351
|
Inkster B, Rao AW, Ridler K, Nichols TE, Saemann PG, Auer DP, Holsboer F, Tozzi F, Muglia P, Merlo-Pich E, Matthews PM. Structural brain changes in patients with recurrent major depressive disorder presenting with anxiety symptoms. J Neuroimaging 2011; 21:375-82. [PMID: 20977527 DOI: 10.1111/j.1552-6569.2010.00515.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Major depressive disorder (MDD) presents with extensive clinical heterogeneity. In particular, overlap with anxiety symptoms is common during depressive episodes and as a comorbid disorder. The aim of this study was to test for morphological brain differences between patients having a history of recurrent MDD with, and without, anxiety symptoms (MDD+A and MDD-A). METHODS T1-weighted magnetic resonance images of age-, gender- and ethnically matched groups of MDD+A (n= 49) and MDD-A (n= 96) patients were available for voxel-based morphometry analysis of regional gray matter (GM) volume differences. Brain structural images were also contrasted with 183 age-, gender-, and ethnicity-matched healthy controls. RESULTS MDD+A patients had greater GM volume (P(FWE) = .002) than MDD-A patients in the right temporal cortex extending from the mid-posterior superior temporal gyrus into the posterior middle and inferior temporal gyrus. The MDD patients together showed lower GM volume than healthy controls in the superior parietal lobe. CONCLUSIONS Regional volume differences in patients are consistent with altered neuronal or glial microstructure. The temporolateral cortical differences distinguishing the 2 MDD groups suggest neurobiological differences related to the expression of anxiety symptoms in depression and provide further rationale for considering these groups independently for therapeutic outcomes studies.
Collapse
Affiliation(s)
- Becky Inkster
- GlaxoSmithKline Clinical Imaging Centre, Hammersmith Hospital, London, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
352
|
Kompus K, Kalpouzos G, Westerhausen R. The size of the anterior corpus callosum correlates with the strength of hemispheric encoding-retrieval asymmetry in the ventrolateral prefrontal cortex. Brain Res 2011; 1419:61-7. [DOI: 10.1016/j.brainres.2011.08.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/18/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
|
353
|
Takeuchi H, Taki Y, Hashizume H, Sassa Y, Nagase T, Nouchi R, Kawashima R. Cerebral blood flow during rest associates with general intelligence and creativity. PLoS One 2011; 6:e25532. [PMID: 21980485 PMCID: PMC3183028 DOI: 10.1371/journal.pone.0025532] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 09/07/2011] [Indexed: 11/30/2022] Open
Abstract
Recently, much scientific attention has been focused on resting brain activity and its investigation through such methods as the analysis of functional connectivity during rest (the temporal correlation of brain activities in different regions). However, investigation of the magnitude of brain activity during rest has focused on the relative decrease of brain activity during a task, rather than on the absolute resting brain activity. It is thus necessary to investigate the association between cognitive factors and measures of absolute resting brain activity, such as cerebral blood flow (CBF), during rest (rest-CBF). In this study, we examined this association using multiple regression analyses. Rest-CBF was the dependent variable and the independent variables included two essential components of cognitive functions, psychometric general intelligence and creativity. CBF was measured using arterial spin labeling and there were three analyses for rest-CBF; namely mean gray matter rest-CBF, mean white matter rest-CBF, and regional rest-CBF. The results showed that mean gray and white matter rest-CBF were significantly and positively correlated with individual psychometric intelligence. Furthermore, mean white matter rest-CBF was significantly and positively correlated with creativity. After correcting the effect of mean gray matter rest-CBF the significant and positive correlation between regional rest-CBF in the perisylvian anatomical cluster that includes the left superior temporal gyrus and insula and individual psychometric intelligence was found. Also, regional rest-CBF in the precuneus was significantly and negatively correlated with individual creativity. Significance of these results of regional rest-CBF did not change when the effect of regional gray matter density was corrected. The findings showed mean and regional rest-CBF in healthy young subjects to be correlated with cognitive functions. The findings also suggest that, even in young cognitively intact subjects, resting brain activity (possibly underlain by default cognitive activity or metabolic demand from developed brain structures) is associated with cognitive functions.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | | | | | | | | | | | | |
Collapse
|
354
|
Chan CCH, Wong AWK, Ting KH, Whitfield-Gabrieli S, He J, Lee TMC. Cross auditory-spatial learning in early-blind individuals. Hum Brain Mapp 2011; 33:2714-27. [PMID: 21932260 DOI: 10.1002/hbm.21395] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/29/2011] [Accepted: 05/31/2011] [Indexed: 11/10/2022] Open
Abstract
Cross-modal processing enables the utilization of information received via different sensory organs to facilitate more complicated human actions. We used functional MRI on early-blind individuals to study the neural processes associated with cross auditory-spatial learning. The auditory signals, converted from echoes of ultrasonic signals emitted from a navigation device, were novel to the participants. The subjects were trained repeatedly for 4 weeks in associating the auditory signals with different distances. Subjects' blood-oxygenation-level-dependent responses were captured at baseline and after training using a sound-to-distance judgment task. Whole-brain analyses indicated that the task used in the study involved auditory discrimination as well as spatial localization. The learning process was shown to be mediated by the inferior parietal cortex and the hippocampus, suggesting the integration and binding of auditory features to distances. The right cuneus was found to possibly serve a general rather than a specific role, forming an occipital-enhanced network for cross auditory-spatial learning. This functional network is likely to be unique to those with early blindness, since the normal-vision counterparts shared activities only in the parietal cortex.
Collapse
Affiliation(s)
- Chetwyn C H Chan
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China.
| | | | | | | | | | | |
Collapse
|
355
|
Struiksma ME, Noordzij ML, Neggers SFW, Bosker WM, Postma A. Spatial language processing in the blind: evidence for a supramodal representation and cortical reorganization. PLoS One 2011; 6:e24253. [PMID: 21935391 PMCID: PMC3173383 DOI: 10.1371/journal.pone.0024253] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 08/08/2011] [Indexed: 11/19/2022] Open
Abstract
Neuropsychological and imaging studies have shown that the left supramarginal gyrus (SMG) is specifically involved in processing spatial terms (e.g. above, left of), which locate places and objects in the world. The current fMRI study focused on the nature and specificity of representing spatial language in the left SMG by combining behavioral and neuronal activation data in blind and sighted individuals. Data from the blind provide an elegant way to test the supramodal representation hypothesis, i.e. abstract codes representing spatial relations yielding no activation differences between blind and sighted. Indeed, the left SMG was activated during spatial language processing in both blind and sighted individuals implying a supramodal representation of spatial and other dimensional relations which does not require visual experience to develop. However, in the absence of vision functional reorganization of the visual cortex is known to take place. An important consideration with respect to our finding is the amount of functional reorganization during language processing in our blind participants. Therefore, the participants also performed a verb generation task. We observed that only in the blind occipital areas were activated during covert language generation. Additionally, in the first task there was functional reorganization observed for processing language with a high linguistic load. As the visual cortex was not specifically active for spatial contents in the first task, and no reorganization was observed in the SMG, the latter finding further supports the notion that the left SMG is the main node for a supramodal representation of verbal spatial relations.
Collapse
Affiliation(s)
- Marijn E Struiksma
- Experimental Psychology and Helmholtz Institute, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
356
|
Kochan NA, Valenzuela M, Slavin MJ, McCraw S, Sachdev PS, Breakspear M. Impact of load-related neural processes on feature binding in visuospatial working memory. PLoS One 2011; 6:e23960. [PMID: 21887352 PMCID: PMC3161094 DOI: 10.1371/journal.pone.0023960] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Accepted: 08/02/2011] [Indexed: 11/19/2022] Open
Abstract
Background The capacity of visual working memory (WM) is substantially limited and only a fraction of what we see is maintained as a temporary trace. The process of binding visual features has been proposed as an adaptive means of minimising information demands on WM. However the neural mechanisms underlying this process, and its modulation by task and load effects, are not well understood. Objective To investigate the neural correlates of feature binding and its modulation by WM load during the sequential phases of encoding, maintenance and retrieval. Methods and Findings 18 young healthy participants performed a visuospatial WM task with independent factors of load and feature conjunction (object identity and position) in an event-related functional MRI study. During stimulus encoding, load-invariant conjunction-related activity was observed in left prefrontal cortex and left hippocampus. During maintenance, greater activity for task demands of feature conjunction versus single features, and for increased load was observed in left-sided regions of the superior occipital cortex, precuneus and superior frontal cortex. Where these effects were expressed in overlapping cortical regions, their combined effect was additive. During retrieval, however, an interaction of load and feature conjunction was observed. This modulation of feature conjunction activity under increased load was expressed through greater deactivation in medial structures identified as part of the default mode network. Conclusions and Significance The relationship between memory load and feature binding qualitatively differed through each phase of the WM task. Of particular interest was the interaction of these factors observed within regions of the default mode network during retrieval which we interpret as suggesting that at low loads, binding processes may be ‘automatic’ but at higher loads it becomes a resource-intensive process leading to disengagement of activity in this network. These findings provide new insights into how feature binding operates within the capacity-limited WM system.
Collapse
Affiliation(s)
- Nicole A Kochan
- Brain and Ageing Research Program, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| | | | | | | | | | | |
Collapse
|
357
|
The representation of social interaction in episodic memory: A functional MRI study. Neuroimage 2011; 57:1234-42. [DOI: 10.1016/j.neuroimage.2011.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 04/26/2011] [Accepted: 05/03/2011] [Indexed: 11/17/2022] Open
|
358
|
Rahnev D, Lau H, de Lange FP. Prior expectation modulates the interaction between sensory and prefrontal regions in the human brain. J Neurosci 2011; 31:10741-8. [PMID: 21775617 PMCID: PMC6622631 DOI: 10.1523/jneurosci.1478-11.2011] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 06/02/2011] [Accepted: 06/08/2011] [Indexed: 11/21/2022] Open
Abstract
How do expectations about the identity of a forthcoming visual stimulus influence the neural mechanisms of perceptual decision making in the human brain? Previous investigations into this issue have mostly involved changing the subjects' attentional focus or the behavioral relevance of certain targets but rarely manipulated subjects' prior expectation about the likely identity of the stimulus. Also, because perceptual decisions were often paired with specific motor responses, it has been difficult to dissociate neural activity that reflects perceptual decisions from motor preparatory activity. Here we designed a task in which we induced prior expectations about the direction of a moving-dot pattern and withheld the stimulus-response mapping until the subjects were prompted to respond. In line with current models of perceptual decision making, we found that subjects' performance was influenced by their expectation about upcoming motion direction. The integration of such information into the decision process was reflected by heightened activity in the dorsolateral prefrontal cortex. Activity in this area reflected the degree to which subjects adjusted their decisions based on the prior expectation cue. Furthermore, there was increased effective connectivity between sensory regions (motion-sensitive medial temporal area MT+) and dorsolateral prefrontal cortex when subjects had a prior expectation about the upcoming motion direction. Dynamic causal modeling suggested that stimulus expectation modulated both the feedforward and feedback connectivity between MT+ and prefrontal cortex. These results provide a mechanism of how prior expectations may affect perceptual decision making, namely by changing neural activity in, and sensory drive to, prefrontal areas.
Collapse
Affiliation(s)
- Dobromir Rahnev
- Columbia University, Department of Psychology, New York, New York 10027, and
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behavior, 6525 EN Nijmegen, The Netherlands
| | - Hakwan Lau
- Columbia University, Department of Psychology, New York, New York 10027, and
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behavior, 6525 EN Nijmegen, The Netherlands
| | - Floris P. de Lange
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behavior, 6525 EN Nijmegen, The Netherlands
| |
Collapse
|
359
|
Ma L, Steinberg JL, Hasan KM, Narayana PA, Kramer LA, Moeller FG. Working memory load modulation of parieto-frontal connections: evidence from dynamic causal modeling. Hum Brain Mapp 2011; 33:1850-67. [PMID: 21692148 DOI: 10.1002/hbm.21329] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 02/20/2011] [Accepted: 03/17/2011] [Indexed: 11/07/2022] Open
Abstract
Previous neuroimaging studies have shown that working memory load has marked effects on regional neural activation. However, the mechanism through which working memory load modulates brain connectivity is still unclear. In this study, this issue was addressed using dynamic causal modeling (DCM) based on functional magnetic resonance imaging (fMRI) data. Eighteen normal healthy subjects were scanned while they performed a working memory task with variable memory load, as parameterized by two levels of memory delay and three levels of digit load (number of digits presented in each visual stimulus). Eight regions of interest, i.e., bilateral middle frontal gyrus (MFG), anterior cingulate cortex (ACC), inferior frontal cortex (IFC), and posterior parietal cortex (PPC), were chosen for DCM analyses. Analysis of the behavioral data during the fMRI scan revealed that accuracy decreased as digit load increased. Bayesian inference on model structure indicated that a bilinear DCM in which memory delay was the driving input to bilateral PPC and in which digit load modulated several parieto-frontal connections was the optimal model. Analysis of model parameters showed that higher digit load enhanced connection from L PPC to L IFC, and lower digit load inhibited connection from R PPC to L ACC. These findings suggest that working memory load modulates brain connectivity in a parieto-frontal network, and may reflect altered neuronal processes, e.g., information processing or error monitoring, with the change in working memory load. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Liangsuo Ma
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, Texas 77054, USA.
| | | | | | | | | | | |
Collapse
|
360
|
Ma L, Narayana S, Robin DA, Fox PT, Xiong J. Changes occur in resting state network of motor system during 4 weeks of motor skill learning. Neuroimage 2011; 58:226-33. [PMID: 21689765 DOI: 10.1016/j.neuroimage.2011.06.014] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/24/2011] [Accepted: 06/07/2011] [Indexed: 01/06/2023] Open
Abstract
We tested whether the resting state functional connectivity of the motor system changed during 4 weeks of motor skill learning using functional magnetic resonance imaging (fMRI). Ten healthy volunteers learned to produce a sequential finger movement by daily practice of the task over a 4 week period. Changes in the resting state motor network were examined before training (Week 0), two weeks after the onset of training (Week 2), and immediately at the end of the training (Week 4). The resting state motor system was analyzed using group independent component analysis (ICA). Statistical Parametric Mapping (SPM) second-level analysis was conducted on independent z-maps generated by the group ICA. Three regions, namely right postcentral gyrus, and bilateral supramarginal gyri were found to be sensitive to the training duration. Specifically, the strength of resting state functional connectivity in the right postcentral gyrus and right supramarginal gyrus increased from Week 0 to Week 2, during which the behavioral performance improved significantly, and decreased from Week 2 to Week 4, during which there was no more significant improvement in behavioral performance. The strength of resting state functional connectivity in left supramarginal gyrus increased throughout the training. These results confirm changes in the resting state network during slow-learning stage of motor skill learning, and support the premise that the resting state networks play a role in improving performance.
Collapse
Affiliation(s)
- Liangsuo Ma
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX 77054, USA.
| | | | | | | | | |
Collapse
|
361
|
Helmich RC, Bloem BR, Toni I. Motor imagery evokes increased somatosensory activity in Parkinson's disease patients with tremor. Hum Brain Mapp 2011; 33:1763-79. [PMID: 21674693 DOI: 10.1002/hbm.21318] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 02/20/2011] [Accepted: 03/10/2011] [Indexed: 01/18/2023] Open
Abstract
Parkinson's disease (PD) is surprisingly heterogeneous: some patients have a prominent resting tremor, while others never develop this symptom. Here we investigate whether the functional organization of the voluntary motor system differs between PD patients with and without resting tremor, and whether these differences relate to the cerebral circuit producing tremor. We compared 18 PD patients with marked tremor, 20 PD patients without tremor, and 19 healthy controls. Subjects performed a controlled motor imagery task during fMRI scanning. We quantified imagery-related cerebral activity by contrasting imagery of biomechanically difficult and easy movements. Tremor-related activity was identified by relating cerebral activity to fluctuations in tremor amplitude, using electromyography during scanning. PD patients with tremor had better behavioral performance than PD patients without tremor. Furthermore, tremulous PD patients showed increased imagery-related activity in somatosensory area 3a, as compared with both healthy controls and to nontremor PD patients. This effect was independent from tremor-related activity, which was localized to the motor cortex, cerebellum, and thalamic ventral intermediate nucleus (VIM). The VIM, with known projections to area 3a, was unique in showing both tremor- and imagery-related responses. We conclude that parkinsonian tremor influences motor imagery by modulating central somatosensory processing through the VIM. This mechanism may explain clinical differences between PD patients with and without tremor.
Collapse
Affiliation(s)
- Rick C Helmich
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, the Netherlands.
| | | | | |
Collapse
|
362
|
Taylor VA, Grant J, Daneault V, Scavone G, Breton E, Roffe-Vidal S, Courtemanche J, Lavarenne AS, Beauregard M. Impact of mindfulness on the neural responses to emotional pictures in experienced and beginner meditators. Neuroimage 2011; 57:1524-33. [PMID: 21679770 DOI: 10.1016/j.neuroimage.2011.06.001] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 05/26/2011] [Accepted: 06/01/2011] [Indexed: 12/19/2022] Open
Abstract
There is mounting evidence that mindfulness meditation is beneficial for the treatment of mood and anxiety disorders, yet little is known regarding the neural mechanisms through which mindfulness modulates emotional responses. Thus, a central objective of this functional magnetic resonance imaging study was to investigate the effects of mindfulness on the neural responses to emotionally laden stimuli. Another major goal of this study was to examine the impact of the extent of mindfulness training on the brain mechanisms supporting the processing of emotional stimuli. Twelve experienced (with over 1000 h of practice) and 10 beginner meditators were scanned as they viewed negative, positive, and neutral pictures in a mindful state and a non-mindful state of awareness. Results indicated that the Mindful condition attenuated emotional intensity perceived from pictures, while brain imaging data suggested that this effect was achieved through distinct neural mechanisms for each group of participants. For experienced meditators compared with beginners, mindfulness induced a deactivation of default mode network areas (medial prefrontal and posterior cingulate cortices) across all valence categories and did not influence responses in brain regions involved in emotional reactivity during emotional processing. On the other hand, for beginners relative to experienced meditators, mindfulness induced a down-regulation of the left amygdala during emotional processing. These findings suggest that the long-term practice of mindfulness leads to emotional stability by promoting acceptance of emotional states and enhanced present-moment awareness, rather than by eliciting control over low-level affective cerebral systems from higher-order cortical brain regions. These results have implications for affect-related psychological disorders.
Collapse
Affiliation(s)
- Véronique A Taylor
- Centre de Recherche en Neuropsychologie et Cognition (CERNEC), Département de Psychologie, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
363
|
Shi X, Ibrahim JG, Lieberman J, Styner M, Zhu H. TWO-STAGE EMPIRICAL LIKELIHOOD FOR LONGITUDINAL NEUROIMAGING DATA. Ann Appl Stat 2011; 5:1132-1158. [PMID: 21765885 DOI: 10.1214/11-aoas480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Longitudinal imaging studies are essential to understanding the neural development of neuropsychiatric disorders, substance use disorders, and the normal brain. The main objective of this paper is to develop a two-stage adjusted exponentially tilted empirical likelihood (TAETEL) for the spatial analysis of neuroimaging data from longitudinal studies. The TAETEL method allows us to efficiently analyze longitudinal data without correctly modeling temporal correlation and to classify different time-dependent covariate types. To account for spatial dependence, the TAETEL method developed here specifically combines all the data in the neighborhood of each voxel (or pixel) on a 3 dimensional (3D) volume (or 2D surface) with appropriate weights to calculate adaptive parameter estimates and adaptive test statistics. Simulation studies are used to examine the finite sample performance of the adjusted exponential tilted likelihood ratio statistic and TAETEL. We demonstrate the application of our statistical methods to the detection of the difference in the morphological changes of the hippocampus across time between schizophrenia patients and healthy subjects in a longitudinal schizophrenia study.
Collapse
|
364
|
Zimmermann M, Meulenbroek RGJ, de Lange FP. Motor planning is facilitated by adopting an action's goal posture: an fMRI study. ACTA ACUST UNITED AC 2011; 22:122-31. [PMID: 21613471 DOI: 10.1093/cercor/bhr098] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Motor planning is a hierarchical process that is typically organized around an action's goal (e.g., drinking from a cup). However, the motor plan depends not only on the goal but also on the current body state. Here, we investigated how one's own body posture interacts with planning of goal-directed actions. Participants engaged in a grasp selection (GS) task while we manipulated their arm posture. They had to indicate how they would grasp a bar when transporting it from a start to goal position and orientation. We compared situations in which one's body posture was in-congruent with the start posture and/or goal posture of the planned movement. Behavioral results show that GS took longer when one's own body state was incongruent with the goal posture of the planned movement. Correspondingly, neural activity in the intraparietal sulcus (IPS) and extrastriate body area (EBA) was modulated by congruency between the body state and the action plan. IPS was sensitive to overall congruency between body posture and action plan, while the EBA was sensitive specifically to goal posture congruency. Together, our results suggest that IPS maintains an internal state of one's own body posture, while EBA contains a representation of the goal posture of the action plan.
Collapse
Affiliation(s)
- Marius Zimmermann
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, NL-6500 HB Nijmegen, Netherlands.
| | | | | |
Collapse
|
365
|
Christoffels IK, van de Ven V, Waldorp LJ, Formisano E, Schiller NO. The sensory consequences of speaking: parametric neural cancellation during speech in auditory cortex. PLoS One 2011; 6:e18307. [PMID: 21625532 PMCID: PMC3098236 DOI: 10.1371/journal.pone.0018307] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 03/03/2011] [Indexed: 11/25/2022] Open
Abstract
When we speak, we provide ourselves with auditory speech input. Efficient monitoring of speech is often hypothesized to depend on matching the predicted sensory consequences from internal motor commands (forward model) with actual sensory feedback. In this paper we tested the forward model hypothesis using functional Magnetic Resonance Imaging. We administered an overt picture naming task in which we parametrically reduced the quality of verbal feedback by noise masking. Presentation of the same auditory input in the absence of overt speech served as listening control condition. Our results suggest that a match between predicted and actual sensory feedback results in inhibition of cancellation of auditory activity because speaking with normal unmasked feedback reduced activity in the auditory cortex compared to listening control conditions. Moreover, during self-generated speech, activation in auditory cortex increased as the feedback quality of the self-generated speech decreased. We conclude that during speaking early auditory cortex is involved in matching external signals with an internally generated model or prediction of sensory consequences, the locus of which may reside in auditory or higher order brain areas. Matching at early auditory cortex may provide a very sensitive monitoring mechanism that highlights speech production errors at very early levels of processing and may efficiently determine the self-agency of speech input.
Collapse
Affiliation(s)
- Ingrid K Christoffels
- Leiden Institute of Brain and Cognition and Leiden Institute of Psychological Research, Leiden University, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
366
|
Gershman SJ, Blei DM, Pereira F, Norman KA. A topographic latent source model for fMRI data. Neuroimage 2011; 57:89-100. [PMID: 21549204 DOI: 10.1016/j.neuroimage.2011.04.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Revised: 04/07/2011] [Accepted: 04/20/2011] [Indexed: 11/26/2022] Open
Abstract
We describe and evaluate a new statistical generative model of functional magnetic resonance imaging (fMRI) data. The model, topographic latent source analysis (TLSA), assumes that fMRI images are generated by a covariate-dependent superposition of latent sources. These sources are defined in terms of basis functions over space. The number of parameters in the model does not depend on the number of voxels, enabling a parsimonious description of activity patterns that avoids many of the pitfalls of traditional voxel-based approaches. We develop a multi-subject extension where latent sources at the subject-level are perturbations of a group-level template. We evaluate TLSA according to prediction, reconstruction and reproducibility. We show that it compares favorably to a Naive Bayes model while using fewer parameters. We also describe a hypothesis testing framework that can be used to identify significant latent sources.
Collapse
Affiliation(s)
- Samuel J Gershman
- Department of Psychology, Princeton University, Princeton, NJ 08540, USA; Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA.
| | - David M Blei
- Department of Computer Science, Princeton University, 35 Olden Street, Princeton, NJ 08540, USA.
| | - Francisco Pereira
- Department of Psychology, Princeton University, Princeton, NJ 08540, USA; Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA.
| | - Kenneth A Norman
- Department of Psychology, Princeton University, Princeton, NJ 08540, USA; Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA.
| |
Collapse
|
367
|
Radke S, de Lange FP, Ullsperger M, de Bruijn ERA. Mistakes that affect others: an fMRI study on processing of own errors in a social context. Exp Brain Res 2011; 211:405-13. [PMID: 21499885 PMCID: PMC3102186 DOI: 10.1007/s00221-011-2677-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 04/01/2011] [Indexed: 11/25/2022]
Abstract
In social contexts, errors have a special significance and often bear consequences for others. Thinking about others and drawing social inferences in interpersonal games engages the mentalizing system. We used neuroimaging to investigate the differences in brain activations between errors that affect only agents themselves and errors that additionally influence the payoffs of interaction partners. Activation in posterior medial frontal cortex (pMFC) and bilateral insula was increased for all errors, whereas errors that implied consequences for others specifically activated medial prefrontal cortex (mPFC), an important part of the mentalizing system. The results demonstrate that performance monitoring in social contexts involves additional processes and brain structures compared with individual performance monitoring where errors only have consequences for the person committing them. Taking into account how one’s behavior may affect others is particularly crucial for adapting behavior in interpersonal interactions and joint action.
Collapse
Affiliation(s)
- Sina Radke
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, P.O. Box 9104, 6500 HE Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
368
|
Blackman GA, Hall DA. Reducing the effects of background noise during auditory functional magnetic resonance imaging of speech processing: qualitative and quantitative comparisons between two image acquisition schemes and noise cancellation. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2011; 54:693-704. [PMID: 20844253 DOI: 10.1044/1092-4388(2010/10-0143)] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
PURPOSE The intense sound generated during functional magnetic resonance imaging (fMRI) complicates studies of speech and hearing. This experiment evaluated the benefits of using active noise cancellation (ANC), which attenuates the level of the scanner sound at the participant's ear by up to 35 dB around the peak at 600 Hz. METHOD Speech and narrowband noise were presented at a low sound level to 8 listeners during fMRI using 2 common scanning protocols: short ("continuous") and long ("sparse") temporal schemes. Three outcome measures were acquired simultaneously during fMRI: ratings of listening quality, discrimination performance, and brain activity. RESULTS Subjective ratings and discrimination performance were significantly improved by ANC and sparse acquisition. Sparse acquisition was the more robust method for detecting auditory cortical activity. ANC reduced some of the "extra-auditory" activity that might be associated with the effort required for perceptual discrimination in a noisy environment and also offered small improvements for detecting activity within Heschl's gyrus and planum polare. CONCLUSIONS For the scanning protocols evaluated here, the sparse temporal scheme was the more preferable for detecting sound-evoked activity. In addition, ANC ensures that listening difficulty is determined more by the chosen stimulus parameters and less by the adverse testing environment.
Collapse
|
369
|
Volume reduction of ventromedial prefrontal cortex in bipolar II patients with rapid cycling: a voxel-based morphometric study. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:439-45. [PMID: 21115089 DOI: 10.1016/j.pnpbp.2010.11.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 10/14/2010] [Accepted: 11/20/2010] [Indexed: 11/23/2022]
Abstract
Although rapid cycling (RC), a course specifier of bipolar I or II disorder, is particularly common among bipolar II patients compared with bipolar I patients, the pathophysiological lines of evidence regarding bipolar II with RC are still limited. In this preliminary study with a cross-sectional design, we examined the regional gray matter (GM) volume in 14 bipolar II patients with RC, 17 patients without RC and 84 healthy controls by whole-brain and region-of-interest (ROI) analysis methods, using magnetic resonance imaging with voxel-based morphometry. Whole-brain analysis in this study revealed that the bipolar II patients with RC showed GM volume reductions in the bilateral hemispheres of the medial orbital prefrontal cortex, ventromedial prefrontal cortex, anterior cingulate, insula and parahippocampus, in the left hemisphere of the inferior temporal cortex and cerebellum, and in the brainstem, compared with the healthy controls. Moreover, ROI analysis focusing on the ventral prefrontal cortex, i.e., Brodmann areas 10, 11 and 47, revealed that the bipolar II patients with RC showed GM volume reduction in the ventromedial prefrontal cortex, compared with the patients without RC. The findings of our pilot study suggest that the ventromedial prefrontal cortex is associated with the generation of RC in bipolar II disorder.
Collapse
|
370
|
Killory BD, Bai X, Negishi M, Vega C, Spann MN, Vestal M, Guo J, Berman R, Danielson N, Trejo J, Shisler D, Novotny EJ, Constable RT, Blumenfeld H. Impaired attention and network connectivity in childhood absence epilepsy. Neuroimage 2011; 56:2209-17. [PMID: 21421063 DOI: 10.1016/j.neuroimage.2011.03.036] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 02/07/2011] [Accepted: 03/14/2011] [Indexed: 10/18/2022] Open
Abstract
Patients with childhood absence epilepsy (CAE) often demonstrate impaired interictal attention, even with control of their seizures. No previous study has investigated the brain networks involved in this impairment. We used the continuous performance task (CPT) of attentional vigilance and the repetitive tapping task (RTT), a control motor task, to examine interictal attention in 26 children with CAE and 22 matched healthy controls. Each subject underwent simultaneous 3T functional magnetic resonance imaging-electroencephalography (fMRI-EEG) and CPT/RTT testing. Areas of activation on fMRI during the CPT task were correlated with behavioral performance and used as seed regions for resting functional connectivity analysis. All behavioral measures reflecting inattention were significantly higher in patients. Correlation analysis revealed that impairment on all measures of inattention on the CPT task was associated with decreased medial frontal cortex (MFC) activation during CPT. In addition, analysis of resting functional connectivity revealed an overall decrease within an 'attention network' in patients relative to controls. Patients demonstrated significantly impaired connectivity between the right anterior insula/frontal operculum (In/FO) and MFC relative to controls. Our results suggest that there is impaired function in an attention network comprising anterior In/FO and MFC in patients with CAE. These findings provide an anatomical and functional basis for impaired interictal attention in CAE, which may allow the development of improved treatments targeted at these networks.
Collapse
Affiliation(s)
- Brendan D Killory
- Department of Neurosurgery, Barrow Neurosurgical Institute, 350 Thomas Rd, Phoenix, AZ 85023, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
371
|
Ball T, Breckel TPK, Mutschler I, Aertsen A, Schulze-Bonhage A, Hennig J, Speck O. Variability of fMRI-response patterns at different spatial observation scales. Hum Brain Mapp 2011; 33:1155-71. [PMID: 21404370 DOI: 10.1002/hbm.21274] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 12/27/2010] [Accepted: 01/04/2011] [Indexed: 11/08/2022] Open
Abstract
Functional organization units of the cerebral cortex exist over a wide range of spatial scales, from local circuits to entire cortical areas. In the last decades, scale-space representations of neuroimaging data suited to probe the multi-scale nature of cortical functional organization have been introduced and methodologically elaborated. For this purpose, responses are statistically detected over a range of spatial scales using a family of Gaussian filters, with small filters being related to fine and large filters-to coarse spatial scales. The goal of the present study was to investigate the degree of variability of fMRI-response patterns over a broad range of observation scales. To this aim, the same fMRI data set obtained from 18 subjects during a visuomotor task was analyzed with a range of filters from 4- to 16-mm full width at half-maximum (FWHM). We found substantial observation-scale-related variability. For example, using filter widths of 6- to 8-mm FWHM, in the group-level results, significant responses in the right secondary visual but not in the primary visual cortex were detected. However, when larger filters were used, the responses in the right primary visual cortex reached significance. Often, responses in probabilistically defined areas were significant when both small and large filters, but not intermediate filter widths were applied. This suggests that brain responses can be organized in local clusters of multiple distinct activation foci. Our findings illustrate the potential of multi-scale fMRI analysis to reveal novel features in the spatial organization of human brain responses.
Collapse
Affiliation(s)
- Tonio Ball
- Epilepsy Center, University Hospital Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
372
|
Schwenzer M, Mathiak K. Numeric aspects in pitch identification: an fMRI study. BMC Neurosci 2011; 12:26. [PMID: 21392373 PMCID: PMC3062602 DOI: 10.1186/1471-2202-12-26] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 03/09/2011] [Indexed: 11/14/2022] Open
Abstract
Background Pitch identification had yielded unique response patterns compared to other auditory skills. Selecting one out of numerous pitches distinguished this task from detecting a pitch ascent. Encoding of numerous stimuli had activated the intraparietal sulcus in the visual domain. Therefore, we hypothesized that numerosity encoding during pitch identification activates the intraparietal sulcus as well. Methods To assess pitch identification, the participants had to recognize a single pitch from a set of four possible pitches in each trial. Functional magnetic resonance imaging (fMRI) disentangled neural activation during this four-pitch-choice task from activation during pitch contour perception, tone localization, and pitch discrimination. Results Pitch identification induced bilateral activation in the intraparietal sulcus compared to pitch discrimination. Correct responses in pitch identification correlated with activation in the left intraparietal sulcus. Pitch contour perception activated the superior temporal gyrus conceivably due to the larger range of presented tones. The differentiation between pitch identification and tone localization failed. Activation in an ACC-hippocampus network distinguished pitch discrimination from pitch identification. Conclusion Pitch identification is distinguishable from pitch discrimination on the base of activation in the IPS. IPS activity during pitch identification may be the auditory counterpart of numerosity encoding in the visual domain.
Collapse
Affiliation(s)
- Michael Schwenzer
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.
| | | |
Collapse
|
373
|
Decreased prefrontal cortex activity in mild traumatic brain injury during performance of an auditory oddball task. Brain Imaging Behav 2011; 4:232-47. [PMID: 20703959 DOI: 10.1007/s11682-010-9102-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Up to one-third of patients with mild traumatic brain injury (TBI) demonstrate persistent cognitive deficits in the 'executive' function domain. Mild TBI patients have shown prefrontal cortex activity deficits during the performance of executive tasks requiring active information maintenance and manipulation. However, it is unclear whether these deficits are related to the executive processes themselves, or to the degree of mental effort. To determine whether prefrontal deficits also would be found during less effortful forms of executive ability, fMRI images were obtained on 31 mild TBI patients and 31 control participants during three-stimulus auditory oddball task performance. Although patients and controls had similar topographical patterns of brain activity, region-of-interest analysis revealed significantly decreased activity in right dorsolateral prefrontal cortex for mild TBI patients during target stimulus detection. Between-group analyses found evidence for potential compensatory brain activity during target detection and default-mode network dysfunction only during the detection of novel stimuli.
Collapse
|
374
|
Ursu S, Kring AM, Gard MG, Minzenberg MJ, Yoon JH, Ragland JD, Solomon M, Carter CS. Prefrontal cortical deficits and impaired cognition-emotion interactions in schizophrenia. Am J Psychiatry 2011; 168:276-85. [PMID: 21205806 PMCID: PMC4019338 DOI: 10.1176/appi.ajp.2010.09081215] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Despite schizophrenia patients' reports of diminished experience of emotion in interviews and self-report measures, their emotional experience in the presence of emotional stimuli and in daily life ("in the moment") appears largely intact. To examine emotion-cognition interactions, the authors tested the hypothesis that schizophrenia patients have unimpaired in-the-moment emotional reactivity but have a deficit in prefrontal cortical mechanisms needed to maintain and report on experience following exposure to emotional stimuli. METHOD Using a slow event-related functional MRI paradigm, the authors examined the brain activity of 23 schizophrenia patients and 24 healthy comparison subjects during trials in which they viewed an affective picture and, after a delay, reported their emotional experience while viewing it. RESULTS The patients' self-reports of emotional experience differed from those of the healthy subjects when they rated their experience on dimensions inconsistent with the stimulus valence but not when the dimension was consistent with it. In the presence of emotional stimuli, brain activity in the patients was similar to that of the comparison subjects. During the delay, however, patients showed decreased activation in a network of brain structures, including the dorsolateral prefrontal cortex and other prefrontal, limbic, and paralimbic areas. In patients, the delay-related response of the dorsolateral prefrontal cortex to pleasant stimuli correlated negatively with an anhedonia measure. CONCLUSIONS These results suggest that schizophrenia is characterized by a failure of prefrontal circuitry supporting the link between emotion and goal-directed behavior and that the failure of this mechanism may contribute to deficits in processes related to emotion-cognition interaction.
Collapse
|
375
|
Ossewaarde L, Qin S, Van Marle HJ, van Wingen GA, Fernández G, Hermans EJ. Stress-induced reduction in reward-related prefrontal cortex function. Neuroimage 2011; 55:345-52. [DOI: 10.1016/j.neuroimage.2010.11.068] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 11/15/2010] [Accepted: 11/22/2010] [Indexed: 11/30/2022] Open
|
376
|
Hotz-Boendermaker S, Hepp-Reymond MC, Curt A, Kollias SS. Movement Observation Activates Lower Limb Motor Networks in Chronic Complete Paraplegia. Neurorehabil Neural Repair 2011; 25:469-76. [DOI: 10.1177/1545968310389184] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. In healthy subjects, observation of actions activates a motor network similar to that involved in the performance of the observed actions. Movement observation could perhaps be applied to functionally sustain brain motor functions when efferent motor commands and proprioceptive feedbacks are disconnected. Objective. The authors examined whether observation-induced brain activation is preserved in people with chronic complete spinal cord injury (SCI). Methods. Nine patients and 12 healthy subjects underwent behavioral assessment and functional magnetic resonance imaging. The SCI patients attempted to perform dorsal and plantar flexions of the right foot, and the controls also executed the same movement. Both groups observed subsequent video clips showing the same movement. Results. In the SCI group, attempted and observed foot movements activated a common observation–execution network including ventral premotor, parietal cortex, and cerebellum as in healthy subjects. Conclusions. Long after onset of complete SCI, the brain maintains its ability to respond to task-specific visual inputs, which suggests preservation of motor programs. This persistence might be a prerequisite for repair strategies of the spinal cord that rely on appropriate activation of the brain to try to restore limb function. The preserved cortical network may offer an additional motor rehabilitation approach for people with SCI.
Collapse
Affiliation(s)
- Sabina Hotz-Boendermaker
- Balgrist University Hospital Zurich, Zurich, Switzerland
- University Hospital Zurich, Zurich, Switzerland
| | | | - Armin Curt
- Balgrist University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
377
|
Volman I, Toni I, Verhagen L, Roelofs K. Endogenous testosterone modulates prefrontal-amygdala connectivity during social emotional behavior. Cereb Cortex 2011; 21:2282-90. [PMID: 21339377 PMCID: PMC3169658 DOI: 10.1093/cercor/bhr001] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
It is clear that the steroid hormone testosterone plays an important role in the regulation of social emotional behavior, but it remains unknown which neural circuits mediate these hormonal influences in humans. We investigated the modulatory effects of endogenous testosterone on the control of social emotional behavior by applying functional magnetic resonance imaging while healthy male participants performed a social approach-avoidance task. This task operationalized social emotional behavior by having participants approach and avoid emotional faces by pulling and pushing a joystick, respectively. Affect-congruent trials mapped the automatic tendency to approach happy faces and avoid angry faces. Affect-incongruent trials required participants to override those automatic action tendencies and select the opposite response (approach-angry, avoid-happy). The social emotional control required by affect-incongruent responses resulted in longer reaction times (RTs) and increased activity at the border of the ventrolateral prefrontal cortex and frontal pole (VLPFC/FP). We show that endogenous testosterone modulates these cerebral congruency effects through 2 mechanisms. First, participants with lower testosterone levels generate larger VLPFC/FP responses during affect-incongruent trials. Second, during the same trials, endogenous testosterone modulates the effective connectivity between the VLPFC/FP and the amygdala. These results indicate that endogenous testosterone influences local prefrontal activity and interregional connectivity supporting the control of social emotional behavior.
Collapse
Affiliation(s)
- Inge Volman
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6500 HB Nijmegen, the Netherlands.
| | | | | | | |
Collapse
|
378
|
Marsh LE, Hamilton AFDC. Dissociation of mirroring and mentalising systems in autism. Neuroimage 2011; 56:1511-9. [PMID: 21310248 DOI: 10.1016/j.neuroimage.2011.02.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/31/2011] [Accepted: 02/01/2011] [Indexed: 12/19/2022] Open
Abstract
The role of mirror neuron systems and mentalising systems in causing poor social and communication skills in individuals with autistic spectrum conditions is hotly debated. We studied 18 adults with autistic spectrum conditions in comparison to 19 age and IQ matched typical individuals. Behavioural assessments revealed difficulties in mental state attribution and action comprehension in the autism sample. We examined brain responses when observing rational and irrational hand actions, because these actions engage mirror and mentalising components of the social brain respectively. Both typical and autistic participants activated the left anterior intraparietal sulcus component of the mirror system when viewing hand actions compared to moving shapes. The typical but not autistic participants activated the posterior mid cingulate cortex/supplementary motor area and bilateral fusiform cortex when viewing hand actions. When viewing irrational hand actions, the medial prefrontal cortex of typical participants deactivated but this region did not distinguish the different stimuli in autistic participants. These results suggest that parietal mirror regions function normally in autism, while differences in action understanding could be due to abnormal function of cingulate, fusiform and medial prefrontal regions. Thus, brain regions associated with mirroring and mentalising functions are differentially affected in autistic spectrum conditions.
Collapse
Affiliation(s)
- Lauren E Marsh
- School of Psychology, University of Nottingham, University Park, UK
| | | |
Collapse
|
379
|
Rando K, Hong KI, Bhagwagar Z, Li CSR, Bergquist K, Guarnaccia J, Sinha R. Association of frontal and posterior cortical gray matter volume with time to alcohol relapse: a prospective study. Am J Psychiatry 2011; 168:183-92. [PMID: 21078704 PMCID: PMC3668974 DOI: 10.1176/appi.ajp.2010.10020233] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Alcoholism is associated with gray matter volume deficits in frontal and other brain regions. Whether persistent brain volume deficits in abstinence are predictive of subsequent time to alcohol relapse has not been established. The authors measured gray matter volumes in healthy volunteers and in a sample of treatment-engaged, alcohol-dependent patients after 1 month of abstinence and assessed whether smaller frontal gray matter volume was predictive of subsequent alcohol relapse outcomes. METHOD Forty-five abstinent alcohol-dependent patients in treatment and 50 healthy comparison subjects were scanned once using high-resolution (T(1)-weighted) structural MRI, and voxel-based morphometry was used to assess regional brain volume differences between the groups. A prospective study design was used to assess alcohol relapse in the alcohol-dependent group for 90 days after discharge from 6 weeks of inpatient treatment. RESULTS Significantly smaller gray matter volume in alcohol-dependent patients relative to comparison subjects was seen in three regions: the medial frontal cortex, the right lateral prefrontal cortex, and a posterior region surrounding the parietal-occipital sulcus. Smaller medial frontal and parietal-occipital gray matter volumes were each predictive of shorter time to any alcohol use and to heavy drinking relapse. CONCLUSIONS These findings are the first to demonstrate that gray matter volume deficits in specific medial frontal and posterior parietal-occipital brain regions are predictive of an earlier return to alcohol use and relapse risk, suggesting a significant role for gray matter atrophy in poor clinical outcomes in alcoholism. Extent of gray matter volume deficits in these regions could serve as useful neural markers of relapse risk and alcoholism treatment outcome.
Collapse
|
380
|
Mindfulness practice leads to increases in regional brain gray matter density. Psychiatry Res 2011; 191:36-43. [PMID: 21071182 PMCID: PMC3004979 DOI: 10.1016/j.pscychresns.2010.08.006] [Citation(s) in RCA: 776] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 08/09/2010] [Accepted: 08/11/2010] [Indexed: 12/19/2022]
Abstract
Therapeutic interventions that incorporate training in mindfulness meditation have become increasingly popular, but to date little is known about neural mechanisms associated with these interventions. Mindfulness-Based Stress Reduction (MBSR), one of the most widely used mindfulness training programs, has been reported to produce positive effects on psychological well-being and to ameliorate symptoms of a number of disorders. Here, we report a controlled longitudinal study to investigate pre-post changes in brain gray matter concentration attributable to participation in an MBSR program. Anatomical magnetic resonance (MR) images from 16 healthy, meditation-naïve participants were obtained before and after they underwent the 8-week program. Changes in gray matter concentration were investigated using voxel-based morphometry, and compared with a waiting list control group of 17 individuals. Analyses in a priori regions of interest confirmed increases in gray matter concentration within the left hippocampus. Whole brain analyses identified increases in the posterior cingulate cortex, the temporo-parietal junction, and the cerebellum in the MBSR group compared with the controls. The results suggest that participation in MBSR is associated with changes in gray matter concentration in brain regions involved in learning and memory processes, emotion regulation, self-referential processing, and perspective taking.
Collapse
|
381
|
Costafreda SG, Dinov ID, Tu Z, Shi Y, Liu CY, Kloszewska I, Mecocci P, Soininen H, Tsolaki M, Vellas B, Wahlund LO, Spenger C, Toga AW, Lovestone S, Simmons A. Automated hippocampal shape analysis predicts the onset of dementia in mild cognitive impairment. Neuroimage 2011; 56:212-9. [PMID: 21272654 DOI: 10.1016/j.neuroimage.2011.01.050] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 01/14/2011] [Accepted: 01/17/2011] [Indexed: 10/18/2022] Open
Abstract
The hippocampus is involved at the onset of the neuropathological pathways leading to Alzheimer's disease (AD). Individuals with mild cognitive impairment (MCI) are at increased risk of AD. Hippocampal volume has been shown to predict which MCI subjects will convert to AD. Our aim in the present study was to produce a fully automated prognostic procedure, scalable to high throughput clinical and research applications, for the prediction of MCI conversion to AD using 3D hippocampal morphology. We used an automated analysis for the extraction and mapping of the hippocampus from structural magnetic resonance scans to extract 3D hippocampal shape morphology, and we then applied machine learning classification to predict conversion from MCI to AD. We investigated the accuracy of prediction in 103 MCI subjects (mean age 74.1 years) from the longitudinal AddNeuroMed study. Our model correctly predicted MCI conversion to dementia within a year at an accuracy of 80% (sensitivity 77%, specificity 80%), a performance which is competitive with previous predictive models dependent on manual measurements. Categorization of MCI subjects based on hippocampal morphology revealed more rapid cognitive deterioration in MMSE scores (p<0.01) and CERAD verbal memory (p<0.01) in those subjects who were predicted to develop dementia relative to those predicted to remain stable. The pattern of atrophy associated with increased risk of conversion demonstrated initial degeneration in the anterior part of the cornus ammonis 1 (CA1) hippocampal subregion. We conclude that automated shape analysis generates sensitive measurements of early neurodegeneration which predates the onset of dementia and thus provides a prognostic biomarker for conversion of MCI to AD.
Collapse
|
382
|
An fMRI study of acupuncture-induced brain activation of aphasia stroke patients. Complement Ther Med 2011; 19 Suppl 1:S49-59. [DOI: 10.1016/j.ctim.2010.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 11/24/2010] [Indexed: 11/19/2022] Open
|
383
|
Crippa JAS, Derenusson GN, Ferrari TB, Wichert-Ana L, Duran FLS, Martin-Santos R, Simões MV, Bhattacharyya S, Fusar-Poli P, Atakan Z, Santos Filho A, Freitas-Ferrari MC, McGuire PK, Zuardi AW, Busatto GF, Hallak JEC. Neural basis of anxiolytic effects of cannabidiol (CBD) in generalized social anxiety disorder: a preliminary report. J Psychopharmacol 2011; 25:121-30. [PMID: 20829306 DOI: 10.1177/0269881110379283] [Citation(s) in RCA: 346] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Animal and human studies indicate that cannabidiol (CBD), a major constituent of cannabis, has anxiolytic properties. However, no study to date has investigated the effects of this compound on human pathological anxiety and its underlying brain mechanisms. The aim of the present study was to investigate this in patients with generalized social anxiety disorder (SAD) using functional neuroimaging. Regional cerebral blood flow (rCBF) at rest was measured twice using (99m)Tc-ECD SPECT in 10 treatment-naïve patients with SAD. In the first session, subjects were given an oral dose of CBD (400 mg) or placebo, in a double-blind procedure. In the second session, the same procedure was performed using the drug that had not been administered in the previous session. Within-subject between-condition rCBF comparisons were performed using statistical parametric mapping. Relative to placebo, CBD was associated with significantly decreased subjective anxiety (p < 0.001), reduced ECD uptake in the left parahippocampal gyrus, hippocampus, and inferior temporal gyrus (p < 0.001, uncorrected), and increased ECD uptake in the right posterior cingulate gyrus (p < 0.001, uncorrected). These results suggest that CBD reduces anxiety in SAD and that this is related to its effects on activity in limbic and paralimbic brain areas.
Collapse
Affiliation(s)
- José Alexandre S Crippa
- Department of Neurosciences and Behavior, Division of Psychiatry, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
384
|
Bor J, Brunelin J, Sappey-Marinier D, Ibarrola D, d'Amato T, Suaud-Chagny MF, Saoud M. Thalamus abnormalities during working memory in schizophrenia. An fMRI study. Schizophr Res 2011; 125:49-53. [PMID: 21067898 DOI: 10.1016/j.schres.2010.10.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 10/12/2010] [Accepted: 10/13/2010] [Indexed: 11/25/2022]
Abstract
We aimed to identify and compare cerebral activations in schizophrenia patients and controls during a working memory (WM) task at the same performance level for both a verbal and a spatial task. Whereas the performances of the patients (n=22) and controls (n=15) were similar, cerebral activations were significantly increased in the patients, particularly in the thalamus/basal ganglia for the two tasks and in regions of the prefrontal cortex and the cerebellum for the spatial task only. Our results suggest that stronger activations of deep brain structures in patients may be the result from a compensating mechanism for WM difficulties.
Collapse
Affiliation(s)
- Julie Bor
- Université de Lyon, Lyon, F-69003, France
| | | | | | | | | | | | | |
Collapse
|
385
|
Catarino A, Luke L, Waldman S, Andrade A, Fletcher PC, Ring H. An fMRI investigation of detection of semantic incongruities in autistic spectrum conditions. Eur J Neurosci 2010; 33:558-67. [PMID: 21198976 DOI: 10.1111/j.1460-9568.2010.07503.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of this study was to investigate differences in the brain's haemodynamic response to semantically incongruent and congruent sentences in adults with an autistic spectrum condition (ASC) and a typically developing Control group. We used functional magnetic resonance imaging to measure regional variations in neural activity during detection of semantic incongruities within written sentences. Whilst the 12 controls showed a pattern of activity extending from posterior cingulate cortices bilaterally and the left occipitotemporal region to the left superior and inferior temporal lobes, right anterior cingulate and right inferior frontal gyrus, the 12 participants with an ASC presented a more spatially restricted activation pattern, including the left inferior frontal gyrus, left anterior cingulate cortex and right middle frontal gyrus. These results are coherent with the hypothesis that impaired integration of multiple neural networks in people with an ASC is related to previous observations that this group have difficulties in the use of context to predict the final word of sentences.
Collapse
Affiliation(s)
- Ana Catarino
- Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
386
|
ZHENG TIANXIANG, CAI MINGBO, JIANG TIANZI. A NOVEL APPROACH TO ACTIVATION DETECTION IN fMRI BASED ON EMPIRICAL MODE DECOMPOSITION. J Integr Neurosci 2010; 9:407-27. [DOI: 10.1142/s021963521000255x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 11/12/2010] [Indexed: 11/18/2022] Open
|
387
|
Snijders AH, Leunissen I, Bakker M, Overeem S, Helmich RC, Bloem BR, Toni I. Gait-related cerebral alterations in patients with Parkinson's disease with freezing of gait. ACTA ACUST UNITED AC 2010; 134:59-72. [PMID: 21126990 DOI: 10.1093/brain/awq324] [Citation(s) in RCA: 269] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Freezing of gait is a common, debilitating feature of Parkinson's disease. We have studied gait planning in patients with freezing of gait, using motor imagery of walking in combination with functional magnetic resonance imaging. This approach exploits the large neural overlap that exists between planning and imagining a movement. In addition, it avoids confounds introduced by brain responses to altered motor performance and somatosensory feedback during actual freezing episodes. We included 24 patients with Parkinson's disease: 12 patients with freezing of gait, 12 matched patients without freezing of gait and 21 matched healthy controls. Subjects performed two previously validated tasks--motor imagery of gait and a visual imagery control task. During functional magnetic resonance imaging scanning, we quantified imagery performance by measuring the time required to imagine walking on paths of different widths and lengths. In addition, we used voxel-based morphometry to test whether between-group differences in imagery-related activity were related to structural differences. Imagery times indicated that patients with freezing of gait, patients without freezing of gait and controls engaged in motor imagery of gait, with matched task performance. During motor imagery of gait, patients with freezing of gait showed more activity than patients without freezing of gait in the mesencephalic locomotor region. Patients with freezing of gait also tended to have decreased responses in mesial frontal and posterior parietal regions. Furthermore, patients with freezing of gait had grey matter atrophy in a small portion of the mesencephalic locomotor region. The gait-related hyperactivity of the mesencephalic locomotor region correlated with clinical parameters (freezing of gait severity and disease duration), but not with the degree of atrophy. These results indicate that patients with Parkinson's disease with freezing of gait have structural and functional alterations in the mesencephalic locomotor region. We suggest that freezing of gait might emerge when altered cortical control of gait is combined with a limited ability of the mesencephalic locomotor region to react to that alteration. These limitations might become particularly evident during challenging events that require precise regulation of step length and gait timing, such as turning or initiating walking, which are known triggers for freezing of gait.
Collapse
Affiliation(s)
- Anke H Snijders
- Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
388
|
Xiao C, McNamara TP, Qin S, Mou W. Neural mechanisms of recognizing scene configurations from multiple viewpoints. Brain Res 2010; 1363:107-16. [DOI: 10.1016/j.brainres.2010.09.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 05/28/2010] [Accepted: 09/18/2010] [Indexed: 10/19/2022]
|
389
|
Li CT, Wang SJ, Hirvonen J, Hsieh JC, Bai YM, Hong CJ, Liou YJ, Su TP. Antidepressant mechanism of add-on repetitive transcranial magnetic stimulation in medication-resistant depression using cerebral glucose metabolism. J Affect Disord 2010; 127:219-29. [PMID: 20598753 DOI: 10.1016/j.jad.2010.05.028] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 05/24/2010] [Accepted: 05/29/2010] [Indexed: 11/27/2022]
Abstract
BACKGROUND Add-on repetitive transcranial magnetic stimulation (rTMS) is effective in treating medication-resistant depression (MRD), but little is known about the rTMS antidepressant mechanism and pathophysiology underlying MRD. METHODS Twenty MRD patients received 2 weeks of navigated add-on rTMS to the left dorsolateral prefrontal cortex (DLPFC). Treatment response was defined as a ≥50% decrease in HDRS after treatment. Cerebral glucose metabolism was measured from all MRD patients twice, before and 3 months after rTMS, and from 20 healthy controls once at baseline. RESULTS At baseline, MRD subjects presented significant hypometabolism at the bilateral DLPFC and anterior cingulum, as well as hypermetabolism at several limbic and subcortical regions compared to the controls. Higher metabolism at the medial PFC and rostral anterior cingulum, and lower metabolism at the limbic structures, including the left parahippocampus and fusiform gyrus, predicted a response to rTMS. After successful rTMS treatment, the abnormally elevated metabolism in the left middle temporal cortex and fusiform gyrus decreased significantly, suggesting a reversal of metabolic imbalances. However, the overall metabolic pattern was still abnormal, even after their depression was under control. In contrast, the non-responders showed a worsening pattern of increased metabolism in the bilateral temporal cortex and fusiform gyrus. CONCLUSIONS The antidepressant mechanism of add-on rTMS may be reflected as suppression of hyperactivity in the left temporal cortex and fusiform gyrus, perhaps through enhancing the function of the medial prefrontal cortex and anterior cingulum. The limbic-cortical dysregulation of glucose metabolism might be a trait of an underlying mechanism of MRD.
Collapse
Affiliation(s)
- Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
390
|
Takeuchi H, Taki Y, Hashizume H, Sassa Y, Nagase T, Nouchi R, Kawashima R. Failing to deactivate: the association between brain activity during a working memory task and creativity. Neuroimage 2010; 55:681-7. [PMID: 21111830 DOI: 10.1016/j.neuroimage.2010.11.052] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/23/2010] [Accepted: 11/15/2010] [Indexed: 10/18/2022] Open
Abstract
Working memory (WM) is an essential component for human higher order cognitive activities. Creativity has been essential to the development of human civilization. Previous studies from different fields have suggested creativity and capacity of WM have opposing characteristics possibly in terms of diffuse attention. However, despite a number of functional imaging studies on creativity, how creativity relates to brain activity during WM has never been investigated. In this functional magnetic resonance imaging (fMRI) study, we investigated this issue using an n-back WM paradigm and a psychometric measure of creativity (a divergent thinking test). A multiple regression analysis revealed that individual creativity was significantly and positively correlated with brain activity in the precuneus during the 2-back task (WM task), but not during the non-WM 0-back task. As the precuneus shows deactivation during cognitive tasks, our findings show that reduced task induced deactivation (TID) in the precuneus is associated with higher creativity measured by divergent thinking. The precuneus is included in the default mode network, which is deactivated during cognitive tasks. The magnitude of TID in the default mode network is considered to reflect the reallocation of cognitive resources from networks irrelevant to the performance of the task. Thus, our findings may indicate that individual creativity, as measured by the divergent thinking test, is related to the inefficient reallocation of attention, congruent with the idea that diffuse attention is associated with individual creativity.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Japan.
| | | | | | | | | | | | | |
Collapse
|
391
|
Yu C, Zhou Y, Liu Y, Jiang T, Dong H, Zhang Y, Walter M. Functional segregation of the human cingulate cortex is confirmed by functional connectivity based neuroanatomical parcellation. Neuroimage 2010; 54:2571-81. [PMID: 21073967 DOI: 10.1016/j.neuroimage.2010.11.018] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 10/07/2010] [Accepted: 11/03/2010] [Indexed: 10/18/2022] Open
Abstract
The four-region model with 7 specified subregions represents a theoretical construct of functionally segregated divisions of the cingulate cortex based on integrated neurobiological assessments. Under this framework, we aimed to investigate the functional specialization of the human cingulate cortex by analyzing the resting-state functional connectivity (FC) of each subregion from a network perspective. In 20 healthy subjects we systematically investigated the FC patterns of the bilateral subgenual (sACC) and pregenual (pACC) anterior cingulate cortices, anterior (aMCC) and posterior (pMCC) midcingulate cortices, dorsal (dPCC) and ventral (vPCC) posterior cingulate cortices and retrosplenial cortices (RSC). We found that each cingulate subregion was specifically integrated in the predescribed functional networks and showed anti-correlated resting-state fluctuations. The sACC and pACC were involved in an affective network and anti-correlated with the sensorimotor and cognitive networks, while the pACC also correlated with the default-mode network and anti-correlated with the visual network. In the midcingulate cortex, however, the aMCC was correlated with the cognitive and sensorimotor networks and anti-correlated with the visual, affective and default-mode networks, whereas the pMCC only correlated with the sensorimotor network and anti-correlated with the cognitive and visual networks. The dPCC and vPCC involved in the default-mode network and anti-correlated with the sensorimotor, cognitive and visual networks, in contrast, the RSC was mainly correlated with the PCC and thalamus. Based on a strong hypothesis driven approach of anatomical partitions of the cingulate cortex, we could confirm their segregation in terms of functional neuroanatomy, as suggested earlier by task studies or exploratory multi-seed investigations.
Collapse
Affiliation(s)
- Chunshui Yu
- Department of Radiology, Tianjin Medical University General Hospital, Heping District, Tianjin, China.
| | | | | | | | | | | | | |
Collapse
|
392
|
Saito DN, Tanabe HC, Izuma K, Hayashi MJ, Morito Y, Komeda H, Uchiyama H, Kosaka H, Okazawa H, Fujibayashi Y, Sadato N. "Stay tuned": inter-individual neural synchronization during mutual gaze and joint attention. Front Integr Neurosci 2010; 4:127. [PMID: 21119770 PMCID: PMC2990457 DOI: 10.3389/fnint.2010.00127] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 10/12/2010] [Indexed: 11/14/2022] Open
Abstract
Eye contact provides a communicative link between humans, prompting joint attention. As spontaneous brain activity might have an important role in the coordination of neuronal processing within the brain, their inter-subject synchronization might occur during eye contact. To test this, we conducted simultaneous functional MRI in pairs of adults. Eye contact was maintained at baseline while the subjects engaged in real-time gaze exchange in a joint attention task. Averted gaze activated the bilateral occipital pole extending to the right posterior superior temporal sulcus, the dorso-medial prefrontal cortex, and the bilateral inferior frontal gyrus. Following a partner's gaze toward an object activated the left intraparietal sulcus. After all the task-related effects were modeled out, inter-individual correlation analysis of residual time-courses was performed. Paired subjects showed more prominent correlations than non-paired subjects in the right inferior frontal gyrus, suggesting that this region is involved in sharing intention during eye contact that provides the context for joint attention.
Collapse
Affiliation(s)
- Daisuke N Saito
- Division of Cerebral Integration, Department of Cerebral Research, National Institute for Physiological Sciences Okazaki, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
393
|
Demarquay G, Lothe A, Royet JP, Costes N, Mick G, Mauguière F, Ryvlin P. Brainstem changes in 5-HT1A receptor availability during migraine attack. Cephalalgia 2010; 31:84-94. [PMID: 21036859 DOI: 10.1177/0333102410385581] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Among serotonin receptors, 5-HT(1A) receptors are implicated in the regulation of central serotoninergic tone and could be involved in the abnormal brain 5-HT turnover suspected in migraineurs. The aim of this study was to investigate 5-HT(1A) receptors' availability during migraine attacks. METHODS Ten patients suffering from odor-triggered migraine attacks and 10 control subjects were investigated using positron emission tomography (PET) and [(18)F]MPPF PET tracer, a selective 5-HT(1A) antagonist. All subjects underwent calibrated olfactory stimulations prior to the PET study. RESULTS Four patients developed a migraine attack during the PET study. In these patients, statistical parametrical mapping and region of interest analyses showed an increased [(18)F]MPPF binding potential (BP(ND)) in the pontine raphe when compared to headache-free migraineurs and control subjects. This ictal change was confirmed at the individual level in each of the four affected patients. In comparison with the headache-free migraineurs, patients with a migraine attack also showed significantly increased [(18)F]MPPF BP(ND) in the left orbitofrontal cortex, precentral gyrus and temporal pole. No significant change in [(18)F]MPPF BP(ND) was observed between headache-free migraineurs and controls. CONCLUSIONS Our results emphasize the role of 5HT(1A) receptors in the pontine raphe nuclei during the early stage of migraine attacks.
Collapse
Affiliation(s)
- G Demarquay
- Service de Neurologie, Hôpital de la Croix-Rousse France, Lyon, France.
| | | | | | | | | | | | | |
Collapse
|
394
|
Spitoni GF, Galati G, Antonucci G, Haggard P, Pizzamiglio L. Two forms of touch perception in the human brain. Exp Brain Res 2010; 207:185-95. [DOI: 10.1007/s00221-010-2446-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 09/30/2010] [Indexed: 11/30/2022]
|
395
|
Adjusting the effect of nonstationarity in cluster-based and TFCE inference. Neuroimage 2010; 54:2006-19. [PMID: 20955803 DOI: 10.1016/j.neuroimage.2010.09.088] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 09/23/2010] [Accepted: 09/30/2010] [Indexed: 11/21/2022] Open
Abstract
In nonstationary images, cluster inference depends on the local image smoothness, as clusters tend to be larger in smoother regions by chance alone. In order to correct the inference for such nonstationary, cluster sizes can be adjusted according to a local smoothness estimate. In this study, adjusted cluster sizes are used in a permutation-testing framework for both cluster-based and threshold-free cluster enhancement (TFCE) inference and tested on both simulated and real data. We find that TFCE inference is already fairly robust to nonstationarity in the data, while cluster-based inference requires an adjustment to ensure homogeneity. A group of possible multi-level adjustments are introduced and their results on simulated and real data are assessed using a new performance index. We also find that adjusting for local smoothness via a separate resampling procedure is more effective at removing nonstationarity than an adjustment via a random field theory based smoothness estimator.
Collapse
|
396
|
Willems RM, Toni I, Hagoort P, Casasanto D. Neural Dissociations between Action Verb Understanding and Motor Imagery. J Cogn Neurosci 2010; 22:2387-400. [DOI: 10.1162/jocn.2009.21386] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
According to embodied theories of language, people understand a verb like throw, at least in part, by mentally simulating throwing. This implicit simulation is often assumed to be similar or identical to motor imagery. Here we used fMRI to test whether implicit simulations of actions during language understanding involve the same cortical motor regions as explicit motor imagery. Healthy participants were presented with verbs related to hand actions (e.g., to throw) and nonmanual actions (e.g., to kneel). They either read these verbs (lexical decision task) or actively imagined performing the actions named by the verbs (imagery task). Primary motor cortex showed effector-specific activation during imagery, but not during lexical decision. Parts of premotor cortex distinguished manual from nonmanual actions during both lexical decision and imagery, but there was no overlap or correlation between regions activated during the two tasks. These dissociations suggest that implicit simulation and explicit imagery cued by action verbs may involve different types of motor representations and that the construct of “mental simulation” should be distinguished from “mental imagery” in embodied theories of language.
Collapse
Affiliation(s)
- Roel M. Willems
- 1Radboud University Nijmegen, The Netherlands
- 2University of California, Berkeley
| | - Ivan Toni
- 1Radboud University Nijmegen, The Netherlands
| | - Peter Hagoort
- 1Radboud University Nijmegen, The Netherlands
- 3Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Daniel Casasanto
- 3Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| |
Collapse
|
397
|
Silver M, Montana G, Nichols TE. False positives in neuroimaging genetics using voxel-based morphometry data. Neuroimage 2010; 54:992-1000. [PMID: 20849959 PMCID: PMC3063336 DOI: 10.1016/j.neuroimage.2010.08.049] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 08/17/2010] [Accepted: 08/19/2010] [Indexed: 12/12/2022] Open
Abstract
Voxel-wise statistical inference is commonly used to identify significant experimental effects or group differences in both functional and structural studies of the living brain. Tests based on the size of spatially extended clusters of contiguous suprathreshold voxels are also widely used due to their typically increased statistical power. In "imaging genetics", such tests are used to identify regions of the brain that are associated with genetic variation. However, concerns have been raised about the adequate control of rejection rates in studies of this type. A previous study tested the effect of a set of 'null' SNPs on brain structure and function, and found that false positive rates were well-controlled. However, no similar analysis of false positive rates in an imaging genetic study using cluster size inference has yet been undertaken. We measured false positive rates in an investigation of the effect of 700 pre-selected null SNPs on grey matter volume using voxel-based morphometry (VBM). As VBM data exhibit spatially-varying smoothness, we used both non-stationary and stationary cluster size tests in our analysis. Image and genotype data on 181 subjects with mild cognitive impairment were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI). At a nominal significance level of 5%, false positive rates were found to be well-controlled (3.9-5.6%), using a relatively high cluster-forming threshold, α(c)=0.001, on images smoothed with a 12 mm Gaussian kernel. Tests were however anticonservative at lower cluster-forming thresholds (α(c)=0.01, 0.05), and for images smoothed using a 6mm Gaussian kernel. Here false positive rates ranged from 9.8 to 67.6%. In a further analysis, false positive rates using simulated data were observed to be well-controlled across a wide range of conditions. While motivated by imaging genetics, our findings apply to any VBM study, and suggest that parametric cluster size inference should only be used with high cluster-forming thresholds and smoothness. We would advocate the use of nonparametric methods in other cases.
Collapse
Affiliation(s)
- Matt Silver
- Department of Mathematics, Imperial College London, London, UK
| | | | | | | |
Collapse
|
398
|
Dynamic properties of human brain structure: learning-related changes in cortical areas and associated fiber connections. J Neurosci 2010; 30:11670-7. [PMID: 20810887 DOI: 10.1523/jneurosci.2567-10.2010] [Citation(s) in RCA: 362] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent findings in neuroscience suggest that adult brain structure changes in response to environmental alterations and skill learning. Whereas much is known about structural changes after intensive practice for several months, little is known about the effects of single practice sessions on macroscopic brain structure and about progressive (dynamic) morphological alterations relative to improved task proficiency during learning for several weeks. Using T1-weighted and diffusion tensor imaging in humans, we demonstrate significant gray matter volume increases in frontal and parietal brain areas following only two sessions of practice in a complex whole-body balancing task. Gray matter volume increase in the prefrontal cortex correlated positively with subject's performance improvements during a 6 week learning period. Furthermore, we found that microstructural changes of fractional anisotropy in corresponding white matter regions followed the same temporal dynamic in relation to task performance. The results make clear how marginal alterations in our ever changing environment affect adult brain structure and elucidate the interrelated reorganization in cortical areas and associated fiber connections in correlation with improvements in task performance.
Collapse
|
399
|
Yanaka HT, Saito DN, Uchiyama Y, Sadato N. Neural substrates of phasic alertness: A functional magnetic resonance imaging study. Neurosci Res 2010; 68:51-8. [DOI: 10.1016/j.neures.2010.05.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 05/25/2010] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
|
400
|
Takeuchi H, Taki Y, Sassa Y, Hashizume H, Sekiguchi A, Fukushima A, Kawashima R. Regional gray matter density associated with emotional intelligence: evidence from voxel-based morphometry. Hum Brain Mapp 2010; 32:1497-510. [PMID: 20740644 DOI: 10.1002/hbm.21122] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 06/15/2010] [Accepted: 06/16/2010] [Indexed: 12/17/2022] Open
Abstract
Emotional Intelligence (EI) is the ability to monitor one's own and others' emotions and the ability to use the gathered information to guide one's thinking and action. EI is thought to be important for social life making it a popular subject of research. However, despite the existence of previous functional imaging studies on EI, the relationship between regional gray matter morphology and EI has never been investigated. We used voxel-based morphometry (VBM) and a questionnaire (Emotional Intelligence Scale) to measure EI to identify the gray matter correlates of each factor of individual EI (Intrapersonal factor, Interpersonal factor, Situation Management factor). We found significant negative relationships between the Intrapersonal factor and regional gray matter density (rGMD) (1-a) in an anatomical cluster that included the right anterior insula, (1-b) in the right cerebellum, (1-c) in an anatomical cluster that extends from the cuneus to the precuneus, (1-d) and in an anatomical cluster that extends from the medial prefrontal cortex to the left lateral fronto-polar cortex. We also found significant positive correlations between the Interpersonal factor and rGMD in the right superior temporal sulcus, and significant negative correlations between the Situation Management factor and rGMD in the ventromedial prefrontal cortex. These findings suggest that each factor of EI in healthy young people is related to the specific brain regions known to be involved in the networks of social cognition and self-related recognition, and in the somatic marker circuitry.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | | | | | | | | | | | | |
Collapse
|