301
|
Deng X, Luan Q, Chen W, Wang Y, Wu M, Zhang H, Jiao Z. Nanosized zinc oxide particles induce neural stem cell apoptosis. NANOTECHNOLOGY 2009; 20:115101. [PMID: 19420431 DOI: 10.1088/0957-4484/20/11/115101] [Citation(s) in RCA: 237] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Given the intensive application of nanoscale zinc oxide (ZnO) materials in our life, growing concerns have arisen about its unintentional health and environmental impacts. In this study, the neurotoxicity of different sized ZnO nanoparticles in mouse neural stem cells (NSCs) was investigated. A cell viability assay indicated that ZnO nanoparticles manifested dose-dependent, but no size-dependent toxic effects on NSCs. Apoptotic cells were observed and analyzed by confocal microscopy, transmission electron microscopy examination, and flow cytometry. All the results support the viewpoint that the ZnO nanoparticle toxicity comes from the dissolved Zn(2+) in the culture medium or inside cells. Our results highlight the need for caution during the use and disposal of ZnO manufactured nanomaterials to prevent the unintended environmental and health impacts.
Collapse
Affiliation(s)
- Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
302
|
Issues in the Development of Epidemiologic Studies of Workers Exposed to Engineered Nanoparticles. J Occup Environ Med 2009; 51:323-35. [DOI: 10.1097/jom.0b013e3181990c2c] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
303
|
Guo B, Zebda R, Drake SJ, Sayes CM. Synergistic effect of co-exposure to carbon black and Fe2O3 nanoparticles on oxidative stress in cultured lung epithelial cells. Part Fibre Toxicol 2009; 6:4. [PMID: 19203368 PMCID: PMC2644663 DOI: 10.1186/1743-8977-6-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 02/09/2009] [Indexed: 12/02/2022] Open
Abstract
Background There is a need to better understand synergism in the biological effects of particles composed of multiple substances. The objective of this study was to determine if the oxidative stress in cultured cells caused by co-exposure to carbon black and Fe2O3 nanoparticles was significantly greater than the additive effects of exposure to either type of particles alone; and to determine a possible cause for such synergistic effect if one was found. Cultured A549 human lung epithelial cells were exposed to (1) carbon black nanoparticles alone, (2) Fe2O3 nanoparticles alone, and (3) both types of particles simultaneously. Protein oxidation, lipid peroxidation, and cellular uptake of Fe in these cells were measured after 25 hours of exposure. The reduction of solubilized Fe3+ by the carbon black nanoparticles was measured separately in a cell-free assay, by incubating the carbon black and the Fe2O3 nanoparticles in 0.75 M sulfuric acid at 40°C and measuring the amount of reduced Fe3+ at different time points up to 24 hours. Results Cells exposed to carbon black particles alone did not show protein oxidation, nor did the cells exposed to Fe2O3 particles alone, relative to the control. However, cells co-exposed to both carbon black and Fe2O3 particles showed up to a two-fold increase in protein oxidation relative to the control. In addition, co-exposure induced significant lipid peroxidation, although exposure to either particle type alone did not. No significant difference in cellular iron uptake was found between single exposure and co-exposure, when the Fe2O3 dosing concentration was the same in each case. In the cell-free assay, significant reduction of Fe3+ ions by carbon black nanoparticle was found within 2 hour, and it progressed up to 24 hours. At 24 hours, the carbon black nanoparticles showed a reductive capacity of 0.009 g/g, defined as the mass ratio of reduced Fe3+ to carbon black. Conclusion Co-exposure to carbon black and Fe2O3 particles causes a synergistic oxidative effect that is significantly greater than the additive effects of exposures to either particle type alone. The intracellular redox reaction between carbon black and Fe3+ is likely responsible for the synergistic oxidative effect. Therefore elemental carbon particles and fibres should be considered as potential reducing agents rather than inert materials in toxicology studies. Acidified cell organelles such as the lysosomes probably play a critical role in the solubilization of Fe2O3. Further research is necessary to better understand the mechanisms.
Collapse
Affiliation(s)
- Bing Guo
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, USA.
| | | | | | | |
Collapse
|
304
|
Suh WH, Suslick KS, Stucky GD, Suh YH. Nanotechnology, nanotoxicology, and neuroscience. Prog Neurobiol 2009; 87:133-70. [PMID: 18926873 PMCID: PMC2728462 DOI: 10.1016/j.pneurobio.2008.09.009] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 07/02/2008] [Accepted: 09/18/2008] [Indexed: 12/19/2022]
Abstract
Nanotechnology, which deals with features as small as a 1 billionth of a meter, began to enter into mainstream physical sciences and engineering some 20 years ago. Recent applications of nanoscience include the use of nanoscale materials in electronics, catalysis, and biomedical research. Among these applications, strong interest has been shown to biological processes such as blood coagulation control and multimodal bioimaging, which has brought about a new and exciting research field called nanobiotechnology. Biotechnology, which itself also dates back approximately 30 years, involves the manipulation of macroscopic biological systems such as cells and mice in order to understand why and how molecular level mechanisms affect specific biological functions, e.g., the role of APP (amyloid precursor protein) in Alzheimer's disease (AD). This review aims (1) to introduce key concepts and materials from nanotechnology to a non-physical sciences community; (2) to introduce several state-of-the-art examples of current nanotechnology that were either constructed for use in biological systems or that can, in time, be utilized for biomedical research; (3) to provide recent excerpts in nanotoxicology and multifunctional nanoparticle systems (MFNPSs); and (4) to propose areas in neuroscience that may benefit from research at the interface of neurobiologically important systems and nanostructured materials.
Collapse
Affiliation(s)
- Won Hyuk Suh
- Department of Chemistry and Biochemistry, Materials Department, University of California, Santa Barbara, CA 93106, USA
| | - Kenneth S. Suslick
- Department of Chemistry, School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - Galen D. Stucky
- Department of Chemistry and Biochemistry, Materials Department, University of California, Santa Barbara, CA 93106, USA
| | - Yoo-Hun Suh
- National Creative Research Initiative Center for Alzheimer’s Dementia, and Neuroscience Research Institute, Medical Research Center, Department of Pharmacology, College of Medicine, Seoul National University, 28 Yeongeon-dong, Jongno-gu 110-799,South Korea
| |
Collapse
|
305
|
Yang H, Liu C, Yang D, Zhang H, Xi Z. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 2009; 29:69-78. [DOI: 10.1002/jat.1385] [Citation(s) in RCA: 664] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
306
|
|
307
|
Zhang S, Chen X, Gu C, Zhang Y, Xu J, Bian Z, Yang D, Gu N. The Effect of Iron Oxide Magnetic Nanoparticles on Smooth Muscle Cells. NANOSCALE RESEARCH LETTERS 2008; 4:70. [PMCID: PMC2894190 DOI: 10.1007/s11671-008-9204-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 10/29/2008] [Indexed: 05/21/2023]
Abstract
Recently, magnetic nanoparticles of iron oxide (Fe3O4, γ-Fe2O3) have shown an increasing number of applications in the field of biomedicine, but some questions have been raised about the potential impact of these nanoparticles on the environment and human health. In this work, the three types of magnetic nanoparticles (DMSA-Fe2O3, APTS-Fe2O3, and GLU-Fe2O3) with the same crystal structure, magnetic properties, and size distribution was designed, prepared, and characterized by transmission electronic microscopy, powder X-ray diffraction, zeta potential analyzer, vibrating sample magnetometer, and Fourier transform Infrared spectroscopy. Then, we have investigated the effect of the three types of magnetic nanoparticles (DMSA-Fe2O3, APTS-Fe2O3, and GLU-Fe2O3) on smooth muscle cells (SMCs). Cellular uptake of nanoparticles by SMC displays the dose, the incubation time and surface property dependent patterns. Through the thin section TEM images, we observe that DMSA-Fe2O3is incorporated into the lysosome of SMCs. The magnetic nanoparticles have no inflammation impact, but decrease the viability of SMCs. The other questions about metabolism and other impacts will be the next subject of further studies.
Collapse
Affiliation(s)
- Song Zhang
- State Key Laboratory of Molecule and Biomolecule Electronics, Jiangsu Provincial Laboratory for Biomaterials and Devices, Southeast University, 210096, Nanjing, People’s Republic of China
| | - Xiangjian Chen
- Institute of Cardiovascular Disease, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, People’s Republic of China
| | - Chunrong Gu
- Institute of Cardiovascular Disease, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, People’s Republic of China
| | - Yu Zhang
- State Key Laboratory of Molecule and Biomolecule Electronics, Jiangsu Provincial Laboratory for Biomaterials and Devices, Southeast University, 210096, Nanjing, People’s Republic of China
| | - Jindan Xu
- Institute of Cardiovascular Disease, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, People’s Republic of China
| | - Zhiping Bian
- Institute of Cardiovascular Disease, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, People’s Republic of China
| | - Di Yang
- Institute of Cardiovascular Disease, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, People’s Republic of China
| | - Ning Gu
- State Key Laboratory of Molecule and Biomolecule Electronics, Jiangsu Provincial Laboratory for Biomaterials and Devices, Southeast University, 210096, Nanjing, People’s Republic of China
| |
Collapse
|
308
|
Chen L, Yokel RA, Hennig B, Toborek M. Manufactured aluminum oxide nanoparticles decrease expression of tight junction proteins in brain vasculature. J Neuroimmune Pharmacol 2008; 3:286-95. [PMID: 18830698 PMCID: PMC2771674 DOI: 10.1007/s11481-008-9131-5] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 09/17/2008] [Indexed: 10/21/2022]
Abstract
Manufactured nanoparticles of aluminum oxide (nano-alumina) have been widely used in the environment; however, their potential toxicity provides a growing concern for human health. The present study focuses on the hypothesis that nano-alumina can affect the blood-brain barrier and induce endothelial toxicity. In the first series of experiments, human brain microvascular endothelial cells (HBMEC) were exposed to alumina and control nanoparticles in dose- and time-responsive manners. Treatment with nano-alumina markedly reduced HBMEC viability, altered mitochondrial potential, increased cellular oxidation, and decreased tight junction protein expression as compared to control nanoparticles. Alterations of tight junction protein levels were prevented by cellular enrichment with glutathione. In the second series of experiments, rats were infused with nano-alumina at the dose of 29 mg/kg and the brains were stained for expression of tight junction proteins. Treatment with nano-alumina resulted in a marked fragmentation and disruption of integrity of claudin-5 and occludin. These results indicate that cerebral vasculature can be affected by nano-alumina. In addition, our data indicate that alterations of mitochondrial functions may be the underlying mechanism of nano-alumina toxicity.
Collapse
Affiliation(s)
- Lei Chen
- Molecular Neuroscience and Vascular Biology Laboratory, Department of Neurosurgery, University of Kentucky Medical Center, 593 Wethington Bldg., 900 S Limestone, Lexington, KY 40536, USA
| | - Robert A. Yokel
- College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Bernhard Hennig
- College of Agriculture, University of Kentucky, Lexington, KY 40536, USA
| | - Michal Toborek
- Molecular Neuroscience and Vascular Biology Laboratory, Department of Neurosurgery, University of Kentucky Medical Center, 593 Wethington Bldg., 900 S Limestone, Lexington, KY 40536, USA
| |
Collapse
|
309
|
VanAuker MD, Hood E. Delivery strategies to target therapies to inflammatory tissue. Expert Opin Drug Deliv 2008; 5:767-74. [PMID: 18590461 DOI: 10.1517/17425247.5.7.767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Inflammation plays a key role in many chronic disease processes as well as an acute role in injury and wound healing. Various cell types are recruited from the bloodstream to the inflamed site through adhesion molecules, cytokines, chemokines and others. OBJECTIVES This review examines many drug-targeting strategies that make use of these molecules or signaling pathways, and seeks to describe certain commonalities irrespective of the disease process or agent to be delivered. METHODS A survey of the literature, primarily within the last year, was performed. Search words included 'drug targeting' and 'inflammation' and of those, the scope was refined to include those studies that specifically sought to modify or ameliorate an aspect of the inflammatory process in the treatment of a disease. RESULTS/CONCLUSION Inflammation plays a key role in many diseases, and many similar targets (such as adhesion molecules) are the focus of the treatment of those diseases.
Collapse
Affiliation(s)
- Michael D VanAuker
- Department of Chemical and Biomedical Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA.
| | | |
Collapse
|
310
|
Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS NANO 2008; 2:2121-34. [PMID: 19206459 PMCID: PMC3959800 DOI: 10.1021/nn800511k] [Citation(s) in RCA: 1587] [Impact Index Per Article: 93.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Nanomaterials (NM) exhibit novel physicochemical properties that determine their interaction with biological substrates and processes. Three metal oxide nanoparticles that are currently being produced in high tonnage, TiO(2), ZnO, and CeO(2), were synthesized by flame spray pyrolysis process and compared in a mechanistic study to elucidate the physicochemical characteristics that determine cellular uptake, subcellular localization, and toxic effects based on a test paradigm that was originally developed for oxidative stress and cytotoxicity in RAW 264.7 and BEAS-2B cell lines. ZnO induced toxicity in both cells, leading to the generation of reactive oxygen species (ROS), oxidant injury, excitation of inflammation, and cell death. Using ICP-MS and fluorescent-labeled ZnO, it is found that ZnO dissolution could happen in culture medium and endosomes. Nondissolved ZnO nanoparticles enter caveolae in BEAS-2B but enter lysosomes in RAW 264.7 cells in which smaller particle remnants dissolve. In contrast, fluorescent-labeled CeO(2) nanoparticles were taken up intact into caveolin-1 and LAMP-1 positive endosomal compartments, respectively, in BEAS-2B and RAW 264.7 cells, without inflammation or cytotoxicity. Instead, CeO(2) suppressed ROS production and induced cellular resistance to an exogenous source of oxidative stress. Fluorescent-labeled TiO(2) was processed by the same uptake pathways as CeO(2) but did not elicit any adverse or protective effects. These results demonstrate that metal oxide nanoparticles induce a range of biological responses that vary from cytotoxic to cytoprotective and can only be properly understood by using a tiered test strategy such as we developed for oxidative stress and adapted to study other aspects of nanoparticle toxicity.
Collapse
Affiliation(s)
- Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095
| | - Michael Kovochich
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095
| | - Monty Liong
- Department of Chemistry & Biochemistry, University of California, Los Angeles, CA 90095
| | - Lutz Mädler
- Foundation Institute of Materials Science, Division of Process & Chemical Engineering, Department of Production Engineering, University of Bremen, Germany
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| | - Benjamin Gilbert
- Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Haibin Shi
- Department of Structural Biology, University of Pittsburgh Medical School, Pittsburgh, PA 15260
| | - Joanne I. Yeh
- Department of Structural Biology, University of Pittsburgh Medical School, Pittsburgh, PA 15260
- Department of Bioengineering, University of Pittsburgh Medical School, Pittsburgh, PA 15260
| | - Jeffrey I. Zink
- Department of Chemistry & Biochemistry, University of California, Los Angeles, CA 90095
- The Southern California Particle Center, University of California, Los Angeles, CA 90095
| | - Andre E. Nel
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095
- The Southern California Particle Center, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Corresponding Author: Andre Nel, M.D., Department of Medicine, Division of NanoMedicine, UCLA School of Medicine, 52-175 CHS, 10833 Le Conte Ave, Los Angeles, CA 90095-1680. Tel: (310) 825-6620, Fax: (310) 206-8107
| |
Collapse
|
311
|
Le Brocq M, Leslie SJ, Milliken P, Megson IL. Endothelial dysfunction: from molecular mechanisms to measurement, clinical implications, and therapeutic opportunities. Antioxid Redox Signal 2008; 10:1631-74. [PMID: 18598143 DOI: 10.1089/ars.2007.2013] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endothelial dysfunction has been implicated as a key factor in the development of a wide range of cardiovascular diseases, but its definition and mechanisms vary greatly between different disease processes. This review combines evidence from cell-culture experiments, in vitro and in vivo animal models, and clinical studies to identify the variety of mechanisms involved in endothelial dysfunction in its broadest sense. Several prominent disease states, including hypertension, heart failure, and atherosclerosis, are used to illustrate the different manifestations of endothelial dysfunction and to establish its clinical implications in the context of the range of mechanisms involved in its development. The size of the literature relating to this subject precludes a comprehensive survey; this review aims to cover the key elements of endothelial dysfunction in cardiovascular disease and to highlight the importance of the process across many different conditions.
Collapse
Affiliation(s)
- Michelle Le Brocq
- Health Faculty, UHI Millennium Institute, Inverness, University of Edinburgh, Edinburgh, Scotland
| | | | | | | |
Collapse
|
312
|
Karlsson HL, Cronholm P, Gustafsson J, Möller L. Copper Oxide Nanoparticles Are Highly Toxic: A Comparison between Metal Oxide Nanoparticles and Carbon Nanotubes. Chem Res Toxicol 2008; 21:1726-32. [DOI: 10.1021/tx800064j] [Citation(s) in RCA: 905] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hanna L. Karlsson
- Unit for Analytical Toxicology, Department of Biosciences and Nutrition at Novum, Karolinska Institutet, SE-141 57 Huddinge, Stockholm, Sweden
| | - Pontus Cronholm
- Unit for Analytical Toxicology, Department of Biosciences and Nutrition at Novum, Karolinska Institutet, SE-141 57 Huddinge, Stockholm, Sweden
| | - Johanna Gustafsson
- Unit for Analytical Toxicology, Department of Biosciences and Nutrition at Novum, Karolinska Institutet, SE-141 57 Huddinge, Stockholm, Sweden
| | - Lennart Möller
- Unit for Analytical Toxicology, Department of Biosciences and Nutrition at Novum, Karolinska Institutet, SE-141 57 Huddinge, Stockholm, Sweden
| |
Collapse
|
313
|
Mironov V, Kasyanov V, Markwald RR. Nanotechnology in vascular tissue engineering: from nanoscaffolding towards rapid vessel biofabrication. Trends Biotechnol 2008; 26:338-44. [DOI: 10.1016/j.tibtech.2008.03.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 03/06/2008] [Accepted: 03/13/2008] [Indexed: 11/30/2022]
|
314
|
Oesterling E, Chopra N, Gavalas V, Arzuaga X, Lim EJ, Sultana R, Butterfield DA, Bachas L, Hennig B. Alumina nanoparticles induce expression of endothelial cell adhesion molecules. Toxicol Lett 2008; 178:160-6. [PMID: 18456438 DOI: 10.1016/j.toxlet.2008.03.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 03/12/2008] [Accepted: 03/12/2008] [Indexed: 01/09/2023]
Abstract
Nanotechnology is a rapidly growing industry that has elicited much concern because of the lack of available toxicity data. Exposure to ultrafine particles may be a risk for the development of vascular diseases due to dysfunction of the vascular endothelium. Increased endothelial adhesiveness is a critical first step in the development of vascular diseases, such as atherosclerosis. The hypothesis that alumina nanoparticles increase inflammatory markers of the endothelium, measured by the induction of adhesion molecules as well as the adhesion of monocytes to the endothelial monolayer, was tested. Following characterization of alumina nanoparticles by transmission electron microscopy (TEM), electron diffraction, and particle size distribution analysis, endothelial cells were exposed to alumina at various concentrations and times. Both porcine pulmonary artery endothelial cells and human umbilical vein endothelial cells showed increased mRNA and protein expression of VCAM-1, ICAM-1, and ELAM-1. Furthermore, human endothelial cells treated with alumina particles showed increased adhesion of activated monocytes. The alumina particles tended to agglomerate at physiological pH in serum-containing media, which led to a range of particle sizes from nano to micron size during treatment conditions. These data show that alumina nanoparticles can elicit a proinflammatory response and thus present a cardiovascular disease risk.
Collapse
Affiliation(s)
- Elizabeth Oesterling
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
315
|
Chen X, Schluesener H. Nanosilver: A nanoproduct in medical application. Toxicol Lett 2008; 176:1-12. [DOI: 10.1016/j.toxlet.2007.10.004] [Citation(s) in RCA: 1035] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 10/08/2007] [Accepted: 10/09/2007] [Indexed: 11/29/2022]
|
316
|
Nasterlack M, Zober A, Oberlinner C. Considerations on occupational medical surveillance in employees handling nanoparticles. Int Arch Occup Environ Health 2007; 81:721-6. [PMID: 17849141 DOI: 10.1007/s00420-007-0245-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 08/31/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVES The use of engineered nanoparticles not only offers new technical perspectives but also raises questions regarding possible health aspects for producers and users. Nanoparticles may, just by virtue of their size, exert biological effects unrelated to the chemicals they are composed of. These considerations, and results from experimental animal studies suggesting that engineered nanomaterials may pose a health hazard to employees, all underscore the need for preventive measures. In this context, the need for, the feasibility, and the appropriateness of targeted occupational medical surveillance are currently subject to debate. METHODS We compared established concepts for the development of occupational medical surveillance programs to existing knowledge on exposures in workplaces and on health effects of nanomaterials. RESULTS A variety of potential effect parameters have been proposed for medical surveillance of exposed personnel, such as heart rate variability, blood-clotting parameters, pro-inflammatory cytokines, etc. None of these parameters are specific, most are not validated as individual health risk indicators, and some require sophisticated equipment not routinely available. Against this background, BASF currently puts specific weight on risk assessment and exposure control in workplaces. Particle emissions are primarily avoided by manufacturing in closed systems or using effective extraction systems. Appropriate personal protective equipment has been defined for such operations where an exposure potential cannot be excluded. CONCLUSIONS While there is presently no evidence-based foundation for "nano-specific" occupational medical screening, one can perform general medical screening with methods targeted at some of the health outcomes under discussion. The results of such examinations can provide a basis for future epidemiologic studies. Therefore, the establishment of exposure registries to enable the conduct of large-scale multi-centric prospective epidemiologic studies is recommended.
Collapse
Affiliation(s)
- Michael Nasterlack
- Occupational Medicine and Health Protection Department, BASF Aktiengesellschaft, 67056, Ludwigshafen, Germany.
| | | | | |
Collapse
|
317
|
Thurn KT, Brown E, Wu A, Vogt S, Lai B, Maser J, Paunesku T, Woloschak GE. Nanoparticles for applications in cellular imaging. NANOSCALE RESEARCH LETTERS 2007; 2:430-41. [PMID: 21794189 PMCID: PMC3246594 DOI: 10.1007/s11671-007-9081-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 07/18/2007] [Indexed: 05/17/2023]
Abstract
In the following review we discuss several types of nanoparticles (such as TiO2, quantum dots, and gold nanoparticles) and their impact on the ability to image biological components in fixed cells. The review also discusses factors influencing nanoparticle imaging and uptake in live cells in vitro. Due to their unique size-dependent properties nanoparticles offer numerous advantages over traditional dyes and proteins. For example, the photostability, narrow emission peak, and ability to rationally modify both the size and surface chemistry of Quantum Dots allow for simultaneous analyses of multiple targets within the same cell. On the other hand, the surface characteristics of nanometer sized TiO2allow efficient conjugation to nucleic acids which enables their retention in specific subcellular compartments. We discuss cellular uptake mechanisms for the internalization of nanoparticles and studies showing the influence of nanoparticle size and charge and the cell type targeted on nanoparticle uptake. The predominant nanoparticle uptake mechanisms include clathrin-dependent mechanisms, macropinocytosis, and phagocytosis.
Collapse
Affiliation(s)
- K Ted Thurn
- Department of Radiation Oncology, Northwestern University, Robert E, Lurie Cancer Center, Feinberg School of Medicine, 303 E, Chicago Ave, Ward Building Room 13-007, Chicago, IL, 60611, USA.
| | | | | | | | | | | | | | | |
Collapse
|