351
|
Developmental Control of NRAMP1 (SLC11A1) Expression in Professional Phagocytes. BIOLOGY 2017; 6:biology6020028. [PMID: 28467369 PMCID: PMC5485475 DOI: 10.3390/biology6020028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 12/11/2022]
Abstract
NRAMP1 (SLC11A1) is a professional phagocyte membrane importer of divalent metals that contributes to iron recycling at homeostasis and to nutritional immunity against infection. Analyses of data generated by several consortia and additional studies were integrated to hypothesize mechanisms restricting NRAMP1 expression to mature phagocytes. Results from various epigenetic and transcriptomic approaches were collected for mesodermal and hematopoietic cell types and compiled for combined analysis with results of genetic studies associating single nucleotide polymorphisms (SNPs) with variations in NRAMP1 expression (eQTLs). Analyses establish that NRAMP1 is part of an autonomous topologically associated domain delimited by ubiquitous CCCTC-binding factor (CTCF) sites. NRAMP1 locus contains five regulatory regions: a predicted super-enhancer (S-E) key to phagocyte-specific expression; the proximal promoter; two intronic areas, including 3' inhibitory elements that restrict expression during development; and a block of upstream sites possibly extending the S-E domain. Also the downstream region adjacent to the 3' CTCF locus boundary may regulate expression during hematopoiesis. Mobilization of the locus 14 predicted transcriptional regulatory elements occurs in three steps, beginning with hematopoiesis; at the onset of myelopoiesis and through myelo-monocytic differentiation. Basal expression level in mature phagocytes is further influenced by genetic variation, tissue environment, and in response to infections that induce various epigenetic memories depending on microorganism nature. Constitutively associated transcription factors (TFs) include CCAAT enhancer binding protein beta (C/EBPb), purine rich DNA binding protein (PU.1), early growth response 2 (EGR2) and signal transducer and activator of transcription 1 (STAT1) while hypoxia-inducible factors (HIFs) and interferon regulatory factor 1 (IRF1) may stimulate iron acquisition in pro-inflammatory conditions. Mouse orthologous locus is generally conserved; chromatin patterns typify a de novo myelo-monocytic gene whose expression is tightly controlled by TFs Pu.1, C/ebps and Irf8; Irf3 and nuclear factor NF-kappa-B p 65 subunit (RelA) regulate expression in inflammatory conditions. Functional differences in the determinants identified at these orthologous loci imply that species-specific mechanisms control gene expression.
Collapse
|
352
|
Nyquist MD, Corella A, Burns J, Coleman I, Gao S, Tharakan R, Riggan L, Cai C, Corey E, Nelson PS, Mostaghel EA. Exploiting AR-Regulated Drug Transport to Induce Sensitivity to the Survivin Inhibitor YM155. Mol Cancer Res 2017; 15:521-531. [PMID: 28465296 PMCID: PMC5471626 DOI: 10.1158/1541-7786.mcr-16-0315-t] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/03/2016] [Accepted: 12/22/2016] [Indexed: 12/12/2022]
Abstract
Androgen receptor (AR) signaling is fundamental to prostate cancer and is the dominant therapeutic target in metastatic disease. However, stringent androgen deprivation therapy regimens decrease quality of life and have been largely unsuccessful in curtailing mortality. Recent clinical and preclinical studies have taken advantage of the dichotomous ability of AR signaling to elicit growth-suppressive and differentiating effects by administering hyperphysiologic levels of testosterone. In this study, high-throughput drug screening identified a potent synergy between high-androgen therapy and YM155, a transcriptional inhibitor of survivin (BIRC5). This interaction was mediated by the direct transcriptional upregulation of the YM155 transporter SLC35F2 by the AR. Androgen-mediated YM155-induced cell death was completely blocked by the overexpression of multidrug resistance transporter ABCB1. SLC35F2 expression was significantly correlated with intratumor androgen levels in four distinct patient-derived xenograft models, and with AR activity score in a large gene expression dataset of castration-resistant metastases. A subset of tumors had significantly elevated SLC35F2 expression and, therefore, may identify patients who are highly responsive to YM155 treatment. IMPLICATIONS The combination of androgen therapy with YM155 represents a novel drug synergy, and SLC35F2 may serve as a clinical biomarker of response to YM155.
Collapse
Affiliation(s)
- Michael D Nyquist
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Alexandra Corella
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - John Burns
- Virginia Mason Medical Center, Seattle, Washington
| | - Ilsa Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Shuai Gao
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
- Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Robin Tharakan
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Luke Riggan
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Changmeng Cai
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
- Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Urology, University of Washington, Seattle, Washington
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington
| | - Elahe A Mostaghel
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington.
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
353
|
Golubev A, Hanson AD, Gladyshev VN. Non-enzymatic molecular damage as a prototypic driver of aging. J Biol Chem 2017; 292:6029-6038. [PMID: 28264930 PMCID: PMC5391736 DOI: 10.1074/jbc.r116.751164] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The chemical potentialities of metabolites far exceed metabolic requirements. The required potentialities are realized mostly through enzymatic catalysis. The rest are realized spontaneously through organic reactions that (i) occur wherever appropriate reactants come together, (ii) are so typical that many have proper names (e.g. Michael addition, Amadori rearrangement, and Pictet-Spengler reaction), and (iii) often have damaging consequences. There are many more causes of non-enzymatic damage to metabolites than reactive oxygen species and free radical processes (the "usual suspects"). Endogenous damage accumulation in non-renewable macromolecules and spontaneously polymerized material is sufficient to account for aging and differentiates aging from wear-and-tear of inanimate objects by deriving it from metabolism, the essential attribute of life.
Collapse
Affiliation(s)
- Alexey Golubev
- From the Department of Biochemistry, Saint-Petersburg State University, Saint Petersburg 199034, Russia,
| | - Andrew D Hanson
- the Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611, and
| | - Vadim N Gladyshev
- the Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
354
|
Lu YW, Acoba MG, Selvaraju K, Huang TC, Nirujogi RS, Sathe G, Pandey A, Claypool SM. Human adenine nucleotide translocases physically and functionally interact with respirasomes. Mol Biol Cell 2017; 28:1489-1506. [PMID: 28404750 PMCID: PMC5449148 DOI: 10.1091/mbc.e17-03-0195] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 03/30/2017] [Accepted: 04/04/2017] [Indexed: 11/11/2022] Open
Abstract
A network of interactions for human adenine nucleotide translocases, required for oxidative phosphorylation, is reported. Of particular interest is an evolutionarily conserved and functionally important association with respiratory supercomplexes, which is surprising because the respirasomes of yeast and mammals are different. Members of the adenine nucleotide translocase (ANT) family exchange ADP for ATP across the mitochondrial inner membrane, an activity that is essential for oxidative phosphorylation (OXPHOS). Mutations in or dysregulation of ANTs is associated with progressive external ophthalmoplegia, cardiomyopathy, nonsyndromic intellectual disability, apoptosis, and the Warburg effect. Binding partners of human ANTs have not been systematically identified. The absence of such information has prevented a detailed molecular understanding of the assorted ANT-associated diseases, including insight into their disparate phenotypic manifestations. To fill this void, in this study, we define the interactomes of two human ANT isoforms. Analogous to its yeast counterpart, human ANTs associate with heterologous partner proteins, including the respiratory supercomplex (RSC) and other solute carriers. The evolutionarily conserved ANT–RSC association is particularly noteworthy because the composition, and thereby organization, of RSCs in yeast and human is different. Surprisingly, absence of the major ANT isoform only modestly impairs OXPHOS in HEK293 cells, indicating that the low levels of other isoforms provide functional redundancy. In contrast, pharmacological inhibition of OXPHOS expression and function inhibits ANT-dependent ADP/ATP exchange. Thus ANTs and the OXPHOS machinery physically interact and functionally cooperate to enhance ANT transport capacity and mitochondrial respiration.
Collapse
Affiliation(s)
- Ya-Wen Lu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Michelle Grace Acoba
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Kandasamy Selvaraju
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Tai-Chung Huang
- McKusick-Nathans Institute of Genetic Medicine, Departments of Biological Chemistry, Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185.,Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University Cancer Center, Taipei 10051, Taiwan
| | - Raja S Nirujogi
- McKusick-Nathans Institute of Genetic Medicine, Departments of Biological Chemistry, Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Gajanan Sathe
- McKusick-Nathans Institute of Genetic Medicine, Departments of Biological Chemistry, Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Departments of Biological Chemistry, Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| |
Collapse
|
355
|
Gameiro M, Silva R, Rocha-Pereira C, Carmo H, Carvalho F, Bastos MDL, Remião F. Cellular Models and In Vitro Assays for the Screening of modulators of P-gp, MRP1 and BCRP. Molecules 2017; 22:600. [PMID: 28397762 PMCID: PMC6153761 DOI: 10.3390/molecules22040600] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/12/2022] Open
Abstract
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are highly expressed in tumor cells, as well as in organs involved in absorption and secretion processes, mediating the ATP-dependent efflux of compounds, both endogenous substances and xenobiotics, including drugs. Their expression and activity levels are modulated by the presence of inhibitors, inducers and/or activators. In vitro, ex vivo and in vivo studies with both known and newly synthesized P-glycoprotein (P-gp) inducers and/or activators have shown the usefulness of these transport mechanisms in reducing the systemic exposure and specific tissue access of potentially harmful compounds. This article focuses on the main ABC transporters involved in multidrug resistance [P-gp, multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP)] expressed in tissues of toxicological relevance, such as the blood-brain barrier, cardiovascular system, liver, kidney and intestine. Moreover, it provides a review of the available cellular models, in vitro and ex vivo assays for the screening and selection of safe and specific inducers and activators of these membrane transporters. The available cellular models and in vitro assays have been proposed as high throughput and low-cost alternatives to excessive animal testing, allowing the evaluation of a large number of compounds.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/chemistry
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Animals
- Drug Discovery
- Drug Evaluation, Preclinical/methods
- Drug Resistance/drug effects
- Humans
- Models, Biological
- Multidrug Resistance-Associated Proteins/chemistry
- Multidrug Resistance-Associated Proteins/metabolism
- Organ Specificity
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Mariline Gameiro
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Renata Silva
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Carolina Rocha-Pereira
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Helena Carmo
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Félix Carvalho
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria de Lourdes Bastos
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Fernando Remião
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
356
|
Protein Kinases C-Mediated Regulations of Drug Transporter Activity, Localization and Expression. Int J Mol Sci 2017; 18:ijms18040764. [PMID: 28375174 PMCID: PMC5412348 DOI: 10.3390/ijms18040764] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 01/05/2023] Open
Abstract
Drug transporters are now recognized as major actors in pharmacokinetics, involved notably in drug–drug interactions and drug adverse effects. Factors that govern their activity, localization and expression are therefore important to consider. In the present review, the implications of protein kinases C (PKCs) in transporter regulations are summarized and discussed. Both solute carrier (SLC) and ATP-binding cassette (ABC) drug transporters can be regulated by PKCs-related signaling pathways. PKCs thus target activity, membrane localization and/or expression level of major influx and efflux drug transporters, in various normal and pathological types of cells and tissues, often in a PKC isoform-specific manner. PKCs are notably implicated in membrane insertion of bile acid transporters in liver and, in this way, are thought to contribute to cholestatic or choleretic effects of endogenous compounds or drugs. The exact clinical relevance of PKCs-related regulation of drug transporters in terms of drug resistance, pharmacokinetics, drug–drug interactions and drug toxicity remains however to be precisely determined. This issue is likely important to consider in the context of the development of new drugs targeting PKCs-mediated signaling pathways, for treating notably cancers, diabetes or psychiatric disorders.
Collapse
|
357
|
Higgins GA, Allyn-Feuer A, Georgoff P, Nikolian V, Alam HB, Athey BD. Mining the topography and dynamics of the 4D Nucleome to identify novel CNS drug pathways. Methods 2017; 123:102-118. [PMID: 28385536 DOI: 10.1016/j.ymeth.2017.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/10/2017] [Indexed: 12/16/2022] Open
Abstract
The pharmacoepigenome can be defined as the active, noncoding province of the genome including canonical spatial and temporal regulatory mechanisms of gene regulation that respond to xenobiotic stimuli. Many psychotropic drugs that have been in clinical use for decades have ill-defined mechanisms of action that are beginning to be resolved as we understand the transcriptional hierarchy and dynamics of the nucleus. In this review, we describe spatial, temporal and biomechanical mechanisms mediated by psychotropic medications. Focus is placed on a bioinformatics pipeline that can be used both for detection of pharmacoepigenomic variants that discretize drug response and adverse events to improve pharmacogenomic testing, and for the discovery of novel CNS therapeutics. This approach integrates the functional topology and dynamics of the transcriptional hierarchy of the pharmacoepigenome, gene variant-driven identification of pharmacogenomic regulatory domains, and mesoscale mapping for the discovery of novel CNS pharmacodynamic pathways in human brain. Examples of the application of this pipeline are provided, including the discovery of valproic acid (VPA) mediated transcriptional reprogramming of neuronal cell fate following injury, and mapping of a CNS pathway glutamatergic pathway for the mood stabilizer lithium. These examples in regulatory pharmacoepigenomics illustrate how ongoing research using the 4D nucleome provides a foundation to further insight into previously unrecognized psychotropic drug pharmacodynamic pathways in the human CNS.
Collapse
Affiliation(s)
- Gerald A Higgins
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, USA
| | - Ari Allyn-Feuer
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, USA
| | - Patrick Georgoff
- Department of Surgery, University of Michigan Medical School, USA
| | - Vahagn Nikolian
- Department of Surgery, University of Michigan Medical School, USA
| | - Hasan B Alam
- Department of Surgery, University of Michigan Medical School, USA
| | - Brian D Athey
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, USA; Michigan Institute for Data Science (MIDAS), USA.
| |
Collapse
|
358
|
Nyquist MD, Prasad B, Mostaghel EA. Harnessing Solute Carrier Transporters for Precision Oncology. Molecules 2017; 22:E539. [PMID: 28350329 PMCID: PMC5570559 DOI: 10.3390/molecules22040539] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/11/2022] Open
Abstract
Solute Carrier (SLC) transporters are a large superfamily of transmembrane carriers involved in the regulated transport of metabolites, nutrients, ions and drugs across cellular membranes. A subset of these solute carriers play a significant role in the cellular uptake of many cancer therapeutics, ranging from chemotherapeutics such as antimetabolites, topoisomerase inhibitors, platinum-based drugs and taxanes to targeted therapies such as tyrosine kinase inhibitors. SLC transporters are co-expressed in groups and patterns across normal tissues, suggesting they may comprise a coordinated regulatory circuit serving to mediate normal tissue functions. In cancer however, there are dramatic changes in expression patterns of SLC transporters. This frequently serves to feed the increased metabolic demands of the tumor cell for amino acids, nucleotides and other metabolites, but also presents a therapeutic opportunity, as increased transporter expression may serve to increase intracellular concentrations of substrate drugs. In this review, we examine the regulation of drug transporters in cancer and how this impacts therapy response, and discuss novel approaches to targeting therapies to specific cancers via tumor-specific aberrations in transporter expression. We propose that among the oncogenic changes in SLC transporter expression there exist emergent vulnerabilities that can be exploited therapeutically, extending the application of precision medicine from tumor-specific drug targets to tumor-specific determinants of drug uptake.
Collapse
Affiliation(s)
- Michael D Nyquist
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA.
| | - Elahe A Mostaghel
- Division of Oncology, Department of Medicine, University of Washington, Seattle, WA 98195 USA.
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
359
|
Grixti JM, O'Hagan S, Day PJ, Kell DB. Enhancing Drug Efficacy and Therapeutic Index through Cheminformatics-Based Selection of Small Molecule Binary Weapons That Improve Transporter-Mediated Targeting: A Cytotoxicity System Based on Gemcitabine. Front Pharmacol 2017; 8:155. [PMID: 28396636 PMCID: PMC5366350 DOI: 10.3389/fphar.2017.00155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/10/2017] [Indexed: 12/23/2022] Open
Abstract
The transport of drug molecules is mainly determined by the distribution of influx and efflux transporters for which they are substrates. To enable tissue targeting, we sought to develop the idea that we might affect the transporter-mediated disposition of small-molecule drugs via the addition of a second small molecule that of itself had no inhibitory pharmacological effect but that influenced the expression of transporters for the primary drug. We refer to this as a “binary weapon” strategy. The experimental system tested the ability of a molecule that on its own had no cytotoxic effect to increase the toxicity of the nucleoside analog gemcitabine to Panc1 pancreatic cancer cells. An initial phenotypic screen of a 500-member polar drug (fragment) library yielded three “hits.” The structures of 20 of the other 2,000 members of this library suite had a Tanimoto similarity greater than 0.7 to those of the initial hits, and each was itself a hit (the cheminformatics thus providing for a massive enrichment). We chose the top six representatives for further study. They fell into three clusters whose members bore reasonable structural similarities to each other (two were in fact isomers), lending strength to the self-consistency of both our conceptual and experimental strategies. Existing literature had suggested that indole-3-carbinol might play a similar role to that of our fragments, but in our hands it was without effect; nor was it structurally similar to any of our hits. As there was no evidence that the fragments could affect toxicity directly, we looked for effects on transporter transcript levels. In our hands, only the ENT1-3 uptake and ABCC2,3,4,5, and 10 efflux transporters displayed measurable transcripts in Panc1 cultures, along with a ribonucleoside reductase RRM1 known to affect gemcitabine toxicity. Very strikingly, the addition of gemcitabine alone increased the expression of the transcript for ABCC2 (MRP2) by more than 12-fold, and that of RRM1 by more than fourfold, and each of the fragment “hits” served to reverse this. However, an inhibitor of ABCC2 was without significant effect, implying that RRM1 was possibly the more significant player. These effects were somewhat selective for Panc cells. It seems, therefore, that while the effects we measured were here mediated more by efflux than influx transporters, and potentially by other means, the binary weapon idea is hereby fully confirmed: it is indeed possible to find molecules that manipulate the expression of transporters that are involved in the bioactivity of a pharmaceutical drug. This opens up an entirely new area, that of chemical genomics-based drug targeting.
Collapse
Affiliation(s)
- Justine M Grixti
- Faculty of Biology, Medicine and Health, University of ManchesterManchester, UK; Manchester Institute of Biotechnology, University of ManchesterManchester, UK
| | - Steve O'Hagan
- Manchester Institute of Biotechnology, University of ManchesterManchester, UK; School of Chemistry, University of ManchesterManchester, UK; Centre for Synthetic Biology of Fine and Speciality Chemicals, University of ManchesterManchester, UK
| | - Philip J Day
- Faculty of Biology, Medicine and Health, University of ManchesterManchester, UK; Manchester Institute of Biotechnology, University of ManchesterManchester, UK
| | - Douglas B Kell
- Manchester Institute of Biotechnology, University of ManchesterManchester, UK; School of Chemistry, University of ManchesterManchester, UK; Centre for Synthetic Biology of Fine and Speciality Chemicals, University of ManchesterManchester, UK
| |
Collapse
|
360
|
O'Hagan S, Kell DB. Analysis of drug-endogenous human metabolite similarities in terms of their maximum common substructures. J Cheminform 2017; 9:18. [PMID: 28316656 PMCID: PMC5344883 DOI: 10.1186/s13321-017-0198-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/09/2017] [Indexed: 12/21/2022] Open
Abstract
In previous work, we have assessed the structural similarities between marketed drugs (‘drugs’) and endogenous natural human metabolites (‘metabolites’ or ‘endogenites’), using ‘fingerprint’ methods in common use, and the Tanimoto and Tversky similarity metrics, finding that the fingerprint encoding used had a dramatic effect on the apparent similarities observed. By contrast, the maximal common substructure (MCS), when the means of determining it is fixed, is a means of determining similarities that is largely independent of the fingerprints, and also has a clear chemical meaning. We here explored the utility of the MCS and metrics derived therefrom. In many cases, a shared scaffold helps cluster drugs and endogenites, and gives insight into enzymes (in particular transporters) that they both share. Tanimoto and Tversky similarities based on the MCS tend to be smaller than those based on the MACCS fingerprint-type encoding, though the converse is also true for a significant fraction of the comparisons. While no single molecular descriptor can account for these differences, a machine learning-based analysis of the nature of the differences (MACCS_Tanimoto vs MCS_Tversky) shows that they are indeed deterministic, although the features that are used in the model to account for this vary greatly with each individual drug. The extent of its utility and interpretability vary with the drug of interest, implying that while MCS is neither ‘better’ nor ‘worse’ for every drug–endogenite comparison, it is sufficiently different to be of value. The overall conclusion is thus that the use of the MCS provides an additional and valuable strategy for understanding the structural basis for similarities between synthetic, marketed drugs and natural intermediary metabolites.
Collapse
Affiliation(s)
- Steve O'Hagan
- School of Chemistry, The University of Manchester, 131 Princess St, Manchester, M1 7DN UK.,Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester, M1 7DN UK
| | - Douglas B Kell
- School of Chemistry, The University of Manchester, 131 Princess St, Manchester, M1 7DN UK.,Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester, M1 7DN UK.,Centre for the Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), The University of Manchester, 131 Princess St, Manchester, M1 7DN UK
| |
Collapse
|
361
|
Abstract
Understanding how to design cell permeable ligands for intracellular targets that have difficult binding sites, such as protein-protein interactions, would open vast opportunities for drug discovery. Interestingly, libraries of cyclic peptides displayed a steep drop-off in membrane permeability at molecular weights above 1000 Da and it appears likely that this cutoff constitutes an upper size limit also for more druglike compounds. However, chemical space from 500 to 1000 Da remains virtually unexplored and represents a vast opportunity for those prepared to venture into new territories of drug discovery.
Collapse
Affiliation(s)
- Pär Matsson
- Department of Pharmacy, BMC, Uppsala University , Box 580, SE-751 23 Uppsala, Sweden
| | - Jan Kihlberg
- Department of Chemistry, BMC, Uppsala University , Box 576, SE-751 23 Uppsala, Sweden
| |
Collapse
|
362
|
Fisel P, Nies AT, Schaeffeler E, Schwab M. The importance of drug transporter characterization to precision medicine. Expert Opin Drug Metab Toxicol 2017; 13:361-365. [PMID: 28140687 DOI: 10.1080/17425255.2017.1290083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Pascale Fisel
- a Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology , Stuttgart , Germany.,b University Tübingen , Tübingen , Germany
| | - Anne T Nies
- a Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology , Stuttgart , Germany.,b University Tübingen , Tübingen , Germany
| | - Elke Schaeffeler
- a Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology , Stuttgart , Germany.,b University Tübingen , Tübingen , Germany
| | - Matthias Schwab
- a Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology , Stuttgart , Germany.,c Department of Clinical Pharmacology , University Hospital Tübingen , Tübingen , Germany.,d Department of Pharmacy and Biochemistry , University Tübingen , Tübingen , Germany
| |
Collapse
|
363
|
eUnaG: a new ligand-inducible fluorescent reporter to detect drug transporter activity in live cells. Sci Rep 2017; 7:41619. [PMID: 28176814 PMCID: PMC5296874 DOI: 10.1038/srep41619] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/22/2016] [Indexed: 01/18/2023] Open
Abstract
The absorption, distribution, metabolism and excretion (ADME) of metabolites and toxic organic solutes are orchestrated by the ATP-binding cassette (ABC) transporters and the organic solute carrier family (SLC) proteins. A large number of ABC and SLC transpoters exist; however, only a small number have been well characterized. To facilitate the analysis of these transporters, which is important for drug safety and physiological studies, we developed a sensitive genetically encoded bilirubin (BR)-inducible fluorescence sensor (eUnaG) to detect transporter-coupled influx/efflux of organic compounds. This sensor can be used in live cells to measure transporter activity, as excretion of BR depends on ABC and SLC transporters. Applying eUnaG in functional RNAi screens, we characterize l(2)03659 as a Drosophila multidrug resistant-associated ABC transporter.
Collapse
|
364
|
Lekholm E, Perland E, Eriksson MM, Hellsten SV, Lindberg FA, Rostami J, Fredriksson R. Putative Membrane-Bound Transporters MFSD14A and MFSD14B Are Neuronal and Affected by Nutrient Availability. Front Mol Neurosci 2017; 10:11. [PMID: 28179877 PMCID: PMC5263138 DOI: 10.3389/fnmol.2017.00011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/09/2017] [Indexed: 11/13/2022] Open
Abstract
Characterization of orphan transporters is of importance due to their involvement in cellular homeostasis but also in pharmacokinetics and pharmacodynamics. The tissue and cellular localization, as well as function, is still unknown for many of the solute carriers belonging to the major facilitator superfamily (MFS) Pfam clan. Here, we have characterized two putative novel transporters MFSD14A (HIAT1) and MFSD14B (HIATL1) in the mouse central nervous system and found protein staining throughout the adult mouse brain. Both transporters localized to neurons and MFSD14A co-localized with the Golgi marker Giantin in primary embryonic cortex cultures, while MFSD14B staining co-localized with an endoplasmic retention marker, KDEL. Based on phylogenetic clustering analyses, we predict both to have organic substrate profiles, and possible involvement in energy homeostasis. Therefore, we monitored gene regulation changes in mouse embryonic primary cultures after amino acid starvations and found both transporters to be upregulated after 3 h of starvation. Interestingly, in mice subjected to 24 h of food starvation, both transporters were downregulated in the hypothalamus, while Mfsd14a was also downregulated in the brainstem. In addition, in mice fed a high fat diet (HFD), upregulation of both transporters was seen in the striatum. Both MFSD14A and MFSD14B were intracellular neuronal membrane-bound proteins, expressed in the Golgi and Endoplasmic reticulum, affected by both starvation and HFD to varying degree in the mouse brain.
Collapse
Affiliation(s)
- Emilia Lekholm
- Department of Neuroscience, Functional Pharmacology, Uppsala UniversityUppsala, Sweden; Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala UniversityUppsala, Sweden
| | - Emelie Perland
- Department of Neuroscience, Functional Pharmacology, Uppsala UniversityUppsala, Sweden; Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala UniversityUppsala, Sweden
| | - Mikaela M Eriksson
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University Uppsala, Sweden
| | - Sofie V Hellsten
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University Uppsala, Sweden
| | - Frida A Lindberg
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University Uppsala, Sweden
| | - Jinar Rostami
- Department of Neuroscience, Functional Pharmacology, Uppsala University Uppsala, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University Uppsala, Sweden
| |
Collapse
|
365
|
Hellsten SV, Lekholm E, Ahmad T, Fredriksson R. The gene expression of numerous SLC transporters is altered in the immortalized hypothalamic cell line N25/2 following amino acid starvation. FEBS Open Bio 2017; 7:249-264. [PMID: 28174690 PMCID: PMC5292668 DOI: 10.1002/2211-5463.12181] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/09/2016] [Accepted: 12/10/2016] [Indexed: 12/20/2022] Open
Abstract
Amino acids are known to play a key role in gene expression regulation, and in mammalian cells, amino acid signaling is mainly mediated via two pathways, the mammalian target of rapamycin complex 1 (mTORC1) pathway and the amino acid responsive (AAR) pathway. It is vital for cells to have a system to sense amino acid levels, in order to control protein and amino acid synthesis and catabolism. Amino acid transporters are crucial in these pathways, due to both their sensing and transport functions. In this large-scale study, an immortalized mouse hypothalamic cell line (N25/2) was used to study the gene expression changes following 1, 2, 3, 5 or 16 h of amino acid starvation. We focused on genes encoding solute carriers (SLCs) and putative SLCs, more specifically on amino acid transporters. The microarray contained 28 270 genes and 86.2% of the genes were expressed in the cell line. At 5 h of starvation, 1001 genes were upregulated and 848 genes were downregulated, and among these, 47 genes from the SLC superfamily or atypical SLCs were found. Of these, 15 were genes encoding amino acid transporters and 32 were genes encoding other SLCs or atypical SLCs. Increased expression was detected for genes encoding amino acid transporters from system A, ASC, L, N, T, xc-, and y+. Using GO annotations, genes involved in amino acid transport and amino acid transmembrane transporter activity were found to be most upregulated at 3 h and 5 h of starvation.
Collapse
Affiliation(s)
- Sofie V Hellsten
- Department of Pharmaceutical Bioscience, Molecular Neuropharmacology Uppsala University Sweden; Department of Neuroscience, Functional Pharmacology Uppsala University Sweden
| | - Emilia Lekholm
- Department of Pharmaceutical Bioscience, Molecular Neuropharmacology Uppsala University Sweden
| | - Tauseef Ahmad
- Department of Neuroscience, Functional Pharmacology Uppsala University Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Bioscience, Molecular Neuropharmacology Uppsala University Sweden
| |
Collapse
|
366
|
Perland E, Fredriksson R. Classification Systems of Secondary Active Transporters. Trends Pharmacol Sci 2016; 38:305-315. [PMID: 27939446 DOI: 10.1016/j.tips.2016.11.008] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/27/2016] [Accepted: 11/09/2016] [Indexed: 01/01/2023]
Abstract
Membrane-bound solute carrier (SLC) transporter proteins are vital to the human body, as they sustain homeostasis by moving soluble molecule as nutrients, drugs, and waste across lipid membranes. Of the 430 identified secondary active transporters in humans, 30% are still orphans, and systematic research has been requested to elaborate on their possible involvement in diseases and their potential as drug targets. To enable this, the various classification systems in use must be understood and used correctly. In this review, we describe how various classification systems for human SLCs are constructed, and how they overlap and differ. To facilitate communication between researchers and to avoid ambiguities, everyone must clearly state which classification system they are referring to when writing scientific articles.
Collapse
Affiliation(s)
- Emelie Perland
- Department of Pharmaceutical Bioscience, Molecular Neuropharmacology, Uppsala University, Uppsala SE 7512, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Bioscience, Molecular Neuropharmacology, Uppsala University, Uppsala SE 7512, Sweden.
| |
Collapse
|
367
|
Cocucci E, Kim JY, Bai Y, Pabla N. Role of Passive Diffusion, Transporters, and Membrane Trafficking-Mediated Processes in Cellular Drug Transport. Clin Pharmacol Ther 2016; 101:121-129. [PMID: 27804130 DOI: 10.1002/cpt.545] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 12/11/2022]
Abstract
Intracellular drug accumulation is thought to be dictated by two major processes, passive diffusion through the lipid membrane or membrane transporters. The relative role played by these distinct processes remains actively debated. Moreover, the role of membrane-trafficking in drug transport remains underappreciated and unexplored. Here we discuss the distinct processes involved in cellular drug distribution and propose that better experimental models are required to elucidate the differential contributions of various processes in intracellular drug accumulation.
Collapse
Affiliation(s)
- E Cocucci
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - J Y Kim
- Division of Pharmaceutics, School of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Y Bai
- Division of Pharmaceutics, School of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - N Pabla
- Division of Pharmaceutics, School of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
368
|
Berrios C, Padi M, Keibler MA, Park DE, Molla V, Cheng J, Lee SM, Stephanopoulos G, Quackenbush J, DeCaprio JA. Merkel Cell Polyomavirus Small T Antigen Promotes Pro-Glycolytic Metabolic Perturbations Required for Transformation. PLoS Pathog 2016; 12:e1006020. [PMID: 27880818 PMCID: PMC5120958 DOI: 10.1371/journal.ppat.1006020] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 10/23/2016] [Indexed: 02/01/2023] Open
Abstract
Merkel cell polyomavirus (MCPyV) is an etiological agent of Merkel cell carcinoma (MCC), a highly aggressive skin cancer. The MCPyV small tumor antigen (ST) is required for maintenance of MCC and can transform normal cells. To gain insight into cellular perturbations induced by MCPyV ST, we performed transcriptome analysis of normal human fibroblasts with inducible expression of ST. MCPyV ST dynamically alters the cellular transcriptome with increased levels of glycolytic genes, including the monocarboxylate lactate transporter SLC16A1 (MCT1). Extracellular flux analysis revealed increased lactate export reflecting elevated aerobic glycolysis in ST expressing cells. Inhibition of MCT1 activity suppressed the growth of MCC cell lines and impaired MCPyV-dependent transformation of IMR90 cells. Both NF-κB and MYC have been shown to regulate MCT1 expression. While MYC was required for MCT1 induction, MCPyV-induced MCT1 levels decreased following knockdown of the NF-κB subunit RelA, supporting a synergistic activity between MCPyV and MYC in regulating MCT1 levels. Several MCC lines had high levels of MYCL and MYCN but not MYC. Increased levels of MYCL was more effective than MYC or MYCN in increasing extracellular acidification in MCC cells. Our results demonstrate the effects of MCPyV ST on the cellular transcriptome and reveal that transformation is dependent, at least in part, on elevated aerobic glycolysis. In 2008, Merkel cell polyomavirus (MCPyV) was identified as clonally integrated in a majority of Merkel cell carcinomas (MCC), a rare but highly aggressive neuroendocrine carcinoma of the skin. Since then, studies have highlighted the roles of the MCPyV T antigens in promoting and sustaining MCC oncogenesis. In particular, MCPyV small T antigen (ST) has oncogenic activity in vivo and in vitro. We performed transcriptome analysis of normal human fibroblasts with inducible expression of MCPyV ST and observed significant alterations in levels of metabolic pathway genes, particularly those involved in glycolysis. MCT1, a major monocarboxylate transporter, was rapidly induced following ST expression and inhibition of MCT1 activity reduced the ST growth promoting and transforming activities. The metabolic perturbations induced by this oncogenic human polyomavirus reflect a potent transforming mechanism of MCPyV ST.
Collapse
Affiliation(s)
- Christian Berrios
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Megha Padi
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mark A. Keibler
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Donglim Esther Park
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Vadim Molla
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Jingwei Cheng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Soo Mi Lee
- Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - John Quackenbush
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - James A. DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
369
|
A time-resolved molecular map of the macrophage response to VSV infection. NPJ Syst Biol Appl 2016; 2:16027. [PMID: 28725479 PMCID: PMC5516859 DOI: 10.1038/npjsba.2016.27] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 08/17/2016] [Accepted: 08/18/2016] [Indexed: 01/30/2023] Open
Abstract
Studying the relationship between virus infection and cellular response is paradigmatic for our understanding of how perturbation changes biological systems. Immune response, in this context is a complex yet evolutionarily adapted and robust cellular change, and is experimentally amenable to molecular analysis. To visualize the full cellular response to virus infection, we performed temporal transcriptomics, proteomics, and phosphoproteomics analysis of vesicular stomatitis virus (VSV)-infected mouse macrophages. This enabled the understanding of how infection-induced changes in host gene and protein expression are coordinated with post-translational modifications by cells in time to best measure and control the infection process. The vast and complex molecular changes measured could be decomposed in a limited number of clusters within each category (transcripts, proteins, and protein phosphorylation) each with own kinetic parameter and characteristic pathways/processes, suggesting multiple regulatory options in the overall sensing and homeostatic program. Altogether, the data underscored a prevalent executive function to phosphorylation. Resolution of the molecular events affecting the RIG-I pathway, central to viral recognition, reveals that phosphorylation of the key innate immunity adaptor mitochondrial antiviral-signaling protein (MAVS) on S328/S330 is necessary for activation of type-I interferon and nuclear factor κ B (NFκB) pathways. To further understand the hierarchical relationships, we analyzed kinase–substrate relationships and found RAF1 and, to a lesser extent, ARAF to be inhibiting VSV replication and necessary for NFκB activation, and AKT2, but not AKT1, to be supporting VSV replication. Integrated analysis using the omics data revealed co-regulation of transmembrane transporters including SLC7A11, which was subsequently validated as a host factor in the VSV replication. The data sets are predicted to greatly empower future studies on the functional organization of the response of macrophages to viral challenges.
Collapse
|
370
|
Kordonowy LL, MacManes MD. Characterization of a male reproductive transcriptome for Peromyscus eremicus (Cactus mouse). PeerJ 2016; 4:e2617. [PMID: 27812417 PMCID: PMC5088585 DOI: 10.7717/peerj.2617] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/27/2016] [Indexed: 12/28/2022] Open
Abstract
Rodents of the genus Peromyscus have become increasingly utilized models for investigations into adaptive biology. This genus is particularly powerful for research linking genetics with adaptive physiology or behaviors, and recent research has capitalized on the unique opportunities afforded by the ecological diversity of these rodents. Well characterized genomic and transcriptomic data is intrinsic to explorations of the genetic architecture responsible for ecological adaptations. Therefore, this study characterizes the transcriptome of three male reproductive tissues (testes, epididymis and vas deferens) of Peromyscus eremicus (Cactus mouse), a desert specialist. The transcriptome assembly process was optimized in order to produce a high quality and substantially complete annotated transcriptome. This composite transcriptome was generated to characterize the expressed transcripts in the male reproductive tract of P. eremicus, which will serve as a crucial resource for future research investigating our hypothesis that the male Cactus mouse possesses an adaptive reproductive phenotype to mitigate water-loss from ejaculate. This study reports genes under positive selection in the male Cactus mouse reproductive transcriptome relative to transcriptomes from Peromyscus maniculatus (deer mouse) and Mus musculus. Thus, this study expands upon existing genetic research in this species, and we provide a high quality transcriptome to enable further explorations of our proposed hypothesis for male Cactus mouse reproductive adaptations to minimize seminal fluid loss.
Collapse
Affiliation(s)
- Lauren L. Kordonowy
- Department of Molecular, Cellular, and Biological Sciences, University of New Hampshire, Durham, NH, United States
| | - Matthew D. MacManes
- Department of Molecular, Cellular, and Biological Sciences, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
371
|
Govindarajan R, Sparreboom A. Drug Transporters: Advances and Opportunities. Clin Pharmacol Ther 2016; 100:398-403. [PMID: 27718234 DOI: 10.1002/cpt.454] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 08/09/2016] [Indexed: 12/11/2022]
Abstract
Drug transporter research conducted over the last several decades has led to a greatly advanced understanding of the mechanisms underlying the principles of drug absorption and disposition. Although many transporters remain poorly characterized, there is ample evidence that the drug transporter field will ultimately provide vital support to routine patient management, and will play a key role in the discovery, development, and evaluation of innovative, cutting-edge therapies.
Collapse
Affiliation(s)
- R Govindarajan
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - A Sparreboom
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
372
|
Abstract
Cells need to strictly control their internal milieu, a function which is performed by the plasma membrane. Selective passage of molecules across the plasma membrane is controlled by transport proteins. As the liver is the central organ for drug metabolism, hepatocytes are equipped with numerous drug transporters expressed at the plasma membrane. Drug disposition includes absorption, distribution, metabolism, and elimination of a drug and hence multiple passages of drugs and their metabolites across membranes. Consequently, understanding the exact mechanisms of drug transporters is essential both in drug development and in drug therapy. While many drug transporters are expressed in hepatocytes, and some of them are well characterized, several transporters have only recently been identified as new drug transporters. Novel powerful tools to deorphanize (drug) transporters are being applied and show promising results. Although a large set of tools are available for studying transport in vitro and in isolated cells, tools for studying transport in living organisms, including humans, are evolving now and rely predominantly on imaging techniques, e.g. positron emission tomography. Imaging is an area which, certainly in the near future, will provide important insights into "transporters at work" in vivo.
Collapse
Affiliation(s)
- Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, 8091, Switzerland
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
373
|
De Sanctis G, Spinelli M, Vanoni M, Sacco E. K-Ras Activation Induces Differential Sensitivity to Sulfur Amino Acid Limitation and Deprivation and to Oxidative and Anti-Oxidative Stress in Mouse Fibroblasts. PLoS One 2016; 11:e0163790. [PMID: 27685888 PMCID: PMC5042513 DOI: 10.1371/journal.pone.0163790] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/14/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cancer cells have an increased demand for amino acids and require transport even of non-essential amino acids to support their increased proliferation rate. Besides their major role as protein synthesis precursors, the two proteinogenic sulfur-containing amino acids, methionine and cysteine, play specific biological functions. In humans, methionine is essential for cell growth and development and may act as a precursor for cysteine synthesis. Cysteine is a precursor for the biosynthesis of glutathione, the major scavenger for reactive oxygen species. METHODOLOGY AND PRINCIPAL FINDINGS We study the effect of K-ras oncogene activation in NIH3T3 mouse fibroblasts on transport and metabolism of cysteine and methionine. We show that cysteine limitation and deprivation cause apoptotic cell death (cytotoxic effect) in both normal and K-ras-transformed fibroblasts, due to accumulation of reactive oxygen species and a decrease in reduced glutathione. Anti-oxidants glutathione and MitoTEMPO inhibit apoptosis, but only cysteine-containing glutathione partially rescues the cell growth defect induced by limiting cysteine. Methionine limitation and deprivation has a cytostatic effect on mouse fibroblasts, unaffected by glutathione. K-ras-transformed cells-but not their parental NIH3T3-are extremely sensitive to methionine limitation. This fragility correlates with decreased expression of the Slc6a15 gene-encoding the nutrient transporter SBAT1, known to exhibit a strong preference for methionine-and decreased methionine uptake. CONCLUSIONS AND SIGNIFICANCE Overall, limitation of sulfur-containing amino acids results in a more dramatic perturbation of the oxido-reductive balance in K-ras-transformed cells compared to NIH3T3 cells. Growth defects induced by cysteine limitation in mouse fibroblasts are largely-though not exclusively-due to cysteine utilization in the synthesis of glutathione, mouse fibroblasts requiring an exogenous cysteine source for protein synthesis. Therapeutic regimens of cancer involving modulation of methionine metabolism could be more effective in cells with limited methionine transport capability.
Collapse
Affiliation(s)
- Gaia De Sanctis
- SYSBIO, Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Michela Spinelli
- SYSBIO, Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Marco Vanoni
- SYSBIO, Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Elena Sacco
- SYSBIO, Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
- * E-mail:
| |
Collapse
|
374
|
Neul C, Schaeffeler E, Sparreboom A, Laufer S, Schwab M, Nies AT. Impact of Membrane Drug Transporters on Resistance to Small-Molecule Tyrosine Kinase Inhibitors. Trends Pharmacol Sci 2016; 37:904-932. [PMID: 27659854 DOI: 10.1016/j.tips.2016.08.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 12/21/2022]
Abstract
Small-molecule inhibitors of tyrosine kinases (TKIs) are the mainstay of treatment for many malignancies and represent novel treatment options for other diseases such as idiopathic pulmonary fibrosis. Twenty-five TKIs are currently FDA-approved and >130 are being evaluated in clinical trials. Increasing evidence suggests that drug exposure of TKIs may significantly contribute to drug resistance, independently from somatic variation of TKI target genes. Membrane transport proteins may limit the amount of TKI reaching the target cells. This review highlights current knowledge on the basic and clinical pharmacology of membrane transporters involved in TKI disposition and their contribution to drug efficacy and adverse drug effects. In addition to non-genetic and epigenetic factors, genetic variants, particularly rare ones, in transporter genes are promising novel factors to explain interindividual variability in the response to TKI therapy.
Collapse
Affiliation(s)
- Claudia Neul
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Germany
| | - Alex Sparreboom
- Division of Pharmaceutics, College of Pharmacy, Ohio State University, Columbus, OH, USA
| | - Stefan Laufer
- Department of Pharmaceutical Chemistry, University of Tübingen, Tübingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Germany; Department of Clinical Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, University Hospital, Tübingen, Germany; Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany.
| | - Anne T Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Germany
| |
Collapse
|
375
|
Zdrazil B, Hellsberg E, Viereck M, Ecker GF. From linked open data to molecular interaction: studying selectivity trends for ligands of the human serotonin and dopamine transporter. MEDCHEMCOMM 2016; 7:1819-1831. [PMID: 27891211 PMCID: PMC5100691 DOI: 10.1039/c6md00207b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/01/2016] [Indexed: 11/21/2022]
Abstract
Retrieval of congeneric and consistent SAR data sets for protein targets of interest is still a laborious task to do if no appropriate in-house data set is available. However, combining integrated open data sources (such as the Open PHACTS Discovery Platform) with workflow tools now offers the possibility of querying across multiple domains and tailoring the search to the given research question. Starting from two phylogenetically related protein targets of interest (the human serotonin and dopamine transporters), the whole chemical compound space was explored by implementing a scaffold-based clustering of compounds possessing biological measurements for both targets. In addition, potential hERG blocking liabilities were included. The workflow allowed studying the selectivity trends of scaffold series, identifying potentially harmful compound series, and performing SAR, docking studies and molecular dynamics (MD) simulations for a consistent data set of 56 cathinones. This delivered useful insights into driving determinants for hDAT selectivity over hSERT. With respect to the scaffold-based analyses it should be noted that the cathinone data set could be retrieved only when Murcko scaffold analyses were combined with similarity searches such as a common substructure search.
Collapse
Affiliation(s)
- Barbara Zdrazil
- Department of Pharmaceutical Chemistry , Pharmacoinformatics Research Group , University of Vienna , Althanstraße 14 , A-1090 , Austria . ; ; Tel: +43 1 4277 55110
| | - Eva Hellsberg
- Department of Pharmaceutical Chemistry , Pharmacoinformatics Research Group , University of Vienna , Althanstraße 14 , A-1090 , Austria . ; ; Tel: +43 1 4277 55110
| | - Michael Viereck
- Department of Pharmaceutical Chemistry , Pharmacoinformatics Research Group , University of Vienna , Althanstraße 14 , A-1090 , Austria . ; ; Tel: +43 1 4277 55110
| | - Gerhard F Ecker
- Department of Pharmaceutical Chemistry , Pharmacoinformatics Research Group , University of Vienna , Althanstraße 14 , A-1090 , Austria . ; ; Tel: +43 1 4277 55110
| |
Collapse
|
376
|
A molecular code for endosomal recycling of phosphorylated cargos by the SNX27-retromer complex. Nat Struct Mol Biol 2016; 23:921-932. [PMID: 27595347 DOI: 10.1038/nsmb.3290] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/11/2016] [Indexed: 12/11/2022]
Abstract
Recycling of internalized receptors from endosomal compartments is essential for the receptors' cell-surface homeostasis. Sorting nexin 27 (SNX27) cooperates with the retromer complex in the recycling of proteins containing type I PSD95-Dlg-ZO1 (PDZ)-binding motifs. Here we define specific acidic amino acid sequences upstream of the PDZ-binding motif required for high-affinity engagement of the human SNX27 PDZ domain. However, a subset of SNX27 ligands, such as the β2 adrenergic receptor and N-methyl-D-aspartate (NMDA) receptor, lack these sequence determinants. Instead, we identified conserved sites of phosphorylation that substitute for acidic residues and dramatically enhance SNX27 interactions. This newly identified mechanism suggests a likely regulatory switch for PDZ interaction and protein transport by the SNX27-retromer complex. Defining this SNX27 binding code allowed us to classify more than 400 potential SNX27 ligands with broad functional implications in signal transduction, neuronal plasticity and metabolite transport.
Collapse
|
377
|
Abstract
BACKGROUND The term 'metabolome' was introduced to the scientific literature in September 1998. AIM AND KEY SCIENTIFIC CONCEPTS OF THE REVIEW To mark its 18-year-old 'coming of age', two of the co-authors of that paper review the genesis of metabolomics, whence it has come and where it may be going.
Collapse
Affiliation(s)
- Douglas B. Kell
- School of Chemistry, The University of Manchester, 131 Princess St, Manchester, M1 7DN UK
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester, M1 7DN UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), The University of Manchester, 131, Princess St, Manchester, M1 7DN UK
| | - Stephen G. Oliver
- Cambridge Systems Biology Centre, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge, CB2 1GA UK
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge, CB2 1GA UK
| |
Collapse
|
378
|
Dissection of Transporter Function: From Genetics to Structure. Trends Genet 2016; 32:576-590. [DOI: 10.1016/j.tig.2016.06.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 12/20/2022]
|
379
|
Colas C, Smith DE, Schlessinger A. Computing Substrate Selectivity in a Peptide Transporter. Cell Chem Biol 2016; 23:211-213. [PMID: 26971872 DOI: 10.1016/j.chembiol.2016.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The human proton-coupled peptide transporter 1 (PepT1) is responsible for the absorption of di- and tri-peptides from the diet and peptide-like drugs. In this issue of Cell Chemical Biology, Samsudin et al. (2016) use an integrated computational and experimental approach to provide new insights into understanding substrate selectivity of PepTSt, a prokaryotic homolog of the human PepT1.
Collapse
Affiliation(s)
- Claire Colas
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David E Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Avner Schlessinger
- Departments of Pharmacology and Systems Therapeutics, and Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
380
|
O'Hagan S, Kell DB. MetMaxStruct: A Tversky-Similarity-Based Strategy for Analysing the (Sub)Structural Similarities of Drugs and Endogenous Metabolites. Front Pharmacol 2016; 7:266. [PMID: 27597830 PMCID: PMC4992690 DOI: 10.3389/fphar.2016.00266] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 08/08/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Previous studies compared the molecular similarity of marketed drugs and endogenous human metabolites (endogenites), using a series of fingerprint-type encodings, variously ranked and clustered using the Tanimoto (Jaccard) similarity coefficient (TS). Because this gives equal weight to all parts of the encoding (thence to different substructures in the molecule) it may not be optimal, since in many cases not all parts of the molecule will bind to their macromolecular targets. Unsupervised methods cannot alone uncover this. We here explore the kinds of differences that may be observed when the TS is replaced-in a manner more equivalent to semi-supervised learning-by variants of the asymmetric Tversky (TV) similarity, that includes α and β parameters. RESULTS Dramatic differences are observed in (i) the drug-endogenite similarity heatmaps, (ii) the cumulative "greatest similarity" curves, and (iii) the fraction of drugs with a Tversky similarity to a metabolite exceeding a given value when the Tversky α and β parameters are varied from their Tanimoto values. The same is true when the sum of the α and β parameters is varied. A clear trend toward increased endogenite-likeness of marketed drugs is observed when α or β adopt values nearer the extremes of their range, and when their sum is smaller. The kinds of molecules exhibiting the greatest similarity to two interrogating drug molecules (chlorpromazine and clozapine) also vary in both nature and the values of their similarity as α and β are varied. The same is true for the converse, when drugs are interrogated with an endogenite. The fraction of drugs with a Tversky similarity to a molecule in a library exceeding a given value depends on the contents of that library, and α and β may be "tuned" accordingly, in a semi-supervised manner. At some values of α and β drug discovery library candidates or natural products can "look" much more like (i.e., have a numerical similarity much closer to) drugs than do even endogenites. CONCLUSIONS Overall, the Tversky similarity metrics provide a more useful range of examples of molecular similarity than does the simpler Tanimoto similarity, and help to draw attention to molecular similarities that would not be recognized if Tanimoto alone were used. Hence, the Tversky similarity metrics are likely to be of significant value in many general problems in cheminformatics.
Collapse
Affiliation(s)
- Steve O'Hagan
- School of Chemistry, The University of ManchesterManchester, UK
- The Manchester Institute of Biotechnology, The University of ManchesterManchester, UK
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals, The University of ManchesterManchester, UK
| | - Douglas B. Kell
- School of Chemistry, The University of ManchesterManchester, UK
- The Manchester Institute of Biotechnology, The University of ManchesterManchester, UK
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals, The University of ManchesterManchester, UK
| |
Collapse
|
381
|
Liu HC, Jamshidi N, Chen Y, Eraly SA, Cho SY, Bhatnagar V, Wu W, Bush KT, Abagyan R, Palsson BO, Nigam SK. An Organic Anion Transporter 1 (OAT1)-centered Metabolic Network. J Biol Chem 2016; 291:19474-86. [PMID: 27440044 DOI: 10.1074/jbc.m116.745216] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Indexed: 01/06/2023] Open
Abstract
There has been a recent interest in the broader physiological importance of multispecific "drug" transporters of the SLC and ABC transporter families. Here, a novel multi-tiered systems biology approach was used to predict metabolites and signaling molecules potentially affected by the in vivo deletion of organic anion transporter 1 (Oat1, Slc22a6, originally NKT), a major kidney-expressed drug transporter. Validation of some predictions in wet-lab assays, together with re-evaluation of existing transport and knock-out metabolomics data, generated an experimentally validated, confidence ranked set of OAT1-interacting endogenous compounds enabling construction of an "OAT1-centered metabolic interaction network." Pathway and enrichment analysis indicated an important role for OAT1 in metabolism involving: the TCA cycle, tryptophan and other amino acids, fatty acids, prostaglandins, cyclic nucleotides, odorants, polyamines, and vitamins. The partly validated reconstructed network is also consistent with a major role for OAT1 in modulating metabolic and signaling pathways involving uric acid, gut microbiome products, and so-called uremic toxins accumulating in chronic kidney disease. Together, the findings are compatible with the hypothesized role of drug transporters in remote inter-organ and inter-organismal communication: The Remote Sensing and Signaling Hypothesis (Nigam, S. K. (2015) Nat. Rev. Drug Disc. 14, 29). The fact that OAT1 can affect many systemic biological pathways suggests that drug-metabolite interactions need to be considered beyond simple competition for the drug transporter itself and may explain aspects of drug-induced metabolic syndrome. Our approach should provide novel mechanistic insights into the role of OAT1 and other drug transporters implicated in metabolic diseases like gout, diabetes, and chronic kidney disease.
Collapse
Affiliation(s)
| | | | - Yuchen Chen
- Bioinformatics and Systems Biology Graduate Program
| | | | | | | | | | | | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093
| | | | - Sanjay K Nigam
- Medicine, Pediatrics, and Cellular and Molecular Medicine,
| |
Collapse
|
382
|
Chow BW, Gu C. The molecular constituents of the blood-brain barrier. Trends Neurosci 2016; 38:598-608. [PMID: 26442694 DOI: 10.1016/j.tins.2015.08.003] [Citation(s) in RCA: 272] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 12/12/2022]
Abstract
The blood-brain barrier (BBB) maintains the optimal microenvironment in the central nervous system (CNS) for proper brain function. The BBB comprises specialized CNS endothelial cells with fundamental molecular properties essential for the function and integrity of the BBB. The restrictive nature of the BBB hinders the delivery of therapeutics for many neurological disorders. In addition, recent evidence shows that BBB dysfunction can precede or hasten the progression of several neurological diseases. Despite the physiological significance of the BBB in health and disease, major discoveries of the molecular regulators of BBB formation and function have occurred only recently. This review highlights recent findings describing the molecular determinants and core cellular pathways that confer BBB properties on CNS endothelial cells.
Collapse
Affiliation(s)
- Brian Wai Chow
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MN 02115, USA
| | - Chenghua Gu
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MN 02115, USA.
| |
Collapse
|
383
|
Roshanbin S, Lindberg FA, Lekholm E, Eriksson MM, Perland E, Åhlund J, Raine A, Fredriksson R. Histological characterization of orphan transporter MCT14 (SLC16A14) shows abundant expression in mouse CNS and kidney. BMC Neurosci 2016; 17:43. [PMID: 27364523 PMCID: PMC4929735 DOI: 10.1186/s12868-016-0274-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 06/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MCT14 (SLC16A14) is an orphan member of the monocarboxylate transporter (MCT) family, also known as the SLC16 family of secondary active transmembrane transporters. Available expression data for this transporter is limited, and in this paper we aim to characterize MCT14 with respect to tissue distribution and cellular localization in mouse brain. RESULTS Using qPCR, we found that Slc16a14 mRNA was highly abundant in mouse kidney and moderately in central nervous system, testis, uterus and liver. Using immunohistochemistry and in situ hybridization, we determined that MCT14 was highly expressed in excitatory and inhibitory neurons as well as epithelial cells in the mouse brain. The expression was exclusively localized to the soma of neurons. Furthermore, we showed with our phylogenetic analysis that MCT14 most closely relate to the aromatic amino acid- and thyroid-hormone transporters MCT8 (SLC16A2) and MCT10 (SLC16A10), in addition to the carnitine transporter MCT9 (SLC16A9). CONCLUSIONS We provide here the first histological mapping of MCT14 in the brain and our data are consistent with the hypothesis that MCT14 is a neuronal aromatic-amino-acid transporter.
Collapse
Affiliation(s)
- Sahar Roshanbin
- Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124, Uppsala, Sweden
| | - Frida A Lindberg
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University, 75124, Uppsala, Sweden
| | - Emilia Lekholm
- Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124, Uppsala, Sweden
| | - Mikaela M Eriksson
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University, 75124, Uppsala, Sweden
| | - Emelie Perland
- Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124, Uppsala, Sweden
| | - Johan Åhlund
- Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124, Uppsala, Sweden
| | - Amanda Raine
- Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124, Uppsala, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University, 75124, Uppsala, Sweden.
| |
Collapse
|
384
|
Kell DB. Implications of endogenous roles of transporters for drug discovery: hitchhiking and metabolite-likeness. Nat Rev Drug Discov 2016; 15:143. [PMID: 26837595 DOI: 10.1038/nrd.2015.44] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Douglas B Kell
- School of Chemistry, The Manchester Institute of Biotechnology, and the Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
385
|
Hresko RC, Kraft TE, Quigley A, Carpenter EP, Hruz PW. Mammalian Glucose Transporter Activity Is Dependent upon Anionic and Conical Phospholipids. J Biol Chem 2016; 291:17271-82. [PMID: 27302065 PMCID: PMC5016126 DOI: 10.1074/jbc.m116.730168] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 01/05/2023] Open
Abstract
The regulated movement of glucose across mammalian cell membranes is mediated by facilitative glucose transporters (GLUTs) embedded in lipid bilayers. Despite the known importance of phospholipids in regulating protein structure and activity, the lipid-induced effects on the GLUTs remain poorly understood. We systematically examined the effects of physiologically relevant phospholipids on glucose transport in liposomes containing purified GLUT4 and GLUT3. The anionic phospholipids, phosphatidic acid, phosphatidylserine, phosphatidylglycerol, and phosphatidylinositol, were found to be essential for transporter function by activating it and stabilizing its structure. Conical lipids, phosphatidylethanolamine and diacylglycerol, enhanced transporter activity up to 3-fold in the presence of anionic phospholipids but did not stabilize protein structure. Kinetic analyses revealed that both lipids increase the kcat of transport without changing the Km values. These results allowed us to elucidate the activation of GLUT by plasma membrane phospholipids and to extend the field of membrane protein-lipid interactions to the family of structurally and functionally related human solute carriers.
Collapse
Affiliation(s)
| | | | - Andrew Quigley
- the Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Elisabeth P Carpenter
- the Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Paul W Hruz
- From the Departments of Pediatrics and Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110 and
| |
Collapse
|
386
|
Colas C, Ung PMU, Schlessinger A. SLC Transporters: Structure, Function, and Drug Discovery. MEDCHEMCOMM 2016; 7:1069-1081. [PMID: 27672436 PMCID: PMC5034948 DOI: 10.1039/c6md00005c] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The human Solute Carrier (SLC) transporters are important targets for drug development. Structure-based drug discovery for SLC transporters requires the description of their structure, dynamics, and mechanism of interaction with small molecule ligands and ions. The recent determination of atomic structures of human SLC transporters and their homologs, combined with improved computational power and prediction methods have led to an increased applicability of structure-based drug design methods for human SLC members. In this review, we provide an overview of the SLC transporters' structures and transport mechanisms. We then describe computational techniques, such as homology modeling and virtual screening that are emerging as key tools to discover chemical probes for human SLC members. We illustrate the utility of these methods by presenting case studies in which rational integration of computation and experiment was used to characterize SLC members that transport key nutrients and metabolites, including the amino acid transporters LAT-1 and ASCT2, the SLC13 family of citric acid cycle intermediate transporters, and the glucose transporter GLUT1. We conclude with a brief discussion about future directions in structure-based drug discovery for the human SLC superfamily, one of the most structurally and functionally diverse protein families in human.
Collapse
Affiliation(s)
- Claire Colas
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Peter Man-Un Ung
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Avner Schlessinger
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
387
|
Matsson P, Doak BC, Over B, Kihlberg J. Cell permeability beyond the rule of 5. Adv Drug Deliv Rev 2016; 101:42-61. [PMID: 27067608 DOI: 10.1016/j.addr.2016.03.013] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/25/2016] [Accepted: 03/31/2016] [Indexed: 11/17/2022]
Abstract
Drug discovery for difficult targets that have large and flat binding sites is often better suited to compounds beyond the "rule of 5" (bRo5). However, such compounds carry higher pharmacokinetic risks, such as low solubility and permeability, and increased efflux and metabolism. Interestingly, recent drug approvals and studies suggest that cell permeable and orally bioavailable drugs can be discovered far into bRo5 space. Tactics such as reduction or shielding of polarity by N-methylation, bulky side chains and intramolecular hydrogen bonds may be used to increase cell permeability in this space, but often results in decreased solubility. Conformationally flexible compounds can, however, combine high permeability and solubility, properties that are keys for cell permeability and intestinal absorption. Recent developments in computational conformational analysis will aid design of such compounds and hence prediction of cell permeability. Transporter mediated efflux occurs for most investigated drugs in bRo5 space, however it is commonly overcome by high local intestinal concentrations on oral administration. In contrast, there is little data to support significant impact of transporter-mediated intestinal absorption in bRo5 space. Current knowledge of compound properties that govern transporter effects of bRo5 drugs is limited and requires further fundamental and comprehensive studies.
Collapse
Affiliation(s)
- Pär Matsson
- Department of Pharmacy, BMC, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
| | - Bradley C Doak
- Department of Medicinal Chemistry, MIPS, Monash University, 381 Royal Parade, Parkville, Victoria, Australia
| | - Björn Over
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Jan Kihlberg
- Department of Chemistry - BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
388
|
A protocol for the systematic and quantitative measurement of protein-lipid interactions using the liposome-microarray-based assay. Nat Protoc 2016; 11:1021-38. [PMID: 27149326 DOI: 10.1038/nprot.2016.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lipids organize the activity of the cell's proteome through a complex network of interactions. The assembly of comprehensive atlases embracing all protein-lipid interactions is an important challenge that requires innovative methods. We recently developed a liposome-microarray-based assay (LiMA) that integrates liposomes, microfluidics and fluorescence microscopy and which is capable of measuring protein recruitment to membranes in a quantitative and high-throughput manner. Compared with previous assays that are labor-intensive and difficult to scale up, LiMA improves the protein-lipid interaction assay throughput by at least three orders of magnitude. Here we provide a step-by-step LiMA protocol that includes the following: (i) the serial and generic production of the liposome microarray; (ii) its integration into a microfluidic format; (iii) the measurement of fluorescently labeled protein (either purified proteins or from cell lysate) recruitment to liposomal membranes using high-throughput microscopy; (iv) automated image analysis pipelines to quantify protein-lipid interactions; and (v) data quality analysis. In addition, we discuss the experimental design, including the relevant quality controls. Overall, the protocol-including device preparation, assay and data analysis-takes 6-8 d. This protocol paves the way for protein-lipid interaction screens to be performed on the proteome and lipidome scales.
Collapse
|
389
|
Helms HC, Abbott NJ, Burek M, Cecchelli R, Couraud PO, Deli MA, Förster C, Galla HJ, Romero IA, Shusta EV, Stebbins MJ, Vandenhaute E, Weksler B, Brodin B. In vitro models of the blood-brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab 2016; 36:862-90. [PMID: 26868179 PMCID: PMC4853841 DOI: 10.1177/0271678x16630991] [Citation(s) in RCA: 548] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/05/2016] [Indexed: 12/12/2022]
Abstract
The endothelial cells lining the brain capillaries separate the blood from the brain parenchyma. The endothelial monolayer of the brain capillaries serves both as a crucial interface for exchange of nutrients, gases, and metabolites between blood and brain, and as a barrier for neurotoxic components of plasma and xenobiotics. This "blood-brain barrier" function is a major hindrance for drug uptake into the brain parenchyma. Cell culture models, based on either primary cells or immortalized brain endothelial cell lines, have been developed, in order to facilitate in vitro studies of drug transport to the brain and studies of endothelial cell biology and pathophysiology. In this review, we aim to give an overview of established in vitro blood-brain barrier models with a focus on their validation regarding a set of well-established blood-brain barrier characteristics. As an ideal cell culture model of the blood-brain barrier is yet to be developed, we also aim to give an overview of the advantages and drawbacks of the different models described.
Collapse
Affiliation(s)
- Hans C Helms
- Department of Pharmacy, University of Copenhagen, Denmark
| | - N Joan Abbott
- Institute of Pharmaceutical Science, King's College London, UK
| | - Malgorzata Burek
- Klinik und Poliklinik für Anästhesiologie, University of Wurzburg, Germany
| | | | - Pierre-Olivier Couraud
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maria A Deli
- Institute of Biophysics, Biological Research Centre, HAS, Szeged, Hungary
| | - Carola Förster
- Klinik und Poliklinik für Anästhesiologie, University of Wurzburg, Germany
| | - Hans J Galla
- Institute of Biochemistry, University of Muenster, Germany
| | - Ignacio A Romero
- Department of Biological Sciences, The Open University, Walton Hall, Milton Keynes, UK
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, WI, USA
| | - Matthew J Stebbins
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, WI, USA
| | | | - Babette Weksler
- Division of Hematology and Medical Oncology, Weill Cornell Medical College, NY, USA
| | - Birger Brodin
- Department of Pharmacy, University of Copenhagen, Denmark
| |
Collapse
|
390
|
Epigenetics in Drug Response. Clin Pharmacol Ther 2016; 99:468-70. [DOI: 10.1002/cpt.349] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 12/16/2022]
|
391
|
Mendes P, Oliver SG, Kell DB. Response to ‘The Need for Speed’, by Matsson et al . Trends Pharmacol Sci 2016; 37:245-246. [DOI: 10.1016/j.tips.2016.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 12/22/2022]
|
392
|
Scalise M, Pochini L, Galluccio M, Indiveri C. Glutamine transport. From energy supply to sensing and beyond. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1147-1157. [PMID: 26951943 DOI: 10.1016/j.bbabio.2016.03.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 12/16/2022]
Abstract
Glutamine is the most abundant amino acid in plasma and is actively involved in many biosynthetic and regulatory processes. It can be synthesized endogenously but becomes "conditionally essential" in physiological or pathological conditions of high proliferation rate. To accomplish its functions glutamine has to be absorbed and distributed in the whole body. This job is efficiently carried out by a network of membrane transporters that differ in transport mechanisms and energetics, belonging to families SLC1, 6, 7, 38, and possibly, 25. Some of the transporters are involved in glutamine traffic across different membranes for metabolic purposes; others are involved in specific signaling functions through mTOR. Structure/function relationships and regulatory aspects of glutamine transporters are still at infancy. In the while, insights in involvement of these transporters in cell redox control, cancer metabolism and drug interactions are arising, stimulating basic research to uncover molecular mechanisms of transport and regulation. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy
| | - Lorena Pochini
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy
| | - Michele Galluccio
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy.
| |
Collapse
|
393
|
Matsson P, Lundquist P, Artursson P. The Need for Speed-Kinetic Limits of Drug Transporters. Trends Pharmacol Sci 2016; 37:243-245. [PMID: 26922253 DOI: 10.1016/j.tips.2016.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Pär Matsson
- Department of Pharmacy, Uppsala University, Box 580, 751 23 Uppsala, Sweden; Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP) - a node of the Chemical Biology Consortium Sweden, Uppsala, Sweden.
| | - Patrik Lundquist
- Department of Pharmacy, Uppsala University, Box 580, 751 23 Uppsala, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Box 580, 751 23 Uppsala, Sweden; Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP) - a node of the Chemical Biology Consortium Sweden, Uppsala, Sweden; Science for Life Laboratory Drug Discovery and Development Platform, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
394
|
LeVine MV, Cuendet MA, Khelashvili G, Weinstein H. Allosteric Mechanisms of Molecular Machines at the Membrane: Transport by Sodium-Coupled Symporters. Chem Rev 2016; 116:6552-87. [PMID: 26892914 DOI: 10.1021/acs.chemrev.5b00627] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Solute transport across cell membranes is ubiquitous in biology as an essential physiological process. Secondary active transporters couple the unfavorable process of solute transport against its concentration gradient to the energetically favorable transport of one or several ions. The study of such transporters over several decades indicates that their function involves complex allosteric mechanisms that are progressively being revealed in atomistic detail. We focus on two well-characterized sodium-coupled symporters: the bacterial amino acid transporter LeuT, which is the prototype for the "gated pore" mechanism in the mammalian synaptic monoamine transporters, and the archaeal GltPh, which is the prototype for the "elevator" mechanism in the mammalian excitatory amino acid transporters. We present the evidence for the role of allostery in the context of a quantitative formalism that can reconcile biochemical and biophysical data and thereby connects directly to recent insights into the molecular structure and dynamics of these proteins. We demonstrate that, while the structures and mechanisms of these transporters are very different, the available data suggest a common role of specific models of allostery in their functions. We argue that such allosteric mechanisms appear essential not only for sodium-coupled symport in general but also for the function of other types of molecular machines in the membrane.
Collapse
Affiliation(s)
- Michael V LeVine
- Department of Physiology and Biophysics, ‡HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University , New York, New York 10065, United States
| | - Michel A Cuendet
- Department of Physiology and Biophysics, ‡HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University , New York, New York 10065, United States
| | - George Khelashvili
- Department of Physiology and Biophysics, ‡HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University , New York, New York 10065, United States
| | - Harel Weinstein
- Department of Physiology and Biophysics, ‡HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University , New York, New York 10065, United States
| |
Collapse
|
395
|
Ölander M, Wiśniewski JR, Matsson P, Lundquist P, Artursson P. The Proteome of Filter-Grown Caco-2 Cells With a Focus on Proteins Involved in Drug Disposition. J Pharm Sci 2016; 105:817-827. [DOI: 10.1016/j.xphs.2015.10.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 12/31/2022]
|
396
|
Deng D, Yan N. GLUT, SGLT, and SWEET: Structural and mechanistic investigations of the glucose transporters. Protein Sci 2016; 25:546-58. [PMID: 26650681 DOI: 10.1002/pro.2858] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/20/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022]
Abstract
Glucose is the primary fuel to life on earth. Cellular uptake of glucose is a fundamental process for metabolism, growth, and homeostasis. Three families of secondary glucose transporters have been identified in human, including the major facilitator superfamily glucose facilitators GLUTs, the sodium-driven glucose symporters SGLTs, and the recently identified SWEETs. Structures of representative members or their prokaryotic homologs of all three families were obtained. This review focuses on the recent advances in the structural elucidation of the glucose transporters and the mechanistic insights derived from these structures, including the molecular basis for substrate recognition, alternating access, and stoichiometric coupling of co-transport.
Collapse
Affiliation(s)
- Dong Deng
- State Key Laboratory of Bio-Membrane and Membrane Biotechnology, Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Nieng Yan
- State Key Laboratory of Bio-Membrane and Membrane Biotechnology, Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
397
|
Estudante M, Soveral G, Morais JG, Benet LZ. Insights into solute carriers: physiological functions and implications in disease and pharmacokinetics. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00188b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SLCs transport many endogenous and exogenous compounds including drugs; SLCs dysfunction has implications in pharmacokinetics, drug toxicity or lack of efficacy.
Collapse
Affiliation(s)
- Margarida Estudante
- Department of Pharmacological Sciences
- Faculty of Pharmacy
- Universidade de Lisboa
- Portugal
- Research Institute for Medicines (iMed.ULisboa)
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Portugal
| | - José G. Morais
- Department of Pharmacological Sciences
- Faculty of Pharmacy
- Universidade de Lisboa
- Portugal
- Research Institute for Medicines (iMed.ULisboa)
| | - Leslie Z. Benet
- Department of Bioengineering and Therapeutic Sciences
- University of California
- San Francisco
- USA
| |
Collapse
|
398
|
Chapter Five - Ubiquitination of Ion Channels and Transporters. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:161-223. [DOI: 10.1016/bs.pmbts.2016.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
399
|
Hussain SA, Sulaiman AA, Alhaddad H, Alhadidi Q. Natural polyphenols: Influence on membrane transporters. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2016; 5:97-104. [PMID: 27069731 PMCID: PMC4805155 DOI: 10.5455/jice.20160118062127] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/18/2016] [Indexed: 02/02/2023]
Abstract
Accumulated evidence has focused on the use of natural polyphenolic compounds as nutraceuticals since they showed a wide range of bioactivities and exhibited protection against variety of age-related disorders. Polyphenols have variable potencies to interact, and hence alter the activities of various transporter proteins, many of them classified as anion transporting polypeptide-binding cassette transporters like multidrug resistance protein and p-glycoprotein. Some of the efflux transporters are, generally, linked with anticancer and antiviral drug resistance; in this context, polyphenols may be beneficial in modulating drug resistance by increasing the efficacy of anticancer and antiviral drugs. In addition, these effects were implicated to explain the influence of dietary polyphenols on drug efficacy as result of food-drug interactions. However, limited data are available about the influence of these components on uptake transporters. Therefore, the objective of this article is to review the potential efficacies of polyphenols in modulating the functional integrity of uptake transporter proteins, including those terminated the effect of neurotransmitters, and their possible influence in neuropharmacology.
Collapse
Affiliation(s)
- Saad Abdulrahman Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Amal Ajaweed Sulaiman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Hasan Alhaddad
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Qasim Alhadidi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| |
Collapse
|
400
|
Stenesen D, Moehlman AT, Krämer H. The carcinine transporter CarT is required in Drosophila photoreceptor neurons to sustain histamine recycling. eLife 2015; 4:e10972. [PMID: 26653853 PMCID: PMC4739767 DOI: 10.7554/elife.10972] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/13/2015] [Indexed: 12/30/2022] Open
Abstract
Synaptic transmission from Drosophila photoreceptors to lamina neurons requires recycling of histamine neurotransmitter. Synaptic histamine is cleared by uptake into glia and conversion into carcinine, which functions as transport metabolite. How carcinine is transported from glia to photoreceptor neurons remains unclear. In a targeted RNAi screen for genes involved in this pathway, we identified carT, which encodes a member of the SLC22A transporter family. CarT expression in photoreceptors is necessary and sufficient for fly vision and behavior. Carcinine accumulates in the lamina of carT flies. Wild-type levels are restored by photoreceptor-specific expression of CarT, and endogenous tagging suggests CarT localizes to synaptic endings. Heterologous expression of CarT in S2 cells is sufficient for carcinine uptake, demonstrating the ability of CarT to utilize carcinine as a transport substrate. Together, our results demonstrate that CarT transports the histamine metabolite carcinine into photoreceptor neurons, thus contributing an essential step to the histamine–carcinine cycle. DOI:http://dx.doi.org/10.7554/eLife.10972.001 Photoreceptors are light-sensitive neurons in the eyes of the fruit fly Drosophila that form connections with other neurons in the fly’s brain. At these connections, which are called synapses, the photoreceptors continuously release a chemical called histamine. Photoreceptors will release more or less histamine depending on changes in light intensity, but always tend to release more histamine than they can produce themselves from scratch. This means that the visual system in Drosophila relies on a pathway that recycles histamine. That is to say, glial cells (which support the activity of the neurons) remove the chemical from synapses and return it to the photoreceptor neurons in a slightly modified form called “carcinine”. The photoreceptors then quickly convert the chemical back into histamine, ready to be released. Stenesen et al. set out to identify the proteins that support this recycling pathway, and started by screening around 130 genes that encode transporter proteins for potential roles in histamine recycling. This screen identified a gene encoding a protein that was named CarT. This protein transports carcinine, the modified version of the histamine neurotransmitter. Stenesen et al. show that the photoreceptor neurons make the CarT protein and need this protein to take up the carcinine released by the supporting glial cells. Without CarT, photoreceptor neurons cannot transmit visual information, and so mutant flies in which the gene for CarT is deleted are blind. Follow-up studies related to this work could involve identifying the transporters that move histamine and carcinine in and out of the glia cells, and exploring what other neurons and behaviors in fruit flies rely on CarT’s activity. DOI:http://dx.doi.org/10.7554/eLife.10972.002
Collapse
Affiliation(s)
- Drew Stenesen
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Andrew T Moehlman
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Helmut Krämer
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|