301
|
Sebastiani F, Yanez Arteta M, Lerche M, Porcar L, Lang C, Bragg RA, Elmore CS, Krishnamurthy VR, Russell RA, Darwish T, Pichler H, Waldie S, Moulin M, Haertlein M, Forsyth VT, Lindfors L, Cárdenas M. Apolipoprotein E Binding Drives Structural and Compositional Rearrangement of mRNA-Containing Lipid Nanoparticles. ACS NANO 2021; 15:6709-6722. [PMID: 33754708 PMCID: PMC8155318 DOI: 10.1021/acsnano.0c10064] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/18/2021] [Indexed: 05/05/2023]
Abstract
Emerging therapeutic treatments based on the production of proteins by delivering mRNA have become increasingly important in recent times. While lipid nanoparticles (LNPs) are approved vehicles for small interfering RNA delivery, there are still challenges to use this formulation for mRNA delivery. LNPs are typically a mixture of a cationic lipid, distearoylphosphatidylcholine (DSPC), cholesterol, and a PEG-lipid. The structural characterization of mRNA-containing LNPs (mRNA-LNPs) is crucial for a full understanding of the way in which they function, but this information alone is not enough to predict their fate upon entering the bloodstream. The biodistribution and cellular uptake of LNPs are affected by their surface composition as well as by the extracellular proteins present at the site of LNP administration, e.g., apolipoproteinE (ApoE). ApoE, being responsible for fat transport in the body, plays a key role in the LNP's plasma circulation time. In this work, we use small-angle neutron scattering, together with selective lipid, cholesterol, and solvent deuteration, to elucidate the structure of the LNP and the distribution of the lipid components in the absence and the presence of ApoE. While DSPC and cholesterol are found to be enriched at the surface of the LNPs in buffer, binding of ApoE induces a redistribution of the lipids at the shell and the core, which also impacts the LNP internal structure, causing release of mRNA. The rearrangement of LNP components upon ApoE incubation is discussed in terms of potential relevance to LNP endosomal escape.
Collapse
Affiliation(s)
- Federica Sebastiani
- Biofilms
- Research Center for Biointerfaces and Department of Biomedical Science,
Faculty of Health and Society, Malmö
University, 20506 Malmö, Sweden
| | - Marianna Yanez Arteta
- Advanced
Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, 431 83 Gothenburg Sweden
| | - Michael Lerche
- Advanced
Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, 431 83 Gothenburg Sweden
| | - Lionel Porcar
- Large
Scale Structures, Institut Laue Langevin, Grenoble F-38042, France
| | - Christian Lang
- Forschungszentrum
Jülich GmbH, Jülich Centre for Neutron Science JCNS,
Outstation at Heinz Maier-Leibnitz Zentrum, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Ryan A. Bragg
- Early
Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, SK 10 4TG Cambridge, U.K.
| | - Charles S. Elmore
- Early Chemical
Development, Pharmaceutical Sciences, R&D, AstraZeneca, 431 83 Gothenburg, Sweden
| | - Venkata R. Krishnamurthy
- Advanced
Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, CB2 0AA Boston, Massachusetts 02451, United States
| | - Robert A. Russell
- National
Deuteration Facility (NDF), Australian Nuclear
Science and Technology Organisation (ANSTO), Lucas Heights, 2232 Sydney, NSW, Australia
| | - Tamim Darwish
- National
Deuteration Facility (NDF), Australian Nuclear
Science and Technology Organisation (ANSTO), Lucas Heights, 2232 Sydney, NSW, Australia
| | - Harald Pichler
- Austrian
Centre of Industrial Biotechnology, Petersgasse 14, 8010, Graz, Austria
- Institute
of Molecular Biotechnology, Graz University
of Technology, NAWI Graz,
BioTechMed Graz, Petersgasse 14, 8010, Graz, Austria
| | - Sarah Waldie
- Biofilms
- Research Center for Biointerfaces and Department of Biomedical Science,
Faculty of Health and Society, Malmö
University, 20506 Malmö, Sweden
- Life
Sciences Group, Institut Laue Langevin, Grenoble F-38042, France
- Partnership for Structural Biology (PSB), Grenoble F-38042, France
| | - Martine Moulin
- Life
Sciences Group, Institut Laue Langevin, Grenoble F-38042, France
- Partnership for Structural Biology (PSB), Grenoble F-38042, France
| | - Michael Haertlein
- Life
Sciences Group, Institut Laue Langevin, Grenoble F-38042, France
- Partnership for Structural Biology (PSB), Grenoble F-38042, France
| | - V. Trevor Forsyth
- Life
Sciences Group, Institut Laue Langevin, Grenoble F-38042, France
- Partnership for Structural Biology (PSB), Grenoble F-38042, France
- Faculty
of Natural Sciences, Keele University, Staffordshire, ST5 5BG, U.K.
| | - Lennart Lindfors
- Advanced
Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, 431 83 Gothenburg Sweden
| | - Marité Cárdenas
- Biofilms
- Research Center for Biointerfaces and Department of Biomedical Science,
Faculty of Health and Society, Malmö
University, 20506 Malmö, Sweden
| |
Collapse
|
302
|
Patel P, Ibrahim NM, Cheng K. The Importance of Apparent pKa in the Development of Nanoparticles Encapsulating siRNA and mRNA. Trends Pharmacol Sci 2021; 42:448-460. [PMID: 33875229 DOI: 10.1016/j.tips.2021.03.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023]
Abstract
Polymer and lipid nanoparticles have been extensively used as carriers to address the biological barriers encountered in siRNA and mRNA delivery. We summarize the crucial role of nanoparticle charge and ionizability in complexing RNAs, binding to biological components, escaping from the endosome, and releasing RNAs into the cytoplasm. We highlight the significant impact of the apparent pKa of nanoparticles on their efficacy and toxicity, and the importance of optimizing pKa in the development of lead formulations for RNAs. We also discuss the feasibility of fine-tuning the pKa in nanoparticles and the applications of this approach in the optimization of delivery systems for RNAs.
Collapse
Affiliation(s)
- Pratikkumar Patel
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri - Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Nurudeen Mohammed Ibrahim
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri - Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri - Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA.
| |
Collapse
|
303
|
Park JW, Lagniton PN, Liu Y, Xu RH. mRNA vaccines for COVID-19: what, why and how. Int J Biol Sci 2021; 17:1446-1460. [PMID: 33907508 PMCID: PMC8071766 DOI: 10.7150/ijbs.59233] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/15/2021] [Indexed: 01/09/2023] Open
Abstract
The Coronavirus disease-19 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus -2 (SARS-CoV-2), has impacted human lives in the most profound ways with millions of infections and deaths. Scientists and pharmaceutical companies have been in race to produce vaccines against SARS-CoV-2. Vaccine generation usually demands years of developing and testing for efficacy and safety. However, it only took less than one year to generate two mRNA vaccines from their development to deployment. The rapid production time, cost-effectiveness, versatility in vaccine design, and clinically proven ability to induce cellular and humoral immune response have crowned mRNA vaccines with spotlights as most promising vaccine candidates in the fight against the pandemic. In this review, we discuss the general principles of mRNA vaccine design and working mechanisms of the vaccines, and provide an up-to-date summary of pre-clinical and clinical trials on seven anti-COVID-19 mRNA candidate vaccines, with the focus on the two mRNA vaccines already licensed for vaccination. In addition, we highlight the key strategies in designing mRNA vaccines to maximize the expression of immunogens and avoid intrinsic innate immune response. We also provide some perspective for future vaccine development against COVID-19 and other pathogens.
Collapse
Affiliation(s)
| | | | | | - Ren-He Xu
- Institute of Translational Medicine, and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
304
|
Sagili Anthony DP, Sivakumar K, Venugopal P, Sriram DK, George M. Can mRNA Vaccines Turn the Tables During the COVID-19 Pandemic? Current Status and Challenges. Clin Drug Investig 2021; 41:499-509. [PMID: 33754328 PMCID: PMC7985228 DOI: 10.1007/s40261-021-01022-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2021] [Indexed: 01/05/2023]
Abstract
The COVID-19 pandemic continues to affect millions of people across the world. The current global statistics for the disease are 111 million cases and 2.45 million deaths, with new cases emerging each day. Although several drugs including remdesivir have been approved for emergency use, they remain ineffective in bringing the infection under control. Therefore, there is a need for highly effective and safe vaccines against COVID-19. The recent advancements in mRNA vaccines have catapulted them to be forefront in the race to develop vaccines for COVID-19. Two mRNA vaccines, BNT162b2 and mRNA-1273, developed by Pfizer-BioNTech and Moderna Therapeutics, respectively, have been granted authorization for emergency use by the US Food and Drug Administration. Interim analysis of the clinical trials for BNT162b2 and mRNA-1273 vaccines reported an efficacy of 95% and 94.1%, respectively, after the second dose. The adverse events for both the vaccines have been found to be mild to moderate, with mostly injection-site reactions and fatigue. No serious adverse events have been reported. Moreover, Pfizer-BioNTech and Moderna Therapeutics have announced that their vaccines are effective even against the new strains (B.1.17 and B.1.351) of the virus. Both companies are now scaling up the production of the vaccines to meet the global demand. Although the long-term efficacy, safety, and immunogenicity of these vaccines is uncertain, there is hope that they can turn the tables against COVID-19 in this current pandemic situation.
Collapse
Affiliation(s)
| | - Kavitha Sivakumar
- Department of Clinical Research, Hindu Mission Hospital, Tambaram, Chennai, 600 045, India
| | - Priyanka Venugopal
- Department of Clinical Research, Hindu Mission Hospital, Tambaram, Chennai, 600 045, India
| | - Damal Kandadai Sriram
- Diabetology and Endocrinology, Hindu Mission Hospital, Tambaram, Chennai, 600 045, India
| | - Melvin George
- Department of Clinical Research, Hindu Mission Hospital, Tambaram, Chennai, 600 045, India.
| |
Collapse
|
305
|
Mildner R, Hak S, Parot J, Hyldbakk A, Borgos SE, Some D, Johann C, Caputo F. Improved multidetector asymmetrical-flow field-flow fractionation method for particle sizing and concentration measurements of lipid-based nanocarriers for RNA delivery. Eur J Pharm Biopharm 2021; 163:252-265. [PMID: 33745980 DOI: 10.1016/j.ejpb.2021.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/09/2021] [Accepted: 03/11/2021] [Indexed: 12/26/2022]
Abstract
Lipid-based nanoparticles for RNA delivery (LNP-RNA) are revolutionizing the nanomedicine field, with one approved gene therapy formulation and two approved vaccines against COVID-19, as well as multiple ongoing clinical trials. As for other innovative nanopharmaceuticals (NPhs), the advancement of robust methods to assess their quality and safety profiles-in line with regulatory needs-is critical for facilitating their development and clinical translation. Asymmetric-flow field-flow fractionation coupled to multiple online optical detectors (MD-AF4) is considered a very versatile and robust approach for the physical characterisation of nanocarriers, and has been used successfully for measuring particle size, polydispersity and physical stability of lipid-based systems, including liposomes and solid lipid nanoparticles. However, the unique core structure of LNP-RNA, composed of ionizable lipids electrostatically complexed with RNA, and the relatively labile lipid-monolayer coating, is more prone to destabilization during focusing in MD-AF4 than previously characterised nanoparticles, resulting in particle aggregation and sample loss. Hence characterisation of LNP-RNA by MD-AF4 needs significant adaptation of the methods developed for liposomes. To improve the performance of MD-AF4 applied to LNP-RNA in a systematic and comprehensive manner, we have explored the use of the frit-inlet channel where, differently from the standard AF4 channel, the particles are relaxed hydrodynamically as they are injected. The absence of a focusing step minimizes contact between the particle and the membrane, reducing artefacts (e.g. sample loss, particle aggregation). Separation in a frit-inlet channel enables satisfactory reproducibility and acceptable sample recovery in the commercially available MD-AF4 instruments. In addition to slice-by-slice measurements of particle size, MD-AF4 also allows to determine particle concentration and the particle size distribution, demonstrating enhanced versatility beyond standard sizing measurements.
Collapse
Affiliation(s)
- R Mildner
- Wyatt Technology, Hochstrasse 12a, 56307 Dernbach, Germany
| | - S Hak
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - J Parot
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - A Hyldbakk
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - S E Borgos
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - D Some
- Wyatt Technology, 6330 Hollister Ave., Santa Barbara, CA 93117, USA
| | - C Johann
- Wyatt Technology, Hochstrasse 12a, 56307 Dernbach, Germany
| | - F Caputo
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway.
| |
Collapse
|
306
|
Esteban I, Pastor-Quiñones C, Usero L, Plana M, García F, Leal L. In the Era of mRNA Vaccines, Is There Any Hope for HIV Functional Cure? Viruses 2021; 13:501. [PMID: 33803790 PMCID: PMC8003302 DOI: 10.3390/v13030501] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 01/07/2023] Open
Abstract
Over 36 million people worldwide are infected with HIV. Antiretroviral therapy (ART) has proven to be highly effective to prevent HIV-1 transmission, clinical progression and death. Despite this success, the number of HIV-1 infected individuals continues increasing and ART should be taken for life. Therefore, there are two main priorities: the development of preventive vaccines to protect from HIV acquisition and achieve an efficient control of HIV infection in the absence of ART (functional cure). In this sense, in the last few years, there has been a broad interest in new and innovative approaches such as mRNA-based vaccines. RNA-based immunogens represent a promising alternative to conventional vaccines because of their high potency, capacity for rapid development and potential for low-cost manufacture and safe administration. Some mRNA-based vaccines platforms against infectious diseases have demonstrated encouraging results in animal models and humans. However, their application is still limited because the instability and inefficient in vivo delivery of mRNA. Immunogens, design, immunogenicity, chemical modifications on the molecule or the vaccine delivery methods are all crucial interventions for improvement. In this review we, will present the current knowledge and challenges in this research field. mRNA vaccines hold great promises as part of a combined strategy, for achieving HIV functional cure.
Collapse
Affiliation(s)
- Ignasi Esteban
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.E.); (C.P.-Q.); (L.U.); (M.P.); (F.G.)
| | - Carmen Pastor-Quiñones
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.E.); (C.P.-Q.); (L.U.); (M.P.); (F.G.)
| | - Lorena Usero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.E.); (C.P.-Q.); (L.U.); (M.P.); (F.G.)
| | - Montserrat Plana
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.E.); (C.P.-Q.); (L.U.); (M.P.); (F.G.)
| | - Felipe García
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.E.); (C.P.-Q.); (L.U.); (M.P.); (F.G.)
- Infectious Diseases Department, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
| | - Lorna Leal
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.E.); (C.P.-Q.); (L.U.); (M.P.); (F.G.)
- Infectious Diseases Department, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
307
|
Rahman MM, Zhou N, Huang J. An Overview on the Development of mRNA-Based Vaccines and Their Formulation Strategies for Improved Antigen Expression In Vivo. Vaccines (Basel) 2021; 9:244. [PMID: 33799516 PMCID: PMC8001631 DOI: 10.3390/vaccines9030244] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 12/25/2022] Open
Abstract
The mRNA-based vaccine approach is a promising alternative to traditional vaccines due to its ability for prompt development, high potency, and potential for secure administration and low-cost production. Nonetheless, the application has still been limited by the instability as well as the ineffective delivery of mRNA in vivo. Current technological improvements have now mostly overcome these concerns, and manifold mRNA vaccine plans against various forms of malignancies and infectious ailments have reported inspiring outcomes in both humans and animal models. This article summarizes recent mRNA-based vaccine developments, advances of in vivo mRNA deliveries, reflects challenges and safety concerns, and future perspectives, in developing the mRNA vaccine platform for extensive therapeutic use.
Collapse
Affiliation(s)
- Md. Motiar Rahman
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China; (N.Z.); (J.H.)
| | - Nan Zhou
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China; (N.Z.); (J.H.)
| | - Jiandong Huang
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China; (N.Z.); (J.H.)
- Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
308
|
Griffiths PD. Vaccines for SARS coronavirus 2 and the new normal in vaccinology. Rev Med Virol 2021; 31:e2229. [PMID: 33666285 PMCID: PMC7995066 DOI: 10.1002/rmv.2229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
309
|
Wu Z, Li T. Nanoparticle-Mediated Cytoplasmic Delivery of Messenger RNA Vaccines: Challenges and Future Perspectives. Pharm Res 2021; 38:473-478. [PMID: 33660201 PMCID: PMC7928182 DOI: 10.1007/s11095-021-03015-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/10/2021] [Indexed: 11/27/2022]
Abstract
The COVID-19 pandemic has left scientists and clinicians no choice but a race to find solutions to save lives while controlling the rapid spreading. Messenger RNA (mRNA)-based vaccines have become the front-runners because of their safety profiles, precise and reproducible immune response with more cost-effective and faster production than other types of vaccines. However, the physicochemical properties of naked mRNA necessitate innovative delivery technologies to ferry these 'messengers' to ribosomes inside cells by crossing various barriers and subsequently induce an immune response. Intracellular delivery followed by endosomal escape represents the key strategies for cytoplasmic delivery of mRNA vaccines to the target. This Perspective provides insights into how state-of-the-art nanotechnology helps break the delivery barriers and advance the development of mRNA vaccines. The challenges remaining and future perspectives are outlined.
Collapse
Affiliation(s)
- Zimei Wu
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, 1142, New Zealand.
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| |
Collapse
|
310
|
Pushparajah D, Jimenez S, Wong S, Alattas H, Nafissi N, Slavcev RA. Advances in gene-based vaccine platforms to address the COVID-19 pandemic. Adv Drug Deliv Rev 2021; 170:113-141. [PMID: 33422546 PMCID: PMC7789827 DOI: 10.1016/j.addr.2021.01.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/23/2020] [Accepted: 01/01/2021] [Indexed: 01/07/2023]
Abstract
The novel betacoronavirus, SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), has spread across the globe at an unprecedented rate since its first emergence in Wuhan City, China in December 2019. Scientific communities around the world have been rigorously working to develop a potent vaccine to combat COVID-19 (coronavirus disease 2019), employing conventional and novel vaccine strategies. Gene-based vaccine platforms based on viral vectors, DNA, and RNA, have shown promising results encompassing both humoral and cell-mediated immune responses in previous studies, supporting their implementation for COVID-19 vaccine development. In fact, the U.S. Food and Drug Administration (FDA) recently authorized the emergency use of two RNA-based COVID-19 vaccines. We review current gene-based vaccine candidates proceeding through clinical trials, including their antigenic targets, delivery vehicles, and route of administration. Important features of previous gene-based vaccine developments against other infectious diseases are discussed in guiding the design and development of effective vaccines against COVID-19 and future derivatives.
Collapse
Affiliation(s)
- Deborah Pushparajah
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Salma Jimenez
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada; Theraphage, 151 Charles St W Suite # 199, Kitchener, ON, N2G 1H6, Canada
| | - Shirley Wong
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Hibah Alattas
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Nafiseh Nafissi
- Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada
| | - Roderick A Slavcev
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada; Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada; Theraphage, 151 Charles St W Suite # 199, Kitchener, ON, N2G 1H6, Canada.
| |
Collapse
|
311
|
Brown RB. Outcome Reporting Bias in COVID-19 mRNA Vaccine Clinical Trials. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:199. [PMID: 33652582 PMCID: PMC7996517 DOI: 10.3390/medicina57030199] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 12/28/2022]
Abstract
Relative risk reduction and absolute risk reduction measures in the evaluation of clinical trial data are poorly understood by health professionals and the public. The absence of reported absolute risk reduction in COVID-19 vaccine clinical trials can lead to outcome reporting bias that affects the interpretation of vaccine efficacy. The present article uses clinical epidemiologic tools to critically appraise reports of efficacy in Pfzier/BioNTech and Moderna COVID-19 mRNA vaccine clinical trials. Based on data reported by the manufacturer for Pfzier/BioNTech vaccine BNT162b2, this critical appraisal shows: relative risk reduction, 95.1%; 95% CI, 90.0% to 97.6%; p = 0.016; absolute risk reduction, 0.7%; 95% CI, 0.59% to 0.83%; p < 0.000. For the Moderna vaccine mRNA-1273, the appraisal shows: relative risk reduction, 94.1%; 95% CI, 89.1% to 96.8%; p = 0.004; absolute risk reduction, 1.1%; 95% CI, 0.97% to 1.32%; p < 0.000. Unreported absolute risk reduction measures of 0.7% and 1.1% for the Pfzier/BioNTech and Moderna vaccines, respectively, are very much lower than the reported relative risk reduction measures. Reporting absolute risk reduction measures is essential to prevent outcome reporting bias in evaluation of COVID-19 vaccine efficacy.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health and Health Systems, University of Waterloo, Waterloo, ON N2L3G1, Canada
| |
Collapse
|
312
|
D'haese S, Lacroix C, Garcia F, Plana M, Ruta S, Vanham G, Verrier B, Aerts JL. Off the beaten path: Novel mRNA-nanoformulations for therapeutic vaccination against HIV. J Control Release 2021; 330:1016-1033. [PMID: 33181204 DOI: 10.1016/j.jconrel.2020.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022]
Abstract
Over the last few years, immunotherapy for HIV in general and therapeutic vaccination in particular, has received a tremendous boost, both in preclinical research and in clinical applications. This interest is based on the evidence that the immune system plays a crucial role in controlling HIV infection, as shown for long-term non-progressors and elite controllers, and that immune responses can be manipulated towards targeting conserved epitopes. So far, the most successful approach has been vaccination with autologous dendritic cells (DCs) loaded ex vivo with antigens and activation signals. Although this approach offers much promise, it also comes with significant drawbacks such as the requirement of a specialized infrastructure and expertise, as well as major challenges for logistics and storage, making it extremely time consuming and costly. Therefore, methods are being developed to avoid the use of ex vivo generated, autologous DCs. One of these methods is based on mRNA for therapeutic vaccination. mRNA has proven to be a very promising vaccine platform, as the coding information for any desired protein, including antigens and activation signals, can be generated in a very short period of time, showing promise both as an off-the-shelf therapy and as a personalized approach. However, an important drawback of this approach is the short half-life of native mRNA, due to the presence of ambient RNases. In addition, proper immunization requires that the antigens are expressed, processed and presented at the right immunological site (e.g. the lymphoid tissues). An ambivalent aspect of mRNA as a vaccine is its capacity to induce type I interferons, which can have beneficial adjuvant effects, but also deleterious effects on mRNA stability and translation. Thus, proper formulation of the mRNA is crucially important. Many approaches for RNA formulation have already been tested, with mixed success. In this review we discuss the state-of-the-art and future trends for mRNA-nanoparticle formulations for HIV vaccination, both in the prophylactic and in the therapeutic setting.
Collapse
Affiliation(s)
- Sigrid D'haese
- Neuro-Aging & Viro-Immunotherapy (NAVI), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Céline Lacroix
- Institute for the Biology and Chemistry of Proteins (IBCP), Lyon, France
| | | | | | - Simona Ruta
- Carol Davila University of Medicine and Pharmacy, Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Guido Vanham
- Institute of Tropical Medicine and University of Antwerp, Antwerp, Belgium
| | - Bernard Verrier
- Institute for the Biology and Chemistry of Proteins (IBCP), Lyon, France
| | - Joeri L Aerts
- Neuro-Aging & Viro-Immunotherapy (NAVI), Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| |
Collapse
|
313
|
Aldosari BN, Alfagih IM, Almurshedi AS. Lipid Nanoparticles as Delivery Systems for RNA-Based Vaccines. Pharmaceutics 2021; 13:206. [PMID: 33540942 PMCID: PMC7913163 DOI: 10.3390/pharmaceutics13020206] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/30/2022] Open
Abstract
There has been increased interest in the development of RNA-based vaccines for protection against various infectious diseases and also for cancer immunotherapies. Rapid and cost-effective manufacturing methods in addition to potent immune responses observed in preclinical and clinical studies have made mRNA-based vaccines promising alternatives to conventional vaccine technologies. However, efficient delivery of these vaccines requires that the mRNA be protected against extracellular degradation. Lipid nanoparticles (LNPs) have been extensively studied as non-viral vectors for the delivery of mRNA to target cells because of their relatively easy and scalable manufacturing processes. This review highlights key advances in the development of LNPs and reviews the application of mRNA-based vaccines formulated in LNPs for use against infectious diseases and cancer.
Collapse
Affiliation(s)
| | - Iman M. Alfagih
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia; (B.N.A.); (A.S.A.)
| | | |
Collapse
|
314
|
Karpenko LI, Rudometov AP, Sharabrin SV, Shcherbakov DN, Borgoyakova MB, Bazhan SI, Volosnikova EA, Rudometova NB, Orlova LA, Pyshnaya IA, Zaitsev BN, Volkova NV, Azaev MS, Zaykovskaya AV, Pyankov OV, Ilyichev AA. Delivery of mRNA Vaccine against SARS-CoV-2 Using a Polyglucin:Spermidine Conjugate. Vaccines (Basel) 2021; 9:76. [PMID: 33494530 PMCID: PMC7910849 DOI: 10.3390/vaccines9020076] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
One of the key stages in the development of mRNA vaccines is their delivery. Along with liposome, other materials are being developed for mRNA delivery that can ensure both the safety and effectiveness of the vaccine, and also facilitate its storage and transportation. In this study, we investigated the polyglucin:spermidine conjugate as a carrier of an mRNA-RBD vaccine encoding the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. The conditions for the self-assembling of mRNA-PGS complexes were optimized, including the selection of the mRNA:PGS charge ratios. Using dynamic and electrophoretic light scattering it was shown that the most monodisperse suspension of nanoparticles was formed at the mRNA:PGS charge ratio equal to 1:5. The average hydrodynamic particles diameter was determined, and it was confirmed by electron microscopy. The evaluation of the zeta potential of the investigated complexes showed that the particles surface charge was close to the zero point. This may indicate that the positively charged PGS conjugate has completely packed the negatively charged mRNA molecules. It has been shown that the packaging of mRNA-RBD into the PGS envelope leads to increased production of specific antibodies with virus-neutralizing activity in immunized BALB/c mice. Our results showed that the proposed polycationic polyglucin:spermidine conjugate can be considered a promising and safe means to the delivery of mRNA vaccines, in particular mRNA vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Larisa I. Karpenko
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (A.P.R.); (S.V.S.); (D.N.S.); (M.B.B.); (S.I.B.); (E.A.V.); (N.B.R.); (L.A.O.); (B.N.Z.); (N.V.V.); (M.S.A.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Andrey P. Rudometov
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (A.P.R.); (S.V.S.); (D.N.S.); (M.B.B.); (S.I.B.); (E.A.V.); (N.B.R.); (L.A.O.); (B.N.Z.); (N.V.V.); (M.S.A.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Sergei V. Sharabrin
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (A.P.R.); (S.V.S.); (D.N.S.); (M.B.B.); (S.I.B.); (E.A.V.); (N.B.R.); (L.A.O.); (B.N.Z.); (N.V.V.); (M.S.A.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Dmitry N. Shcherbakov
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (A.P.R.); (S.V.S.); (D.N.S.); (M.B.B.); (S.I.B.); (E.A.V.); (N.B.R.); (L.A.O.); (B.N.Z.); (N.V.V.); (M.S.A.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Mariya B. Borgoyakova
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (A.P.R.); (S.V.S.); (D.N.S.); (M.B.B.); (S.I.B.); (E.A.V.); (N.B.R.); (L.A.O.); (B.N.Z.); (N.V.V.); (M.S.A.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Sergei I. Bazhan
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (A.P.R.); (S.V.S.); (D.N.S.); (M.B.B.); (S.I.B.); (E.A.V.); (N.B.R.); (L.A.O.); (B.N.Z.); (N.V.V.); (M.S.A.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Ekaterina A. Volosnikova
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (A.P.R.); (S.V.S.); (D.N.S.); (M.B.B.); (S.I.B.); (E.A.V.); (N.B.R.); (L.A.O.); (B.N.Z.); (N.V.V.); (M.S.A.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Nadezhda B. Rudometova
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (A.P.R.); (S.V.S.); (D.N.S.); (M.B.B.); (S.I.B.); (E.A.V.); (N.B.R.); (L.A.O.); (B.N.Z.); (N.V.V.); (M.S.A.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Lyubov A. Orlova
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (A.P.R.); (S.V.S.); (D.N.S.); (M.B.B.); (S.I.B.); (E.A.V.); (N.B.R.); (L.A.O.); (B.N.Z.); (N.V.V.); (M.S.A.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Inna A. Pyshnaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Boris N. Zaitsev
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (A.P.R.); (S.V.S.); (D.N.S.); (M.B.B.); (S.I.B.); (E.A.V.); (N.B.R.); (L.A.O.); (B.N.Z.); (N.V.V.); (M.S.A.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Natalya V. Volkova
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (A.P.R.); (S.V.S.); (D.N.S.); (M.B.B.); (S.I.B.); (E.A.V.); (N.B.R.); (L.A.O.); (B.N.Z.); (N.V.V.); (M.S.A.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Mamedyar Sh. Azaev
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (A.P.R.); (S.V.S.); (D.N.S.); (M.B.B.); (S.I.B.); (E.A.V.); (N.B.R.); (L.A.O.); (B.N.Z.); (N.V.V.); (M.S.A.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Anna V. Zaykovskaya
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (A.P.R.); (S.V.S.); (D.N.S.); (M.B.B.); (S.I.B.); (E.A.V.); (N.B.R.); (L.A.O.); (B.N.Z.); (N.V.V.); (M.S.A.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Oleg V. Pyankov
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (A.P.R.); (S.V.S.); (D.N.S.); (M.B.B.); (S.I.B.); (E.A.V.); (N.B.R.); (L.A.O.); (B.N.Z.); (N.V.V.); (M.S.A.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Alexander A. Ilyichev
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk, Russia; (A.P.R.); (S.V.S.); (D.N.S.); (M.B.B.); (S.I.B.); (E.A.V.); (N.B.R.); (L.A.O.); (B.N.Z.); (N.V.V.); (M.S.A.); (A.V.Z.); (O.V.P.); (A.A.I.)
| |
Collapse
|
315
|
Buschmann MD, Carrasco MJ, Alishetty S, Paige M, Alameh MG, Weissman D. Nanomaterial Delivery Systems for mRNA Vaccines. Vaccines (Basel) 2021; 9:65. [PMID: 33478109 PMCID: PMC7836001 DOI: 10.3390/vaccines9010065] [Citation(s) in RCA: 311] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
The recent success of mRNA vaccines in SARS-CoV-2 clinical trials is in part due to the development of lipid nanoparticle delivery systems that not only efficiently express the mRNA-encoded immunogen after intramuscular injection, but also play roles as adjuvants and in vaccine reactogenicity. We present an overview of mRNA delivery systems and then focus on the lipid nanoparticles used in the current SARS-CoV-2 vaccine clinical trials. The review concludes with an analysis of the determinants of the performance of lipid nanoparticles in mRNA vaccines.
Collapse
Affiliation(s)
- Michael D. Buschmann
- Department of Bioengineering, George Mason University, 4400 University Drive, MS 1J7, Fairfax, VA 22030, USA; (M.J.C.); (S.A.)
| | - Manuel J. Carrasco
- Department of Bioengineering, George Mason University, 4400 University Drive, MS 1J7, Fairfax, VA 22030, USA; (M.J.C.); (S.A.)
| | - Suman Alishetty
- Department of Bioengineering, George Mason University, 4400 University Drive, MS 1J7, Fairfax, VA 22030, USA; (M.J.C.); (S.A.)
| | - Mikell Paige
- Department of Chemistry & Biochemistry, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA;
| | - Mohamad Gabriel Alameh
- Perelman School of Medicine, University of Pennsylvania, 130 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104, USA;
| | - Drew Weissman
- Perelman School of Medicine, University of Pennsylvania, 410B Hill Pavilion, 380 S. University Ave, Philadelphia, PA 19104, USA;
| |
Collapse
|
316
|
Safe and effective aerosolization of in vitro transcribed mRNA to the respiratory tract epithelium of horses without a transfection agent. Sci Rep 2021; 11:371. [PMID: 33432084 PMCID: PMC7801524 DOI: 10.1038/s41598-020-79855-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/10/2020] [Indexed: 01/06/2023] Open
Abstract
Vaccines and therapeutics using in vitro transcribed mRNA hold enormous potential for human and veterinary medicine. Transfection agents are widely considered to be necessary to protect mRNA and enhance transfection, but they add expense and raise concerns regarding quality control and safety. We found that such complex mRNA delivery systems can be avoided when transfecting epithelial cells by aerosolizing the mRNA into micron-sized droplets. In an equine in vivo model, we demonstrated that the translation of mRNA into a functional protein did not depend on the addition of a polyethylenimine (PEI)-derived transfection agent. We were able to safely and effectively transfect the bronchial epithelium of foals using naked mRNA (i.e., mRNA formulated in a sodium citrate buffer without a delivery vehicle). Endoscopic examination of the bronchial tree and histology of mucosal biopsies indicated no gross or microscopic adverse effects of the transfection. Our data suggest that mRNA administered by an atomization device eliminates the need for chemical transfection agents, which can reduce the cost and the safety risks of delivering mRNA to the respiratory tract of animals and humans.
Collapse
|
317
|
Designing a conserved peptide-based subunit vaccine against SARS-CoV-2 using immunoinformatics approach. In Silico Pharmacol 2021; 9:8. [PMID: 33425647 PMCID: PMC7785481 DOI: 10.1007/s40203-020-00062-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
The widespread of coronavirus (COVID-19) is a new global health crisis that poses a threat to the world. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in bats and was discovered first in Wuhan, Hubei province, China in December 2019. Immunoinformatics and bioinformatics tools were employed for the construction of a multi-epitope subunit vaccine to prevent the diseases. The antigenicity, toxicity and allergenicity of all epitopes used in the construction of the vaccine were predicted and then conjugated with adjuvants and linkers. Vaccine Toll-Like Receptors (2, 3, 4, 8 and 9) complex was also evaluated. The vaccine construct was antigenic, non-toxic and non-allergic, which indicates the vaccines ability to induce antibodies in the host, making it an effective vaccine candidate. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-020-00062-x.
Collapse
|
318
|
Liu CH, Huang HY, Tu YF, Lai WY, Wang CL, Sun JR, Chien Y, Lin TW, Lin YY, Chien CS, Huang CH, Chen YM, Huang PI, Wang FD, Yang YP. Highlight of severe acute respiratory syndrome coronavirus-2 vaccine development against COVID-19 pandemic. J Chin Med Assoc 2021; 84:9-13. [PMID: 33186212 DOI: 10.1097/jcma.0000000000000461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has brought an unprecedented impact upon the global economy and public health. Although the SARS-CoV-2 virology has been gradually investigated, measures to combat this new threat in public health are still absent. To date, no certificated drug or vaccine has been developed for the treatment or prevention of coronavirus disease Extensive researches and international coordination has been conducted to rapidly develop novel vaccines against SARS-CoV-2 pandemic. Several major breakthroughs have been made through the identification of the genetic sequence and structural/non-structural proteins of SARS-CoV-2, which enabled the development of RNA-, DNA-based vaccines, subunit vaccines, and attenuated viral vaccines. In this review article, we present an overview of the recent advances of SARS-CoV-2 vaccines and the challenges that may be encountered in the development process, highlighting the advantages and disadvantages of these approaches that may help in effectively countering COVID-19.
Collapse
Affiliation(s)
- Cheng-Hsuan Liu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan, ROC
| | - Hsuan-Yang Huang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yung-Fang Tu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan, ROC
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chia-Lin Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Jun-Ren Sun
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Tzu-Wei Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ying Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chian-Shiu Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chih-Heng Huang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yuh-Min Chen
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan, ROC
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Pin-I Huang
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan, ROC
- Division of Radiation Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Fu-Der Wang
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan, ROC
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan, ROC
| |
Collapse
|
319
|
Nanoparticles as Adjuvants and Nanodelivery Systems for mRNA-Based Vaccines. Pharmaceutics 2020; 13:pharmaceutics13010045. [PMID: 33396817 PMCID: PMC7823281 DOI: 10.3390/pharmaceutics13010045] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Messenger RNA (mRNA)-based vaccines have shown promise against infectious diseases and several types of cancer in the last two decades. Their promise can be attributed to their safety profiles, high potency, and ability to be rapidly and affordably manufactured. Now, many RNA-based vaccines are being evaluated in clinical trials as prophylactic and therapeutic vaccines. However, until recently, their development has been limited by their instability and inefficient in vivo transfection. The nanodelivery system plays a dual function in RNA-based vaccination by acting as a carrier system and as an adjuvant. That is due to its similarity to microorganisms structurally and size-wise; the nanodelivery system can augment the response by the immune system via simulating the natural infection process. Nanodelivery systems allow non-invasive mucosal administration, targeted immune cell delivery, and controlled delivery, reducing the need for multiple administrations. They also allow co-encapsulating with immunostimulators to improve the overall adjuvant capacity. The aim of this review is to discuss the recent developments and applications of biodegradable nanodelivery systems that improve RNA-based vaccine delivery and enhance the immunological response against targeted diseases.
Collapse
|
320
|
Nanovesicle-Mediated Delivery Systems for CRISPR/Cas Genome Editing. Pharmaceutics 2020; 12:pharmaceutics12121233. [PMID: 33353099 PMCID: PMC7766488 DOI: 10.3390/pharmaceutics12121233] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/14/2022] Open
Abstract
Genome-editing technology has emerged as a potential tool for treating incurable diseases for which few therapeutic modalities are available. In particular, discovery of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system together with the design of single-guide RNAs (sgRNAs) has sparked medical applications of genome editing. Despite the great promise of the CRISPR/Cas system, its clinical application is limited, in large part, by the lack of adequate delivery technology. To overcome this limitation, researchers have investigated various systems, including viral and nonviral vectors, for delivery of CRISPR/Cas and sgRNA into cells. Among nonviral delivery systems that have been studied are nanovesicles based on lipids, polymers, peptides, and extracellular vesicles. These nanovesicles have been designed to increase the delivery of CRISPR/Cas and sgRNA through endosome escape or using various stimuli such as light, pH, and environmental features. This review covers the latest research trends in nonviral, nanovesicle-based delivery systems that are being applied to genome-editing technology and suggests directions for future progress.
Collapse
|
321
|
Ura T, Yamashita A, Mizuki N, Okuda K, Shimada M. New vaccine production platforms used in developing SARS-CoV-2 vaccine candidates. Vaccine 2020; 39:197-201. [PMID: 33279318 PMCID: PMC7685034 DOI: 10.1016/j.vaccine.2020.11.054] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
The threat of the current coronavirus disease pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is accelerating the development of potential vaccines. Candidate vaccines have been generated using existing technologies that have been applied for developing vaccines against other infectious diseases. Two new types of platforms, mRNA- and viral vector-based vaccines, have been gaining attention owing to the rapid advancement in their methodologies. In clinical trials, setting appropriate immunological endpoints plays a key role in evaluating the efficacy and safety of candidate vaccines. Updated information about immunological features from individuals who have or have not been exposed to SARS-CoV-2 continues to guide effective vaccine development strategies. This review highlights key strategies for generating candidate SARS-CoV-2 vaccines and considerations for vaccine development and clinical trials.
Collapse
Affiliation(s)
- Takehiro Ura
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Akio Yamashita
- Department of Molecular Biology, Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Kenji Okuda
- Department of Molecular Biodefense Research, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Masaru Shimada
- Department of Molecular Biodefense Research, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| |
Collapse
|
322
|
Zukancic D, Suys EJA, Pilkington EH, Algarni A, Al-Wassiti H, Truong NP. The Importance of Poly(ethylene glycol) and Lipid Structure in Targeted Gene Delivery to Lymph Nodes by Lipid Nanoparticles. Pharmaceutics 2020; 12:E1068. [PMID: 33182382 PMCID: PMC7695259 DOI: 10.3390/pharmaceutics12111068] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/22/2022] Open
Abstract
Targeted delivery of nucleic acids to lymph nodes is critical for the development of effective vaccines and immunotherapies. However, it remains challenging to achieve selective lymph node delivery. Current gene delivery systems target mainly to the liver and typically exhibit off-target transfection at various tissues. Here we report novel lipid nanoparticles (LNPs) that can deliver plasmid DNA (pDNA) to a draining lymph node, thereby significantly enhancing transfection at this target organ, and substantially reducing gene expression at the intramuscular injection site (muscle). In particular, we discovered that LNPs stabilized by 3% Tween 20, a surfactant with a branched poly(ethylene glycol) (PEG) chain linking to a short lipid tail, achieved highly specific transfection at the lymph node. This was in contrast to conventional LNPs stabilized with a linear PEG chain and two saturated lipid tails (PEG-DSPE) that predominately transfected at the injection site (muscle). Interestingly, replacing Tween 20 with Tween 80, which has a longer unsaturated lipid tail, led to a much lower transfection efficiency. Our work demonstrates the importance of PEGylation in selective organ targeting of nanoparticles, provides new insights into the structure-property relationship of LNPs, and offers a novel, simple, and practical PEGylation technology to prepare the next generation of safe and effective vaccines against viruses or tumours.
Collapse
Affiliation(s)
- Danijela Zukancic
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia; (D.Z.); (E.H.P.); (A.A.); (H.A.-W.)
| | - Estelle J. A. Suys
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia; (D.Z.); (E.H.P.); (A.A.); (H.A.-W.)
| | - Emily H. Pilkington
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia; (D.Z.); (E.H.P.); (A.A.); (H.A.-W.)
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Azizah Algarni
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia; (D.Z.); (E.H.P.); (A.A.); (H.A.-W.)
| | - Hareth Al-Wassiti
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia; (D.Z.); (E.H.P.); (A.A.); (H.A.-W.)
| | - Nghia P. Truong
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia; (D.Z.); (E.H.P.); (A.A.); (H.A.-W.)
| |
Collapse
|
323
|
Moradian H, Lendlein A, Gossen M. Strategies for simultaneous and successive delivery of RNA. J Mol Med (Berl) 2020; 98:1767-1779. [PMID: 33146744 PMCID: PMC7679312 DOI: 10.1007/s00109-020-01956-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 01/05/2023]
Abstract
Advanced non-viral gene delivery experiments often require co-delivery of multiple nucleic acids. Therefore, the availability of reliable and robust co-transfection methods and defined selection criteria for their use in, e.g., expression of multimeric proteins or mixed RNA/DNA delivery is of utmost importance. Here, we investigated different co- and successive transfection approaches, with particular focus on in vitro transcribed messenger RNA (IVT-mRNA). Expression levels and patterns of two fluorescent protein reporters were determined, using different IVT-mRNA doses, carriers, and cell types. Quantitative parameters determining the efficiency of co-delivery were analyzed for IVT-mRNAs premixed before nanocarrier formation (integrated co-transfection) and when simultaneously transfecting cells with separately formed nanocarriers (parallel co-transfection), which resulted in a much higher level of expression heterogeneity for the two reporters. Successive delivery of mRNA revealed a lower transfection efficiency in the second transfection round. All these differences proved to be more pronounced for low mRNA doses. Concurrent delivery of siRNA with mRNA also indicated the highest co-transfection efficiency for integrated method. However, the maximum efficacy was shown for successive delivery, due to the kinetically different peak output for the two discretely operating entities. Our findings provide guidance for selection of the co-delivery method best suited to accommodate experimental requirements, highlighting in particular the nucleic acid dose-response dependence on co-delivery on the single-cell level.
Collapse
Affiliation(s)
- Hanieh Moradian
- Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353, Berlin, Germany
- Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353, Berlin, Germany
- Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Manfred Gossen
- Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513, Teltow, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353, Berlin, Germany.
| |
Collapse
|
324
|
Guevara ML, Persano F, Persano S. Advances in Lipid Nanoparticles for mRNA-Based Cancer Immunotherapy. Front Chem 2020; 8:589959. [PMID: 33195094 PMCID: PMC7645050 DOI: 10.3389/fchem.2020.589959] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/16/2020] [Indexed: 12/29/2022] Open
Abstract
Over the past decade, messenger RNA (mRNA) has emerged as potent and flexible platform for the development of novel effective cancer immunotherapies. Advances in non-viral gene delivery technologies, especially the tremendous progress in lipid nanoparticles' manufacturing, have made possible the implementation of mRNA-based antitumor treatments. Several mRNA-based immunotherapies have demonstrated antitumor effect in preclinical and clinical studies, and marked successes have been achieved most notably by its implementation in therapeutic vaccines, cytokines therapies, checkpoint blockade and chimeric antigen receptor (CAR) cell therapy. In this review, we summarize recent advances in the development of lipid nanoparticles for mRNA-based immunotherapies and their applications in cancer treatment. Finally, we also highlight the variety of immunotherapeutic approaches through mRNA delivery and discuss the main factors affecting transfection efficiency and tropism of mRNA-loaded lipid nanoparticles in vivo.
Collapse
Affiliation(s)
- Maria L Guevara
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Francesca Persano
- Department Matematica e Fisica 'Ennio De Giorgi', Università del Salento, Lecce, Italy
| | - Stefano Persano
- Nanomaterials for Biomedical Applications, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| |
Collapse
|
325
|
Bloom K, van den Berg F, Arbuthnot P. Self-amplifying RNA vaccines for infectious diseases. Gene Ther 2020; 28:117-129. [PMID: 33093657 PMCID: PMC7580817 DOI: 10.1038/s41434-020-00204-y] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 12/28/2022]
Abstract
Vaccinology is shifting toward synthetic RNA platforms which allow for rapid, scalable, and cell-free manufacturing of prophylactic and therapeutic vaccines. The simple development pipeline is based on in vitro transcription of antigen-encoding sequences or immunotherapies as synthetic RNA transcripts, which are then formulated for delivery. This approach may enable a quicker response to emerging disease outbreaks, as is evident from the swift pursuit of RNA vaccine candidates for the global SARS-CoV-2 pandemic. Both conventional and self-amplifying RNAs have shown protective immunization in preclinical studies against multiple infectious diseases including influenza, RSV, Rabies, Ebola, and HIV-1. Self-amplifying RNAs have shown enhanced antigen expression at lower doses compared to conventional mRNA, suggesting this technology may improve immunization. This review will explore how self-amplifying RNAs are emerging as important vaccine candidates for infectious diseases, the advantages of synthetic manufacturing approaches, and their potential for preventing and treating chronic infections.
Collapse
Affiliation(s)
- Kristie Bloom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg, 2050, South Africa.
| | - Fiona van den Berg
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg, 2050, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg, 2050, South Africa
| |
Collapse
|
326
|
Ye T, Zhong Z, García‐Sastre A, Schotsaert M, De Geest BG. Current Status of COVID-19 (Pre)Clinical Vaccine Development. Angew Chem Int Ed Engl 2020; 59:18885-18897. [PMID: 32663348 PMCID: PMC7405471 DOI: 10.1002/anie.202008319] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Indexed: 12/29/2022]
Abstract
The current COVID-19 pandemic has a tremendous impact on daily life world-wide. Despite the ability to dampen the spread of SARS-CoV-2, the causative agent of the diseases, through restrictive interventions, it is believed that only effective vaccines will provide sufficient control over the disease and revert societal live back to normal. At present, a double-digit number of efforts are devoted to the development of a vaccine against COVID-19. Here, we provide an overview of these (pre)clinical efforts and provide background information on the technologies behind these vaccines. In addition, we discuss potential hurdles that need to be addressed prior to mass scale clinical translation of successful vaccine candidates.
Collapse
Affiliation(s)
- Tingting Ye
- Department of PharmaceuticsGhent UniversityBelgium
| | - Zifu Zhong
- Department of PharmaceuticsGhent UniversityBelgium
| | - Adolfo García‐Sastre
- Department of MicrobiologyIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Global Health and Emerging Pathogens InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of MedicineDivision of Infectious DiseasesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- The Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Michael Schotsaert
- Department of MicrobiologyIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Global Health and Emerging Pathogens InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | | |
Collapse
|
327
|
Kostyushev D, Kostyusheva A, Brezgin S, Smirnov V, Volchkova E, Lukashev A, Chulanov V. Gene Editing by Extracellular Vesicles. Int J Mol Sci 2020; 21:E7362. [PMID: 33028045 PMCID: PMC7582630 DOI: 10.3390/ijms21197362] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/23/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022] Open
Abstract
CRISPR/Cas technologies have advanced dramatically in recent years. Many different systems with new properties have been characterized and a plethora of hybrid CRISPR/Cas systems able to modify the epigenome, regulate transcription, and correct mutations in DNA and RNA have been devised. However, practical application of CRISPR/Cas systems is severely limited by the lack of effective delivery tools. In this review, recent advances in developing vehicles for the delivery of CRISPR/Cas in the form of ribonucleoprotein complexes are outlined. Most importantly, we emphasize the use of extracellular vesicles (EVs) for CRISPR/Cas delivery and describe their unique properties: biocompatibility, safety, capacity for rational design, and ability to cross biological barriers. Available molecular tools that enable loading of desired protein and/or RNA cargo into the vesicles in a controllable manner and shape the surface of EVs for targeted delivery into specific tissues (e.g., using targeting ligands, peptides, or nanobodies) are discussed. Opportunities for both endogenous (intracellular production of CRISPR/Cas) and exogenous (post-production) loading of EVs are presented.
Collapse
Affiliation(s)
- Dmitry Kostyushev
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (A.K.); (S.B.); (V.C.)
| | - Anastasiya Kostyusheva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (A.K.); (S.B.); (V.C.)
| | - Sergey Brezgin
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (A.K.); (S.B.); (V.C.)
- Institute of Immunology, Federal Medical Biological Agency, 115522 Moscow, Russia;
| | - Valery Smirnov
- Institute of Immunology, Federal Medical Biological Agency, 115522 Moscow, Russia;
- Sechenov First Moscow State Medical University, 119146 Moscow, Russia; (E.V.); (A.L.)
| | - Elena Volchkova
- Sechenov First Moscow State Medical University, 119146 Moscow, Russia; (E.V.); (A.L.)
| | - Alexander Lukashev
- Sechenov First Moscow State Medical University, 119146 Moscow, Russia; (E.V.); (A.L.)
| | - Vladimir Chulanov
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (A.K.); (S.B.); (V.C.)
- Sechenov First Moscow State Medical University, 119146 Moscow, Russia; (E.V.); (A.L.)
| |
Collapse
|
328
|
Xu S, Yang K, Li R, Zhang L. mRNA Vaccine Era-Mechanisms, Drug Platform and Clinical Prospection. Int J Mol Sci 2020; 21:E6582. [PMID: 32916818 PMCID: PMC7554980 DOI: 10.3390/ijms21186582] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 12/14/2022] Open
Abstract
Messenger ribonucleic acid (mRNA)-based drugs, notably mRNA vaccines, have been widely proven as a promising treatment strategy in immune therapeutics. The extraordinary advantages associated with mRNA vaccines, including their high efficacy, a relatively low severity of side effects, and low attainment costs, have enabled them to become prevalent in pre-clinical and clinical trials against various infectious diseases and cancers. Recent technological advancements have alleviated some issues that hinder mRNA vaccine development, such as low efficiency that exist in both gene translation and in vivo deliveries. mRNA immunogenicity can also be greatly adjusted as a result of upgraded technologies. In this review, we have summarized details regarding the optimization of mRNA vaccines, and the underlying biological mechanisms of this form of vaccines. Applications of mRNA vaccines in some infectious diseases and cancers are introduced. It also includes our prospections for mRNA vaccine applications in diseases caused by bacterial pathogens, such as tuberculosis. At the same time, some suggestions for future mRNA vaccine development about storage methods, safety concerns, and personalized vaccine synthesis can be found in the context.
Collapse
Affiliation(s)
- Shuqin Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200438, China; (S.X.); (K.Y.)
| | - Kunpeng Yang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200438, China; (S.X.); (K.Y.)
| | - Rose Li
- M.B.B.S., School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China;
| | - Lu Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200438, China; (S.X.); (K.Y.)
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
| |
Collapse
|
329
|
Abstract
Messenger RNA (mRNA) has immense potential for developing a wide range of therapies, including immunotherapy and protein replacement. As mRNA presents no risk of integration into the host genome and does not require nuclear entry for transfection, which allows protein production even in nondividing cells, mRNA-based approaches can be envisioned as safe and practical therapeutic strategies. Nevertheless, mRNA presents unfavorable characteristics, such as large size, immunogenicity, limited cellular uptake, and sensitivity to enzymatic degradation, which hinder its use as a therapeutic agent. While mRNA stability and immunogenicity have been ameliorated by direct modifications on the mRNA structure, further improvements in mRNA delivery are still needed for promoting its activity in biological settings. In this regard, nanomedicine has shown the ability for spatiotemporally controlling the function of a myriad of bioactive agents in vivo. Direct engineering of nanomedicine structures for loading, protecting, and releasing mRNA and navigating in biological environments can then be applied for promoting mRNA translation toward the development of effective treatments. Here, we review recent approaches aimed at enhancing mRNA function and its delivery through nanomedicines, with particular emphasis on their applications and eventual clinical translation.
Collapse
Affiliation(s)
- Satoshi Uchida
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki 210-0821, Japan
| | - Federico Perche
- Centre de Biophysique Moléculaire, UPR4301 CNRS Rue Charles Sadron Orléans, Orléans 45071 Cedex 02, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, UPR4301 CNRS Rue Charles Sadron Orléans, Orléans 45071 Cedex 02, France.,Faculty of Sciences and Techniques, University of Orléans, Orléans 45071 Cedex 02, France
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki 210-0821, Japan
| |
Collapse
|
330
|
Ye T, Zhong Z, García‐Sastre A, Schotsaert M, De Geest BG. Current Status of COVID‐19 (Pre)Clinical Vaccine Development. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tingting Ye
- Department of Pharmaceutics Ghent University Belgium
| | - Zifu Zhong
- Department of Pharmaceutics Ghent University Belgium
| | - Adolfo García‐Sastre
- Department of Microbiology Icahn School of Medicine at Mount Sinai New York NY 10029 USA
- Global Health and Emerging Pathogens Institute Icahn School of Medicine at Mount Sinai New York NY 10029 USA
- Department of Medicine Division of Infectious Diseases Icahn School of Medicine at Mount Sinai New York NY 10029 USA
- The Tisch Cancer Institute Icahn School of Medicine at Mount Sinai New York NY 10029 USA
| | - Michael Schotsaert
- Department of Microbiology Icahn School of Medicine at Mount Sinai New York NY 10029 USA
- Global Health and Emerging Pathogens Institute Icahn School of Medicine at Mount Sinai New York NY 10029 USA
| | | |
Collapse
|
331
|
SARS-CoV-2 vaccine research and development: Conventional vaccines and biomimetic nanotechnology strategies. Asian J Pharm Sci 2020; 16:136-146. [PMID: 32905011 PMCID: PMC7462629 DOI: 10.1016/j.ajps.2020.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/16/2020] [Accepted: 08/12/2020] [Indexed: 02/08/2023] Open
Abstract
The development of a massively producible vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus, is essential for stopping the current coronavirus disease (COVID-19) pandemic. A vaccine must stimulate effective antibody and T cell responses in vivo to induce long-term protection. Scientific researchers have been developing vaccine candidates for the severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) since the outbreaks of these diseases. The prevalence of new biotechnologies such as genetic engineering has shed light on the generation of vaccines against novel viruses. In this review, we present the status of the development of coronavirus vaccines, focusing particularly on the biomimetic nanoparticle technology platform, which is likely to have a major role in future developments of personalized medicine.
Collapse
|
332
|
Affiliation(s)
- Chaoyang Meng
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- Xiangya Hospital of Central South University Changsha Hunan 410000 China
| | - Zhe Chen
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- Xiangya Hospital of Central South University Changsha Hunan 410000 China
| | - Gang Li
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
| | - Thomas Welte
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
| | - Haifa Shen
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- Cancer Center Houston Methodist Hospital Houston TX 77030 USA
- Department of Cell and Developmental Biology Weill Cornell Medical College New York NY 10065 USA
| |
Collapse
|
333
|
Samaridou E, Heyes J, Lutwyche P. Lipid nanoparticles for nucleic acid delivery: Current perspectives. Adv Drug Deliv Rev 2020; 154-155:37-63. [PMID: 32526452 DOI: 10.1016/j.addr.2020.06.002] [Citation(s) in RCA: 343] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/21/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
Nucleic Acid (NA) based therapeutics are poised to disrupt modern medicine and augment traditional pharmaceutics in a meaningful way. However, a key challenge to advancing NA therapies into the clinical setting and on to the market is the safe and effective delivery to the target tissue and cell. Lipid Nanoparticles (LNP) have been extensively investigated and are currently the most advanced vector for the delivery of NA drugs, as evidenced by the approval of Onpattro for treatment of Amyloidosis in the US and EU in 2018. This article provides a comprehensive review of the state-of-the-art for LNP technology. We discuss key advances in the design and development of LNP, leading to a broad range of therapeutic applications. Finally, the current status of this technology in clinical trials and its future prospects are discussed.
Collapse
Affiliation(s)
- Eleni Samaridou
- Genevant Sciences Corp., 155 - 887 Great Northern Way, Vancouver, British Columbia V5T 4T5, Canada
| | - James Heyes
- Genevant Sciences Corp., 155 - 887 Great Northern Way, Vancouver, British Columbia V5T 4T5, Canada
| | - Peter Lutwyche
- Genevant Sciences Corp., 155 - 887 Great Northern Way, Vancouver, British Columbia V5T 4T5, Canada.
| |
Collapse
|