison, we performed analogous experiments with the facultative asexual monogonont rotifer Brachionus rubens. Different strategies were found for the two species. Philodina roseola appeared to shield itself from CPD induction through uncharacterized UV-absorbing compounds and, except for the genome reconstruction that occurs after desiccation, was largely unable to repair UVB-induced damage. By contrast, B. rubens was more susceptible to UVB irradiation, but could repair all induced damage in ~2 h. In addition, whereas UV irradiation had a significant negative impact on the reproductive output of P. roseola, and especially so after desiccation, that of B. rubens was unaffected. Although the strategy of P. roseola might suffice under natural conditions where UVB irradiation is less intense, the lack of any immediate CPD repair mechanisms in this species remains perplexing. It remains to be investigated how typical these results are for bdelloids as a group and therefore how reliant these animals are on desiccation-dependent genome repair to correct potential DNA damage given their obligate asexual lifestyle.
Collapse
Affiliation(s)
- Claus Fischer
- AG Systematics and Evolutionary Biology, IBU-Faculty V, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
| | | | | | | | | |
Collapse
|
306
|
The pattern and time course of somatosensory changes in the human UVB sunburn model reveal the presence of peripheral and central sensitization. Pain 2013; 154:586-597. [DOI: 10.1016/j.pain.2012.12.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 11/14/2012] [Accepted: 12/20/2012] [Indexed: 12/21/2022]
|
307
|
Quercitrin protects skin from UVB-induced oxidative damage. Toxicol Appl Pharmacol 2013; 269:89-99. [PMID: 23545178 DOI: 10.1016/j.taap.2013.03.015] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 02/07/2023]
Abstract
Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin.
Collapse
|
308
|
Sato K, Minai Y, Watanabe H. Effect of monochromatic visible light on intracellular superoxide anion production and mitochondrial membrane potential of B16F1 and B16F10 murine melanoma cells. Cell Biol Int 2013; 37:633-7. [PMID: 23404540 DOI: 10.1002/cbin.10069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/04/2013] [Indexed: 01/25/2023]
Abstract
We have investigated the effect of visible light on animal cells using light-emitting diodes to emit monochromatic visible light (red, yellow, green and blue light). To explore the relevant mechanism of apoptosis, we assessed the intracellular superoxide anion production and mitochondrial membrane potential (ΔΨm) of B16F1 and B16F10 murine melanoma cells after monochromatic light irradiation. Blue light caused ΔΨm depolarization subsequent to elevation of intracellular superoxide production. However, red and yellow light had no affect on both cell lines. Green light induced ΔΨm collapse only in B16F1 melanoma cells. ΔΨm is a key indicator of mitochondrial function, therefore its disruption causes mitochondria-dependent apoptosis. Thus, blue light causes mitochondrial dysfunction and subsequent cell death.
Collapse
Affiliation(s)
- Kazuomi Sato
- Department of Life Science, College of Agriculture, Tamagawa University, 6-1-1 Tamagawa Gakuen, Machida, Tokyo, Japan
| | | | | |
Collapse
|
309
|
Song JH, Bae EY, Choi G, Hyun JW, Lee MY, Lee HW, Chae S. Protective effect of mango (Mangifera indicaL.) against UVB-induced skin aging in hairless mice. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2013; 29:84-9. [DOI: 10.1111/phpp.12030] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/26/2012] [Indexed: 12/01/2022]
Affiliation(s)
| | - Eun Young Bae
- Aging Research Laboratory; Korea Institute of Oriental Medicine; Daejeon; Korea
| | - Goya Choi
- Aging Research Laboratory; Korea Institute of Oriental Medicine; Daejeon; Korea
| | - Jin Won Hyun
- School of Medicine and Applied Radiological Science Research Institute; Jeju National University; Jeju-si; Korea
| | - Mi Young Lee
- Aging Research Laboratory; Korea Institute of Oriental Medicine; Daejeon; Korea
| | - Hye Won Lee
- Aging Research Laboratory; Korea Institute of Oriental Medicine; Daejeon; Korea
| | - Sungwook Chae
- Aging Research Laboratory; Korea Institute of Oriental Medicine; Daejeon; Korea
| |
Collapse
|
310
|
Travers JB, Spandau DF, Lewis DA, Machado C, Kingsley M, Mousdicas N, Somani AK. Fibroblast senescence and squamous cell carcinoma: how wounding therapies could be protective. Dermatol Surg 2013; 39:967-73. [PMID: 23437969 DOI: 10.1111/dsu.12138] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Squamous cell carcinoma (SCC), which has one of the highest incidences of all cancers in the United States, is an age-dependent disease, with the majority of these cancers diagnosed in people age 70 and older. Recent findings have led to a new hypothesis on the pathogenesis of SCC. OBJECTIVES To evaluate the potential of preventive therapies to reduce the incidence of SCC in at-risk geriatric patients. MATERIALS AND METHODS Survey of current literature on wounding therapies to prevent SCCs. RESULTS This new hypothesis of SCC photocarcinogenesis states that senescent fibroblasts accumulate in the dermis, resulting in a reduction in dermal insulin-like growth factor-1 (IGF-1) expression. This lack of IGF-1 expression sensitizes epidermal keratinocytes to fail to suppress ultraviolet light B (UVB)-induced mutations, leading to increased proclivity to photocarcinogenesis. Recent evidence suggests that dermal wounding therapies, specifically dermabrasion and fractionated laser resurfacing, can decrease the proportion of senescent dermal fibroblasts, increase dermal IGF-1 expression, and correct the inappropriate UVB response found in geriatric skin, protecting geriatric keratinocytes from UVB-induced SCC initiation. CONCLUSIONS In this review, we will discuss the translation of pioneering basic science results implicating commonly used dermal fibroblast rejuvenation procedures as preventative treatments for SCC.
Collapse
Affiliation(s)
- Jeffrey B Travers
- Department of Dermatology, Indiana University, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | |
Collapse
|
311
|
Action spectrum analysis of UVR genotoxicity for skin: the border wavelengths between UVA and UVB can bring serious mutation loads to skin. J Invest Dermatol 2013; 133:1850-6. [PMID: 23407394 DOI: 10.1038/jid.2012.504] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
UVR causes erythema, which has been used as a standardized index to evaluate the risk of UVR for human skin. However, the genotoxic significance of erythema has not been elucidated clearly. Here, we characterized the wavelength dependence of the genotoxic and erythematic effects of UVR for the skin by analyzing the induction kinetics of mutation and inflammation in mouse skin using lacZ-transgenic mice and monochromatic UVR sources. We determined their action spectra and found a close correlation between erythema and an epidermis-specific antigenotoxic response, mutation induction suppression (MIS), which suppressed the mutant frequencies (MFs) to a constant plateau level only 2-3-fold higher than the background MF at the cost of apoptotic cell death, suggesting that erythema may represent the threshold beyond which the antigenotoxic but tissue-destructive MIS response commences. However, we unexpectedly found that MIS attenuates remarkably at the border wavelengths between UVA and UVB around 315 nm, elevating the MF plateaus up to levels ∼40-fold higher than the background level. Thus, these border wavelengths can bring heavier mutation loads to the skin than the otherwise more mutagenic and erythematic shorter wavelengths, suggesting that erythema-based UVR risk evaluation should be reconsidered.
Collapse
|
312
|
Takeuchi H, Rünger TM. Longwave UV light induces the aging-associated progerin. J Invest Dermatol 2013; 133:1857-62. [PMID: 23392295 DOI: 10.1038/jid.2013.71] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Premature aging in Hutchinson-Gilford progeria syndrome (HGPS) is caused by a mutation of the LMNA gene that activates a cryptic splice site. This results in expression of a truncated form of Lamin A, called progerin. Accumulation of progerin in the nuclei of HGPS cells impairs nuclear functions and causes abnormal nuclear morphology. Progerin accumulation has not only been described in HGPS, but also during normal intrinsic aging. We hypothesized that accumulation of progerin with abnormal nuclear shapes may also be accelerated by UV and with that contribute to photoaging of the skin. We exposed neonatal or aged cultured fibroblasts to single or repeated doses of longwave or shortwave UV (UVA or UVB) and found that UVA, but not UVB, induces progerin expression and HGPS-like abnormal nuclear shapes in all cells, but more in aged cells. The induction of progerin is mediated by UVA-induced oxidative damage and subsequent alternative splicing of the LMNA transcript, as progerin induction was suppressed by the singlet oxygen quencher sodium azide, and as mRNA expression of LMNA was not induced by UVA. These data suggest a previously unreported pathway of photoaging and support the concept that photoaging is at least in part a process of damage-accelerated intrinsic aging.
Collapse
Affiliation(s)
- Hirotaka Takeuchi
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
313
|
Saccà SC, Roszkowska AM, Izzotti A. Environmental light and endogenous antioxidants as the main determinants of non-cancer ocular diseases. Mutat Res 2013; 752:153-171. [PMID: 23337404 DOI: 10.1016/j.mrrev.2013.01.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 02/03/2023]
Abstract
The human eye is constantly exposed to sunlight and artificial lighting. Exogenous sources of reactive oxygen species (ROS) such as UV light, visible light, ionizing radiation, chemotherapeutics, and environmental toxins contribute to oxidative damage in ocular tissues. Long-term exposure to these insults places the aging eye at considerable risk for pathological consequences of oxidative stress. Furthermore, in eye tissues, mitochondria are an important endogenous source of ROS. Over time, all ocular structures, from the tear film to the retina, undergo oxidative stress, and therefore, the antioxidant defenses of each tissue assume the role of a safeguard against degenerative ocular pathologies. The ocular surface and cornea protect the other ocular tissues and are significantly exposed to oxidative stress of environmental origin. Overwhelming of antioxidant defenses in these tissues clinically manifests as pathologies including pterygium, corneal dystrophies, and endothelial Fuch's dystrophy. The crystalline lens is highly susceptible to oxidative damage in aging because its cells and their intracellular proteins are not turned over or replaced, thus providing the basis for cataractogenesis. The trabecular meshwork, which is the anterior chamber tissue devoted to aqueous humor drainage, has a particular susceptibility to mitochondrial oxidative injury that affects its endothelium and leads to an intraocular pressure increase that marks the beginning of glaucoma. Photo-oxidative stress can cause acute or chronic retinal damage. The pathogenesis of age-related macular degeneration involves oxidative stress and death of the retinal pigment epithelium followed by death of the overlying photoreceptors. Accordingly, converging evidence indicates that mutagenic mechanisms of environmental and endogenous sources play a fundamental pathogenic role in degenerative eye diseases.
Collapse
Affiliation(s)
- Sergio C Saccà
- Department of Head/Neck Pathologies, St Martino Hospital, Ophthalmology unit, Genoa, Italy
| | - Anna Maria Roszkowska
- Department of Specialized Surgery, University Hospital, Ophthalmology Unit, Messina, Italy
| | - Alberto Izzotti
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, I-16132, Genoa, Italy.
| |
Collapse
|
314
|
Ikehata H, Munakata N, Ono T. Skin can control solar UVR-induced mutations through the epidermis-specific response of mutation induction suppression. Photochem Photobiol Sci 2013; 12:2008-15. [DOI: 10.1039/c3pp50158b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
315
|
Yagi T. The Achievement of Shuttle Vector Techniques in Mammalian Cell Mutation Research. Genes Environ 2013. [DOI: 10.3123/jemsge.2013.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
316
|
Raza A, Dreis CD, Vince R. Photoprotection of DNA (in vitro) by acyclothymidine dinucleosides. Bioorg Med Chem Lett 2012; 23:620-3. [PMID: 23290453 DOI: 10.1016/j.bmcl.2012.12.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/06/2012] [Accepted: 12/10/2012] [Indexed: 12/21/2022]
Abstract
Excessive exposure to sunlight is primarily implicated in ultraviolet (UV) induced skin cancers worldwide. Direct absorption of UV radiation by DNA leads to the formation of cyclobutane pyrimidine dimers (CPDs) resulting in DNA damage. The molecular mechanisms involved in the mutagenicity of CPDs are well established. Photoprotection of the skin from the detrimental effects of UV is essential in preventing skin damage. A variety of formulations, which essentially contain UV filters have been used as photoprotective agents of the skin. These comprise aromatic and inorganic molecules, whose mechanism of action involves either absorption, reflection, or scattering of UV radiation. However, the downstream photoproducts of some of these molecules have undesirable characteristics which compromise their utility. A biomimetic approach involving structural analogs of nucleic acids can help overcome these limitations. Herein, we show the photoprotective action of acyclothymidine dinucleosides on both plasmid and cellular DNA.
Collapse
Affiliation(s)
- Abbas Raza
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
317
|
Varga Á, Marcus AP, Himoto M, Iwai S, Szüts D. Analysis of CPD ultraviolet lesion bypass in chicken DT40 cells: polymerase η and PCNA ubiquitylation play identical roles. PLoS One 2012; 7:e52472. [PMID: 23272247 PMCID: PMC3525536 DOI: 10.1371/journal.pone.0052472] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/13/2012] [Indexed: 01/21/2023] Open
Abstract
Translesion synthesis (TLS) provides a mechanism of copying damaged templates during DNA replication. This potentially mutagenic process may operate either at the replication fork or at post-replicative gaps. We used the example of T-T cyclobutane pyrimidine dimer (CPD) bypass to determine the influence of polymerase recruitment via PCNA ubiquitylation versus the REV1 protein on the efficiency and mutagenic outcome of TLS. Using mutant chicken DT40 cell lines we show that, on this numerically most important UV lesion, defects in polymerase η or in PCNA ubiquitylation similarly result in the long-term failure of lesion bypass with persistent strand gaps opposite the lesion, and the elevation of mutations amongst successful TLS events. Our data suggest that PCNA ubiquitylation promotes CPD bypass mainly by recruiting polymerase η, resulting in the majority of CPD lesions bypassed in an error-free manner. In contrast, we find that polymerase ζ is responsible for the majority of CPD-dependent mutations, but has no essential function in the completion of bypass. These findings point to a hierarchy of access of the different TLS polymerases to the lesion, suggesting a temporal order of their recruitment. The similarity of REV1 and REV3 mutant phenotypes confirms that the involvement of polymerase ζ in TLS is largely determined by its recruitment to DNA by REV1. Our data demonstrate the influence of the TLS polymerase recruitment mechanism on the success and accuracy of bypass.
Collapse
Affiliation(s)
- Ágnes Varga
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Adam P. Marcus
- Division of Biomedical Sciences, St George's, University of London, London, United Kingdom
| | - Masayuki Himoto
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Dávid Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| |
Collapse
|
318
|
Guidi R, Guerra L, Levi L, Stenerlöw B, Fox JG, Josenhans C, Masucci MG, Frisan T. Chronic exposure to the cytolethal distending toxins of Gram-negative bacteria promotes genomic instability and altered DNA damage response. Cell Microbiol 2012; 15:98-113. [PMID: 22998585 DOI: 10.1111/cmi.12034] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/03/2012] [Accepted: 09/16/2012] [Indexed: 12/17/2022]
Abstract
Epidemiological evidence links chronic bacterial infections to the increased incidence of certain types of cancer but the molecular mechanisms by which bacteria contribute to tumour initiation and progression are still poorly characterized. Here we show that chronic exposure to the genotoxin cytolethal distending toxin (CDT) of Gram-negative bacteria promotes genomic instability and acquisition of phenotypic properties of malignancy in fibroblasts and colon epithelial cells. Cells grown for more than 30 weeks in the presence of sublethal doses of CDT showed increased mutation frequency, and accumulation of chromatin and chromosomal aberrations in the absence of significant alterations of cell cycle distribution, decreased viability or senescence. Cell survival was dependent on sustained activity of the p38 MAP kinase. The ongoing genomic instability was associated with impaired activation of the DNA damage response and failure to efficiently activate cell cycle checkpoints upon exposure to genotoxic stress. Independently selected sublines showed enhanced anchorage-independent growth as assessed by the formation of colonies in semisolid agarose. These findings support the notion that chronic infection by CDT-producing bacteria may promote malignant transformation, and point to the impairment of cellular control mechanisms associated with the detection and repair of DNA damage as critical events in the process.
Collapse
Affiliation(s)
- Riccardo Guidi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
319
|
Lin H, Zhang D, Alexander PG, Yang G, Tan J, Cheng AWM, Tuan RS. Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials 2012; 34:331-9. [PMID: 23092861 DOI: 10.1016/j.biomaterials.2012.09.048] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 09/21/2012] [Indexed: 11/15/2022]
Abstract
One-step scaffold fabrication with live cell incorporation is a highly desirable technology for tissue engineering and regeneration. Projection stereolithography (PSL) represents a promising method owing to its fine resolution, high fabrication speed and computer-aided design (CAD) capabilities. However, the majority of current protocols utilize water-insoluble photoinitiators that are incompatible with live cell-fabrication, and ultraviolet (UV) light that is damaging to the cellular DNA. We report here the development of a visible light-based PSL system (VL-PSL), using lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) as the initiator and polyethylene glycol diacrylate (PEGDA) as the monomer, to produce hydrogel scaffolds with specific shapes and internal architectures. Furthermore, live human adipose-derived stem cells (hADSCs) were suspended in PEGDA/LAP solution during the PSL process, and were successfully incorporated within the fabricated hydrogel scaffolds. hADSCs in PEG scaffolds showed high viability (>90%) for up to 7 days after fabrication as revealed by Live/Dead staining. Scaffolds with porous internal architecture retained higher cell viability and activity than solid scaffolds, likely due to increased oxygen and nutrients exchange into the interior of the scaffolds. The VL-PSL should be applicable as an efficient and effective tissue engineering technology for point-of-care tissue repair in the clinic.
Collapse
Affiliation(s)
- Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | | | | | | | | | | | | |
Collapse
|
320
|
Kikuchi H, Kuribayashi F, Imajoh-Ohmi S, Nishitoh H, Takami Y, Nakayama T. GCN5 protects vertebrate cells against UV-irradiation via controlling gene expression of DNA polymerase η. J Biol Chem 2012; 287:39842-9. [PMID: 23033487 DOI: 10.1074/jbc.m112.406389] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
By UV-irradiation, cells are subjected to DNA damage followed by mutation, cell death and/or carcinogenesis. DNA repair systems such as nucleotide excision repair (NER) and translesion DNA synthesis (TLS) protect cells against UV-irradiation. To understand the role of histone acetyltransferase GCN5 in regulation of DNA repair, we studied the sensitivity of GCN5-deficient DT40, GCN5(-/-), to various DNA-damaging agents including UV-irradiation, and effects of GCN5-deficiency on the expression of NER- and TLS-related genes. After UV-irradiation, cell death and DNA fragmentation of GCN5(-/-) were appreciably accelerated as compared with those of DT40. Interestingly, GCN5(-/-) showed a remarkable sensitivity to only UV-irradiation but not to other DNA-damaging agents tested. Semiquantitative RT-PCR showed that transcription of DNA polymerase η (POLH) gene whose deficiency is responsible for a variant form of xeroderma pigmentosum was drastically down-regulated in GCN5(-/-) (to ∼25%). In addition, ectopic expression of human POLH in GCN5(-/-) dramatically reversed the sensitivity to UV-irradiation of GCN5(-/-) to almost the same level of wild type DT40. Moreover, chromatin immunoprecipitation assay revealed that GCN5 binds to the chicken POLH gene 5'-flanking region that contains a typical CpG island and acetylates Lys-9 of histone H3, but not Lys-14 in vivo. These data suggest that GCN5 takes part in transcription regulation of POLH gene through alterations in the chromatin structure by direct interaction with its 5'-flanking region, and protects vertebrate cells against UV-induced DNA damage via controlling POLH gene expression.
Collapse
Affiliation(s)
- Hidehiko Kikuchi
- Section of Biochemistry and Molecular Biology, Department of Medical Sciences, Miyazaki Medical College, University of Miyazaki, 5200, Kihara, Kiyotake, Miyazaki, 889-1692, Japan.
| | | | | | | | | | | |
Collapse
|
321
|
Allinson S, Asmuss M, Baldermann C, Bentzen J, Buller D, Gerber N, Green AC, Greinert R, Kimlin M, Kunrath J, Matthes R, Pölzl-Viol C, Rehfuess E, Rossmann C, Schüz N, Sinclair C, van Deventer E, Webb A, Weiss W, Ziegelberger G. Validity and use of the UV index: report from the UVI working group, Schloss Hohenkammer, Germany, 5-7 December 2011. HEALTH PHYSICS 2012; 103:301-306. [PMID: 22850235 DOI: 10.1097/hp0b013e31825b581e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The adequacy of the UV Index (UVI), a simple measure of ambient solar ultraviolet (UV) radiation, has been questioned on the basis of recent scientific data on the importance of vitamin D for human health, the mutagenic capacity of radiation in the UVA wavelength, and limitations in the behavioral impact of the UVI as a public awareness tool. A working group convened by ICNIRP and WHO met to assess whether modifications of the UVI were warranted and to discuss ways of improving its effectiveness as a guide to healthy sun-protective behavior. A UV Index greater than 3 was confirmed as indicating ambient UV levels at which harmful sun exposure and sunburns could occur and hence as the threshold for promoting preventive messages. There is currently insufficient evidence about the quantitative relationship of sun exposure, vitamin D, and human health to include vitamin D considerations in sun protection recommendations. The role of UVA in sunlight-induced dermal immunosuppression and DNA damage was acknowledged, but the contribution of UVA to skin carcinogenesis could not be quantified precisely. As ambient UVA and UVB levels mostly vary in parallel in real life situations, any minor modification of the UVI weighting function with respect to UVA-induced skin cancer would not be expected to have a significant impact on the UV Index. Though it has been shown that the UV Index can raise awareness of the risk of UV radiation to some extent, the UVI does not appear to change attitudes to sun protection or behavior in the way it is presently used. Changes in the UVI itself were not warranted based on these findings, but rather research testing health behavior models, including the roles of self-efficacy and self-affirmation in relation to intention to use sun protection among different susceptible groups, should be carried out to develop more successful strategies toward improving sun protection behavior.
Collapse
|
322
|
Melanisation of Teladorsagia circumcincta larvae exposed to sunlight: A role for GTP-cyclohydrolase in nematode survival. Int J Parasitol 2012; 42:887-91. [DOI: 10.1016/j.ijpara.2012.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 11/23/2022]
|
323
|
Greinert R, Volkmer B, Henning S, Breitbart EW, Greulich KO, Cardoso MC, Rapp A. UVA-induced DNA double-strand breaks result from the repair of clustered oxidative DNA damages. Nucleic Acids Res 2012; 40:10263-73. [PMID: 22941639 PMCID: PMC3488256 DOI: 10.1093/nar/gks824] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UVA (320-400 nm) represents the main spectral component of solar UV radiation, induces pre-mutagenic DNA lesions and is classified as Class I carcinogen. Recently, discussion arose whether UVA induces DNA double-strand breaks (dsbs). Only few reports link the induction of dsbs to UVA exposure and the underlying mechanisms are poorly understood. Using the Comet-assay and γH2AX as markers for dsb formation, we demonstrate the dose-dependent dsb induction by UVA in G(1)-synchronized human keratinocytes (HaCaT) and primary human skin fibroblasts. The number of γH2AX foci increases when a UVA dose is applied in fractions (split dose), with a 2-h recovery period between fractions. The presence of the anti-oxidant Naringin reduces dsb formation significantly. Using an FPG-modified Comet-assay as well as warm and cold repair incubation, we show that dsbs arise partially during repair of bi-stranded, oxidative, clustered DNA lesions. We also demonstrate that on stretched chromatin fibres, 8-oxo-G and abasic sites occur in clusters. This suggests a replication-independent formation of UVA-induced dsbs through clustered single-strand breaks via locally generated reactive oxygen species. Since UVA is the main component of solar UV exposure and is used for artificial UV exposure, our results shine new light on the aetiology of skin cancer.
Collapse
Affiliation(s)
- R Greinert
- Dermatology Center Buxtehude (DZB), Buxtehude, Germany
| | | | | | | | | | | | | |
Collapse
|
324
|
Cadet J, Mouret S, Ravanat JL, Douki T. Photoinduced damage to cellular DNA: direct and photosensitized reactions. Photochem Photobiol 2012; 88:1048-65. [PMID: 22780837 DOI: 10.1111/j.1751-1097.2012.01200.x] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The survey focuses on recent aspects of photochemical reactions to cellular DNA that are implicated through the predominant formation of mostly bipyrimidine photoproducts in deleterious effects of human exposure to sunlight. Recent developments in analytical methods have allowed accurate and quantitative measurements of the main DNA photoproducts in cells and human skin. Highly mutagenic CC and CT bipyrimidine photoproducts, including cyclobutane pyrimidine dimers and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs) are generated in low yields with respect to TT and TC photoproducts. Another striking finding deals with the formation of Dewar valence isomers, the third class of bipyrimidine photoproducts that is accounted for by UVA-mediated isomerization of initially UVB generated 6-4PPs. Cyclobutadithymine (T<>T) has been unambiguously shown to be involved in the genotoxicity of UVA radiation. Thus, T<>T is formed in UVA-irradiated cellular DNA according to a direct excitation mechanism with a higher efficiency than oxidatively generated DNA damage that arises mostly through the Type II photosensitization mechanism. C<>C and C<>T are repaired at rates intermediate between those of T<>T and 6-4TT. Evidence has been also provided for the occurrence of photosensitized reactions mediated by exogenous agents that act either in an independent way or through photodynamic effects.
Collapse
Affiliation(s)
- Jean Cadet
- Laboratoire Lésions des Acides Nucléiques, SCIB-UMR-E n°3, CEA/UJF, Institut Nanosciences et Cryogénie, CEA/Grenoble, Grenoble Cedex, France
| | | | | | | |
Collapse
|
325
|
Melanosomal dynamics assessed with a live-cell fluorescent melanosomal marker. PLoS One 2012; 7:e43465. [PMID: 22927970 PMCID: PMC3425493 DOI: 10.1371/journal.pone.0043465] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/20/2012] [Indexed: 12/14/2022] Open
Abstract
Melanocytes present in skin and other organs synthesize and store melanin pigment within membrane-delimited organelles called melanosomes. Exposure of human skin to ultraviolet radiation (UV) stimulates melanin production in melanosomes, followed by transfer of melanosomes from melanocytes to neighboring keratinocytes. Melanosomal function is critical for protecting skin against UV radiation, but the mechanisms underlying melanosomal movement and transfer are not well understood. Here we report a novel fluorescent melanosomal marker, which we used to measure real-time melanosomal dynamics in live human epidermal melanocytes (HEMs) and transfer in melanocyte-keratinocyte co-cultures. A fluorescent fusion protein of Ocular Albinism 1 (OA1) localized to melanosomes in both B16-F1 cells and HEMs, and its expression did not significantly alter melanosomal distribution. Live-cell tracking of OA1-GFP-tagged melanosomes revealed a bimodal kinetic profile, with melanosomes exhibiting combinations of slow and fast movement. We also found that exposure to UV radiation increased the fraction of melanosomes exhibiting fast versus slow movement. In addition, using OA1-GFP in live co-cultures, we monitored melanosomal transfer using time-lapse microscopy. These results highlight OA1-GFP as a specific and effective melanosomal marker for live-cell studies, reveal new aspects of melanosomal dynamics and transfer, and are relevant to understanding the skin's physiological response to UV radiation.
Collapse
|
326
|
Zerbinati N, Portale S, Palmieri B, Rottigni V, Iannitti T. A preliminary study to assess the efficacy of a new UVA1 laser for treatment of psoriasis. Photomed Laser Surg 2012; 30:610-4. [PMID: 22889255 DOI: 10.1089/pho.2012.3281] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE The aim of the present study was to assess the effectiveness of an UVA1 355 nm laser (Alba 355) for treatment of mild, moderate, and severe psoriasis. BACKGROUND DATA Psoriasis is an immune-inflammatory and proliferative skin disease. During the past few years, the instrumental treatment by UV radiation has been successfully described, either alone or in combination with topical and/or systemic drug administration to treat several skin-related diseases. MATERIALS AND METHODS Fourteen patients, aged between 25 and 50 years (37.7±2.3 [mean±SEM]), affected by mild-to-severe psoriatic plaques, were included in this study. Patients were treated with a new instrument, laser Alba 355, which administers energy in the UVA1 spectrum. This instrument is based on a 1064 wavelength neodymium-doped yttrium orthovanadate (Nd:YVO4) laser optically pumped using a 808 nm infrared beam able to achieve a third harmonic 355 nm wave delivery. The fluences administered were 80-140 J/cm2 four times a week for a total of up to 12 sessions over selected psoriatic plaques in different areas of the patients' bodies. The patients rated their satisfaction with the outcome of the procedure as 1 not satisfied, 2 quite satisfied, 3 very satisfied. RESULTS Overall, laser treatment of psoriatic plaques produced a significant improvement in Psoriasis Area and Severity Index (PASI) score (F [3, 55]=57.86; p<0.001). The mean PASI score decreased from a baseline value of 24.5±2.9 to a value of 15.6±1.9 at 1 week (p<0.001), 9.1±1.2 at 2 weeks (p<0.001), and 5.8±1.2 at 3 weeks (p<0.001). All the patients were very satisfied with the outcome of procedure. No side effects were observed in this study. CONCLUSIONS The present study outlines an original approach based on UVA1 355 nm laser therapy for treatment of mild, moderate, and severe psoriasis. In the present study, the high success rate was coupled with safety. Larger clinical trials are needed to definitely support the role of this medical device not only for treatment of psoriasis, but also for other skin-related diseases that share a similar pathophysiology. We speculate that in the near future, the use of this laser will grow in the dermatology clinic.
Collapse
Affiliation(s)
- Nicola Zerbinati
- Department of Surgical and Morphological Sciences, Faculty of Medicine and Surgery, University of Insubria, Varese, Italy
| | | | | | | | | |
Collapse
|
327
|
Association of Merkel cell polyomavirus infection with clinicopathological differences in Merkel cell carcinoma. Hum Pathol 2012; 43:2282-91. [PMID: 22795182 DOI: 10.1016/j.humpath.2012.04.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 04/03/2012] [Accepted: 04/04/2012] [Indexed: 01/26/2023]
Abstract
Merkel cell polyomavirus is a novel polyomavirus that is monoclonally integrated into genomes of up to 80% of human Merkel cell carcinomas. Merkel cell polyomavirus-positive Merkel cell carcinomas showed less metastatic tendency and better prognosis according to some reports, whereas others disagree. In this study, we analyzed clinicopathological characteristics of 20 Merkel cell polyomavirus-positive and 6 Merkel cell polyomavirus-negative Merkel cell carcinoma cases, in which we already reported the association of Merkel cell polyomavirus infection with statistically significant morphological differences. Immunohistochemical expressions of cell cycle-related proteins, mutations of the TP53 tumor-suppressor gene (exons 4-9) and p14ARF promoter methylation status as well as detailed clinical data were analyzed and compared between Merkel cell polyomavirus-positive and Merkel cell polyomavirus-negative cases. Merkel cell polyomavirus-positive Merkel cell carcinomas showed better prognosis with one spontaneous regression case and significantly higher expression of retinoblastoma protein (P = .0003) and less p53 expression (P = .0005) compared to Merkel cell polyomavirus-negative Merkel cell carcinomas. No significant differences were found in expressions of p63, MDM2, p14ARF or MIB-1 index, and p14ARF promoter methylation status. Interestingly, frequency of TP53 non-ultraviolet signature mutation was significantly higher in Merkel cell polyomavirus-negative Merkel cell carcinomas than in Merkel cell polyomavirus-positive Merkel cell carcinomas (P = .036), whereas no significant difference was detected in TP53 ultraviolet signature mutations between two groups. These results suggest that Merkel cell polyomavirus-positive and -negative Merkel cell carcinomas likely develop through different tumorigenic pathways and that the presence or absence of Merkel cell polyomavirus in the tumor is still an important factor that affects survival in patients with Merkel cell carcinoma.
Collapse
|
328
|
Gillies RJ, Verduzco D, Gatenby RA. Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nat Rev Cancer 2012; 12:487-93. [PMID: 22695393 PMCID: PMC4122506 DOI: 10.1038/nrc3298] [Citation(s) in RCA: 474] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
All malignant cancers, whether inherited or sporadic, are fundamentally governed by Darwinian dynamics. The process of carcinogenesis requires genetic instability and highly selective local microenvironments, the combination of which promotes somatic evolution. These microenvironmental forces, specifically hypoxia, acidosis and reactive oxygen species, are not only highly selective, but are also able to induce genetic instability. As a result, malignant cancers are dynamically evolving clades of cells living in distinct microhabitats that almost certainly ensure the emergence of therapy-resistant populations. Cytotoxic cancer therapies also impose intense evolutionary selection pressures on the surviving cells and thus increase the evolutionary rate. Importantly, the principles of Darwinian dynamics also embody fundamental principles that can illuminate strategies for the successful management of cancer.
Collapse
Affiliation(s)
- Robert J Gillies
- Department of Cancer Physiology and Biophysics, H. Lee Moffitt Cancer Center and Research Institute, Tampa FL 33602, USA.
| | | | | |
Collapse
|
329
|
Temviriyanukul P, van Hees-Stuivenberg S, Delbos F, Jacobs H, de Wind N, Jansen JG. Temporally distinct translesion synthesis pathways for ultraviolet light-induced photoproducts in the mammalian genome. DNA Repair (Amst) 2012; 11:550-8. [PMID: 22521143 DOI: 10.1016/j.dnarep.2012.03.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 03/28/2012] [Accepted: 03/28/2012] [Indexed: 10/28/2022]
Abstract
Replicative polymerases (Pols) arrest at damaged DNA nucleotides, which induces ubiquitination of the DNA sliding clamp PCNA (PCNA-Ub) and DNA damage signaling. PCNA-Ub is associated with the recruitment or activation of translesion synthesis (TLS) DNA polymerases of the Y family that can bypass the lesions, thereby rescuing replication and preventing replication fork collapse and consequent formation of double-strand DNA breaks. Here, we have used gene-targeted mouse embryonic fibroblasts to perform a comprehensive study of the in vivo roles of PCNA-Ub and of the Y family TLS Pols η, ι, κ, Rev1 and the B family TLS Polζ in TLS and in the suppression of DNA damage signaling and genome instability after exposure to UV light. Our data indicate that TLS Pols ι and κ and the N-terminal BRCT domain of Rev1, that previously was implicated in the regulation of TLS, play minor roles in TLS of DNA photoproducts. PCNA-Ub is critical for an early TLS pathway that replicates both strongly helix-distorting (6-4) pyrimidine-pyrimidone ((6-4)PP) and mildly distorting cyclobutane pyrimidine dimer (CPD) photoproducts. The role of Polη is mainly restricted to early TLS of CPD photoproducts, whereas Rev1 and, in particular, Polζ are essential for the bypass of (6-4)PP photoproducts, both early and late after exposure. Thus, structurally distinct photoproducts at the mammalian genome are bypassed by different TLS Pols in temporally different, PCNA-Ub-dependent and independent fashions.
Collapse
Affiliation(s)
- Piya Temviriyanukul
- Department of Toxicogenetics, Leiden University Medical Center-LUMC, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
330
|
Zhang M, Qureshi AA, Geller AC, Frazier L, Hunter DJ, Han J. Use of tanning beds and incidence of skin cancer. J Clin Oncol 2012; 30:1588-93. [PMID: 22370316 DOI: 10.1200/jco.2011.39.3652] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE We sought to evaluate the risk effect of tanning bed use on skin cancers among teenage and young adults. We also expected to determine whether a dose-response relationship was evident. PATIENTS AND METHODS We observed 73,494 female nurses for 20 years (from 1989 to 2009) in a large and well-characterized cohort in the United States and investigated whether frequency of tanning bed use during high school/college and at ages 25 to 35 years were associated with a risk of basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma. We used Cox proportional hazards models and carefully adjusted for host risk factors, ultraviolet index of residence, and sun exposure behaviors at a young age. RESULTS During follow-up, 5,506 nurses were diagnosed with BCC, 403 with SCC, and 349 with melanoma. The multivariable-adjusted hazard ratio (HR) of skin cancer for an incremental increase in use of tanning beds of four times per year during both periods was 1.15 (95% CI, 1.11 to 1.19; P < .001) for BCC, 1.15 (95% CI, 1.01 to 1.31; P = .03) for SCC, and 1.11 (95% CI, 0.97 to 1.27; P = .13) for melanoma. Compared with tanning bed use at ages 25 to 35 years, we found a significantly higher risk of BCC for use during high school/college (multivariable-adjusted HR for use more than six times per year compared with no use was 1.73 during high school/college v 1.28 at ages 25 to 35 years; P for heterogeneity < .001). CONCLUSION Our data provide evidence for a dose-response relationship between tanning bed use and the risk of skin cancers, especially BCC, and the association is stronger for patients with a younger age at exposure.
Collapse
|
331
|
Piao MJ, Zhang R, Lee NH, Hyun JW. Phloroglucinol Attenuates Ultraviolet B Radiation-Induced Matrix Metalloproteinase-1 Production in Human Keratinocytes via Inhibitory Actions against Mitogen-Activated Protein Kinases and Activator Protein-1. Photochem Photobiol 2012; 88:381-8. [DOI: 10.1111/j.1751-1097.2012.01074.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
332
|
Moan J, Baturaite Z, Porojnicu AC, Dahlback A, Juzeniene A. UVA, UVB and incidence of cutaneous malignant melanoma in Norway and Sweden. Photochem Photobiol Sci 2012; 11:191-8. [DOI: 10.1039/c1pp05215b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
333
|
Mitchell D, Fernandez A. The photobiology of melanocytes modulates the impact of UVA on sunlight-induced melanoma. Photochem Photobiol Sci 2012; 11:69-73. [DOI: 10.1039/c1pp05146f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
334
|
George SA, Whittaker AM, Stearns DM. Photoactivated uranyl ion produces single strand breaks in plasmid DNA. Chem Res Toxicol 2011; 24:1830-2. [PMID: 22013951 DOI: 10.1021/tx200410x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Uranium is an important emerging toxicant whose use has outpaced the rate at which we are learning about its health effects. One unexplored pathway for uranium toxicity involves the photoactivation of uranyl ion by UV light to produce U(5+) and oxygen radicals. The purpose of this study was to provide proof of principle data by testing the hypothesis that coexposures of DNA to uranyl acetate and UVB irradiation should produce more DNA strand breaks than individual exposures. Results supported the hypothesis and suggest that investigations of uranium toxicity be expanded to include skin as a potential target organ for carcinogenesis, especially in populations with high uranium and high UV radiation exposures.
Collapse
Affiliation(s)
- Shannon A George
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, Arizona 86011, USA
| | | | | |
Collapse
|
335
|
Chen IP, Henning S, Faust A, Boukamp P, Volkmer B, Greinert R. UVA-induced epigenetic regulation of P16(INK4a) in human epidermal keratinocytes and skin tumor derived cells. Photochem Photobiol Sci 2011; 11:180-90. [PMID: 21986889 DOI: 10.1039/c1pp05197k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
UVA-radiation (315-400 nm) has been demonstrated to be capable of inducing DNA damage and is regarded as a carcinogen. While chromosomal aberrations found in UVA-irradiated cells and skin tumors provided evidence of the genetic involvement in UVA-carcinogenesis, its epigenetic participation is still illusive. We thus analysed the epigenetic patterns of 5 specific genes that are involved in stem cell fate (KLF4, NANOG), telomere maintenance (hTERT) and tumor suppression in cell cycle control (P16(INK4a), P21(WAFI/CIPI)) in chronically UVA-irradiated HaCaT human keratinocytes. A striking reduction of the permissive histone mark H3K4me3 has been detected in the promoter of P16(INK4a) (4-fold and 9-fold reduction for 10 and 15 weeks UVA-irradiated cells, respectively), which has often been found deregulated in skin cancers. This alteration in histone modification together with a severe promoter hypermethylation strongly impaired the transcription of P16(INK4a) (20-fold and 40-fold for 10 weeks and 15 weeks UVA-irradiation, respectively). Analysis of the skin tumor-derived cells revealed the same severe impairment of the P16(INK4a) transcription attributed to promoter hypermethylation and enrichment of the heterochromatin histone mark H3K9me3 and the repressive mark H3K27me3. Less pronounced UVA-induced epigenetic alterations were also detected for the other genes, demonstrating for the first time that UVA is able to modify transcription of skin cancer associated genes by means of epigenetic DNA and histone alterations.
Collapse
Affiliation(s)
- I-Peng Chen
- Dept. Mol. Cell Biology, Center of Dermatology, Elbekliniken, Stade/Buxtehude, Germany
| | | | | | | | | | | |
Collapse
|
336
|
Greinert R, Boniol M. Skin cancer--primary and secondary prevention (information campaigns and screening)--with a focus on children & sunbeds. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 107:473-6. [PMID: 21906618 DOI: 10.1016/j.pbiomolbio.2011.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 08/25/2011] [Indexed: 10/17/2022]
Abstract
Solar and artificial (sunbed) UV-exposure is the main risk factor for the development of epithelial skin cancer (basal cell carcinoma, BCC, and squamous cell carcinoma, SCC) as well for malignant melanoma (MM). UV exposure in childhood and adolescence is especially important. Therefore, adequate methods of primary prevention have continuously to be used and to be developed further to target these age-groups in order to reduce the risks of intensive UV-exposure. Primary prevention can effectively be combined with secondary prevention (early detection, screening) to reduce the burden of skin cancer and to decrease incidence, morbidity and mortality.
Collapse
Affiliation(s)
- Rüdiger Greinert
- Department Molecular Cellbiology, Dermatology Center Buxtehude, Elbekliniken Stade/Buxtehude, Klinikum Buxtehude, Buxtehude, Germany.
| | | |
Collapse
|
337
|
Pfeifer GP, Besaratinia A. UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer. Photochem Photobiol Sci 2011; 11:90-7. [PMID: 21804977 DOI: 10.1039/c1pp05144j] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ultraviolet (UV) irradiation from the sun has been epidemiologically and mechanistically linked to skin cancer, a spectrum of diseases of rising incidence in many human populations. Both non-melanoma and melanoma skin cancers are associated with sunlight exposure. In this review, we discuss the UV wavelength-dependent formation of the major UV-induced DNA damage products, their repair and mutagenicity and their potential involvement in sunlight-associated skin cancers. We emphasize the major role played by the cyclobutane pyrimidine dimers (CPDs) in skin cancer mutations relative to that of (6-4) photoproducts and oxidative DNA damage. Collectively, the data implicate the CPD as the DNA lesion most strongly involved in human cancers induced by sunlight.
Collapse
Affiliation(s)
- Gerd P Pfeifer
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | | |
Collapse
|