351
|
Drilling for Oil: Tumor-Surrounding Adipocytes Fueling Cancer. Trends Cancer 2020; 6:593-604. [PMID: 32610069 DOI: 10.1016/j.trecan.2020.03.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
Over the past decade, it has become apparent that metabolic reprogramming is a key event in tumor progression. The tumor microenvironment (TME) is a source of metabolites for tumor cells. Lipid-filled mature adipocytes are frequently found in proximity to invasive human tumors and release free fatty acids (FFAs) through lipolysis. These FFAs are taken up by tumor cells and used to promote tumor progression by mechanisms that include mitochondrial fatty acid oxidation (FAO). This review discusses recent advances in our understanding of this metabolic symbiosis between adipocytes and cancer cells and underlines the differences in this metabolic crosstalk between the various types of cancer and their localization.
Collapse
|
352
|
PGC-1 α, Inflammation, and Oxidative Stress: An Integrative View in Metabolism. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1452696. [PMID: 32215168 PMCID: PMC7085407 DOI: 10.1155/2020/1452696] [Citation(s) in RCA: 365] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
Peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α is a transcriptional coactivator described as a master regulator of mitochondrial biogenesis and function, including oxidative phosphorylation and reactive oxygen species detoxification. PGC-1α is highly expressed in tissues with high energy demands, and it is clearly associated with the pathogenesis of metabolic syndrome and its principal complications including obesity, type 2 diabetes mellitus, cardiovascular disease, and hepatic steatosis. We herein review the molecular pathways regulated by PGC-1α, which connect oxidative stress and mitochondrial metabolism with inflammatory response and metabolic syndrome. PGC-1α regulates the expression of mitochondrial antioxidant genes, including manganese superoxide dismutase, catalase, peroxiredoxin 3 and 5, uncoupling protein 2, thioredoxin 2, and thioredoxin reductase and thus prevents oxidative injury and mitochondrial dysfunction. Dysregulation of PGC-1α alters redox homeostasis in cells and exacerbates inflammatory response, which is commonly accompanied by metabolic disturbances. During inflammation, low levels of PGC-1α downregulate mitochondrial antioxidant gene expression, induce oxidative stress, and promote nuclear factor kappa B activation. In metabolic syndrome, which is characterized by a chronic low grade of inflammation, PGC-1α dysregulation modifies the metabolic properties of tissues by altering mitochondrial function and promoting reactive oxygen species accumulation. In conclusion, PGC-1α acts as an essential node connecting metabolic regulation, redox control, and inflammatory pathways, and it is an interesting therapeutic target that may have significant benefits for a number of metabolic diseases.
Collapse
|
353
|
Inhibition of Uncoupling Protein 2 Enhances the Radiosensitivity of Cervical Cancer Cells by Promoting the Production of Reactive Oxygen Species. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5135893. [PMID: 32190174 PMCID: PMC7073473 DOI: 10.1155/2020/5135893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/14/2019] [Accepted: 02/14/2020] [Indexed: 12/17/2022]
Abstract
Objective The mechanism of enhanced radiosensitivity induced by mitochondrial uncoupling protein UCP2 was investigated in HeLa cells to provide a theoretical basis as a novel target for cervical cancer treatment. Methods HeLa cells were irradiated with 4 Gy X-radiation at 1.0 Gy/min. The expression of UCP2 mRNA and protein was assayed by real-time quantitative polymerase chain reaction and western blotting. UCP2 siRNA and negative control siRNA fragments were constructed and transfected into HeLa cells 24 h after irradiation. The effect of UCP2 silencing and irradiation on HeLa cells was determined by colony formation, CCK-8 cell viability, γH2AX immunofluorescence assay of DNA damage, Annexin V-FITC/PI apoptosis assay, and propidium iodide cell cycle assay. The effects on mitochondrial structure and function were investigated with fluorescent probes including dichlorodihydrofluorescein diacetate (DCFH-DA) assay of reactive oxygen species (ROS), rhodamine 123, and MitoTracker Green assay of mitochondrial structure and function. Results Irradiation upregulated UCP2 expression, and UCP2 knockdown decreased the survival of irradiated HeLa cells. UCP2 silencing sensitized HeLa cells to irradiation-induced DNA damage and led to increased apoptosis, cell cycle arrest in G2/M, and increased mitochondrial ROS. Increased radiosensitivity was associated with an activation of P53, decreased Bcl-2, Bcl-xl, cyclin B, CDC2, Ku70, and Rad51 expression, and increased Apaf-1, cytochrome c, caspase-3, and caspase-9 expression. Conclusions UCP2 inhibition augmented the radiosensitivity of cervical cancer cells, and it may be a potential target of radiotherapy of advanced cervical cancer.
Collapse
|
354
|
A high-fat diet enriched in medium chain triglycerides triggers hepatic thermogenesis and improves metabolic health in lean and obese mice. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158582. [DOI: 10.1016/j.bbalip.2019.158582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/22/2019] [Accepted: 12/01/2019] [Indexed: 02/07/2023]
|
355
|
Lorenzo-Almorós A, Cepeda-Rodrigo JM, Lorenzo Ó. Diabetic cardiomyopathy. Rev Clin Esp 2020; 222:S0014-2565(20)30025-4. [PMID: 35115137 DOI: 10.1016/j.rce.2019.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 01/09/2023]
Abstract
The relationship between diabetes and heart failure is complex and bidirectional. Nevertheless, the existence of a cardiomyopathy attributable exclusively to diabetes has been and is still the subject of controversy, due, among other reasons, to a lack of a consensus definition. There is also no unanimous agreement in terms of the physiopathogenic findings that need to be present in the definition of diabetic cardiomyopathy or on its classification, which, added to the lack of diagnostic methods and treatments specific for this disease, limits its general understanding. Studies conducted on diabetic cardiomyopathy, however, suggest a unique physiopathogenesis different from that of other diseases. Similarly, new treatments have been shown to play a potential role in this disease. The following review provides an update on diabetic cardiomyopathy.
Collapse
Affiliation(s)
- A Lorenzo-Almorós
- Servicio de Medicina Interna, Fundación Jiménez Díaz. Madrid, España.
| | - J M Cepeda-Rodrigo
- Servicio de Medicina Interna, Hospital Vega Baja, Orihuela, Alicante, España
| | - Ó Lorenzo
- Laboratorio de Renal, Vascular y Diabetes, IIS Fundación Jiménez-Díaz, Universidad Autónoma de Madrid, Madrid, España
| |
Collapse
|
356
|
Semenova AA, Samartsev VN, Pavlova SI, Dubinin MV. ω-Hydroxypalmitic and α,ω-Hexadecanedioic Acids As Activators of Free Respiration and Inhibitors of H2O2 Generation in Liver Mitochondria. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2020. [DOI: 10.1134/s1990747819060084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
357
|
Childress ES, Salamoun JM, Hargett SR, Alexopoulos SJ, Chen SY, Shah DP, Santiago-Rivera J, Garcia CJ, Dai Y, Tucker SP, Hoehn KL, Santos WL. [1,2,5]Oxadiazolo[3,4- b]pyrazine-5,6-diamine Derivatives as Mitochondrial Uncouplers for the Potential Treatment of Nonalcoholic Steatohepatitis. J Med Chem 2020; 63:2511-2526. [PMID: 32017849 DOI: 10.1021/acs.jmedchem.9b01440] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Small molecule mitochondrial uncouplers are emerging as a new class of molecules for the treatment of nonalcoholic steatohepatitis. We utilized BAM15, a potent protonophore that uncouples the mitochondria without depolarizing the plasma membrane, as a lead compound for structure-activity profiling. Using oxygen consumption rate as an assay for determining uncoupling activity, changes on the 5- and 6-position of the oxadiazolopyrazine core were introduced. Our studies suggest that unsymmetrical aniline derivatives bearing electron withdrawing groups are preferred compared to the symmetrical counterparts. In addition, alkyl substituents are not tolerated, and the N-H proton of the aniline ring is responsible for the protonophore activity. In particular, compound 10b had an EC50 value of 190 nM in L6 myoblast cells. In an in vivo model of NASH, 10b decreased liver triglyceride levels and showed improvement in fibrosis, inflammation, and plasma ALT. Taken together, our studies indicate that mitochondrial uncouplers have potential for the treatment of NASH.
Collapse
Affiliation(s)
- Elizabeth S Childress
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Joseph M Salamoun
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stefan R Hargett
- Departments of Pharmacology and Medicine, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Stephanie J Alexopoulos
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Sing-Young Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Divya P Shah
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - José Santiago-Rivera
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Christopher J Garcia
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yumin Dai
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Simon P Tucker
- Continuum Biosciences, Pty Ltd., 2035 Sydney, Australia.,Continuum Biosciences Inc., Boston, Massachusetts 02116, United States
| | - Kyle L Hoehn
- Departments of Pharmacology and Medicine, University of Virginia, Charlottesville, Virginia 22908, United States.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
358
|
|
359
|
Bai J, Liu Z, Liu J, Zhang S, Tian Y, Zhang Y, Ren L, Kong D. Mitochondrial metabolic study guided by proteomics analysis in hepatocellular carcinoma cells surviving long-term incubation with the highest dose of sorafenib. Aging (Albany NY) 2019; 11:12452-12475. [PMID: 31881007 PMCID: PMC6949094 DOI: 10.18632/aging.102582] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/26/2019] [Indexed: 04/19/2023]
Abstract
Sorafenib is the standard first-line systemic therapy for hepatocellular carcinoma (HCC). However, the low objective response rates in clinical studies suggest the existence of certain HCC cells that are inherently insensitive to sorafenib. To understand the molecular basis of insensitivity of HCC cells to sorafenib, this study developed 3 kinds of insensitive HCC cells through exposure to various concentrations of sorafenib and performed a quantitative proteome analysis of the surviving HepG2 cells. 520 unique proteins were concentration-dependently upregulated by sorafenib. Bioinformatics-assisted analysis of 520 proteins revealed that the metabolic pathways involved in central carbon metabolism were significantly enriched, and 102 mitochondrial proteins, especially components of the electron transport chain (ETC), were incrementally upregulated in the 3 kinds of insensitive cells. Conversely, we identified a rapid holistic inhibitory effect of sorafenib on mitochondrial function by the direct targeting of the complex I-linked electron transport and the uncoupling of mitochondrial oxidative phosphorylation (OXHPOS) in HCC cells. Core metabolic reprogramming involved in a compensatory upregulation of OXHPOS combined with elevated glycolysis supports the survival of HCC cells under the highest dose of sorafenib treatment. Altogether, our work thus elaborates an ETC inhibitor and unveils the proteomic landscape of metabolic reprogramming in drug insensitivity.
Collapse
Affiliation(s)
- Jing Bai
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Ziqi Liu
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Jiang Liu
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Saihang Zhang
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Yuan Tian
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Yueshan Zhang
- Department of Hepatobiliary Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Leiming Ren
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Dezhi Kong
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| |
Collapse
|
360
|
Najafi M, Hooshangi Shayesteh MR, Mortezaee K, Farhood B, Haghi-Aminjan H. The role of melatonin on doxorubicin-induced cardiotoxicity: A systematic review. Life Sci 2019; 241:117173. [PMID: 31843530 DOI: 10.1016/j.lfs.2019.117173] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/30/2019] [Accepted: 12/11/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE Doxorubicin, as an effective chemotherapeutic drug, is commonly used for combating various solid and hematological tumors. However, doxorubicin-induced cardiotoxicity is considered as a serious adverse effect, and it limits the clinical use of this chemotherapeutic drug. The use of melatonin can lead to a decrease in the cardiotoxic effect induced by doxorubicin. The aim of this review was to evaluate the potential role of melatonin in the prevention of doxorubicin-induced cardiotoxicity. METHODS This review was conducted by a full systematic search strategy based on PRISMA guidelines for the identification of relevant literature in the electronic databases of PubMed, Web of Science, Embase, and Scopus up to January 2019 using search terms in the titles and abstracts. 286 articles were screened in accordance with our inclusion and exclusion criteria. Finally, 28 articles were selected in this systematic review. RESULTS The findings demonstrated that doxorubicin-treated groups had increased mortality, decreased body weight and heart weight, and increased ascites compared to the control groups; the co-administration of melatonin revealed an opposite pattern compared to the doxorubicin-treated groups. Also, this chemotherapeutic agent can lead to biochemical and histopathological changes; as for most of the cases, these alterations were reversed near to normal levels (control groups) by melatonin co-administration. Melatonin exerts these protection effects through mechanisms of anti-oxidant, anti-apoptosis, anti-inflammatory, and mitochondrial function. CONCLUSION The results of this systematic review indicated that co-administration of melatonin ameliorates the doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
361
|
Application of extracellular flux analysis for determining mitochondrial function in mammalian oocytes and early embryos. Sci Rep 2019; 9:16778. [PMID: 31727902 PMCID: PMC6856134 DOI: 10.1038/s41598-019-53066-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/12/2019] [Indexed: 12/11/2022] Open
Abstract
Mitochondria provide the major source of ATP for mammalian oocyte maturation and early embryo development. Oxygen Consumption Rate (OCR) is an established measure of mitochondrial function. OCR by mammalian oocytes and embryos has generally been restricted to overall uptake and detailed understanding of the components of OCR dedicated to specific molecular events remains lacking. Here, extracellular flux analysis (EFA) was applied to small groups of bovine, equine, mouse and human oocytes and bovine early embryos to measure OCR and its components. Using EFA, we report the changes in mitochondrial activity during the processes of oocyte maturation, fertilisation, and pre-implantation development to blastocyst stage in response to physiological demands in mammalian embryos. Crucially, we describe the real time partitioning of overall OCR to spare capacity, proton leak, non-mitochondrial and coupled respiration – showing that while activity changes over the course of development in response to physiological demand, the overall efficiency is unchanged. EFA is shown to be able to measure mitochondrial function in small groups of mammalian oocytes and embryos in a manner which is robust, rapid and easy to use. EFA is non-invasive and allows real-time determination of the impact of compounds on OCR, facilitating an assessment of the components of mitochondrial activity. This provides proof-of-concept for EFA as an accessible system with which to study mammalian oocyte and embryo metabolism.
Collapse
|
362
|
Feng J, Ma Y, Chen Z, Hu J, Yang Q, Ding G. Mitochondrial pyruvate carrier 2 mediates mitochondrial dysfunction and apoptosis in high glucose-treated podocytes. Life Sci 2019; 237:116941. [DOI: 10.1016/j.lfs.2019.116941] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/05/2019] [Accepted: 10/06/2019] [Indexed: 01/14/2023]
|
363
|
Tolstun DA, Knyazer A, Tushynska TV, Dubiley TA, Bezrukov VV, Fraifeld VE, Muradian KK. Metabolic remodelling of mice by hypoxic-hypercapnic environment: imitating the naked mole-rat. Biogerontology 2019; 21:143-153. [DOI: 10.1007/s10522-019-09848-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/22/2019] [Indexed: 01/09/2023]
|
364
|
Chazarin B, Ziemianin A, Evans AL, Meugnier E, Loizon E, Chery I, Arnemo JM, Swenson JE, Gauquelin-Koch G, Simon C, Blanc S, Lefai E, Bertile F. Limited Oxidative Stress Favors Resistance to Skeletal Muscle Atrophy in Hibernating Brown Bears ( Ursus Arctos). Antioxidants (Basel) 2019; 8:antiox8090334. [PMID: 31443506 PMCID: PMC6770786 DOI: 10.3390/antiox8090334] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/18/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress, which is believed to promote muscle atrophy, has been reported to occur in a few hibernators. However, hibernating bears exhibit efficient energy savings and muscle protein sparing, despite long-term physical inactivity and fasting. We hypothesized that the regulation of the oxidant/antioxidant balance and oxidative stress could favor skeletal muscle maintenance in hibernating brown bears. We showed that increased expressions of cold-inducible proteins CIRBP and RBM3 could favor muscle mass maintenance and alleviate oxidative stress during hibernation. Downregulation of the subunits of the mitochondrial electron transfer chain complexes I, II, and III, and antioxidant enzymes, possibly due to the reduced mitochondrial content, indicated a possible reduction of the production of reactive oxygen species in the hibernating muscle. Concomitantly, the upregulation of cytosolic antioxidant systems, under the control of the transcription factor NRF2, and the maintenance of the GSH/GSSG ratio suggested that bear skeletal muscle is not under a significant oxidative insult during hibernation. Accordingly, lower levels of oxidative damage were recorded in hibernating bear skeletal muscles. These results identify mechanisms by which limited oxidative stress may underlie the resistance to skeletal muscle atrophy in hibernating brown bears. They may constitute therapeutic targets for the treatment of human muscle atrophy.
Collapse
Affiliation(s)
- Blandine Chazarin
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-670000 Strasbourg, France
- Centre National d'Etudes Spatiales, CNES, F-75001 Paris, France
| | - Anna Ziemianin
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-670000 Strasbourg, France
- Centre National d'Etudes Spatiales, CNES, F-75001 Paris, France
| | - Alina L Evans
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, NO-2480 Koppang, Norway
| | - Emmanuelle Meugnier
- CarMen Laboratory, INSERM 1060, INRA 1397, University of Lyon, F-69600 Oullins, France
| | - Emmanuelle Loizon
- CarMen Laboratory, INSERM 1060, INRA 1397, University of Lyon, F-69600 Oullins, France
| | - Isabelle Chery
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-670000 Strasbourg, France
| | - Jon M Arnemo
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, NO-2480 Koppang, Norway
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Jon E Swenson
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NO-1432 Ås, Norway
- Norwegian Institute for Nature Research, NO-7485 Trondheim, Norway
| | | | - Chantal Simon
- CarMen Laboratory, INSERM 1060, INRA 1397, University of Lyon, F-69600 Oullins, France
| | - Stéphane Blanc
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-670000 Strasbourg, France
| | - Etienne Lefai
- CarMen Laboratory, INSERM 1060, INRA 1397, University of Lyon, F-69600 Oullins, France
- Université d'Auvergne, INRA, UNH UMR1019, F-63122 Saint-Genès Champanelle, France
| | - Fabrice Bertile
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-670000 Strasbourg, France.
| |
Collapse
|
365
|
Absence of Uncoupling Protein-3 at Thermoneutrality Impacts Lipid Handling and Energy Homeostasis in Mice. Cells 2019; 8:cells8080916. [PMID: 31426456 PMCID: PMC6721699 DOI: 10.3390/cells8080916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022] Open
Abstract
The role of uncoupling protein-3 (UCP3) in energy and lipid metabolism was investigated. Male wild-type (WT) and UCP3-null (KO) mice that were housed at thermoneutrality (30 °C) were used as the animal model. In KO mice, the ability of skeletal muscle mitochondria to oxidize fatty acids (but not pyruvate or succinate) was reduced. At whole animal level, adult KO mice presented blunted resting metabolic rates, energy expenditure, food intake, and the use of lipids as metabolic substrates. When WT and KO mice were fed with a standard/low-fat diet for 80 days, since weaning, they showed similar weight gain and body composition. Interestingly, KO mice showed lower fat accumulation in visceral adipose tissue and higher ectopic fat accumulation in liver and skeletal muscle. When fed with a high-fat diet for 80 days, since weaning, KO mice showed enhanced energy efficiency and an increased lipid gain (thus leading to a change in body composition between the two genotypes). We conclude that UCP3 plays a role in energy and lipid homeostasis and in preserving lean tissues by lipotoxicity, in mice that were housed at thermoneutrality.
Collapse
|
366
|
Liu Y, Sun L, Zheng L, Su M, Liu H, Wei Y, Li D, Wang Y, Dai C, Gong Y, Zhao C, Li Y. Spexin protects cardiomyocytes from hypoxia-induced metabolic and mitochondrial dysfunction. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:25-33. [DOI: 10.1007/s00210-019-01708-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022]
|
367
|
Olivares-Marin IK, González-Hernández JC, Madrigal-Perez LA. Resveratrol cytotoxicity is energy-dependent. J Food Biochem 2019; 43:e13008. [PMID: 31385323 DOI: 10.1111/jfbc.13008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/03/2019] [Accepted: 07/21/2019] [Indexed: 12/16/2022]
Abstract
Resveratrol is a phytochemical that may promote health. However, it has also been reported to be a toxic compound. The molecular mechanism by which resveratrol acts remains unclear. The inhibition of the oxidative phosphorylation (OXPHOS) pathway appears to be the molecular mechanism of resveratrol. Taking this into account, we propose that the cytotoxic properties of resveratrol depend on the energy (e.g., carbohydrates, lipids, and proteins) availability in the cells. In this regard, in a condition with low energy accessibility, resveratrol could enhance ATP starvation to lethal levels. In contrast, when cells are supplemented with high quantities of energy and resveratrol, the inhibition of OXPHOS might produce a low-energy environment, mimicking the beneficial effects of caloric restriction. This review suggests that investigating a possible complex relationship between caloric intake and the differential effects of resveratrol on OXPHOS may be justified. PRACTICAL APPLICATIONS: A low-calorie diet accompanied by significant levels of resveratrol might modify cellular bioenergetics, which could impact cellular viability and enhance the anti-cancer properties of resveratrol.
Collapse
Affiliation(s)
| | | | - Luis Alberto Madrigal-Perez
- Laboratorio de Biotecnología Microbiana, Instituto Tecnológico Superior de Ciudad Hidalgo, Ciudad Hidalgo, Mexico
| |
Collapse
|
368
|
Li J, Jiang R, Cong X, Zhao Y. UCP2 gene polymorphisms in obesity and diabetes, and the role of UCP2 in cancer. FEBS Lett 2019; 593:2525-2534. [PMID: 31330574 DOI: 10.1002/1873-3468.13546] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 12/16/2022]
Abstract
Mitochondria are the primary sites for ATP synthesis and free radical generation in organisms. Abnormal mitochondrial metabolism contributes to many diseases, including obesity, diabetes and cancer. UCP2 is an ion/anion transporter located in mitochondrial inner membrane, and has a crucial role in regulating oxidative stress, cellular metabolism, cell proliferation and cell death. Polymorphisms of the UCP2 gene have been associated with diabetes and obesity because UCP2 is involved in energy expenditure and insulin secretion. Moreover, UCP2 gene expression is often amplified in cancers, and increased UCP2 expression contributes to cancer growth, cancer metabolism, anti-apoptosis and drug resistance. The present review summarizes the latest findings of UCP2 with respect to obesity, diabetes and cancer.
Collapse
Affiliation(s)
- Jinran Li
- Department of Dermatology, China-Japan Union Hospital, Jilin University, Changchun, China.,Department of Pharmacology, Toxicology & Neurosciences, LSU Health Sciences Center, Shreveport, LA, USA
| | - Rihua Jiang
- Department of Dermatology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Xianling Cong
- Department of Dermatology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yunfeng Zhao
- Department of Pharmacology, Toxicology & Neurosciences, LSU Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
369
|
Galli C, Colangelo M, Pedrazzi G, Guizzardi S. The Response of Osteoblasts and Bone to Sinusoidal Electromagnetic Fields: Insights from the Literature. Calcif Tissue Int 2019; 105:127-147. [PMID: 30997574 DOI: 10.1007/s00223-019-00554-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/11/2019] [Indexed: 12/23/2022]
Abstract
Electromagnetic fields (EMFs) have been proposed as a tool to ameliorate bone formation and healing. Despite their promising results, however, they have failed to enter routine clinical protocols to treat bone conditions where higher bone mass has to be achieved. This is no doubt also due to a fundamental lack of knowledge and understanding on their effects and the optimal settings for attaining the desired therapeutic effects. This review analysed the available in vitro and in vivo studies that assessed the effects of sinusoidal EMFs (SEMFs) on bone and bone cells, comparing the results and investigating possible mechanisms of action by which SEMFs interact with tissues and cells. The effects of SEMFs on bone have not been as thoroughly investigated as pulsed EMFs; however, abundant evidence shows that SEMFs affect the proliferation and differentiation of osteoblastic cells, acting on multiple cellular mechanisms. SEMFs have also proven to increase bone mass in rodents under normal conditions and in osteoporotic animals.
Collapse
Affiliation(s)
- C Galli
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - M Colangelo
- Department of Medicine and Surgery, Histology and Embryology Lab, University of Parma, Parma, Italy
| | - G Pedrazzi
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, Via Volturno 39, 43126, Parma, Italy
| | - S Guizzardi
- Department of Medicine and Surgery, Histology and Embryology Lab, University of Parma, Parma, Italy
| |
Collapse
|
370
|
Inserte J, Aluja D, Barba I, Ruiz-Meana M, Miró E, Poncelas M, Vilardosa Ú, Castellano J, Garcia-Dorado D. High-fat diet improves tolerance to myocardial ischemia by delaying normalization of intracellular PH at reperfusion. J Mol Cell Cardiol 2019; 133:164-173. [DOI: 10.1016/j.yjmcc.2019.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/15/2019] [Accepted: 06/01/2019] [Indexed: 01/22/2023]
|
371
|
Mitochondrial Uncoupling: A Key Controller of Biological Processes in Physiology and Diseases. Cells 2019; 8:cells8080795. [PMID: 31366145 PMCID: PMC6721602 DOI: 10.3390/cells8080795] [Citation(s) in RCA: 293] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial uncoupling can be defined as a dissociation between mitochondrial membrane potential generation and its use for mitochondria-dependent ATP synthesis. Although this process was originally considered a mitochondrial dysfunction, the identification of UCP-1 as an endogenous physiological uncoupling protein suggests that the process could be involved in many other biological processes. In this review, we first compare the mitochondrial uncoupling agents available in term of mechanistic and non-specific effects. Proteins regulating mitochondrial uncoupling, as well as chemical compounds with uncoupling properties are discussed. Second, we summarize the most recent findings linking mitochondrial uncoupling and other cellular or biological processes, such as bulk and specific autophagy, reactive oxygen species production, protein secretion, cell death, physical exercise, metabolic adaptations in adipose tissue, and cell signaling. Finally, we show how mitochondrial uncoupling could be used to treat several human diseases, such as obesity, cardiovascular diseases, or neurological disorders.
Collapse
|
372
|
Hoias Teixeira M, Menegon Arantes G. Balanced internal hydration discriminates substrate binding to respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:541-548. [DOI: 10.1016/j.bbabio.2019.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/16/2019] [Accepted: 05/28/2019] [Indexed: 12/16/2022]
|
373
|
Amaral-Machado L, Oliveira WN, Alencar ÉN, Cruz AKM, Rocha HAO, Ebeid K, Salem AK, Egito EST. Bullfrog oil (Rana catesbeiana Shaw) induces apoptosis, in A2058 human melanoma cells by mitochondrial dysfunction triggered by oxidative stress. Biomed Pharmacother 2019; 117:109103. [PMID: 31203130 DOI: 10.1016/j.biopha.2019.109103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 12/18/2022] Open
Abstract
Bullfrog oil, an animal oil extracted from the adipose tissue of Rana catesbeiana Shaw, showed promising cytotoxic activity against melanoma cells and, therefore, has the potential to become a pharmaceutical active compound. However, there is a lack of information regarding the pathways involved in its pharmacological activity. Thus, the aim of this study was to investigate and elucidate the cytotoxic effect of this oil against A2058 human melanoma cells. The cytotoxic potential was evaluated by the MTT assay, the cell cycle analysis and the cell death assay. In addition, the apoptotic potential was investigated by (i) the DNA fragmentation using propidium iodide staining analysis, (ii) the evaluation of mitochondrial membrane potential and (iii) the determination of intracellular Reactive Oxygen Species (ROS) level. The results showed that the bullfrog oil was able to promote a time-dependent cytotoxic effect, decreasing cell viability to 38% after 72 h of treatment without affecting the cell cycle. Additionally, the bullfrog oil induced the apoptosis in A2058 cells, increasing up to 50 ± 13% of the intracellular ROS level, maintaining the DNA integrity and promoting an approximate decrease of 35 ± 5% in the mitochondrial membrane potential. It can be concluded that the in vitro cytotoxic effect of the bullfrog oil in A2058 human melanoma cells is mediated by oxidative stress that induces mitochondrial dysfunction, triggering the apoptosis. These unprecedented results highlight the pharmacological potential of bullfrog oil and provide important information to support studies on the development of new pharmaceutical products for complementary and alternative treatments for melanoma.
Collapse
Affiliation(s)
- Lucas Amaral-Machado
- Graduation Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | | | - Éverton N Alencar
- Graduation Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | | | | | - Kareem Ebeid
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA; Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Aliasger K Salem
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA
| | - Eryvaldo Sócrates T Egito
- Graduation Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil; Graduation Program in Pharmaceutical Sciences, UFRN, Natal, Brazil.
| |
Collapse
|
374
|
Occlusal interference induces oxidative stress and increases the expression of UCP3 in the masseter muscle: A rat model. Arch Oral Biol 2019; 102:249-255. [PMID: 31096116 DOI: 10.1016/j.archoralbio.2019.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To determine whether occlusal alteration contributes to masticatory muscle damage by inducing oxidative stress. DESIGN Thirty Sprague-Dawley rats were randomly divided into six groups, including occlusal interference groups (3 days, 7 days, 14 days, 21 days, and removal for 3 days) and a sham group. A rat experimental model of occlusal interference was generated by a 0.6-mm unilateral bite-raise. The rats were euthanised for evaluation of histologic changes in the masseter muscles using haematoxylin-eosin staining. To further investigate the role of oxidative stress and uncoupling protein (UCP3) in the development of occlusal dysfunction-induced masseter damage, levels of UCP3 protein were measured by western blot analysis. RESULTS Compared with the sham group, the connective tissue of the masseter muscle was extended partially and inflammatory cells appeared following the induction of malocclusion. With respect to the oxidative stress markers, there were increases in malondialdehyde (MDA) content but decreases in superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities; furthermore, the expression of UCP3 was upregulated. After eliminating the occlusal interference for 3 days, the degree of inflammation was substantially alleviated, the MDA content decreased, and SOD and GPX activities increased. The expression of UCP3 decreased. CONCLUSIONS Occlusal interference induces oxidative stress in the masseter muscle, regulated by UCP3. Overall, these findings have significant implications for the understanding of how occlusal dysfunction causes muscle fatigue and pain.
Collapse
|
375
|
Zhao RZ, Jiang S, Zhang L, Yu ZB. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med 2019; 44:3-15. [PMID: 31115493 PMCID: PMC6559295 DOI: 10.3892/ijmm.2019.4188] [Citation(s) in RCA: 523] [Impact Index Per Article: 87.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/19/2019] [Indexed: 12/18/2022] Open
Abstract
The mammalian mitochondrial electron transport chain (ETC) includes complexes I-IV, as well as the electron transporters ubiquinone and cytochrome c. There are two electron transport pathways in the ETC: Complex I/III/IV, with NADH as the substrate and complex II/III/IV, with succinic acid as the substrate. The electron flow is coupled with the generation of a proton gradient across the inner membrane and the energy accumulated in the proton gradient is used by complex V (ATP synthase) to produce ATP. The first part of this review briefly introduces the structure and function of complexes I-IV and ATP synthase, including the specific electron transfer process in each complex. Some electrons are directly transferred to O2 to generate reactive oxygen species (ROS) in the ETC. The second part of this review discusses the sites of ROS generation in each ETC complex, including sites IF and IQ in complex I, site IIF in complex II and site IIIQo in complex III, and the physiological and pathological regulation of ROS. As signaling molecules, ROS play an important role in cell proliferation, hypoxia adaptation and cell fate determination, but excessive ROS can cause irreversible cell damage and even cell death. The occurrence and development of a number of diseases are closely related to ROS overproduction. Finally, proton leak and uncoupling proteins (UCPS) are discussed. Proton leak consists of basal proton leak and induced proton leak. Induced proton leak is precisely regulated and induced by UCPs. A total of five UCPs (UCP1-5) have been identified in mammalian cells. UCP1 mainly plays a role in the maintenance of body temperature in a cold environment through non-shivering thermogenesis. The core role of UCP2-5 is to reduce oxidative stress under certain conditions, therefore exerting cytoprotective effects. All diseases involving oxidative stress are associated with UCPs.
Collapse
Affiliation(s)
- Ru-Zhou Zhao
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shuai Jiang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lin Zhang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhi-Bin Yu
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
376
|
Upregulation of UCP2 Expression Protects against LPS-Induced Oxidative Stress and Apoptosis in Cardiomyocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2758262. [PMID: 31182990 PMCID: PMC6512061 DOI: 10.1155/2019/2758262] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/21/2019] [Accepted: 03/10/2019] [Indexed: 12/17/2022]
Abstract
Uncoupling protein 2 (UCP2) has a cardioprotective role under septic conditions, but the underlying mechanism remains unclear. This study aimed at investigating the effects of UCP2 on the oxidative stress and apoptosis of cardiomyocytes induced by lipopolysaccharide (LPS). First, LPS increased UCP2 expression in cardiomyocytes in a time-dependent manner. LPS increased the production of lactate dehydrogenase (LDH), reactive oxygen species (ROS), and malondialdehyde (MDA) and decreased the level of superoxide dismutase (SOD). However, UCP2 knockdown increased the LPS-induced cardiac injury and oxidative stress. In addition, LPS damaged the mitochondrial ultrastructure and led to the disruption of mitochondrial membrane potential (MMP), as well as the release of mitochondrial cytochrome c. UCP2 knockdown aggravated mitochondrial injury and the release of mitochondrial cytochrome c. LPS increased the protein levels of Bax and cleaved-caspase-3, decreased the protein level of Bcl-2, and upregulated the protein level of mitogen-activated protein kinase. However, upon UCP2 knockdown, the protein levels of Bax and cleaved-caspase-3 increased even further, and the protein level of Bcl-2 was further decreased. The protein level of phosphorylated p38 was also further enhanced. Thus, UCP2 protects against LPS-induced oxidative stress and apoptosis in cardiomyocytes.
Collapse
|
377
|
Mitochondrial F-ATP Synthase and Its Transition into an Energy-Dissipating Molecular Machine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8743257. [PMID: 31178976 PMCID: PMC6501240 DOI: 10.1155/2019/8743257] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/18/2019] [Indexed: 01/27/2023]
Abstract
The mitochondrial F-ATP synthase is the principal energy-conserving nanomotor of cells that harnesses the proton motive force generated by the respiratory chain to make ATP from ADP and phosphate in a process known as oxidative phosphorylation. In the energy-converting membranes, F-ATP synthase is a multisubunit complex organized into a membrane-extrinsic F1 sector and a membrane-intrinsic FO domain, linked by central and peripheral stalks. Due to its essential role in the cellular metabolism, malfunction of F-ATP synthase has been associated with a variety of pathological conditions, and the enzyme is now considered as a promising drug target for multiple disease conditions and for the regulation of energy metabolism. We discuss structural and functional features of mitochondrial F-ATP synthase as well as several conditions that partially or fully inhibit the coupling between the F1 catalytic activities and the FO proton translocation, thus decreasing the cellular metabolic efficiency and transforming the enzyme into an energy-dissipating structure through molecular mechanisms that still remain to be defined.
Collapse
|
378
|
Yu Q, Zhang M, Qian L, Wen D, Wu G. Luteolin attenuates high glucose-induced podocyte injury via suppressing NLRP3 inflammasome pathway. Life Sci 2019; 225:1-7. [PMID: 30935950 DOI: 10.1016/j.lfs.2019.03.073] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/19/2019] [Accepted: 03/29/2019] [Indexed: 12/30/2022]
Abstract
AIMS Diabetic nephropathy is a growing health concern, which is reported to be associated with inflammation. Luteolin has been explored for the treatment of some diabetic complications. Although several studies have verified the effect of luteolin on diabetic nephropathy, the mechanism by which the therapeutic effects of luteolin on diabetic nephropathy has not been established. Therefore, we aimed to investigate the effect of luteolin on diabetic nephropathy and its underlying mechanism. MAIN METHODS We used western blot, Real-time PCR, immunofluorescence and flow cytometry to analyze the effects of luteolin on podocyte injury and NOD-like receptor family and pyrin domain-containing protein 3 (NLRP3) inflammasome activation in high glucose (HG) condition. Reactive oxygen species (ROS) generation was measured by flow cytometry and malondialdehyde (MDA) level. To investigate the potential mechanism, we examined cell apoptosis upon transfection of siNLRP3. KEY FINDINGS We showed that luteolin treatment could protect podocyte against HG-induced cell apoptotic and mitochondrial membrane potential collapse. In addition, luteolin significantly reduced NLRP3 inflammasome formation and subsequent interleukin-1β (IL-1β) secretion in HG-induced MPC-5 cells. Interestingly, siNLRP3 abolished the effect of luteolin on cell apoptosis, suggesting that the anti-apoptotic effect was found to be mostly related to NLRP3 inflammasome. SIGNIFICANCE In summary, our data demonstrated the abilities of luteolin to inhibit podocyte injury and NLRP3 inflammasome activation, which could be used in the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Qian Yu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Minda Zhang
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Lifen Qian
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Dan Wen
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Guanzhong Wu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
379
|
Dhalla NS, Ganguly PK, Bhullar SK, Tappia PS. Role of catecholamines in the pathogenesis of diabetic cardiomyopathy 1. Can J Physiol Pharmacol 2019; 97:815-819. [PMID: 30913398 DOI: 10.1139/cjpp-2019-0044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the sympathetic nervous system plays an important role in the regulation of cardiac function, the overactivation of the sympathetic nervous system under stressful conditions including diabetes has been shown to result in the excessive production of circulating catecholamines as well as an increase in the myocardial concentration of catecholamines. In this brief review, we provide some evidence to suggest that the oxidation products of catecholamines such as aminochrome and oxyradicals, lead to metabolic derangements, Ca2+-handling abnormalities, increase in the availability of intracellular free Ca2+, as well as activation of proteases and changes in myocardial gene expression. These alterations due to elevated levels of circulatory catecholamines are associated with oxidative stress, subcellular remodeling, and the development of cardiac dysfunction in chronic diabetes.
Collapse
Affiliation(s)
- Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.,Department of Physiology and Pathophysiology, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Pallab K Ganguly
- College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Sukhwinder K Bhullar
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.,Department of Physiology and Pathophysiology, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Paramjit S Tappia
- Asper Clinical Research Institute, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
380
|
Wei W, Peng J, Shen T. Rosuvastatin Alleviates Ischemia/Reperfusion Injury in Cardiomyocytes by Downregulating Hsa-miR-24-3p to Target Upregulated Uncoupling Protein 2. Cell Reprogram 2019; 21:99-107. [PMID: 30835496 DOI: 10.1089/cell.2018.0039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Statins could reduce the risks of coronary heart disease death and ischemic cardiovascular events. In this study, we aim to explore the role of rosuvastatin in ischemia/reperfusion (I/R)-injured cardiomyocytes and the possible mechanism. An I/R model was established by oxygen-glucose deprivation/reperfusion (OGD/R). The protective effects of rosuvastatin pretreatment on OGD/R-injured cardiomyocytes were performed using MTT assay, lactate dehydrogenase (LDH) release assay, and quantitative real-time polymerase chain reaction (qRT-PCR). Bioinformatics software TargetScan and miRTarBase were used to predict the targeted miRNAs with uncoupling protein (UCP)2. Furthermore, verify the binding capacity of hsa-miR-24-3p and UCP2 with qRT-PCR and dual-luciferase reporter assay. The expression of UCP2, cell viability, LDH level, and apoptosis level affected by downregulated hsa-miR-24-3p were assessed using qRT-PCR, western blotting, MTT, the LDH kit, and flow cytometry. Pretreatment with rosuvastatin could significantly augment cell viability, reduce LDH level, increase the expression of UCP2, and downregulate hsa-miR-24-3p in OGD/R-injured H9c2 cells. miR-24-3p was closely connected with UCP2, and downregulated miR-24-3p could promote UCP2 expression, which presented cell viability increasing, LDH release and cell apoptosis inhibition in OGD/R condition. Moreover, it decreased the protein expression of Cleaved-Caspase-9 and Cyto C. This is the first time our study suggests that rosuvastatin pretreatment protects cardiomyocytes from OGD/R through upregulating UCP2 through downregulation of hsa-miR-24-3p.
Collapse
Affiliation(s)
- Wenjuan Wei
- 1 Department of Cardiovascular Medicine, The First People's Hospital of Xiaoshan Hangzhou, Hangzhou, China
| | - Jun Peng
- 1 Department of Cardiovascular Medicine, The First People's Hospital of Xiaoshan Hangzhou, Hangzhou, China
| | - Ting Shen
- 2 Electrocardiogram Room of Department of Functional Examination, Zhejiang Province Tongde Hospital, Hangzhou, China
| |
Collapse
|
381
|
Jarmuszkiewicz W, Szewczyk A. Energy-dissipating hub in muscle mitochondria: Potassium channels and uncoupling proteins. Arch Biochem Biophys 2019; 664:102-109. [DOI: 10.1016/j.abb.2019.01.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 01/15/2023]
|
382
|
Maack C, Lehrke M, Backs J, Heinzel FR, Hulot JS, Marx N, Paulus WJ, Rossignol P, Taegtmeyer H, Bauersachs J, Bayes-Genis A, Brutsaert D, Bugger H, Clarke K, Cosentino F, De Keulenaer G, Dei Cas A, González A, Huelsmann M, Iaccarino G, Lunde IG, Lyon AR, Pollesello P, Rena G, Riksen NP, Rosano G, Staels B, van Laake LW, Wanner C, Farmakis D, Filippatos G, Ruschitzka F, Seferovic P, de Boer RA, Heymans S. Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the Translational Research Committee of the Heart Failure Association-European Society of Cardiology. Eur Heart J 2018; 39:4243-4254. [PMID: 30295797 PMCID: PMC6302261 DOI: 10.1093/eurheartj/ehy596] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/21/2018] [Accepted: 09/07/2018] [Indexed: 12/22/2022] Open
Affiliation(s)
- Christoph Maack
- Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | - Michael Lehrke
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| | - Johannes Backs
- Department of Molecular Cardiology and Epigenetics, University of Heidelberg, Heidelberg, Germany
| | - Frank R Heinzel
- Department of Cardiology, Charité—Universitätsmedizin, Berlin, Germany
| | - Jean-Sebastien Hulot
- Paris Cardiovascular Research Center PARCC, INSERM UMR970, CIC 1418, and F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Paris, France
- AP-HP, Hôpital Européen Georges-Pompidou, Paris, France
| | - Nikolaus Marx
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| | - Walter J Paulus
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Patrick Rossignol
- Inserm, Centre d’Investigations Cliniques—Plurithématique 14-33, Inserm U1116, CHRU Nancy, Université de Lorraine, and F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Heinrich Taegtmeyer
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Antoni Bayes-Genis
- Heart Failure Unit and Cardiology Service, Hospital Universitari Germans Trias i Pujol, CIBERCV, Badalona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Heiko Bugger
- Cardiology and Angiology, Heart Center, University of Freiburg, Freiburg, Germany
| | - Kieran Clarke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Francesco Cosentino
- Department of Medicine Solna, Cardiology Unit, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | | | - Alessandra Dei Cas
- Department of Medicine and Surgery, Endocrinology and Metabolism, University of Parma, Parma, Italy
- Division of Endocrinology and Metabolic Diseases, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Arantxa González
- Program of Cardiovascular Diseases, Centre for Applied Medical Research, University of Navarra, Pamplona and CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Martin Huelsmann
- Division of Cardiology, Department of Medicine II, Medical University of Vienna, Vienna, Austria
| | - Guido Iaccarino
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| | - Ida Gjervold Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Alexander R Lyon
- Cardiovascular Research Centre, Royal Brompton Hospital; National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Graham Rena
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Giuseppe Rosano
- Cardiovascular Clinical Academic Group, St George's Hospitals NHS Trust University of London, London, UK
- IRCCS San Raffaele Roma, Rome, Italy
| | - Bart Staels
- University of Lille—EGID, Lille, France
- Inserm, U1011, Lille, France
- Institut Pasteur de Lille, Lille, France
- University Hospital CHU Lille, Lille, France
| | - Linda W van Laake
- Department of Cardiology, Heart and Lungs Division, and Regenerative Medicine Centre, University Medical Centre Utrecht, Utrecht, the Netherlands
| | | | - Dimitrios Farmakis
- Heart Failure Unit, Athens University Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerasimos Filippatos
- Heart Failure Unit, Athens University Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
| | - Frank Ruschitzka
- University Heart Centre, University Hospital Zurich, Zurich, Switzerland
| | - Petar Seferovic
- Department of Cardiology, Belgrade University Medical Centre, Belgrade, Serbia
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Stephane Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
- Department of Cardiovascular Sciences, Leuven University, Belgium
| |
Collapse
|
383
|
Hauck AK, Huang Y, Hertzel AV, Bernlohr DA. Adipose oxidative stress and protein carbonylation. J Biol Chem 2018; 294:1083-1088. [PMID: 30563836 DOI: 10.1074/jbc.r118.003214] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Increased oxidative stress and abundance of reactive oxygen species (ROS) are positively correlated with a variety of pathophysiologies, including cardiovascular disease, type 2 diabetes, Alzheimer's disease, and neuroinflammation. In adipose biology, diabetic obesity is correlated with increased ROS in an age- and depot-specific manner and is mechanistically linked to mitochondrial dysfunction, endoplasmic reticulum (ER) stress, potentiated lipolysis, and insulin resistance. The cellular quality control systems that homeostatically regulate oxidative stress in the lean state are down-regulated in obesity as a consequence of inflammatory cytokine pressure leading to the accumulation of oxidized biomolecules. New findings have linked protein, DNA, and lipid oxidation at the biochemical level, and the structures and potential functions of protein adducts such as carbonylation that accumulate in stressed cells have been characterized. The sum total of such regulation and biochemical changes results in alteration of cellular metabolism and function in the obese state relative to the lean state and underlies metabolic disease progression. In this review, we discuss the molecular mechanisms and events underlying these processes and their implications for human health and disease.
Collapse
Affiliation(s)
- Amy K Hauck
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Yimao Huang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455
| | - Ann V Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455.
| |
Collapse
|
384
|
Schlüter KD, Kutsche HS, Hirschhäuser C, Schreckenberg R, Schulz R. Review on Chamber-Specific Differences in Right and Left Heart Reactive Oxygen Species Handling. Front Physiol 2018; 9:1799. [PMID: 30618811 PMCID: PMC6304434 DOI: 10.3389/fphys.2018.01799] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/29/2018] [Indexed: 01/21/2023] Open
Abstract
Reactive oxygen species (ROS) exert signaling character (redox signaling), or damaging character (oxidative stress) on cardiac tissue depending on their concentration and/or reactivity. The steady state of ROS concentration is determined by the interplay between its production (mitochondrial, cytosolic, and sarcolemmal enzymes) and ROS defense enzymes (mitochondria, cytosol). Recent studies suggest that ROS regulation is different in the left and right ventricle of the heart, specifically by a different activity of superoxide dismutase (SOD). Mitochondrial ROS defense seems to be lower in right ventricular tissue compared to left ventricular tissue. In this review we summarize the current evidence for heart chamber specific differences in ROS regulation that may play a major role in an observed inability of the right ventricle to compensate for cardiac stress such as pulmonary hypertension. Based on the current knowledge regimes to increase ROS defense in right ventricular tissue should be in the focus for the development of future therapies concerning right heart failure.
Collapse
Affiliation(s)
| | - Hanna Sarah Kutsche
- Department of Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | - Rolf Schreckenberg
- Department of Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Rainer Schulz
- Department of Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
385
|
Young A, Gill R, Mailloux RJ. Protein S-glutathionylation: The linchpin for the transmission of regulatory information on redox buffering capacity in mitochondria. Chem Biol Interact 2018; 299:151-162. [PMID: 30537466 DOI: 10.1016/j.cbi.2018.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/08/2018] [Accepted: 12/07/2018] [Indexed: 01/01/2023]
Abstract
Protein S-glutathionylation reactions are a ubiquitous oxidative modification required to control protein function in response to changes in redox buffering capacity. These reactions are rapid and reversible and are, for the most part, enzymatically mediated by glutaredoxins (GRX) and glutathione S-transferases (GST). Protein S-glutathionylation has been found to control a range of cell functions in response to different physiological cues. Although these reactions occur throughout the cell, mitochondrial proteins seem to be highly susceptible to reversible S-glutathionylation, a feature attributed to the unique physical properties of this organelle. Indeed, mitochondria contain a number of S-glutathionylation targets which includes proteins involved in energy metabolism, solute transport, reactive oxygen species (ROS) production, proton leaks, apoptosis, antioxidant defense, and mitochondrial fission and fusion. Moreover, it has been found that conjugation and removal of glutathione from proteins in mitochondria fulfills a number of important physiological roles and defects in these reactions can have some dire pathological consequences. Here, we provide an updated overview on mitochondrial protein S-glutathionylation reactions and their importance in cell functions and physiology.
Collapse
Affiliation(s)
- Adrian Young
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Robert Gill
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ryan J Mailloux
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
386
|
Schnell DM, Walton RG, Vekaria HJ, Sullivan PG, Bollinger LM, Peterson CA, Thomas DT. Vitamin D produces a perilipin 2-dependent increase in mitochondrial function in C2C12 myotubes. J Nutr Biochem 2018; 65:83-92. [PMID: 30658160 DOI: 10.1016/j.jnutbio.2018.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/11/2018] [Accepted: 11/10/2018] [Indexed: 02/08/2023]
Abstract
Vitamin D has been connected with increased intramyocellular lipid (IMCL) and has also been shown to increase mitochondrial function and insulin sensitivity. Evidence suggests that perilipin 2 (PLIN2), a perilipin protein upregulated with calcitriol treatment, may be integral to managing increased IMCL capacity and lipid oxidation in skeletal muscle. Therefore, we hypothesized that PLIN2 is required for vitamin D induced IMCL accumulation and increased mitochondrial oxidative function. To address this hypothesis, we treated C2C12 myotubes with 100 nM calcitriol (the active form of vitamin D) and/or PLIN2 siRNA in a four group design and analyzed markers of IMCL accumulation and metabolism using qRT-PCR, cytochemistry, and oxygen consumption assay. Expression of PLIN2, but not PLIN3 or PLIN5 mRNA was increased with calcitriol, and PLIN2 induction was prevented with siRNA knockdown without compensation by other perilipins. PLIN2 knockdown did not appear to prevent lipid accumulation. Calcitriol treatment increased mRNA expression of triglyceride synthesizing genes DGAT1 and DGAT2 and also lipolytic genes ATGL and CGI-58. PLIN2 knockdown decreased the expression of CGI-58 and CPT1, and was required for calcitriol-induced upregulation of DGAT2. Calcitriol increased oxygen consumption rate while PLIN2 knockdown decreased oxygen consumption rate. PLIN2 was required for a calcitriol-induced increase in oxygen consumption driven by mitochondrial complex II. We conclude that calcitriol increases mitochondrial function in myotubes and that this increase is at least in part mediated by PLIN2.
Collapse
Affiliation(s)
| | - R Grace Walton
- Department of Rehabilitation Sciences; Center for Muscle Biology.
| | | | | | | | | | - D Travis Thomas
- Department of Clinical Sciences, University of Kentucky, Lexington, KY 40536.
| |
Collapse
|
387
|
Pulmonary arterial hypertension and the potential roles of metallothioneins: A focused review. Life Sci 2018; 214:77-83. [PMID: 30355531 DOI: 10.1016/j.lfs.2018.10.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/10/2018] [Accepted: 10/19/2018] [Indexed: 12/17/2022]
Abstract
The pathophysiology of pulmonary arterial hypertension (PAH) is underlined by cell proliferation and vasoconstriction of pulmonary arterioles this involves multiple molecular factors or proteins, but it is not clear what the exact roles of these factors/proteins are. In addition, there may be other factors/proteins that have not been identified that contribute to PAH pathophysiology. Therefore, research has focused on investigating novel role players, in order to facilitate a better understanding of how PAH develop. Evidence suggest that mitochondrial regulators are key role players in PAH pathophysiology, but regulators that have not received sufficient attention in PAH are metallothioneins (MTs). In PAH patients, MT expression is elevated compared to healthy individuals, suggesting that MTs may be possible biomarkers. In other disease-models, MTs have been shown to regulate cell proliferation and vasoconstriction, processes that are instrumental in PAH pathophysiology. Due to the involvement of these processes in PAH pathophysiology and the ability of MTs to modulate them, this paper propose that cellular MTs may also play a role in PAH development. This paper suggests that PAH-research should perhaps begin to investigate the involvement of cellular MTs in the development of PAH.
Collapse
|
388
|
Zhang C, Wang N, Xu Y, Tan HY, Li S, Feng Y. Molecular Mechanisms Involved in Oxidative Stress-Associated Liver Injury Induced by Chinese Herbal Medicine: An Experimental Evidence-Based Literature Review and Network Pharmacology Study. Int J Mol Sci 2018; 19:2745. [PMID: 30217028 PMCID: PMC6165031 DOI: 10.3390/ijms19092745] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress, defined as a disequilibrium between pro-oxidants and antioxidants, can result in histopathological lesions with a broad spectrum, ranging from asymptomatic hepatitis to hepatocellular carcinoma in an orchestrated manner. Although cells are equipped with sophisticated strategies to maintain the redox biology under normal conditions, the abundance of redox-sensitive xenobiotics, such as medicinal ingredients originated from herbs or animals, can dramatically invoke oxidative stress. Growing evidence has documented that the hepatotoxicity can be triggered by traditional Chinese medicine (TCM) during treating various diseases. Meanwhile, TCM-dependent hepatic disorder represents a strong correlation with oxidative stress, especially the persistent accumulation of intracellular reactive oxygen species. Of note, since TCM-derived compounds with their modulated targets are greatly diversified among themselves, it is complicated to elaborate the potential pathological mechanism. In this regard, data mining approaches, including network pharmacology and bioinformatics enrichment analysis have been utilized to scientifically disclose the underlying pathogenesis. Herein, top 10 principal TCM-modulated targets for oxidative hepatotoxicity including superoxide dismutases (SOD), malondialdehyde (MDA), glutathione (GSH), reactive oxygen species (ROS), glutathione peroxidase (GPx), Bax, caspase-3, Bcl-2, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and nitric oxide (NO) have been identified. Furthermore, hepatic metabolic dysregulation may be the predominant pathological mechanism involved in TCM-induced hepatotoxic impairment.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.
| | - Yu Xu
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.
| | - Hor-Yue Tan
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.
| |
Collapse
|