351
|
Ulmann L, Rodeau JL, Danoux L, Contet-Audonneau JL, Pauly G, Schlichter R. Dehydroepiandrosterone and neurotrophins favor axonal growth in a sensory neuron–keratinocyte coculture model. Neuroscience 2009; 159:514-25. [DOI: 10.1016/j.neuroscience.2009.01.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 11/13/2008] [Accepted: 01/12/2009] [Indexed: 01/19/2023]
|
352
|
Munetsuna E, Hattori M, Komatsu S, Sakimoto Y, Ishida A, Sakata S, Hojo Y, Kawato S, Yamazaki T. Social isolation stimulates hippocampal estradiol synthesis. Biochem Biophys Res Commun 2009; 379:480-4. [DOI: 10.1016/j.bbrc.2008.12.076] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
|
353
|
Ryu J, Cheong IY, Do SH, Zuo Z. Alphaxalone, a neurosteroid anaesthetic, increases the activity of the glutamate transporter type 3 expressed in Xenopus oocytes. Eur J Pharmacol 2009; 602:23-7. [DOI: 10.1016/j.ejphar.2008.10.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 10/13/2008] [Accepted: 10/31/2008] [Indexed: 10/21/2022]
|
354
|
Bigos KL, Folan MM, Jones MR, Haas GL, Kroboth FJ, Kroboth PD. Dysregulation of neurosteroids in obsessive compulsive disorder. J Psychiatr Res 2009; 43:442-5. [PMID: 18514738 PMCID: PMC2654381 DOI: 10.1016/j.jpsychires.2008.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 03/31/2008] [Accepted: 04/08/2008] [Indexed: 01/10/2023]
Abstract
Alterations in hormone concentrations, including adrenocorticotropin, corticotropin releasing hormone, and cortisol have been reported in patients with obsessive compulsive disorder (OCD). Dehydroepiandrosterone (DHEA) and its sulfated metabolite, DHEA-S, have not been assessed in patients with OCD. We report 24-h serum DHEA, DHEA-S, and cortisol concentrations in a young man with OCD and 15 healthy young men. Circadian patterns of DHEA and cortisol were markedly different in the subject with OCD than in the control subjects. DHEA and DHEA-S concentrations were substantially higher in the OCD subject than in the control subjects. In contrast, cortisol concentrations were similar in the OCD subject and the control subjects. Future clinical studies are needed to evaluate the significance of DHEA and DHEA-S in OCD.
Collapse
Affiliation(s)
- KL Bigos
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy
| | - MM Folan
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy
| | - MR Jones
- Department of Psychiatry, University of Pittsburgh School of Medicine
| | - GL Haas
- Department of Psychiatry, University of Pittsburgh School of Medicine
| | - FJ Kroboth
- Department of General Internal Medicine, University of Pittsburgh School of Medicine
| | - PD Kroboth
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy
| |
Collapse
|
355
|
Maninger N, Wolkowitz OM, Reus VI, Epel ES, Mellon SH. Neurobiological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). Front Neuroendocrinol 2009; 30:65-91. [PMID: 19063914 PMCID: PMC2725024 DOI: 10.1016/j.yfrne.2008.11.002] [Citation(s) in RCA: 544] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 11/10/2008] [Accepted: 11/11/2008] [Indexed: 01/12/2023]
Abstract
DHEA and DHEAS are steroids synthesized in human adrenals, but their function is unclear. In addition to adrenal synthesis, evidence also indicates that DHEA and DHEAS are synthesized in the brain, further suggesting a role of these hormones in brain function and development. Despite intensifying research into the biology of DHEA and DHEAS, many questions concerning their mechanisms of action and their potential involvement in neuropsychiatric illnesses remain unanswered. We review and distill the preclinical and clinical data on DHEA and DHEAS, focusing on (i) biological actions and putative mechanisms of action, (ii) differences in endogenous circulating concentrations in normal subjects and patients with neuropsychiatric diseases, and (iii) the therapeutic potential of DHEA in treating these conditions. Biological actions of DHEA and DHEAS include neuroprotection, neurite growth, and antagonistic effects on oxidants and glucocorticoids. Accumulating data suggest abnormal DHEA and/or DHEAS concentrations in several neuropsychiatric conditions. The evidence that DHEA and DHEAS may be fruitful targets for pharmacotherapy in some conditions is reviewed.
Collapse
Affiliation(s)
- Nicole Maninger
- Department of Psychiatry, University of California San Francisco, School of Medicine, San Francisco 94143, USA
| | | | | | | | | |
Collapse
|
356
|
Charalampopoulos I, Margioris AN, Gravanis A. Neurosteroid dehydroepiandrosterone exerts anti-apoptotic effects by membrane-mediated, integrated genomic and non-genomic pro-survival signaling pathways. J Neurochem 2008; 107:1457-69. [PMID: 19013851 DOI: 10.1111/j.1471-4159.2008.05732.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dehydroepiandrosterone (DHEA) protects neural crest-derived PC12 cells from serum deprivation-induced apoptosis via G protein-associated specific plasma membrane-binding sites (mDBS). Here, we studied the signaling pathways involved in the pro-survival effects of DHEA-mediated activation of the mDBS binding sites. Membrane impermeable DHEA-bovine serum albumin (BSA) conjugate induced an acute phosphorylation of the prosurvival kinases Src, protein kinase A (PKA), MEK1/2/ERK1/2, and PI3K/Akt in serum deprived PC12 cells in parallel to an elevation of intracellular cAMP. The physiological significance of these findings was further assessed in a series of experiments using several selective pro-survival kinase inhibitors. Our combined findings suggest that the following sequence of events may take place following activation of mDBS binding sites: DHEA-BSA induces an acute but transient sequential phosphorylation of the pro-survival kinases Src/PKC(a/b)/MEK1/2/ERK1/2 which, in their turn, activate transcription factors cAMP responsive element binding protein and nuclear factor kappa B which induce the expression of the anti-apoptotic Bcl-2 genes. In parallel, DHEA-BSA increases intracellular cAMP, and the subsequent phosphorylation of PKA kinase and of cAMP responsive element binding protein. Finally, DHEA-BSA induces phosphorylation of PI3K/Akt kinases which, subsequently, lead to phosphorylation/deactivation of the pro-apoptotic Bad. Our findings suggest that the neurosteroid DHEA affects neural crest-derived cell survival by multiple pro-survival signaling pathways comprising an integrated system of non-genomic and genomic mechanisms.
Collapse
|
357
|
Dias BG, Chin SG, Crews D. Steroidogenic enzyme gene expression in the brain of the parthenogenetic whiptail lizard, Cnemidophorus uniparens. Brain Res 2008; 1253:129-38. [PMID: 19084508 DOI: 10.1016/j.brainres.2008.11.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 11/11/2008] [Accepted: 11/11/2008] [Indexed: 10/21/2022]
Abstract
The steroidogenic enzyme CYP17 is responsible for catalyzing the production of androgenic precursors, while CYP19 converts testosterone to estradiol. De novo neurosteroidogenesis in specific brain regions influences steroid hormone dependent behaviors. In the all-female lizard species Cnemidophorus uniparens, individuals alternately display both male-like mounting and female-like receptivity. Mounting is associated with high circulating concentrations of progesterone following ovulation (PostOv), while receptivity is correlated with estrogen preceding it (PreOv). At a neuroanatomical level, the preoptic area (POA) and ventromedial nucleus of the hypothalamus (VMN) are the foci of the male-typical mounting and female-typical receptivity, respectively. In this study, we indirectly test the hypothesis that the whiptail lizard brain is capable of de novo neurosteroidogenesis by cloning fragments of the genes encoding two steroidogenic enzymes, CYP17 and CYP19, and examining their expression patterns in the C. uniparens brain. Our data indicate that these genes are expressed in the C. uniparens brain, and more importantly in the POA and VMN. Using radioactive in situ hybridization, we measured higher CYP17 mRNA levels in the POA of PostOv lizards compared to receptive PreOv animals; CYP19 mRNA levels in the VMN did not change across the ovarian cycle. To our knowledge, these are the first data suggesting that the reptilian brain is capable of de novo steroidogenesis. This study also supports the idea that non-gonadal sources of steroid hormones locally produced in behaviorally relevant brain loci are central to the mediation of behavioral output.
Collapse
Affiliation(s)
- Brian George Dias
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
358
|
Wang JM, Brinton RD. Allopregnanolone-induced rise in intracellular calcium in embryonic hippocampal neurons parallels their proliferative potential. BMC Neurosci 2008; 9 Suppl 2:S11. [PMID: 19090984 PMCID: PMC2604895 DOI: 10.1186/1471-2202-9-s2-s11] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Factors that regulate intracellular calcium concentration are known to play a critical role in brain function and neural development, including neural plasticity and neurogenesis. We previously demonstrated that the neurosteroid allopregnanolone (APα; 5α-pregnan-3α-ol-20-one) promotes neural progenitor proliferation in vitro in cultures of rodent hippocampal and human cortical neural progenitors, and in vivo in triple transgenic Alzheimer's disease mice dentate gyrus. We also found that APα-induced proliferation of neural progenitors is abolished by a calcium channel blocker, nifedipine, indicating a calcium dependent mechanism for the proliferation. Methods In the present study, we investigated the effect of APα on the regulation of intracellular calcium concentration in E18 rat hippocampal neurons using ratiometric Fura2-AM imaging. Results Results indicate that APα rapidly increased intracellular calcium concentration in a dose-dependent and developmentally regulated manner, with an EC50 of 110 ± 15 nM and a maximal response occurring at three days in vitro. The stereoisomers 3β-hydroxy-5α-hydroxy-pregnan-20-one, and 3β-hydroxy-5β-hydroxy-pregnan-20-one, as well as progesterone, were without significant effect. APα-induced intracellular calcium concentration increase was not observed in calcium depleted medium and was blocked in the presence of the broad spectrum calcium channel blocker La3+, or the L-type calcium channel blocker nifedipine. Furthermore, the GABAA receptor blockers bicuculline and picrotoxin abolished APα-induced intracellular calcium concentration rise. Conclusion Collectively, these data indicate that APα promotes a rapid, dose-dependent, stereo-specific, and developmentally regulated increase of intracellular calcium concentration in rat embryonic hippocampal neurons via a mechanism that requires both the GABAA receptor and L-type calcium channel. These data suggest that APα-induced intracellular calcium concentration increase serves as the initiation mechanism whereby APα promotes neurogenesis.
Collapse
Affiliation(s)
- Jun Ming Wang
- Department of Pharmacology and Pharmaceutical Sciences and Program in Neuroscience, University of Southern California, Los Angeles, CA 90089, USA.
| | | |
Collapse
|
359
|
Age- and sex-related analysis of methylation of 5′-upstream sequences of Fmr-1 gene in mouse brain and modulation by sex steroid hormones. Biogerontology 2008; 9:455-65. [DOI: 10.1007/s10522-008-9178-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 08/29/2008] [Indexed: 10/21/2022]
|
360
|
Frye CA, Walf AA. Membrane actions of progestins at dopamine type 1-like and GABAA receptors involve downstream signal transduction pathways. Steroids 2008; 73:906-13. [PMID: 18342351 PMCID: PMC2492830 DOI: 10.1016/j.steroids.2008.01.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 01/14/2008] [Accepted: 01/28/2008] [Indexed: 12/27/2022]
Abstract
In the ventral tegmental area (VTA), progestins facilitate lordosis via rapid actions at membrane dopamine Type 1-like (D(1)) and/or GABA(A) receptors (GBRs), rather than via cognate, intracellular progestin receptors (PRs). Downstream signal transduction pathways involved in these effects were investigated using lordosis as a bioassay. If progestins' actions at D(1) and/or GBRs in the VTA require activation of G-proteins, adenylyl cyclase, cyclic AMP-dependent protein kinase A (PKA), phospholipase C (PLC), and/or PKC, then pharmacologically blocking these pathways would be expected to attenuate progestin-facilitated lordosis and its enhancement by D(1) and GBR activity. Ovariectomized, estradiol-primed rats were infused first with vehicle or signal transduction inhibitor, and second with vehicle, a D(1) or GBR agonist, and then with vehicle or progestins to the VTA. Rats were tested for lordosis following infusions. Results indicated that initiation of G-proteins, adenylyl cyclase, PKA, PLC, or PKC in the VTA is required for rapid effects of progestins through D(1) and/or GBRs to facilitate lordosis. As well, progestins' actions at n-methyl-d-aspartate receptors (NMDARs) may modulate activity at D(1) and/or GBRs and mitogen activated protein kinase (MAPK) may be a common signaling pathway. Findings from a microarray study demonstrated that there was upregulation of genes associated with steroid metabolism, GBRs, D(1), NMDARs and signal transduction factors in the midbrain VTA of naturally receptive mated compared to non-mated rats. Thus, in the VTA, progestins have rapid membrane-mediated actions via D(1), GBRs, NMDARs and their downstream signal transduction pathways.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, The University at Albany, SUNY, Albany, NY 12222, USA.
| | | |
Collapse
|
361
|
Frye CA, Walf AA. Activity of protein kinase C is important for 3alpha,5alpha-THP's actions at dopamine type 1-like and/or GABAA receptors in the ventral tegmental area for lordosis of rats. Brain Res Bull 2008; 77:91-7. [PMID: 18675324 DOI: 10.1016/j.brainresbull.2008.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 07/03/2008] [Accepted: 07/04/2008] [Indexed: 11/17/2022]
Abstract
In the ventral tegmental area, progestogens facilitate sexual receptivity of rodents via actions at dopamine type 1-like and/or gamma-aminobutyric acid type A receptors and activation of downstream signal transduction molecules. In the present study, we investigated whether effects of progesterone's metabolite, 3alpha,5alpha-THP, to enhance lordosis via actions at these receptors in the ventral tegmental area requires phospholipase C-dependent protein kinase C. The objective of this study was to test the hypothesis that: if progestogens' actions through dopamine type 1-like and/or gamma-aminobutyric acid type A receptors in the ventral tegmental area for lordosis require protein kinase C, then inhibiting protein kinase C in the ventral tegmental area should reduce 3alpha,5alpha-THP-facilitated lordosis and its enhancement by dopamine type 1-like or gamma-aminobutyric acid type A receptor agonists. Ovariectomized, estradiol (E(2); 10 microg s.c. at h 0)-primed rats were tested for their baseline lordosis responses and then received a series of three infusions to the ventral tegmental area: first, bisindolylmaleimide (75 nM/side) or vehicle; second, SKF38393 (100 ng/side), muscimol (100 ng/side), or vehicle; third, 3alpha,5alpha-THP (100, 200 ng/side) or vehicle. Rats were pre-tested for lordosis and motor behavior and then tested for lordosis after each infusion and 10 and 60 min after the last infusion. Rats were tested for motor behavior following their last lordosis test. As has been previously demonstrated, 3alpha,5alpha-THP infusions to the ventral tegmental area increased lordosis and effects were further enhanced by infusions of SKF38393 and muscimol. Infusions of bisindolylmaleimide to the ventral tegmental area attenuated 3alpha,5alpha-THP-, SKF38393-, and/or muscimol-facilitated lordosis. Effects on lordosis were not solely due to changes in general motor behavior. Thus, 3alpha,5alpha-THP's actions in the ventral tegmental area through membrane receptors may require activity of protein kinase C.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA
| | | |
Collapse
|
362
|
Charlet A, Lasbennes F, Darbon P, Poisbeau P. Fast non-genomic effects of progesterone-derived neurosteroids on nociceptive thresholds and pain symptoms. Pain 2008; 139:603-609. [PMID: 18614289 DOI: 10.1016/j.pain.2008.06.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 06/10/2008] [Accepted: 06/10/2008] [Indexed: 11/18/2022]
Abstract
Fast Inhibitory controls mediated by glycine (GlyRs) and GABAA receptors (GABAARs) play an important role to prevent the apparition of pathological pain symptoms of allodynia and hyperalgesia. The use of positive allosteric modulators of these receptors, specifically expressed in the spinal cord, may represent an interesting strategy to limit or block pain expression. In this study, we have used stereoisomers of progesterone metabolites, acting only via non-genomic effects, in order to evaluate the contribution of GlyRs and GABAARs for the reduction of mechanical and thermal heat hypernociception. We show that 3alpha neurosteroids were particularly efficient to elevate nociceptive thresholds in naive animal. It also reduced mechanical allodynia and thermal heat hyperalgesia in the carrageenan model of inflammatory pain. This effect is likely to be mediated by GABAA receptors since 3beta isomer was inefficient. More interestingly, 3alpha5beta neurosteroid was only efficient on mechanical allodynia while having no effect on thermal heat hyperalgesia. We characterized these paradoxical effects of 3alpha5beta neurosteroid using the strychnine and bicuculline models of allodynia. We clearly show that 3alpha5beta neurosteroid exerts an antinociceptive effect via a positive allosteric modulation of GABAARs but, at the same time, is pronociceptive by reducing GlyR function. This illustrates the importance of the inhibitory amino acid receptor channels and their allosteric modulators in spinal pain processing. Moreover, our results indicate that neurosteroids, which are synthesized in the dorsal horn of the spinal cord and have limited side effects, may be of significant interest in order to treat pathological pain symptoms.
Collapse
Affiliation(s)
- Alexandre Charlet
- Institut des Neurosciences Cellulaires et Intégratives, UMR 7168 Centre national de la Recherche Scientifique - Université Louis Pasteur, Department Nociception and Pain, 21 rue René Descartes, F-67084 Strasbourg Cedex, Strasbourg, France
| | | | | | | |
Collapse
|
363
|
Arukwe A, Nordtug T, Kortner TM, Mortensen AS, Brakstad OG. Modulation of steroidogenesis and xenobiotic biotransformation responses in zebrafish (Danio rerio) exposed to water-soluble fraction of crude oil. ENVIRONMENTAL RESEARCH 2008; 107:362-370. [PMID: 18396270 DOI: 10.1016/j.envres.2008.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 02/23/2008] [Accepted: 02/27/2008] [Indexed: 05/26/2023]
Abstract
The induction of CYP enzyme activities, particularly CYP1A1, through the aryl hydrocarbon receptor (AhR) in most vertebrate species is among the most studied biochemical response to planar and aromatic organic contaminant exposure. Since P450 families play central roles in the oxidative metabolism of a wide range of exogenous and endogenous compounds, interactions between the biotransformation processes and reproductive physiological responses are inevitable. Steroidogenesis is the process by which specialized cells in specific tissues, such as the gonad, brain (neurosteroids) and kidney, synthesize steroid hormones. In the present study, we evaluated the effects of water-soluble fraction (WSF) of crude oil on the xenobiotic biotransformation and steroidogenic processes in the head (brain) and whole-body tissue of a model species by transcript analysis using quantitative (real-time) polymerase chain reaction (qPCR), enzyme activities and steroid hormone (testosterone: T and 17beta-estradiol: E2) levels using enzyme immune assay (EIA). Our data showed that exposure of fish to WSF produced an apparent concentration-specific increase of AhR1, CYP1A1 and 3beta-hydroxysteroid dehydrogenase (3beta-HSD) mRNA levels, and decrease of AhR2. On the activity level, WSF produced concentration-specific increase of ethoxyresorufin O-deethylase (EROD), benzyloxyresorufin (BROD) methoxyresorufin (MROD) and pentoxyresorufin (PROD) activities in whole-body tissue. In the steroidogenic pathway, WSF exposure produced apparent concentration-specific decrease of ER* and ERbeta, steroidogenic acute regulatory (StAR) protein, cytochrome P450 side-chain cleavage (P450scc), P450aromA and P450aromB mRNA expression. For steroid hormones, while T levels decreased, E2 levels increased in an apparent WSF concentration-specific manner. In general, the xenobiotic biotransformation and estrogenic responses showed negative relationship after exposure of zebrafish to WSF, suggesting an interaction between these physiological pathways. The relationship between WSF mediated changes in brain StAR, P450scc, 3beta-HSD, ER*alpha, ERbeta, P450aromA, P450aromB and whole-body steroid hormone levels suggests that the experimental animals might be experiencing altered neurosteroidogenesis probably through increased activity level of the biotransformation system. Thus, these responses might represent sensitive diagnostic tools for short-term and acute exposure of fish or other aquatic organisms to WSF.
Collapse
Affiliation(s)
- Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology NTNU, Høgskoleringen 5, 7491 Trondheim, Norway.
| | | | | | | | | |
Collapse
|
364
|
Pérez-Neri I, Montes S, Ojeda-López C, Ramírez-Bermúdez J, Ríos C. Modulation of neurotransmitter systems by dehydroepiandrosterone and dehydroepiandrosterone sulfate: mechanism of action and relevance to psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:1118-30. [PMID: 18280022 DOI: 10.1016/j.pnpbp.2007.12.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2007] [Revised: 11/27/2007] [Accepted: 12/02/2007] [Indexed: 10/22/2022]
Abstract
Dehydroepiandrosterone (DHEA) is synthesized in the brain and several studies have shown that this steroid is a modulator of synaptic transmission. The effect of DHEA, and its sulfate ester DHEAS, on glutamate and GABA neurotransmission has been extensively studied but some effects on other neurotransmitter systems, such as dopamine, serotonin and nitric oxide, have also been reported. This review summarizes studies showing the effect of DHEA and DHEAS on neurotransmitter systems at different levels (metabolism, release, reuptake, receptor activation), as well as the activation of voltage-gated ion channels and calcium homeostasis, showing the variety of effects that these steroids exert on those systems, allowing the discussion of its mechanisms of action and its relevance to psychiatric disorders.
Collapse
Affiliation(s)
- Iván Pérez-Neri
- Department of Neurochemistry from the National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, Tlalpan, Mexico City 14269, Mexico
| | | | | | | | | |
Collapse
|
365
|
Neurosteroids allosterically modulate the ion pore of the NMDA receptor consisting of NR1/NR2B but not NR1/NR2A. Biochem Biophys Res Commun 2008; 372:305-8. [DOI: 10.1016/j.bbrc.2008.05.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 05/13/2008] [Indexed: 11/22/2022]
|
366
|
Nin MS, Salles FB, Azeredo LA, Frazon APG, Gomez R, Barros HMT. Antidepressant effect and changes of GABAA receptor gamma2 subunit mRNA after hippocampal administration of allopregnanolone in rats. J Psychopharmacol 2008; 22:477-85. [PMID: 18308780 DOI: 10.1177/0269881107081525] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The present study aimed to verify the effect of bilateral intra-hippocampus administration of the neurosteroid allopregnanolone (3alpha-hydroxy-5alpha-pregnan-20-one; 3alpha, 5alpha-THP) in the forced swimming test (FST) and in the alpha4 and gamma2 GABA(A) receptor subunits gene expression. Results showed that bilateral intra-hippocampal allopregnanolone administration of 2.5 microg/rat ( P<0.05) reduced immobile behavior and increased climbing behavior in the FST. Overall, for all doses of allopregnanolone tested (1.25, 2.5, 5.0 microg/rat), an increase of gamma2 (P<0.05) GABA(A) subunit mRNA was observed. There was a higher increase in the gamma2 gene expression in the right hemisphere than in the left hemisphere (P<0.01) after allopregnanolone treatment. Intra-hippocampal allopregnanolone did not change the expression of the alpha4 subunits. In conclusion, intra-hippocampal administration of allopregnanolone produces an antidepressant-like effect in the FST at an intermediate dose, confirming the potential of neurosteroids as a new class of antidepressant drugs. Our findings suggest that the gamma2, but not the alpha4 GABA(A) subunit, needs further evaluation to be involved in the antidepressant effect of allopregnanolone in the hippocampus and that there is a hemispheric diversity in the biochemical effect of the drug.
Collapse
Affiliation(s)
- M S Nin
- Division of Pharmacology, Fundação Faculdade Federal de Ciências Médicas de Porto Alegre, Sarmento Leite, 245, Porto Alegre, RS Brazil
| | | | | | | | | | | |
Collapse
|
367
|
Glaser S, DeMorrow S, Francis H, Ueno Y, Gaudio E, Vaculin S, Venter J, Franchitto A, Onori P, Vaculin B, Marzioni M, Wise C, Pilanthananond M, Savage J, Pierce L, Mancinelli R, Alpini G. Progesterone stimulates the proliferation of female and male cholangiocytes via autocrine/paracrine mechanisms. Am J Physiol Gastrointest Liver Physiol 2008; 295:G124-G136. [PMID: 18511743 PMCID: PMC2494724 DOI: 10.1152/ajpgi.00536.2007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 05/22/2008] [Indexed: 01/31/2023]
Abstract
During cholestatic liver diseases, cholangiocytes express neuroendocrine phenotypes and respond to a number of hormones and neuropeptides by paracrine and autocrine mechanisms. We examined whether the neuroendocrine hormone progesterone is produced by and targeted to cholangiocytes, thereby regulating biliary proliferation during cholestasis. Nuclear (PR-A and PR-B) and membrane (PRGMC1, PRGMC2, and mPRalpha) progesterone receptor expression was evaluated in liver sections and cholangiocytes from normal and bile duct ligation (BDL) rats, and NRC cells (normal rat cholangiocyte line). In vivo, normal rats were chronically treated with progesterone for 1 wk, or immediately after BDL, rats were treated with a neutralizing progesterone antibody for 1 wk. Cholangiocyte growth was measured by evaluating the number of bile ducts in liver sections. The expression of the progesterone synthesis pathway was evaluated in liver sections, cholangiocytes and NRC. Progesterone secretion was evaluated in supernatants from normal and BDL cholangiocytes and NRC. In vitro, NRC were stimulated with progesterone and cholangiocyte supernatants in the presence or absence of antiprogesterone antibody. Aminoglutethimide was used to block progesterone synthesis. Cholangiocytes and NRC express the PR-B nuclear receptor and PRGMC1, PRGMC2, and mPRalpha. In vivo, progesterone increased the number of bile ducts of normal rats, whereas antiprogesterone antibody inhibited cholangiocyte growth stimulated by BDL. Normal and BDL cholangiocytes expressed the biosynthetic pathway for and secrete progesterone. In vitro, 1) progesterone increased NRC proliferation; 2) cholangiocyte supernatants increased NRC proliferation, which was partially inhibited by preincubation with antiprogesterone; and 3) inhibition of progesterone steroidogenesis prevented NRC proliferation. In conclusion, progesterone may be an important autocrine/paracrine regulator of cholangiocyte proliferation.
Collapse
Affiliation(s)
- Shannon Glaser
- Department of Medicine, Scott & White Hospital and Texas A&M University System Health Science Center, College of Medicine, Temple, Texas 76504, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
368
|
Schmidt KL, Pradhan DS, Shah AH, Charlier TD, Chin EH, Soma KK. Neurosteroids, immunosteroids, and the Balkanization of endocrinology. Gen Comp Endocrinol 2008; 157:266-74. [PMID: 18486132 DOI: 10.1016/j.ygcen.2008.03.025] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Revised: 03/14/2008] [Accepted: 03/26/2008] [Indexed: 12/12/2022]
Abstract
Traditionally, the production and regulation of steroid hormones has been viewed as a multi-organ process involving the hypothalamic-pituitary-gonadal (HPG) axis for sex steroids and the hypothalamic-pituitary-adrenal (HPA) axis for glucocorticoids. However, active steroids can also be synthesized locally in target tissues, either from circulating inactive precursors or de novo from cholesterol. Here, we review recent work demonstrating local steroid synthesis, with an emphasis on steroids synthesized in the brain (neurosteroids) and steroids synthesized in the immune system (immunosteroids). Furthermore, recent evidence suggests that other components of the HPG axis (luteinizing hormone and gonadotropin-releasing hormone) and HPA axis (adrenocorticotropic hormone and corticotropin-releasing hormone) are expressed locally in target tissues, potentially providing a mechanism for local regulation of neurosteroid and immunosteroid synthesis. The balance between systemic and local steroid signals depends critically on life history stage, species adaptations, and the costs of systemic signals. During particular life history stages, there can be a shift from systemic to local steroid signals. We propose that the shift to local synthesis and regulation of steroids within target tissues represents a "Balkanization" of the endocrine system, whereby individual tissues and organs may become capable of autonomously synthesizing and modulating local steroid signals, perhaps independently of the HPG and HPA axes.
Collapse
Affiliation(s)
- Kim L Schmidt
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
369
|
Tsutsui K. Neurosteroids in the Purkinje cell: biosynthesis, mode of action and functional significance. Mol Neurobiol 2008; 37:116-25. [PMID: 18521763 DOI: 10.1007/s12035-008-8024-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Accepted: 04/25/2008] [Indexed: 02/03/2023]
Abstract
Neurosteroids are synthesized de novo from cholesterol in the brain. To understand neurosteroid action in the brain, data on the regio- and temporal-specific synthesis of neurosteroids are needed. Recently the Purkinje cell, an important cerebellar neuron, has been identified as a major site for neurosteroid formation in vertebrates. This is the first demonstration of de novo neuronal neurosteroidogenesis in the brain. Since this discovery, organizing actions of neurosteroids are becoming clear by the studies using the Purkinje cell as an excellent cellular model. In mammals, the Purkinje cell actively synthesizes progesterone and estradiol de novo from cholesterol during neonatal life. Both progesterone and estradiol promote dendritic growth, spinogenesis, and synaptogenesis via each cognate nuclear receptor in the developing Purkinje cell. Such organizing actions that may be mediated by neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), contribute to the formation of cerebellar neuronal circuit during neonatal life. Allopregnanolone, a progesterone metabolite, is also synthesized in the cerebellum and acts on Purkinje cell survival in the neonate. This review summarizes the advances made in our understanding of the biosynthesis, mode of action and functional significance of neurosteroids in the Purkinje cell.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
| |
Collapse
|
370
|
Abstract
The brain has traditionally been considered to be a target site of peripheral steroid hormones. By contrast, new findings over the past decade have shown that the brain itself also has the capability of forming steroids de novo, the so-called neurosteroids. De novo neurosteroidogenesis in the brain from cholesterol is a conserved property of vertebrates. When understanding the action of neurosteroids in the brain, data on the regio- and temporal-specific synthesis of neurosteroids are needed. Recently the Purkinje cell, an important brain neuron, has been identified as a major site for neurosteroid formation in vertebrates. This is the first demonstration of de novo neuronal neurosteroidogenesis in the brain. This discovery has allowed deeper insights into neuronal progesterone formation and organizing actions of progesterone have become clear by the studies using the Purkinje cell as an excellent cellular model, which is known to play an important role in memory and learning processes. In mammals, the Purkinje cell actively synthesizes progesterone de novo from cholesterol during neonatal life when cerebellar neuronal circuit formation occurs. Progesterone promotes dendritic growth, spinogenesis, and synaptogenesis via its nuclear receptor in the developing Purkinje cell. Such organizing actions may contribute to the formation of cerebellar neuronal circuit during neonatal life. Allopregnanolone, a progesterone metabolite, is also synthesized in the cerebellum and acts on Purkinje cell survival in the neonate. This paper summarizes the advances made in our understanding of progesterone formation and metabolism and actions of progesterone and its metabolite in the developing neuron.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Professor, Laboratory of Integrative Brain Sciences, Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 1-6-1 Nishi-Waseda, Shinjuku-ku, Tokyo 169-8050, Japan.
| |
Collapse
|
371
|
Brinton RD, Thompson RF, Foy MR, Baudry M, Wang J, Finch CE, Morgan TE, Pike CJ, Mack WJ, Stanczyk FZ, Nilsen J. Progesterone receptors: form and function in brain. Front Neuroendocrinol 2008; 29:313-39. [PMID: 18374402 PMCID: PMC2398769 DOI: 10.1016/j.yfrne.2008.02.001] [Citation(s) in RCA: 492] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 02/08/2008] [Indexed: 12/13/2022]
Abstract
Emerging data indicate that progesterone has multiple non-reproductive functions in the central nervous system to regulate cognition, mood, inflammation, mitochondrial function, neurogenesis and regeneration, myelination and recovery from traumatic brain injury. Progesterone-regulated neural responses are mediated by an array of progesterone receptors (PR) that include the classic nuclear PRA and PRB receptors and splice variants of each, the seven transmembrane domain 7TMPRbeta and the membrane-associated 25-Dx PR (PGRMC1). These PRs induce classic regulation of gene expression while also transducing signaling cascades that originate at the cell membrane and ultimately activate transcription factors. Remarkably, PRs are broadly expressed throughout the brain and can be detected in every neural cell type. The distribution of PRs beyond hypothalamic borders, suggests a much broader role of progesterone in regulating neural function. Despite the large body of evidence regarding progesterone regulation of reproductive behaviors and estrogen-inducible responses as well as effects of progesterone metabolite neurosteroids, much remains to be discovered regarding the functional outcomes resulting from activation of the complex array of PRs in brain by gonadally and/or glial derived progesterone. Moreover, the impact of clinically used progestogens and developing selective PR modulators for targeted outcomes in brain is a critical avenue of investigation as the non-reproductive functions of PRs have far-reaching implications for hormone therapy to maintain neurological health and function throughout menopausal aging.
Collapse
Affiliation(s)
- Roberta Diaz Brinton
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, CA 90089, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
372
|
Abstract
The biological activity of androgens is thought to occur predominantly through binding to intracellular androgen-receptors, a member of the nuclear receptor family, that interact with specific nucleotide sequences to alter gene expression. This genomic-androgen effect typically takes at least more than half an hour. In contrast, the rapid or non-genomic actions of androgens are manifested within in seconds to few minutes. This rapid effect of androgens are manifold, ranging from activation of G-protein coupled membrane androgen-receptors or sex hormone-binding globulin receptors, stimulation of different protein kinases, to direct modulation of voltage- and ligand gated ion-channels and transporters. The physiological relevance of these non-genomic androgen actions has not yet been determined in detail. However, it may contribute to modulate several second messenger systems or transcription factors, which suggests a cross-talk between the fast non-genomic and the slow genomic pathway of androgens. This review will focus on the rapid effects of androgens on cell surface and cytoplasmic level.
Collapse
Affiliation(s)
- Guido Michels
- Department of Internal Medicine III and Center for Molecular Medicine (CMMC), University of Cologne, Kerpener Street 62, D-50937 Cologne, Germany
| | | |
Collapse
|
373
|
Hamed SA. Neuroendocrine hormonal conditions in epilepsy: relationship to reproductive and sexual functions. Neurologist 2008; 14:157-169. [PMID: 18469673 DOI: 10.1097/nrl.0b013e3181618ada] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Hormones may influence susceptibility to develop seizures. The concept of the interrelation between epilepsy, hormones, and hormonotherapy is currently emerging. On the other hand, epilepsy and its medications are associated with hormonal disturbances resulting in altered endocrine reproduction and sexual functions. REVIEW SUMMARY Epilepsy itself may directly influence the endocrine control centers in the brain, the hypothalamic-pituitary axis, thus altering the release of sex steroid hormones including the production of luteinizing hormone, follicle stimulating hormone, gonadotrophin-releasing hormone, and prolactin and the concentrations and metabolism of its end products such as estrogen, testosterone, and dehydroepiandrosterone. Antiepileptic drugs may modulate hormone release from the hypothalamic-pituitary-gonadal axis and may have direct inhibitory effect on reproductive function. They may change steroid sex hormones metabolism and their binding proteins. Reduced fertility and disturbance in various aspects of sexual function are common in men and women with epilepsy. Men with epilepsy may develop delayed sexual development, sperm, and testicular abnormalities. Women with epilepsy may develop menstrual disturbances, weight gain, hyperandrogenism, ovulatory failure, and polycystic ovaries. CONCLUSIONS Epileptic patients will benefit from regular monitoring of ovarian and testicular functions. Early characterization of reproductive abnormalities encountered in patients with epilepsy will allow neurologists to properly choose and change antiepileptic medications. This will also improve patients' sexual function.
Collapse
Affiliation(s)
- Sherifa Ahmed Hamed
- Department of Neurology and Psychiatry, Assiut University Hospital, Assiut, Egypt.
| |
Collapse
|
374
|
Regional differences in the decay kinetics of GABA(A) receptor-mediated miniature IPSCs in the dorsal horn of the rat spinal cord are determined by mitochondrial transport of cholesterol. J Neurosci 2008; 28:3427-37. [PMID: 18367609 DOI: 10.1523/jneurosci.5076-07.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We examined the possibility of a differential spatial control in the endogenous production of 3alpha5alpha-reduced steroids and its consequences on GABA(A) receptor-mediated miniature IPSCs (mIPSCs) in laminas II and III-IV of the rat spinal cord dorsal horn (DH). Early in postnatal development [younger than postnatal day 8 (P8)], mIPSCs displayed slow decay kinetics in laminas II and III-IV resulting from a continuous local production of 3alpha5alpha-reduced steroids. This was mediated by the tonic activity of the translocator protein of 18 kDa (TSPO), which controls neurosteroid synthesis by regulating the transport of cholesterol across the mitochondrial membrane system. TSPO activity disappeared in laminas III-IV after P8 and was functionally downregulated in lamina II after P15, resulting in a marked reduction of mIPSC duration in these laminas. TSPO-mediated synthesis of 3alpha5alpha-reduced steroids was spatially restricted, because, at P9-P15, when their production was maximal in lamina II, no sign of spillover to laminas III-IV was apparent. Interestingly, after P8, the enzymes necessary for the synthesis of 3alpha5alpha-reduced steroids remained functional in laminas III-IV and could produce such steroids from various precursors or after a single subcutaneous injection of progesterone. Moreover, induction of an acute peripheral inflammation by intraplantar injection of carrageenan, restored a maximal TSPO-mediated neurosteroidogenesis in laminas III-IV. Our results indicate that the decay kinetics of GABA(A) receptor-mediated mIPSCs in the DH of the spinal cord are primarily controlled by 3alpha5alpha-reduced steroids, which can be produced from circulating steroid precursors and/or in a spatially restricted manner by the modulation of the activity of TSPO.
Collapse
|
375
|
Rahman M, Borra VB, Isaksson M, Johansson IM, Ragagnin G, Bäckström T, Wang MD. A comparison of the pharmacological properties of recombinant human and rat alpha(1)beta(2)gamma(2L) GABA(A) receptors in Xenopus oocytes. Clin Exp Pharmacol Physiol 2008; 35:1002-11. [PMID: 18430052 DOI: 10.1111/j.1440-1681.2008.04946.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present study, we compared the pharmacology, particularly neurosteroid modulation of the GABA(A) receptor, between human and rat alpha(1)beta(2)gamma(2)(L) GABA(A) receptors and between human receptors containing the long (L) and short (S) forms of the gamma(2)-subunit. We observed that maximum responses to GABA were significantly higher with the human alpha(1)beta(2)gamma(2)(L) receptor compared with the rat receptor. In terms of neurosteroid modulation, increases in the EC(15) response to GABA induced by 3alpha-OH-5beta-pregnan-20-one (3alpha5betaP), 5alpha-androstane-3alpha,17beta-diol (3alpha5alphaADL) and 5alpha-pregnane-3alpha,20beta-diol (3alpha5alpha-diol) were significantly greater for the rat compared with the human receptor. Responses to 30 micromol/L GABA were inhibited by 3beta-OH-5alpha-pregnan-20-one (UC1010) and 5beta-pregnan-3beta,20(R)-diol (UC1020) to a greater degree for human and rat receptors, respectively. Responses to GABA + 3alpha5alphaTHDOC were inhibited by 5alpha-pregnan-3beta,20(S)-diol (UC1019) and pregnenolone sulphate to a greater degree for human and rat receptors, respectively. The GABA dose-response curves for human alpha(1)beta(2)gamma(2)(S) and alpha(1)beta(2)gamma(2)(L) receptors were identical. However, the maximum GABA-evoked current, the direct gating effect of pentobarbital and the allosteric potentiation of the GABA EC(15) response by 3alpha5alphaTHDOC and 3alpha5betaP were significantly higher with alpha(1)beta(2)gamma(2)(S) than alpha(1)beta(2)gamma(2)(L) receptors. Inhibition of the response to 30 micromol/L GABA by UC1010 and UC1020 was greater for a(1)beta(2)gamma(2)(L) and alpha(1)beta(2)gamma(2)(S) receptors, respectively. Inhibition of responses to 3alpha5alphaTHDOC + GABA by UC1019 and UC1010 was significantly higher for alpha(1)beta(2)gamma(2)(L) receptors. In conclusion, the site of activation by GABA and neurosteroid modulation differ between human and rat alpha(1)beta(2)gamma(2)(L) receptors, as well as between human receptors containing the L and S splice variants of the gamma(2)-subunit.
Collapse
Affiliation(s)
- Mozibur Rahman
- Umeå Neurosteroid Research Center, Department of Clinical Science, Obstetrics and Gynecology, Umeå University, Umeå, Sweden
| | | | | | | | | | | | | |
Collapse
|
376
|
Zhao C, Fujinaga R, Yanai A, Kokubu K, Takeshita Y, Watanabe Y, Shinoda K. Sex-steroidal regulation of aromatase mRNA expression in adult male rat brain: a quantitative non-radioactive in situ hybridization study. Cell Tissue Res 2008; 332:381-91. [DOI: 10.1007/s00441-008-0606-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
|
377
|
Steroidogenic acute regulatory (StAR) protein and cholesterol side-chain cleavage (P450scc)-regulated steroidogenesis as an organ-specific molecular and cellular target for endocrine disrupting chemicals in fish. Cell Biol Toxicol 2008; 24:527-40. [DOI: 10.1007/s10565-008-9069-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 02/28/2008] [Indexed: 11/26/2022]
|
378
|
Aluru N, Vijayan MM. Brain transcriptomics in response to beta-naphthoflavone treatment in rainbow trout: the role of aryl hydrocarbon receptor signaling. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2008; 87:1-12. [PMID: 18282621 DOI: 10.1016/j.aquatox.2007.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 12/17/2007] [Accepted: 12/26/2007] [Indexed: 05/25/2023]
Abstract
Polychlorinated biphenyls (PCBs) exposure disrupts steroid production in teleostean fishes. While this suppression of plasma steroid levels is thought to involve aryl hydrocarbon receptor (AhR) signaling, the target tissues impacted and the molecular mechanisms involved have rarely been addressed. We tested the hypothesis that AhR activation downregulates genes involved in neuroendocrine function, including the control of brain-pituitary-interrenal (BPI) and -gonadal (BPG) axes in rainbow trout. To elucidate receptor-specific signaling, we utilized a pharmacological approach using beta-naphthoflavone (BNF) and resveratrol (RVT) as AhR agonist and antagonist, respectively. The gene expression pattern in the brain was analysed using a low-density targeted trout cDNA array enriched with genes encoding proteins involved in endocrine signaling, stress response and metabolic adjustments. Upregulation of AhR and CYP1A1 gene expression with BNF and the inhibition of this response by RVT confirmed AhR-dependent signaling. RVT by itself impacted only a few genes, while BNF treatment significantly modulated the transcript level of 49 genes, many of which are involved in the neuroendocrine control of stress and reproduction. Of these, only 27% of the BNF-mediated transcriptional response was blocked by RVT, suggesting molecular regulation of neuroendocrine pathways that are also AhR-independent. Gene expression pattern for select genes seen with the microarray analysis was also confirmed using quantitative real-time PCR. Overall, our results reveal for the first time that BNF disrupts several key genes involved in the neuroendocrine control of stress and sex steroid biosynthesis, while the mode of action involves both AhR-dependent and -independent pathways in trout.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Department of Biology, University of Waterloo, 200 University Avenue West, Ontario, Canada N2L 3G1
| | | |
Collapse
|
379
|
7Alpha-hydroxypregnenolone mediates melatonin action underlying diurnal locomotor rhythms. J Neurosci 2008; 28:2158-67. [PMID: 18305249 DOI: 10.1523/jneurosci.3562-07.2008] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Melatonin regulates diurnal changes in locomotor activity in vertebrates, but the molecular mechanism for this neurohormonal regulation of behavior is poorly understood. Here we show that 7alpha-hydroxypregnenolone, a previously undescribed avian neurosteroid, mediates melatonin action on diurnal locomotor rhythms in quail. In this study, we first identified 7alpha-hydroxypregnenolone and its stereoisomer 7beta-hydroxypregnenolone in quail brain. These neurosteroids have not been described previously in avian brain. We then demonstrated that 7alpha-hydroxypregnenolone acutely increased quail locomotor activity. To analyze the production of 7alpha-hydroxypregnenolone, cytochrome P450(7alpha), a steroidogenic enzyme of this neurosteroid, was also identified. Subsequently, we demonstrated diurnal changes in 7alpha-hydroxypregnenolone synthesis in quail. 7Alpha-Hydroxypregnenolone synthesis and locomotor activity in males were much higher than in females. This is the first demonstration in any vertebrate of a clear sex difference in neurosteroid synthesis. This sex difference in 7alpha-hydroxypregnenolone synthesis corresponded to the sex difference in locomotion. We show that only males exhibited marked diurnal changes in 7alpha-hydroxypregnenolone synthesis, and these changes occurred in parallel with changes in locomotor activity. Finally, we identified melatonin as a key component of the mechanism regulating 7alpha-hydroxypregnenolone synthesis. Increased synthesis of 7alpha-hydroxypregnenolone occurred in males in vivo after melatonin removal via pinealectomy and orbital enucleation (Px plus Ex). Conversely, decreased synthesis of this neurosteroid occurred after melatonin administration to Px plus Ex males. This study demonstrates that melatonin regulates synthesis of 7alpha-hydroxypregnenolone, a key factor for induction of locomotor activity, thus inducing diurnal locomotor changes in male birds. This is a previously undescribed role for melatonin.
Collapse
|
380
|
Expression, localization and possible actions of 25-Dx, a membraneassociated putative progesterone-binding protein, in the developing Purkinje cell of the cerebellum: A new insight into the biosynthesis, metabolism and multiple actions of progesterone as a neurosteroid. THE CEREBELLUM 2008; 7:18-25. [DOI: 10.1007/s12311-008-0007-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
381
|
Mensah-Nyagan AG, Kibaly C, Schaeffer V, Venard C, Meyer L, Patte-Mensah C. Endogenous steroid production in the spinal cord and potential involvement in neuropathic pain modulation. J Steroid Biochem Mol Biol 2008; 109:286-93. [PMID: 18434133 DOI: 10.1016/j.jsbmb.2008.03.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
It has recently been demonstrated that the spinal cord (SC) is an active production center of neuroactive steroids including pregnenolone, dehydroepiandrosterone, progesterone and allopregnanolone. Indeed, anatomical, cellular and biochemical investigations have shown that the SC dorsal horn (DH), a pivotal structure in nociception, contains various active steroidogenic enzymes such as cytochrome P450side-chain-cleavage, cytochrome P450c17, 3beta-hydroxysteroid dehydrogenase, 5alpha-reductase and 3alpha-hydroxysteroid oxido-reductase. Reviewed here are several data obtained with in vitro and vivo experiments showing that endogenous steroids synthesized in the SC are involved in the modulation of nociceptive mechanisms. Various approaches were used as the real-time polymerase chain reaction after reverse transcription to determine the effects of neuropathic pain on the expression of genes encoding steroidogenic enzymes in the DH. Combination of the pulse-chase technique with high performance liquid chromatography and continuous flow scintillation detection allowed investigations of the impact of noxious signals on the activity of steroid-producing enzymes in the SC in vitro. Radioimmunological analyses of spinal tissue extracts contributed to determine the link between the painful state and endogenous steroid secretion in the SC in vivo. Finally, the physiological relevance of the modification of endogenous steroid formation in the SC during painful situation was discussed.
Collapse
Affiliation(s)
- A G Mensah-Nyagan
- Equipe Stéroïdes et Système Nociceptif, Institut des Neurosciences Cellulaires et Intégratives, Université Louis Pasteur, 67084 Strasbourg Cedex, France.
| | | | | | | | | | | |
Collapse
|
382
|
Abstract
In this review, we describe the current therapeutic strategies to find a cure for paralysis. We use the example of DHEA, a neurosteroid normally produced in the developing neural tube, to raise the hypothesis that such a class of molecules, capable of modulating proliferation of committed neural precursors, could serve as an environmental cue in the adult injured spinal cord to promote re-population of CNS lesion with endogenous dormant precursor cells. Such mechanism may be a part of the natural response to heal the injured CNS and promote recovery of function, suggesting that neurosteroid-treatment could be a promising and novel therapeutic avenue for SCI. We will review pertinent biological activities of DHEA supporting this hypothesis, demonstrate that such activities, dependent on an intact sonic-hedgehog pathway, are responsible for the motor and bladder functional recovery observed after DHEA-treatment in the adult injured spinal cord. We will also raise the current limitations to further development of DHEA- or other neurosteroid-treatments as drug candidates, including the urgent need to further document DHEA long-term safety in CNS indications.
Collapse
Affiliation(s)
- Nathalie A Compagnone
- University of California San Francisco, Laboratory for Spinal Cord Development and Regeneration, Department of Neurological Surgery, CA, USA.
| |
Collapse
|
383
|
Patte-Mensah C, Mensah-Nyagan AG. Peripheral neuropathy and neurosteroid formation in the central nervous system. ACTA ACUST UNITED AC 2008; 57:454-9. [PMID: 17617466 DOI: 10.1016/j.brainresrev.2007.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 05/04/2007] [Accepted: 05/05/2007] [Indexed: 10/23/2022]
Abstract
Neurons and glial cells are capable of synthesizing bioactive steroids also called neurosteroids which modulate the nervous system activity. Neurosteroids act via autocrine or paracrine mechanisms. Therefore, before neurosteroids can be considered as endogenous modulators of a specific neurophysiologic function, it is compulsory that the process of neurosteroidogenesis occurs in neural pathways controlling this function. Based on pharmacological observations, various studies suggested the involvement of endogenous neurosteroids in the modulation of a variety of neurobiological processes. However, the direct link between these processes and endogenous production of neurosteroids in the nervous system remains unknown. The present review recapitulates a series of results showing the existence of interactions between peripheral nerve injury and neurosteroid biosynthesis in the central nervous system (CNS). In particular, the paper discusses the impact of sciatic nerve ligature on genomic and biochemical components of neurosteroidogenesis in the spinal cord and brainstem areas including the parabrachial, raphe magnus and dorsal raphe nuclei which control nociception. It appears that peripheral nerve injuries evoke changes in the gene expression and biological activity of cytochrome P450side-chain-cleavage, the key enzyme catalyzing the onset of neurosteroidogenesis in the CNS. Owing to neurosteroid involvement in the control of various neurobiological functions, these data suggest that neurosteroidogenesis is an endogenous mechanism activated in the CNS for adaptation of the body to chronic peripheral neuropathies. Therefore, strategies based on selective targeting of neurosteroidogenic pathways may constitute interesting approaches to develop novel therapy against disorders provoked by central and peripheral neuropathies.
Collapse
Affiliation(s)
- Christine Patte-Mensah
- Equipe Stéroïdes et Système Nociceptif, Institut des Neurosciences Cellulaires et Intégratives Unité Mixte de Recherche 7168/LC2-Centre National de la Recherche Scientifique, Université Louis Pasteur, 21 rue René Descartes, 67084 Strasbourg Cedex, France
| | | |
Collapse
|
384
|
Cheng ZX, Lan DM, Wu PY, Zhu YH, Dong Y, Ma L, Zheng P. Neurosteroid dehydroepiandrosterone sulphate inhibits persistent sodium currents in rat medial prefrontal cortex via activation of sigma-1 receptors. Exp Neurol 2008; 210:128-36. [PMID: 18035354 DOI: 10.1016/j.expneurol.2007.10.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 10/05/2007] [Accepted: 10/12/2007] [Indexed: 12/01/2022]
Abstract
Dehydroepiandrosterone sulphate is one of the most important neurosteroids. In the present paper, we studied the effect of dehydroepiandrosterone sulphate on persistent sodium currents and its mechanism and functional consequence with whole-cell patch clamp recording method combined with a pharmacological approach in the rat medial prefrontal cortex slices. The results showed that dehydroepiandrosterone sulphate inhibited the amplitude of persistent sodium currents and the inhibitory effect was significant at 0.1 microM, reached maximum at 1 microM and decreased with the increase in the concentrations of above 1 microM. The effect of dehydroepiandrosterone sulphate on persistent sodium currents was canceled by the Gi protein inhibitor and the protein kinase C inhibitor, but not by the protein kinase A inhibitor. The effect of dehydroepiandrosterone sulphate on persistent sodium currents was also canceled by the sigma-1 receptor blockers and the sigma-1 receptor agonist could mimic the effect of dehydroepiandrosterone sulphate. Dehydroepiandrosterone sulphate had no significant influence on neuronal excitability but could significantly inhibit chemical inhibition of mitochondria-evoked increase in persistent sodium currents. These results suggest that dehydroepiandrosterone sulphate inhibits persistent sodium currents via the activation of sigma-1 receptors-Gi protein-protein kinase C-coupled signaling pathway, and the main functional consequence of this effect of DHEAS is presumably to protect neurons under ischemia.
Collapse
Affiliation(s)
- Zheng-Xiang Cheng
- State Key Laboratory of Medical Neurobiology, Fudan University Shanghai Medical College, Institutes of Brain Science of Fudan University, Shanghai, PR China
| | | | | | | | | | | | | |
Collapse
|
385
|
Mellon SH, Gong W, Schonemann MD. Endogenous and synthetic neurosteroids in treatment of Niemann-Pick Type C disease. BRAIN RESEARCH REVIEWS 2008; 57:410-20. [PMID: 17629950 PMCID: PMC2323675 DOI: 10.1016/j.brainresrev.2007.05.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 05/24/2007] [Accepted: 05/28/2007] [Indexed: 01/30/2023]
Abstract
The functions for neurosteroids during development and in response to nervous system injury are beginning to be identified. We focused on a mouse model in which we believed neurosteroid production would be altered, and which had a neurodegenerative phenotype. Niemann-Pick Type-C (NP-C) is an autosomal recessive neurodegenerative disease caused by mutations in NPC1 (95%) or NPC2 (5%), resulting in lysosomal accumulation of unesterified cholesterol and glycolipids. The NIH mouse model of NP-C has a mutation in the NPC1 gene, and exhibits several pathological features of the most severe NP-C patients. How lysosomal storage and trafficking defects lead to neurodegeneration is unknown. We found that these mice had normal neurosteroidogenic enzyme activity during development, but lost this activity in the early neonatal period, prior to onset of neurological symptoms. Neurons that expressed P450scc, 3beta HSD, as well as those that expressed 3alpha HSD and 5alpha reductase were lost in adult NP-C brains, resulting in diminished concentrations of allopregnanolone. We treated NP-C mice with allopregnanolone and found that a single dose in the neonatal period resulted in a doubling of life span, substantial delay in onset of neurological symptoms, survival of cerebellar Purkinje and granule cell neurons, and reduction in cholesterol and ganglioside accumulation. The mechanism by which allopregnanolone elicited these effects is unknown. Our in vitro studies showed that Purkinje cell survival promoted by allopregnanolone was lost by treatment with bicuculline, suggesting GABA(A) receptors may play a role. We treated NP-C mice with a synthetic GABA(A) neurosteroid, ganaxolone (3alpha-hydroxy-3beta-methyl-5alpha-pregnan-20-one). Ganaxolone treatment of NP-C mice produced beneficial neurological effects, but these effects were not as robust as those obtained using allopregnanolone. Thus, allopregnanolone may elicit its effects through GABA(A) receptors and through other mechanisms. Additional studies also suggest that allopregnanolone may elicit its effects through pregnane-X-receptors (PXR). Our data suggest that mouse models of neurodegeneration may be beneficial in establishing both physiologic and pharmacologic actions of neurosteroids. These animal models further establish the wide range of functions of these compounds, which may ultimately be useful for treatment of human diseases.
Collapse
Affiliation(s)
- Synthia H Mellon
- Department of Obstetrics, Gynecology and Reproductive Sciences, The Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.
| | | | | |
Collapse
|
386
|
Ahboucha S, Butterworth RF. The neurosteroid system: implication in the pathophysiology of hepatic encephalopathy. Neurochem Int 2008; 52:575-587. [PMID: 17610999 DOI: 10.1016/j.neuint.2007.05.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 04/23/2007] [Accepted: 05/03/2007] [Indexed: 01/09/2023]
Abstract
Hepatic encephalopathy (HE) is a serious cerebral complication of both acute and chronic liver failure. In acute liver failure, astrocytes undergo swelling which results in increased intracranial pressure and may lead to brain herniation and death. In chronic liver failure, Alzheimer-type II astrocytosis is the characteristic neuropathologic finding. Patients with liver failure manifest severe alterations of their quality of life including sleep disorders as well as memory, learning, and locomotor abnormalities. Neurosteroids (NS) are synthesized in the brain mainly by astrocytes independent of peripheral steroidal sources (adrenals and gonads) and are suggested to play a role in the pathogenesis of HE. NS bind and modulate different types of neural receptors; effects on the gamma amino butyric acid (GABA)-A receptor complex are the most extensively studied. For example, the NS tetrahydroprogesterone (allopregnanolone), and tetrahydrodeoxycorticosterone (THDOC) are potent positive allosteric modulators of the GABA-A receptor. As a consequence of modulation of these receptors, NS stimulate inhibitory neurotransmission in the CNS, and neuroinhibitory changes including "increased GABA-ergic tone" have been suggested as pathophysiological mechanisms in HE. Moreover, some NS bind to intracellular receptors through which they also regulate gene expression, and there is substantial evidence confirming that expression of genes coding for key astrocytic and neuronal proteins are altered in HE. This review summarizes findings consistent with the involvement of NS in human and experimental HE.
Collapse
Affiliation(s)
- Samir Ahboucha
- Neuroscience Research Unit, Hôpital Saint-Luc (CHUM), 1058 St-Denis, Montreal, Quebec, Canada H2X 3J4
| | | |
Collapse
|
387
|
Kríz L, Bicíková M, Mohapl M, Hill M, Cerný I, Hampl R. Steroid sulfatase and sulfuryl transferase activities in human brain tumors. J Steroid Biochem Mol Biol 2008; 109:31-9. [PMID: 18249534 DOI: 10.1016/j.jsbmb.2007.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Neuroactive steroids (dehydroepiandrosterone, pregnenolone) and their sulfates act as modulators of glutamate and gamma-aminobutyrate type A receptors in the brain The physiological ratio of these neuromodulators is maintained by two enzymes present in the brain, namely, steroid sulfatase (STS) and steroid sulfuryl transferase (SULT). Following previous determination of their activities in monkey brains, their activities were evaluated in human brain tumors. Radioimmunoassay and GC-MS were used for determination of products. Both enzyme activities were measured in the 55 most frequent human brain tumors (glioblastomas, pituitary adenomas, meningiomas, astrocytomas). Significant differences were found in STS activity among investigated types of tumors except the pair of pituitary adenomas-glioblastomas, while significant differences were found in SULT activity among investigated types of tumors. Spontaneous tendency to form clusters was revealed when both enzyme activities were taken as coordinates. Clustering indicated an individual metabolic behavior of glioblastomas and 72.7% of pituitary adenomas. Astrocytomas, meningiomas and remaining 27.3% pituitary adenomas showed similarities in both enzymes' activities. Differences in STS and SULT activity did not depend on the sex or age of subjects.
Collapse
Affiliation(s)
- Lubomír Kríz
- Institute of Endocrinology, Národní 8, 116 94 Prague 1, Czech Republic.
| | | | | | | | | | | |
Collapse
|
388
|
Effect of dehydroepiandrosterone (DHEA) on monoamine oxidase activity, lipid peroxidation and lipofuscin accumulation in aging rat brain regions. Biogerontology 2008; 9:235-46. [DOI: 10.1007/s10522-008-9133-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 02/11/2008] [Indexed: 10/22/2022]
|
389
|
Aste N, Watanabe Y, Shimada K, Saito N. Sex- and age-related variation in neurosteroidogenic enzyme mRNA levels during quail embryonic development. Brain Res 2008; 1201:15-22. [PMID: 18299119 DOI: 10.1016/j.brainres.2008.01.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 01/15/2008] [Accepted: 01/26/2008] [Indexed: 11/29/2022]
Abstract
Brain can synthesize steroids de novo from cholesterol and this biochemical feature is a conserved property of vertebrates. There is growing evidence indicating that neurosteroids might participate in sexual differentiation of the brain. Therefore, in this study we investigated the presence, the sex differences, and the development-dependent variation of mRNAs coding for key neurosteroidogenic enzymes, namely cytochrome P450 side-chain cleavage enzyme (P450scc), 3beta-hydroxysteroid-dehydrogenase/Delta5-Delta4-isomerase (3beta-HSD), cytochrome P450 17alpha-hydroxylase/c17, 20-lyase (P450c17), and aromatase in embryonic prosencephali. Our results indicated that 3beta-HSD mRNA levels were sexually dimorphic and developmental age-dependent. In particular, 3beta-HSD mRNA levels were higher in females than in males at E7, whereas, this dimorphism was reversed at E9 and E15. In females, the relative levels of 3beta-HSD mRNA were highest at E7, whereas, in males they were significantly higher at E9 and E15 than at E7 and at E11. This sexual dimorphism was a peculiar feature of the prosencephalon, it could not be observed before gonadal sexual differentiation and it was not paralleled by a dimorphism in the brain content of progesterone. The level of mRNA coding for P450scc and for P450c17 did not show obvious developmental- or sex-related variation. Aromatase mRNA varied as a function of the embryonic age but not of the sex. These results, taken together, are suggestive of a potential role of some neurosteroidogenic enzymes in the development of quail brain and suggest that sexual differences in the hormonal environment may occur during brain development.
Collapse
Affiliation(s)
- Nicoletta Aste
- Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601 Japan.
| | | | | | | |
Collapse
|
390
|
Prange-Kiel J, Jarry H, Schoen M, Kohlmann P, Lohse C, Zhou L, Rune GM. Gonadotropin-releasing hormone regulates spine density via its regulatory role in hippocampal estrogen synthesis. ACTA ACUST UNITED AC 2008; 180:417-26. [PMID: 18227283 PMCID: PMC2213593 DOI: 10.1083/jcb.200707043] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Spine density in the hippocampus changes during the estrus cycle and is dependent on the activity of local aromatase, the final enzyme in estrogen synthesis. In view of the abundant gonadotropin-releasing hormone receptor (GnRH-R) messenger RNA expression in the hippocampus and the direct effect of GnRH on estradiol (E2) synthesis in gonadal cells, we asked whether GnRH serves as a regulator of hippocampal E2 synthesis. In hippocampal cultures, E2 synthesis, spine synapse density, and immunoreactivity of spinophilin, a reliable spine marker, are consistently up-regulated in a dose-dependent manner at low doses of GnRH but decrease at higher doses. GnRH is ineffective in the presence of GnRH antagonists or aromatase inhibitors. Conversely, GnRH-R expression increases after inhibition of hippocampal aromatase. As we found estrus cyclicity of spine density in the hippocampus but not in the neocortex and GnRH-R expression to be fivefold higher in the hippocampus compared with the neocortex, our data strongly suggest that estrus cycle–dependent synaptogenesis in the female hippocampus results from cyclic release of GnRH.
Collapse
Affiliation(s)
- Janine Prange-Kiel
- Institute of Anatomy I: Cellular Neurobiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
391
|
Johansson T, Frändberg PA, Nyberg F, Le Grevès P. Molecular mechanisms for nanomolar concentrations of neurosteroids at NR1/NR2B receptors. J Pharmacol Exp Ther 2008; 324:759-68. [PMID: 18006693 DOI: 10.1124/jpet.107.130518] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Neurosteroids are endogenous steroids acting in the central nervous system. They participate in synaptic plasticity, memory and learning, Alzheimer's disease, and certain drug reward. Some mechanisms behind these effects are thought to be nongenomic, e.g., they modulate the function of the N-methyl-d-aspartate (NMDA) receptor complex. In this study, we used a Chinese hamster ovary cell line stably transfected with NMDA receptor constituents NR1/NR2B, to investigate the effects of nanomolar concentrations of the neurosteroids pregnenolone sulfate (PS) and pregnanolone sulfate (3alpha5betaS) on binding of the radioligand [(3)H]ifenprodil. Neither of the steroids displaced [(3)H]ifenprodil, but both induced a shift in its fit from one to two binding sites. The effects of the neurosteroids were also measured as changes in intracellular calcium ([Ca(2+)](i)) after glutamate stimulation. Although the steroids did not alter the response to glutamate, they influenced the extent of ifenprodil blockade of the receptor: PS increased and 3alpha5betaS decreased this effect. The coincubation of several NMDA receptor ligands in the assay indicated that PS and 3alpha5betaS act via different binding sites from those for glutamate, glycine, and dithiothreitol. Combining the two steroids revealed that they do not share a common binding site. In conclusion, these results substantiate previous evidence of the allosteric modulatory effect induced by PS and 3alpha5betaS on NMDA receptors at nanomolar concentrations. The neurosteroid-mediated modulation of the receptor is also reflected in an altered glutamate stimulated [Ca(2+)](i), in response to ifenprodil.
Collapse
Affiliation(s)
- Tobias Johansson
- Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, P.O. Box 591, S-751 24, Uppsala, Sweden.
| | | | | | | |
Collapse
|
392
|
Étifoxine, neurostéroïdes et anxiété. Encephale 2008. [DOI: 10.1016/s0013-7006(08)71390-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
393
|
Repa JJ, Li H, Frank-Cannon TC, Valasek MA, Turley SD, Tansey MG, Dietschy JM. Liver X receptor activation enhances cholesterol loss from the brain, decreases neuroinflammation, and increases survival of the NPC1 mouse. J Neurosci 2007; 27:14470-80. [PMID: 18160655 PMCID: PMC6673433 DOI: 10.1523/jneurosci.4823-07.2007] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 11/16/2007] [Accepted: 11/16/2007] [Indexed: 11/21/2022] Open
Abstract
Although cholesterol is a major component of the CNS, there is little information on how or whether a change in sterol flux across the blood-brain barrier might alter neurodegeneration. In Niemann-Pick type C (NPC) disease, a mutation in NPC1 protein causes unesterified cholesterol to accumulate in the lysosomal compartment of every cell, including neurons and glia. Using the murine model of this disease, we used genetic and pharmacologic approaches in an attempt to alter cholesterol homeostasis across the CNS. Genetic deletion of the sterol transporters ATP-binding cassette transporter A1 (ABCA1) and low-density lipoprotein receptor in the NPC1 mouse did not affect sterol balance or longevity. However, deletion of the nuclear receptor, liver X receptor beta (LXRbeta), had an adverse effect on progression of the disease. We therefore tested the effects of increasing LXR activity by oral administration of a synthetic ligand for this transcription factor. Treatment with this LXR agonist increased cholesterol excretion out of brain from 17 to 49 microg per day, slowed neurodegeneration, and prolonged life. This agonist did not alter synthesis of cholesterol or expression of genes associated with the formation of 24(S)-hydroxycholesterol or neurosteroids such as CYP46A1, 3alphaHSD, and CYP11A1. However, levels of the sterol transporters ABCA1 and ATP-binding cassette transporter G1 were increased. Concomitantly, markers of neuroinflammation, CD14, MAC1, CD11c, and inducible nitric oxide synthase, were reduced, and microglia reverted from their amoeboid, active form to a ramified, resting configuration. Thus, LXR activation resulted in increased cholesterol excretion from the brain, decreased neuroinflammation, and deactivation of microglia to slow neurodegeneration and extend the lifespan of the NPC1 mouse.
Collapse
Affiliation(s)
- Joyce J. Repa
- Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, Texas 75390-9151, and
- Department of Physiology, University of Texas Southwestern Medical School, Dallas, Texas 75390-9077
| | - Hao Li
- Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, Texas 75390-9151, and
| | - Tamy C. Frank-Cannon
- Department of Physiology, University of Texas Southwestern Medical School, Dallas, Texas 75390-9077
| | - Mark A. Valasek
- Department of Physiology, University of Texas Southwestern Medical School, Dallas, Texas 75390-9077
| | - Stephen D. Turley
- Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, Texas 75390-9151, and
| | - Malú G. Tansey
- Department of Physiology, University of Texas Southwestern Medical School, Dallas, Texas 75390-9077
| | - John M. Dietschy
- Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, Texas 75390-9151, and
| |
Collapse
|
394
|
The complex roles of neurosteroids in depression and anxiety disorders. Neurochem Int 2007; 52:596-601. [PMID: 17996986 DOI: 10.1016/j.neuint.2007.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 09/19/2007] [Accepted: 10/01/2007] [Indexed: 10/22/2022]
Abstract
The role of neurosteroids in neuropsychiatric disorders has been thoroughly investigated in many research studies that have stressed their significant pathophysiological function in neuropsychiatry. In this review, we will focus mainly on the steroids active on the GABA(A) receptors studied in anxiety and depression. The aim is to discuss the controversial results reported in research on anxiety and depressive disorders. We suggest the combined use of biological parameters linked to psychopathological dimensions to make more homogeneous diagnoses and to develop more precise therapies for the treatment of depression and anxiety disorders. We discuss the role of neurosteroids in the pathophysiology and therapy of anxiety and depression. Finally, we consider the possibility of using quantification of mRNA expression of steroidogenic enzymes from peripheral sources in neuropsychiatry.
Collapse
|
395
|
Aszalós Z. Neurological and psychiatric aspects of some endocrine diseases. The role of neurosteroids and neuroactive steroids. Orv Hetil 2007; 148:1929-37. [DOI: 10.1556/oh.2007.28139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A neuroaktív szteroid bármely szervben képződik, módosítani képes a neurális aktivitást különböző membránreceptorok modulálása útján. A neuroszteroid de novo a neuronban és gliában szintetizálódik, a központi idegrendszerben megtalálhatók a szteroidképző enzimek. A citoplazmában klasszikus, genomikus úton szabályzó, hosszú idejű hatásokat kiváltó szteroidhormon-receptorok vannak, a membránban rövid időtartamú, nem klasszikus szteroidreceptorok. Lényeges szerepet játszanak a szteroidreceptorokkal interferáló vagy az aktivitásukat fokozó korepresszorok és koaktivátorok. A kortikoszteroidok a stresszben betöltött funkciójukon túl bizonyított szerepet játszanak a félelemben, szorongásban és memóriafunkciókban, így Cushing-szindrómában gyakran fordul elő hangulatzavar, reverzíbilis cerebrális atrófia a kognitív funkciók átmeneti csökkenésével, ritkábban delírium vagy pszichózis. A periféria részéről közismert a szteroid-myopathia. Az Addison-kórra izomgyengeség, energiacsökkenés, a mentális funkciók és az életminőség csökkenése jellemző. Az ösztrogén és progeszteron saját receptorral rendelkezik, az allopregnanolon a GABA-receptorokon keresztül fejti ki hatását. Alapvető szerepük van az agy fejlődésének, az idegkörök és dendritek architektúrájának, az axonkapcsolatok sűrűségének és a sejtszámnak az alakulásában. Befolyásolják a maturációt, neuroprotekciót, görcskészséget, a kognitív funkciókat, hangulatot, szorongást, fájdalmat és a perifériás idegek restitúcióját. Az androgéneknek is van kapcsolatuk a kognitív funkciókkal, fájdalommal, szorongással, hangulatzavarokkal, valamint az agresszivitással is.
Collapse
Affiliation(s)
- Zsuzsa Aszalós
- 1 Semmelweis Egyetem, Általános Orvostudományi Kar II. Belgyógyászati Klinika Budapest Szentkirályi u. 46. 1088
| |
Collapse
|
396
|
Smith SS, Shen H, Gong QH, Zhou X. Neurosteroid regulation of GABA(A) receptors: Focus on the alpha4 and delta subunits. Pharmacol Ther 2007; 116:58-76. [PMID: 17512983 PMCID: PMC2657726 DOI: 10.1016/j.pharmthera.2007.03.008] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 03/29/2007] [Indexed: 11/24/2022]
Abstract
Neurosteroids, such as the progesterone metabolite 3alpha-OH-5alpha[beta]-pregnan-20-one (THP or [allo]pregnanolone), function as potent positive modulators of the GABA(A) receptor (GABAR) when acutely administered. However, fluctuations in the circulating levels of this steroid at puberty, across endogenous ovarian cycles, during pregnancy or following chronic stress produce periods of prolonged exposure and withdrawal, where changes in GABAR subunit composition may occur as compensatory responses to sustained levels of inhibition. A number of laboratories have demonstrated that both chronic administration of THP as well as its withdrawal transiently increase expression of the alpha4 subunit of the GABAR in several areas of the central nervous system (CNS) as well as in in vitro neuronal systems. Receptors containing this subunit are insensitive to benzodiazepine (BDZ) modulation and display faster deactivation kinetics, which studies suggest underlie hyperexcitability states. Similar increases in alpha4 expression are triggered by withdrawal from other GABA-modulatory compounds, such as ethanol and BDZ, suggesting a common mechanism. Other studies have reported puberty or estrous cycle-associated increases in delta-GABAR, the most sensitive target of these steroids which underlies a tonic inhibitory current. In the studies reported here, the effect of steroids on inhibition, which influence anxiety state and seizure susceptibility, depend not only on the subunit composition of the receptor but also on the direction of Cl(-) current generated by these target receptors. The effect of neurosteroids on GABAR function thus results in behavioral outcomes relevant for pubertal mood swings, premenstrual dysphoric disorder and catamenial epilepsy, which are due to fluctuations in endogenous steroids.
Collapse
Affiliation(s)
- Sheryl S Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
| | | | | | | |
Collapse
|
397
|
Mellon SH. Neurosteroid regulation of central nervous system development. Pharmacol Ther 2007; 116:107-24. [PMID: 17651807 PMCID: PMC2386997 DOI: 10.1016/j.pharmthera.2007.04.011] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 04/25/2007] [Indexed: 12/28/2022]
Abstract
Neurosteroids are a relatively new class of neuroactive compounds brought to prominence in the past 2 decades. Despite knowing of their presence in the nervous system of various species for over 20 years and knowing of their functions as GABA(A) and N-methyl-d-aspartate (NMDA) ligands, new and unexpected functions of these compounds are continuously being identified. Absence or reduced concentrations of neurosteroids during development and in adults may be associated with neurodevelopmental, psychiatric, or behavioral disorders. Treatment with physiologic or pharmacologic concentrations of these compounds may also promote neurogenesis, neuronal survival, myelination, increased memory, and reduced neurotoxicity. This review highlights what is currently known about the neurodevelopmental functions and mechanisms of action of 4 distinct neurosteroids: pregnenolone, progesterone, allopregnanolone, and dehydroepiandrosterone (DHEA).
Collapse
Affiliation(s)
- Synthia H Mellon
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, University of California San Francisco, Box 0556, San Francisco, CA 94143-0556, USA.
| |
Collapse
|
398
|
Barbaccia ML, Scaccianoce S, Del Bianco P, Campolongo P, Trezza V, Tattoli M, Cuomo V, Steardo L. Cognitive impairment and increased brain neurosteroids in adult rats perinatally exposed to low millimolar blood alcohol concentrations. Psychoneuroendocrinology 2007; 32:931-42. [PMID: 17689019 DOI: 10.1016/j.psyneuen.2007.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 06/14/2007] [Accepted: 06/22/2007] [Indexed: 01/12/2023]
Abstract
Epidemiological evidence suggests that adolescents and adults perinatally exposed to alcohol, even at low doses, show high prevalence of cognitive impairment and social behavior deficits, which may be in part related to alcohol-induced changes of the gamma-aminobutyric acid (GABA)ergic neurotransmission. The endogenous neurosteroid 3alpha-hydroxy,5alpha-pregnan-20-one (3alpha,5alpha-tetrahydroprogesterone/3alpha,5alpha-THP), a potent positive allosteric modulator of GABA(A) receptor function, is implicated in the physiological tuning of GABA-mediated fast inhibition and in various alcohol's actions in the brain. This study was undertaken to determine whether perinatal exposure to low millimolar blood alcohol concentrations alters cognitive skills (social discrimination and inhibitory avoidance tests), emotional reactivity (elevated plus maze test), and neurosteroid content in brain cortex and hippocampus of adult male offspring. Dams had access to a 3% alcohol solution or to an equicaloric sucrose solution from gestational day 15 to postnatal day 9. Eighty-day old alcohol-exposed male offspring exhibited impaired social recognition memory, but unchanged inhibitory avoidance performance and normal behavior on the elevated-plus maze. The concentrations of 3alpha,5alpha-THP and its precursor progesterone were more than doubled in brain cortex and hippocampus of alcohol-exposed rats, whereas in plasma only progesterone was increased. Thus, exposure to low millimolar blood alcohol concentrations has a long-lasting impact on the developing brain as it causes an impairment of social recognition as well as an increase of brain neurosteroid content in mature animals. The latter may be consequent to altered expression/activity of brain steroidogenic enzymes, as reflected by the enduring increase of the GABA(A) receptor-active neurosteroid 3alpha,5alpha-THP in brain cortex and hippocampus, but not in plasma. It is speculated that, by inducing a greater amplification of GABA(A) receptor function, the elevation of 3alpha,5alpha-THP brain content contributes to the cognitive impairment exhibited by adult alcohol-exposed offspring.
Collapse
Affiliation(s)
- Maria Luisa Barbaccia
- Department of Neuroscience, University of Rome Tor Vergata Medical School, Via Montpellier 1, 00133 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
399
|
Swiatek-De Lange M, Stampfl A, Hauck SM, Zischka H, Gloeckner CJ, Deeg CA, Ueffing M. Membrane-initiated effects of progesterone on calcium dependent signaling and activation of VEGF gene expression in retinal glial cells. Glia 2007; 55:1061-73. [PMID: 17551930 DOI: 10.1002/glia.20523] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neurosteroids, such as progesterone, influence central nervous system development and function by regulating a broad spectrum of physiological processes. Here, we investigated membrane-initiated actions of progesterone in the retina and identified the membrane-associated progesterone receptor component 1 (PGRMC1). We found PGRMC1 expressed mainly in retinal Muller glia (RMG) and retinal pigment epithelium, and localized uniquely to microsomal and plasma membrane fractions. In RMG, membrane-impermeable progesterone conjugate induced calcium influx and subsequent phosphatidylinositol 3-kinase-mediated phosphorylation of PKC and ERK-1/2. Induction by progesterone also led to PKC-dependent activation of VEGF gene expression and protein synthesis, suggesting a contribution of membrane-initiated hormone effects to VEGF induced neovascularization within retina.
Collapse
Affiliation(s)
- Magdalena Swiatek-De Lange
- Institute of Human Genetics, GSF National-Research Center for Environment and Health, Neuherberg, Germany
| | | | | | | | | | | | | |
Collapse
|
400
|
Tomy S, Wu GC, Huang HR, Dufour S, Chang CF. Developmental expression of key steroidogenic enzymes in the brain of protandrous black porgy fish, Acanthopagrus schlegeli. J Neuroendocrinol 2007; 19:643-55. [PMID: 17620106 DOI: 10.1111/j.1365-2826.2007.01572.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the present study, we tested the hypothesis that the brain of the black porgy fish, Acanthopagrus schlegeli, has the capacity for de novo steroidogenesis and that these neurosteroids may impact sex differentiation. Gonadal histology and Dmrt1 gene expression revealed that the fish were not sex differentiated until 155 dah (days after hatching). We further demonstrated the developmental expressions of the mRNAs encoding for four key neurosteroidogenic enzymes, namely, the cytochrome P450 side chain cleavage (CYP11A1), 3beta-hydroxysteroid dehydrogenase/Delta(5)-Delta(4) isomerase (3betaHSD), cytochrome P450c17 (CYP17) and aromatase (CYP19b) in the brain at different post-hatching developmental ages. The results indicated that steroidogenic genes are expressed in brain from the earliest sampling time, 60 dah. Quantitative real-time polymerase chain reaction analysis demonstrated significantly higher expression levels of these enzymes at 120 dah compared to 60 dah in all the brain regions. However, the increase for 3betaHSD was significant only in hypothalamus and midbrain, whereas it was significant only in forebrain and hypothalamus for CYP19b. A decline in mRNA levels were observed for all the genes at 155 dah except in midbrain for CYP11A1 and in hindbrain for CYP19b. Analysis of aromatase enzyme activity showed a significant increase in aromatase activity in the forebrain at 120 dah. Thus, the present study demonstrated for the first time an age- and/or region dependent expression of the mRNAs encoding the steroidogenic enzyme genes in the brain of black porgy. The presence of key steroidogenic enzymes as early as 60 dah, before gonadal sex differentiation, demonstrates that steroid biosynthetic capacity in brain precedes histological gonad differentiation. The mRNA transcripts of these genes showed a synchronous peak at 120 dah, suggesting that oestradiol may be locally formed in most parts of the brain. The study suggests an important role for brain aromatase in male black porgy brain sex differentiation, and considers the possibility of a role for this enzyme in neurogenesis.
Collapse
Affiliation(s)
- S Tomy
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | | | | | | | | |
Collapse
|