301
|
Abstract
Microglia, the brain's innate immune cell type, are cells of mesodermal origin that populate the central nervous system (CNS) during development. Undifferentiated microglia, also called ameboid microglia, have the ability to proliferate, phagocytose apoptotic cells and migrate long distances toward their final destinations throughout all CNS regions, where they acquire a mature ramified morphological phenotype. Recent studies indicate that ameboid microglial cells not only have a scavenger role during development but can also promote the death of some neuronal populations. In the mature CNS, adult microglia have highly motile processes to scan their territorial domains, and they display a panoply of effects on neurons that range from sustaining their survival and differentiation contributing to their elimination. Hence, the fine tuning of these effects results in protection of the nervous tissue, whereas perturbations in the microglial response, such as the exacerbation of microglial activation or lack of microglial response, generate adverse situations for the organization and function of the CNS. This review discusses some aspects of the relationship between microglial cells and neuronal death/survival both during normal development and during the response to injury in adulthood.
Collapse
|
302
|
Neher JJ, Neniskyte U, Brown GC. Primary phagocytosis of neurons by inflamed microglia: potential roles in neurodegeneration. Front Pharmacol 2012; 3:27. [PMID: 22403545 PMCID: PMC3288722 DOI: 10.3389/fphar.2012.00027] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/12/2012] [Indexed: 12/19/2022] Open
Abstract
Microglial phagocytosis of dead or dying neurons can be beneficial by preventing the release of damaging and/or pro-inflammatory intracellular components. However, there is now evidence that under certain conditions, such as inflammation, microglia can also phagocytose viable neurons, thus executing their death. Such phagocytic cell death may result from exposure of phosphatidylserine (PS) or other eat-me signals on otherwise viable neurons as a result of physiological activation or sub-toxic insult, and neuronal phagocytosis by activated microglia. In this review, we discuss the mechanisms of phagocytic cell death and its potential roles in Alzheimer’s Disease, Parkinson’s Disease, and Frontotemporal Dementia.
Collapse
Affiliation(s)
- Jonas J Neher
- Department of Biochemistry, University of Cambridge Cambridge, UK
| | | | | |
Collapse
|
303
|
Fricker M, Neher JJ, Zhao JW, Théry C, Tolkovsky AM, Brown GC. MFG-E8 mediates primary phagocytosis of viable neurons during neuroinflammation. J Neurosci 2012; 32:2657-66. [PMID: 22357850 PMCID: PMC3312099 DOI: 10.1523/jneurosci.4837-11.2012] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/21/2011] [Accepted: 01/05/2012] [Indexed: 12/20/2022] Open
Abstract
Milk-fat globule EGF factor-8 (MFG-E8, SED1, lactadherin) is known to mediate the phagocytic removal of apoptotic cells by bridging phosphatidylserine (PS)-exposing cells and the vitronectin receptor (VR) on phagocytes. However, we show here that MFG-E8 can mediate phagocytosis of viable neurons during neuroinflammation induced by lipopolysaccharide (LPS), thereby causing neuronal death. In vitro, inflammatory neuronal loss is independent of apoptotic pathways, and is inhibited by blocking the PS/MFG-E8/VR pathway (by adding PS blocking antibodies, annexin V, mutant MFG-E8 unable to bind VR, or VR antagonist). Neuronal loss is absent in Mfge8 knock-out cultures, but restored by adding recombinant MFG-E8, without affecting inflammation. In vivo, LPS-induced neuronal loss is reduced in the striatum of Mfge8 knock-out mice or by coinjection of an MFG-E8 receptor (VR) inhibitor into the rat striatum. Our data show that blocking MFG-E8-dependent phagocytosis preserves live neurons, implying that phagocytosis actively contributes to neuronal death during brain inflammation.
Collapse
Affiliation(s)
- Michael Fricker
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Jonas J. Neher
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Jing-Wei Zhao
- Cambridge Centre for Brain Repair, University of Cambridge, Cambridge CB2 OPY, United Kingdom, and
| | | | - Aviva M. Tolkovsky
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
- Cambridge Centre for Brain Repair, University of Cambridge, Cambridge CB2 OPY, United Kingdom, and
| | - Guy C. Brown
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| |
Collapse
|
304
|
Abstract
Contrary to early views, we now know that systemic inflammatory/immune responses transmit to the brain. The microglia, the resident "macrophages" of the brain's innate immune system, are most responsive, and increasing evidence suggests that they enter a hyper-reactive state in neurodegenerative conditions and aging. As sustained over-production of microglial pro-inflammatory mediators is neurotoxic, this raises great concern that systemic inflammation (that also escalates with aging) exacerbates or possibly triggers, neurological diseases (Alzheimer's, prion, motoneuron disease). It is known that inflammation has an essential role in the progression of Alzheimer's disease (AD), since amyloid-β (Aβ) is able to activate microglia, initiating an inflammatory response, which could have different consequences for neuronal survival. On one hand, microglia may delay the progression of AD by contributing to the clearance of Aβ, since they phagocyte Aβ and release enzymes responsible for Aβ degradation. Microglia also secrete growth factors and anti-inflammatory cytokines, which are neuroprotective. In addition, microglia removal of damaged cells is a very important step in the restoration of the normal brain environment, as if left such cells can become potent inflammatory stimuli, resulting in yet further tissue damage. On the other hand, as we age microglia become steadily less efficient at these processes, tending to become over-activated in response to stimulation and instigating too potent a reaction, which may cause neuronal damage in its own right. Therefore, it is critical to understand the state of activation of microglia in different AD stages to be able to determine the effect of potential anti-inflammatory therapies. We discuss here recent evidence supporting both the beneficial or detrimental performance of microglia in AD, and the attempt to find molecules/biomarkers for early diagnosis or therapeutic interventions.
Collapse
Affiliation(s)
- Egle Solito
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London, Queen Mary’s School of Medicine and DentistryLondon, UK
| | - Magdalena Sastre
- Centre for Neuroscience, Division of Experimental Medicine, Imperial College LondonLondon, UK
| |
Collapse
|
305
|
Abstract
Microglia were recently shown to play unexpected roles in normal brain development and adult physiology. This has begun to dramatically change our view of these resident "immune" cells. Here, we briefly review topics covered in our 2011 Society for Neuroscience minisymposium "The Role of Microglia in the Healthy Brain." This summary is not meant to be a comprehensive review of microglia physiology, but rather to share new results and stimulate further research into the cellular and molecular mechanisms by which microglia influence postnatal development, adult neuronal plasticity, and circuit function.
Collapse
|
306
|
Cipriani R, Villa P, Chece G, Lauro C, Paladini A, Micotti E, Perego C, De Simoni MG, Fredholm BB, Eusebi F, Limatola C. CX3CL1 is neuroprotective in permanent focal cerebral ischemia in rodents. J Neurosci 2011; 31:16327-35. [PMID: 22072684 PMCID: PMC6633249 DOI: 10.1523/jneurosci.3611-11.2011] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 08/18/2011] [Accepted: 08/28/2011] [Indexed: 12/13/2022] Open
Abstract
The chemokine CX3CL1 and its receptor CX3CR1 are constitutively expressed in the nervous system. In this study, we used in vivo murine models of permanent middle cerebral artery occlusion (pMCAO) to investigate the protective potential of CX3CL1. We report that exogenous CX3CL1 reduced ischemia-induced cerebral infarct size, neurological deficits, and caspase-3 activation. CX3CL1-induced neuroprotective effects were long lasting, being observed up to 50 d after pMCAO in rats. The neuroprotective action of CX3CL1 in different models of brain injuries is mediated by its inhibitory activity on microglia and, in vitro, requires the activation of adenosine receptor 1 (A₁R). We show that, in the presence of the A₁R antagonist 1,3-dipropyl-8-cyclopentylxanthine and in A₁R⁻/⁻ mice, the neuroprotective effect of CX3CL1 on pMCAO was abolished, indicating the critical importance of the adenosine system in CX3CL1 protection also in vivo. In apparent contrast with the above reported data but in agreement with previous findings, cx3cl1⁻/⁻ and cx3cr1(GFP/GFP) mice, respectively, deficient in CX3CL1 or CX3CR1, had less severe brain injury on pMCAO, and the administration of exogenous CX3CL1 increased brain damage in cx3cl1⁻/⁻ ischemic mice. We also report that CX3CL1 induced a different phagocytic activity in wild type and cx3cl1⁻/⁻ microglia in vitro during cotreatment with the medium conditioned by neurons damaged by oxygen-glucose deprivation. Together, these data suggest that acute administration of CX3CL1 reduces ischemic damage via an adenosine-dependent mechanism and that the absence of constitutive CX3CL1-CX3CR1 signaling changes the outcome of microglia-mediated effects during CX3CL1 administration to ischemic brain.
Collapse
MESH Headings
- Adenosine A1 Receptor Antagonists/therapeutic use
- Analysis of Variance
- Animals
- Animals, Genetically Modified
- Animals, Newborn
- Brain Infarction/etiology
- Brain Infarction/prevention & control
- CX3C Chemokine Receptor 1
- Cells, Cultured
- Cerebral Cortex/cytology
- Chemokine CX3CL1/deficiency
- Chemokine CX3CL1/metabolism
- Chemokine CX3CL1/therapeutic use
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Enzyme-Linked Immunosorbent Assay/methods
- Glucose/deficiency
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Humans
- Hypoxia/prevention & control
- Infarction, Middle Cerebral Artery/complications
- Infarction, Middle Cerebral Artery/metabolism
- Infarction, Middle Cerebral Artery/prevention & control
- Magnetic Resonance Imaging
- Male
- Mice
- Mice, Inbred C57BL
- Nervous System Diseases/etiology
- Nervous System Diseases/metabolism
- Nervous System Diseases/therapy
- Neurons/drug effects
- Phagocytosis/drug effects
- Rats
- Receptors, Chemokine/deficiency
- Receptors, Purinergic P1/deficiency
- Xanthines/therapeutic use
Collapse
Affiliation(s)
- Raffaela Cipriani
- Institute Pasteur–Fondazione Cenci Bolognetti, Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
| | - Pia Villa
- Consiglio Nazionale delle Ricerche, Neuroscience Institute, 20129 Milan, Italy
- Mario Negri Institute, 20156 Milan, Italy
| | - Giuseppina Chece
- Institute Pasteur–Fondazione Cenci Bolognetti, Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
| | - Clotilde Lauro
- Institute Pasteur–Fondazione Cenci Bolognetti, Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
| | | | | | | | | | - Bertil B. Fredholm
- Department of Physiology, Karolinska Institute, 171 77 Stockholm, Sweden, and
| | - Fabrizio Eusebi
- Institute Pasteur–Fondazione Cenci Bolognetti, Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
- Instituto di Ricovero e Cura a Carattere Scientifico, NeuroMed, 86077 Pozzilli, Italy
| | - Cristina Limatola
- Institute Pasteur–Fondazione Cenci Bolognetti, Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
- Instituto di Ricovero e Cura a Carattere Scientifico, NeuroMed, 86077 Pozzilli, Italy
| |
Collapse
|
307
|
Neniskyte U, Neher JJ, Brown GC. Neuronal death induced by nanomolar amyloid β is mediated by primary phagocytosis of neurons by microglia. J Biol Chem 2011; 286:39904-13. [PMID: 21903584 PMCID: PMC3220594 DOI: 10.1074/jbc.m111.267583] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Alzheimer disease is characterized by neuronal loss and brain plaques of extracellular amyloid β (Aβ), but the means by which Aβ may induce neuronal loss is not entirely clear. Although high concentrations of Aβ (μm) can induce direct toxicity to neurons, we find that low concentration (nm) induce neuronal loss through a microglia-mediated mechanism. In mixed neuronal-glial cultures from rat cerebellum, 250 nm Aβ1–42 (added as monomers, oligomers or fibers) induced about 30% loss of neurons between 2 and 3 days. This neuronal loss occurred without any increase in neuronal apoptosis or necrosis, and no neuronal loss occurred with Aβ42–1. Aβ greatly increased the phagocytic capacity of microglia and induced phosphatidylserine exposure (an “eat-me” signal) on neuronal processes. Blocking exposed phosphatidylserine by adding annexin V or an antibody to phosphatidylserine or inhibiting microglial phagocytosis by adding either cytochalasin D (to block actin polymerization) or cyclo(RGDfV) (to block vitronectin receptors) significantly prevented neuronal loss. Loss of neuronal synapses occurred in parallel with loss of cell bodies and was also prevented by blocking phagocytosis. Inhibition of phagocytosis prevented neuronal loss with no increase in neuronal death, even after 7 days, suggesting that microglial phagocytosis was the primary cause of neuronal death induced by nanomolar Aβ.
Collapse
Affiliation(s)
- Urte Neniskyte
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom.
| | | | | |
Collapse
|