351
|
Abstract
Researchers have identified two genes—follistatin and activin—as having an important role in the ability of certain flatworms to identify wounds that require the production of new tissue.
Collapse
Affiliation(s)
- Alejandro Sánchez Alvarado
- is an eLife reviewing editor, and is at the Howard Hughes Medical Institute, Stowers Institute for Medical Research , Kansas City, Missouri , United States
| |
Collapse
|
352
|
Abstract
Wounding, apoptosis, or infection can trigger a proliferative response in neighboring cells to replace damaged tissue. Studies in Drosophila have implicated c-Jun amino-terminal kinase (JNK)-dependent activation of Yorkie (Yki) as essential to regeneration-associated growth, as well as growth associated with neoplastic tumors. Yki is a transcriptional coactivator that is inhibited by Hippo signaling, a conserved pathway that regulates growth. We identified a conserved mechanism by which JNK regulated Hippo signaling. Genetic studies in Drosophila identified Jub (also known as Ajuba LIM protein) as required for JNK-mediated activation of Yki and showed that Jub contributed to wing regeneration after wounding and to tumor growth. Biochemical studies revealed that JNK promoted the phosphorylation of Ajuba family proteins in both Drosophila and mammalian cells. Binding studies in mammalian cells indicated that JNK increased binding between the Ajuba family proteins LIMD1 or WTIP and LATS1, a kinase within the Hippo pathway that inhibits the Yki homolog YAP. Moreover, JNK promoted binding of LIMD1 and LATS1 through direct phosphorylation of LIMD1. These results identify Ajuba family proteins as a conserved link between JNK and Hippo signaling, and imply that JNK increases Yki and YAP activity by promoting the binding of Ajuba family proteins to Warts and LATS.
Collapse
Affiliation(s)
- Gongping Sun
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | |
Collapse
|
353
|
Kyritsis N, Kizil C, Brand M. Neuroinflammation and central nervous system regeneration in vertebrates. Trends Cell Biol 2013; 24:128-35. [PMID: 24029244 DOI: 10.1016/j.tcb.2013.08.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 01/11/2023]
Abstract
Injuries in the central nervous system (CNS) are one of the leading causes of mortality or persistent disabilities in humans. One of the reasons why humans cannot recover from neuronal loss is the limited regenerative capacity of their CNS. By contrast, non-mammalian vertebrates exhibit widespread regeneration in diverse tissues including the CNS. Understanding those mechanisms activated during regeneration may improve the regenerative outcome in the severed mammalian CNS. Of those mechanisms, recent evidence suggests that inflammation may be important in regeneration. In this review we compare the different events following acute CNS injury in mammals and non-mammalian vertebrates. We also discuss the involvement of the immune response in initiating regenerative programs and how immune cells and neural stem/progenitor cells (NSPCs) communicate.
Collapse
Affiliation(s)
- Nikos Kyritsis
- DFG Center for Regenerative Therapies Dresden - Cluster of Excellence (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Caghan Kizil
- DFG Center for Regenerative Therapies Dresden - Cluster of Excellence (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Michael Brand
- DFG Center for Regenerative Therapies Dresden - Cluster of Excellence (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany.
| |
Collapse
|
354
|
Nachtrab G, Kikuchi K, Tornini VA, Poss KD. Transcriptional components of anteroposterior positional information during zebrafish fin regeneration. Development 2013; 140:3754-64. [PMID: 23924636 PMCID: PMC3754474 DOI: 10.1242/dev.098798] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2013] [Indexed: 01/14/2023]
Abstract
Many fish and salamander species regenerate amputated fins or limbs, restoring the size and shape of the original appendage. Regeneration requires that spared cells retain or recall information encoding pattern, a phenomenon termed positional memory. Few factors have been implicated in positional memory during vertebrate appendage regeneration. Here, we investigated potential regulators of anteroposterior (AP) pattern during fin regeneration in adult zebrafish. Sequence-based profiling from tissues along the AP axis of uninjured pectoral fins identified many genes with region-specific expression, several of which encoded transcription factors with known AP-specific expression or function in developing embryonic pectoral appendages. Transgenic reporter strains revealed that regulatory sequences of the transcription factor gene alx4a activated expression in fibroblasts and osteoblasts within anterior fin rays, whereas hand2 regulatory sequences activated expression in these same cell types within posterior rays. Transgenic overexpression of hand2 in all pectoral fin rays did not affect formation of the proliferative regeneration blastema, yet modified the lengths and widths of regenerating bones. Hand2 influenced the character of regenerated rays in part by elevation of the vitamin D-inactivating enzyme encoded by cyp24a1, contributing to region-specific regulation of bone metabolism. Systemic administration of vitamin D during regeneration partially rescued bone defects resulting from hand2 overexpression. Thus, bone-forming cells in a regenerating appendage maintain expression throughout life of transcription factor genes that can influence AP pattern, and differ across the AP axis in their expression signatures of these and other genes. These findings have implications for mechanisms of positional memory in vertebrate tissues.
Collapse
Affiliation(s)
- Gregory Nachtrab
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Kazu Kikuchi
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Valerie A. Tornini
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Kenneth D. Poss
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
- Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| |
Collapse
|
355
|
Pfeifer K, Schaub C, Wolfstetter G, Dorresteijn A. Identification and characterization of a twist ortholog in the polychaete annelid Platynereis dumerilii reveals mesodermal expression of Pdu-twist. Dev Genes Evol 2013; 223:319-28. [PMID: 23817621 DOI: 10.1007/s00427-013-0448-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 06/11/2013] [Indexed: 01/26/2023]
Abstract
The basic helix-loop-helix transcription factor twist plays a key role during mesoderm development in Bilateria. In this study, we identified a twist ortholog in the polychaete annelid Platynereis dumerilii and analyze its expression during larval development, postlarval growth up to the adult stage, and caudal regeneration after amputation of posterior segments. At late larval stages, Pdu-twist is expressed in the mesodermal anlagen and in developing muscles. During adulthood and caudal regeneration, Pdu-twist is expressed in the posterior growth zone, in mesodermal cells within the newly forming segments and budding parapodia. Our results indicate that Pdu-twist is involved in mesoderm formation during larval development, posterior growth, and caudal regeneration.
Collapse
Affiliation(s)
- Kathrin Pfeifer
- Institut für Allgemeine und Spezielle Zoologie, Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Giessen, Germany
| | | | | | | |
Collapse
|
356
|
Witchley JN, Mayer M, Wagner DE, Owen JH, Reddien PW. Muscle cells provide instructions for planarian regeneration. Cell Rep 2013; 4:633-41. [PMID: 23954785 PMCID: PMC4101538 DOI: 10.1016/j.celrep.2013.07.022] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/24/2013] [Accepted: 07/17/2013] [Indexed: 12/11/2022] Open
Abstract
Regeneration requires both potential and instructions for tissue replacement. In planarians, pluripotent stem cells have the potential to produce all new tissue. The identities of the cells that provide regeneration instructions are unknown. Here, we report that position control genes (PCGs) that control regeneration and tissue turnover are expressed in a subepidermal layer of nonneoblast cells. These subepidermal cells coexpress many PCGs. We propose that these subepidermal cells provide a system of body coordinates and positional information for regeneration, and identify them to be muscle cells of the planarian body wall. Almost all planarian muscle cells express PCGs, suggesting a dual function: contraction and control of patterning. PCG expression is dynamic in muscle cells after injury, even in the absence of neoblasts, suggesting that muscle is instructive for regeneration. We conclude that planarian regeneration involves two highly flexible systems: pluripotent neoblasts that can generate any new cell type and muscle cells that provide positional instructions for the regeneration of any body region.
Collapse
Affiliation(s)
- Jessica N Witchley
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA
| | | | | | | | | |
Collapse
|
357
|
Repiso A, Bergantiños C, Serras F. Cell fate respecification and cell division orientation drive intercalary regeneration in Drosophila wing discs. Development 2013; 140:3541-51. [PMID: 23903186 DOI: 10.1242/dev.095760] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To understand the cellular parameters that govern Drosophila wing disc regeneration, we genetically eliminated specific stripes of the wing disc along the proximodistal axis and used vein and intervein markers to trace tissue regeneration. We found that veins could regenerate interveins and vice versa, indicating respecification of cell fates. Moreover, respecification occurred in cells close to the wound. The newly generated domains were intercalated to fill in the missing parts. This intercalation was driven by increased proliferation, accompanied by changes in the orientation of the cell divisions. This reorientation depended on Fat (Ft) and Crumbs (Crb), which acted, at least partly, to control the activity of the effector of the Hippo pathway, Yorkie (Yki). Increased Yki, which promotes proliferation, affected the final shape and size. Heterozygous ft or crb, which normally elicit size and shape defects in regenerated wings, could be rescued by yki heterozygosity. Thus, Ft and Crb act as sensors to drive cell orientation during intercalary regeneration and control Yki levels to ensure a proper balance between proliferation and cell reorientation. We propose a model based on intercalation of missing cell identities, in which a coordinated balance between orientation and proliferation is required for normal organ shape and size.
Collapse
Affiliation(s)
- Ada Repiso
- Departament de Genètica, Facultat de Biologia, Institut de Biomedicina, Universitat de Barcelona, Diagonal 643, Barcelona, Spain
| | | | | |
Collapse
|
358
|
Reactivating head regrowth in a regeneration-deficient planarian species. Nature 2013; 500:81-4. [PMID: 23883932 DOI: 10.1038/nature12414] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 06/25/2013] [Indexed: 12/11/2022]
Abstract
Species capable of regenerating lost body parts occur throughout the animal kingdom, yet close relatives are often regeneration incompetent. Why in the face of 'survival of the fittest' some animals regenerate but others do not remains a fascinating question. Planarian flatworms are well known and studied for their ability to regenerate from minute tissue pieces, yet species with limited regeneration abilities have been described even amongst planarians. Here we report the characterization of the regeneration defect in the planarian Dendrocoelum lacteum and its successful rescue. Tissue fragments cut from the posterior half of the body of this species are unable to regenerate a head and ultimately die. We find that this defect originates during the early stages of head specification, which require inhibition of canonical Wnt signalling in other planarian species. Notably, RNA interference (RNAi)-mediated knockdown of Dlac-β-catenin-1, the Wnt signal transducer, restored the regeneration of fully functional heads on tail pieces, rescuing D. lacteum's regeneration defect. Our results demonstrate the utility of comparative studies towards the reactivation of regenerative abilities in regeneration-deficient animals. Furthermore, the availability of D. lacteum as a regeneration-impaired planarian model species provides a first step towards elucidating the evolutionary mechanisms that ultimately determine why some animals regenerate and others do not.
Collapse
|
359
|
Hirose K, Shimoda N, Kikuchi Y. Transient reduction of 5-methylcytosine and 5-hydroxymethylcytosine is associated with active DNA demethylation during regeneration of zebrafish fin. Epigenetics 2013; 8:899-906. [PMID: 23880758 DOI: 10.4161/epi.25653] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Although dedifferentiation, transformation of differentiated cells into progenitor cells, is a critical step in the regeneration of amphibians and fish, the molecular mechanisms underlying this process, including epigenetic changes, remain unclear. Dot blot assays and immunohistochemical analyses revealed that, during regeneration of zebrafish fin, the levels of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are transiently reduced in blastema cells and cells adjacent to the amputation plane at 30 h post-amputation (hpa), and the level of 5mC, but not 5hmC, is almost restored by 72 hpa. We observed that the dedifferentiated cells showed reduced levels of 5mC and 5hmC independent of cell proliferation by 24 hpa. Furthermore, expressions of the proposed demethylation- and DNA repair-related genes were detected during fin regeneration. Taken together, our findings illustrate that the transient reduction of 5mC and 5hmC in dedifferentiated cells is associated with active demethylation during regeneration of zebrafish fin.
Collapse
Affiliation(s)
- Kentaro Hirose
- Department of Biological Science; Graduate School of Science; Hiroshima University; Hiroshima, Japan
| | | | | |
Collapse
|
360
|
Shomrat T, Levin M. An automated training paradigm reveals long-term memory in planarians and its persistence through head regeneration. ACTA ACUST UNITED AC 2013; 216:3799-810. [PMID: 23821717 DOI: 10.1242/jeb.087809] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Planarian flatworms are a popular system for research into the molecular mechanisms that enable these complex organisms to regenerate their entire body, including the brain. Classical data suggest that they may also be capable of long-term memory. Thus, the planarian system may offer the unique opportunity to study brain regeneration and memory in the same animal. To establish a system for the investigation of the dynamics of memory in a regenerating brain, we developed a computerized training and testing paradigm that avoided the many issues that confounded previous, manual attempts to train planarians. We then used this new system to train flatworms in an environmental familiarization protocol. We show that worms exhibit environmental familiarization, and that this memory persists for at least 14 days - long enough for the brain to regenerate. We further show that trained, decapitated planarians exhibit evidence of memory retrieval in a savings paradigm after regenerating a new head. Our work establishes a foundation for objective, high-throughput assays in this molecularly tractable model system that will shed light on the fundamental interface between body patterning and stored memories. We propose planarians as key emerging model species for mechanistic investigations of the encoding of specific memories in biological tissues. Moreover, this system is lik ely to have important implications for the biomedicine of stem-cell-derived treatments of degenerative brain disorders in human adults.
Collapse
Affiliation(s)
- Tal Shomrat
- Biology Department and Tufts Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA
| | | |
Collapse
|
361
|
Unguez GA. Electric fish: new insights into conserved processes of adult tissue regeneration. J Exp Biol 2013; 216:2478-86. [PMID: 23761473 PMCID: PMC3680508 DOI: 10.1242/jeb.082396] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/13/2012] [Indexed: 02/06/2023]
Abstract
Biology is replete with examples of regeneration, the process that allows animals to replace or repair cells, tissues and organs. As on land, vertebrates in aquatic environments experience the occurrence of injury with varying frequency and to different degrees. Studies demonstrate that ray-finned fishes possess a very high capacity to regenerate different tissues and organs when they are adults. Among fishes that exhibit robust regenerative capacities are the neotropical electric fishes of South America (Teleostei: Gymnotiformes). Specifically, adult gymnotiform electric fishes can regenerate injured brain and spinal cord tissues and restore amputated body parts repeatedly. We have begun to identify some aspects of the cellular and molecular mechanisms of tail regeneration in the weakly electric fish Sternopygus macrurus (long-tailed knifefish) with a focus on regeneration of skeletal muscle and the muscle-derived electric organ. Application of in vivo microinjection techniques and generation of myogenic stem cell markers are beginning to overcome some of the challenges owing to the limitations of working with non-genetic animal models with extensive regenerative capacity. This review highlights some aspects of tail regeneration in S. macrurus and discusses the advantages of using gymnotiform electric fishes to investigate the cellular and molecular mechanisms that produce new cells during regeneration in adult vertebrates.
Collapse
Affiliation(s)
- Graciela A Unguez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA.
| |
Collapse
|
362
|
Abstract
The cephalochordate amphioxus is now established as an important model system for understanding the evolution of vertebrate novelties from an invertebrate chordate ancestor. It is also emerging as a serious candidate for studies of organ regeneration. We extend here our previous observations on the European amphioxus´ extensive adult regenerative capacity. The expression of Wnt5 and the presence of β-catenin protein in the early bud-stage blastema support a role for Wnt signaling during tail regeneration in amphioxus. We also present data showing that Branchiostoma lanceolatum continues to regenerate well after repeated amputation of the post-anal tail. These results are discussed in relation to vertebrate regeneration and other stem cell systems, and in the context of regeneration decline with aging.
Collapse
Affiliation(s)
- Ildikó M L Somorjai
- Centre for Organismal Studies; University of Heidelberg; Heidelberg, Germany ; CNRS; UMR7232; Universite Pierre et Marie Curie Paris 06; Observatoire Oceanologique; Banyuls-sur-Mer; Paris, France ; Department de Genètica; Facultat de Biologia; Universitat de Barcelona; Barcelona, Spain
| | | | | |
Collapse
|
363
|
Gilbert RW, Vickaryous MK, Viloria-Petit AM. Characterization of TGFβ signaling during tail regeneration in the leopard Gecko (Eublepharis macularius). Dev Dyn 2013; 242:886-96. [DOI: 10.1002/dvdy.23977] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 04/07/2013] [Accepted: 04/08/2013] [Indexed: 11/06/2022] Open
Affiliation(s)
- Richard W.D. Gilbert
- Department of Biomedical Sciences; Ontario Veterinary College, University of Guelph; Guelph Ontario Canada
| | - Matthew K. Vickaryous
- Department of Biomedical Sciences; Ontario Veterinary College, University of Guelph; Guelph Ontario Canada
| | - Alicia M. Viloria-Petit
- Department of Biomedical Sciences; Ontario Veterinary College, University of Guelph; Guelph Ontario Canada
| |
Collapse
|
364
|
Park SK, Cho SJ, Park SC. Histological observations of blastema formation during earthworm tail regeneration. INVERTEBR REPROD DEV 2013. [DOI: 10.1080/07924259.2012.713872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
365
|
Denis JF, Lévesque M, Tran SD, Camarda AJ, Roy S. Axolotl as a Model to Study Scarless Wound Healing in Vertebrates: Role of the Transforming Growth Factor Beta Signaling Pathway. Adv Wound Care (New Rochelle) 2013; 2:250-260. [PMID: 24527347 DOI: 10.1089/wound.2012.0371] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Indexed: 01/09/2023] Open
Abstract
SIGNIFICANCE The skin is our largest organ, with the primary role of protection against assaults from the outside world. It also suffers frequent damage, from minor scrapes to, more rarely, complete destruction such as in third-degree burns. It is therefore, by its nature, an organ that would benefit tremendously from being able to regenerate itself. RECENT ADVANCES This review highlights the axolotl, a less well-known model organism capable of scarless wound healing and regeneration. Axolotls are salamanders with unsurpassed healing and regenerative capacities. Understanding how these animals can regenerate their tissues could help identify the pathways that need to be activated or inhibited in humans to improve wound healing. CRITICAL ISSUES Presently, there are no therapies leading to skin regeneration or scarless wound healing. Various animal models have thus been developed for use in research, such as mice and pigs, to help us understand how wound healing could be improved or stimulated. However, these more common models cannot regenerate and, consequently, cannot direct us toward a solution to regenerate damaged tissues. Axolotls, on the other hand, can regenerate perfectly and therefore may offer avenues to identify molecular targets for therapeutic intervention. FUTURE DIRECTIONS Identifying signaling pathways regulating tissue regeneration in vertebrate models is important. The use of animals such as axolotls, which hold the secret of full regeneration, will likely play a significant role in helping us achieve scarless wound healing for humans.
Collapse
Affiliation(s)
| | | | - Simon D. Tran
- Department of Faculty of Dentistry, McGill University, Montreal, Canada
| | | | - Stéphane Roy
- Department of Biochemistry, McGill University, Montreal, Canada
- Department of Stomatology, University of Montreal, Montreal, Canada
| |
Collapse
|
366
|
Abstract
The failure to replace damaged body parts in adult mammals results from a muted growth response and fibrotic scarring. Although infiltrating immune cells play a major role in determining the variable outcome of mammalian wound repair, little is known about the modulation of immune cell signaling in efficiently regenerating species such as the salamander, which can regrow complete body structures as adults. Here we present a comprehensive analysis of immune signaling during limb regeneration in axolotl, an aquatic salamander, and reveal a temporally defined requirement for macrophage infiltration in the regenerative process. Although many features of mammalian cytokine/chemokine signaling are retained in the axolotl, they are more dynamically deployed, with simultaneous induction of inflammatory and anti-inflammatory markers within the first 24 h after limb amputation. Systemic macrophage depletion during this period resulted in wound closure but permanent failure of limb regeneration, associated with extensive fibrosis and disregulation of extracellular matrix component gene expression. Full limb regenerative capacity of failed stumps was restored by reamputation once endogenous macrophage populations had been replenished. Promotion of a regeneration-permissive environment by identification of macrophage-derived therapeutic molecules may therefore aid in the regeneration of damaged body parts in adult mammals.
Collapse
|
367
|
Elliott SA, Sánchez Alvarado A. The history and enduring contributions of planarians to the study of animal regeneration. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2013; 2:301-26. [PMID: 23799578 PMCID: PMC3694279 DOI: 10.1002/wdev.82] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Having an almost unlimited capacity to regenerate tissues lost to age and injury, planarians have long fascinated naturalists. In the Western hemisphere alone, their documented history spans more than 200 years. Planarians were described in the early 19th century as being 'immortal under the edge of the knife', and initial investigation of these remarkable animals was significantly influenced by studies of regeneration in other organisms and from the flourishing field of experimental embryology in the late 19th and early 20th centuries. This review strives to place the study of planarian regeneration into a broader historical context by focusing on the significance and evolution of knowledge in this field. It also synthesizes our current molecular understanding of the mechanisms of planarian regeneration uncovered since this animal's relatively recent entrance into the molecular-genetic age.
Collapse
Affiliation(s)
- Sarah A Elliott
- Howard Hughes Medical Institute and Stowers Institute for Medical Research, Kansas City, MO, USA.
| | | |
Collapse
|
368
|
Giangrande A, Licciano M. Regeneration and clonality in Metazoa. The price to pay for evolving complexity. INVERTEBR REPROD DEV 2013. [DOI: 10.1080/07924259.2013.793622] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
369
|
Abstract
Planarians are flatworms capable of regenerating all body parts. Planarian regeneration requires neoblasts, a population of dividing cells that has been studied for over a century. Neoblast progeny generate new cells of blastemas, which are the regenerative outgrowths at wounds. If the neoblasts comprise a uniform population of cells during regeneration (e.g. they are all uncommitted and pluripotent), then specialization of new cell types should occur in multipotent, non-dividing neoblast progeny cells. By contrast, recent data indicate that some neoblasts express lineage-specific transcription factors during regeneration and in uninjured animals. These observations raise the possibility that an important early step in planarian regeneration is the specialization of neoblasts to produce specified rather than naïve blastema cells.
Collapse
Affiliation(s)
- Peter W Reddien
- Howard Hughes Medical Institute, MIT Biology, Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA.
| |
Collapse
|
370
|
Rouhana L, Weiss JA, Forsthoefel DJ, Lee H, King RS, Inoue T, Shibata N, Agata K, Newmark PA. RNA interference by feeding in vitro-synthesized double-stranded RNA to planarians: methodology and dynamics. Dev Dyn 2013; 242:718-30. [PMID: 23441014 DOI: 10.1002/dvdy.23950] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/13/2013] [Accepted: 02/14/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The ability to assess gene function is essential for understanding biological processes. Currently, RNA interference (RNAi) is the only technique available to assess gene function in planarians, in which it has been induced by means of injection of double-stranded RNA (dsRNA), soaking, or ingestion of bacteria expressing dsRNA. RESULTS We describe a simple and robust RNAi protocol, involving in vitro synthesis of dsRNA that is fed to the planarians. Advantages of this protocol include the ability to produce dsRNA from any vector without subcloning, resolution of ambiguities in quantity and quality of input dsRNA, as well as time and ease of application. We have evaluated the logistics of inducing RNAi in planarians using this methodology in careful detail, from the ingestion and processing of dsRNA in the intestine, to timing and efficacy of knockdown in neoblasts, germline, and soma. We also present systematic comparisons of effects of amount, frequency, and mode of dsRNA delivery. CONCLUSIONS This method gives robust and reproducible results and is amenable to high-throughput studies. Overall, this RNAi methodology provides a significant advance by combining the strengths of current protocols available for dsRNA delivery in planarians and has the potential to benefit RNAi methods in other systems.
Collapse
Affiliation(s)
- Labib Rouhana
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
371
|
Abstract
Planarians are members of the Platyhelminthes (flatworms). These animals have evolved a remarkable stem cell system. A single pluripotent adult stem cell type ("neoblast") gives rise to the entire range of cell types and organs in the planarian body plan, including a brain, digestive-, excretory-, sensory- and reproductive systems. Neoblasts are abundantly present throughout the mesenchyme and divide continuously. The resulting stream of progenitors and turnover of differentiated cells drive the rapid self-renewal of the entire animal within a matter of weeks. Planarians grow and literally de-grow ("shrink") by the food supply-dependent adjustment of organismal turnover rates, scaling body plan proportions over as much as a 50-fold size range. Their dynamic body architecture further allows astonishing regenerative abilities, including the regeneration of complete and perfectly proportioned animals even from tiny tissue remnants. Planarians as an experimental system, therefore, provide unique opportunities for addressing a spectrum of current problems in stem cell research, including the evolutionary conservation of pluripotency, the dynamic organization of differentiation lineages and the mechanisms underlying organismal stem cell homeostasis. The first part of this review focuses on the molecular biology of neoblasts as pluripotent stem cells. The second part examines the fascinating mechanistic and conceptual challenges posed by a stem cell system that epitomizes a universal design principle of biological systems: the dynamic steady state.
Collapse
Affiliation(s)
- Jochen C Rink
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|
372
|
Bando T, Ishimaru Y, Kida T, Hamada Y, Matsuoka Y, Nakamura T, Ohuchi H, Noji S, Mito T. Analysis of RNA-Seq data reveals involvement of JAK/STAT signalling during leg regeneration in the cricket Gryllus bimaculatus. Development 2013; 140:959-64. [DOI: 10.1242/dev.084590] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In the cricket Gryllus bimaculatus, missing distal parts of the amputated leg are regenerated from the blastema, a population of dedifferentiated proliferating cells that forms at the distal tip of the leg stump. To identify molecules involved in blastema formation, comparative transcriptome analysis was performed between regenerating and normal unamputated legs. Components of JAK/STAT signalling were upregulated more than twofold in regenerating legs. To verify their involvement, Gryllus homologues of the interleukin receptor Domeless (Gb’dome), the Janus kinase Hopscotch (Gb’hop) and the transcription factor STAT (Gb’Stat) were cloned, and RNAi was performed against these genes. Gb’domeRNAi, Gb’hopRNAi and Gb’StatRNAi crickets showed defects in leg regeneration. Blastema expression of Gb’cyclinE was decreased in the Gb’StatRNAi cricket compared with that in the control. Hyperproliferation of blastema cells caused by Gb’fatRNAi or Gb’wartsRNAi was suppressed by RNAi against Gb’Stat. The results suggest that JAK/STAT signalling regulates blastema cell proliferation during leg regeneration.
Collapse
Affiliation(s)
- Tetsuya Bando
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama city, Okayama, 700-8530, Japan
| | - Yoshiyasu Ishimaru
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School, 2-1 Minami-Jyosanjima-cho, Tokushima city, 770-8506, Japan
| | - Takuro Kida
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School, 2-1 Minami-Jyosanjima-cho, Tokushima city, 770-8506, Japan
| | - Yoshimasa Hamada
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School, 2-1 Minami-Jyosanjima-cho, Tokushima city, 770-8506, Japan
| | - Yuji Matsuoka
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School, 2-1 Minami-Jyosanjima-cho, Tokushima city, 770-8506, Japan
| | - Taro Nakamura
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School, 2-1 Minami-Jyosanjima-cho, Tokushima city, 770-8506, Japan
| | - Hideyo Ohuchi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama city, Okayama, 700-8530, Japan
| | - Sumihare Noji
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School, 2-1 Minami-Jyosanjima-cho, Tokushima city, 770-8506, Japan
| | - Taro Mito
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School, 2-1 Minami-Jyosanjima-cho, Tokushima city, 770-8506, Japan
| |
Collapse
|
373
|
Looso M, Preussner J, Sousounis K, Bruckskotten M, Michel CS, Lignelli E, Reinhardt R, Höffner S, Krüger M, Tsonis PA, Borchardt T, Braun T. A de novo assembly of the newt transcriptome combined with proteomic validation identifies new protein families expressed during tissue regeneration. Genome Biol 2013; 14:R16. [PMID: 23425577 PMCID: PMC4054090 DOI: 10.1186/gb-2013-14-2-r16] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/20/2013] [Indexed: 11/12/2022] Open
Abstract
Background Notophthalmus viridescens, an urodelian amphibian, represents an excellent model organism to study regenerative processes, but mechanistic insights into molecular processes driving regeneration have been hindered by a paucity and poor annotation of coding nucleotide sequences. The enormous genome size and the lack of a closely related reference genome have so far prevented assembly of the urodelian genome. Results We describe the de novo assembly of the transcriptome of the newt Notophthalmus viridescens and its experimental validation. RNA pools covering embryonic and larval development, different stages of heart, appendage and lens regeneration, as well as a collection of different undamaged tissues were used to generate sequencing datasets on Sanger, Illumina and 454 platforms. Through a sequential de novo assembly strategy, hybrid datasets were converged into one comprehensive transcriptome comprising 120,922 non-redundant transcripts with a N50 of 975. From this, 38,384 putative transcripts were annotated and around 15,000 transcripts were experimentally validated as protein coding by mass spectrometry-based proteomics. Bioinformatical analysis of coding transcripts identified 826 proteins specific for urodeles. Several newly identified proteins establish novel protein families based on the presence of new sequence motifs without counterparts in public databases, while others containing known protein domains extend already existing families and also constitute new ones. Conclusions We demonstrate that our multistep assembly approach allows de novo assembly of the newt transcriptome with an annotation grade comparable to well characterized organisms. Our data provide the groundwork for mechanistic experiments to answer the question whether urodeles utilize proprietary sets of genes for tissue regeneration.
Collapse
|
374
|
Romagnani P. Of mice and men: the riddle of tubular regeneration. J Pathol 2013; 229:641-4. [PMID: 23299489 DOI: 10.1002/path.4162] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 12/22/2012] [Accepted: 12/24/2012] [Indexed: 12/29/2022]
Abstract
Regeneration can occur through multiple distinct mechanisms, such as pluripotent stem cells, lineage-committed progenitors or dedifferentiation. The respective contribution of each of these regenerative strategies in every organ or tissue may be different. Recent results indicate that dedifferentiation contributes less than previously thought, and that stem or progenitor cells seem to be the main drivers of regenerative processes. Our views of regeneration in the kidney are undergoing the same process of revision. Indeed, studies in humans have established the existence of a scattered population of tubular progenitors in the adult kidney. Renal progenitors have been discovered also in other animal classes such as fish and insects. In contrast, in rodents a tubular progenitor phenotype seems to be induced only after tubular injury, suggesting some differences may exist. Is this difference really related to a distinct regenerative strategy or is it simply a matter of the type and modality of cellular markers expressed? It may also be possible that progenitor cells, as well as tubular cell dedifferentiation, act in concert to allow regeneration of a complex organ like the adult mammalian kidney, as recently proposed also for the liver. Further studies are needed to resolve the riddle of tubular regeneration. However, beyond the controversial results obtained from humans and rodents, identification of tubular progenitors in humans can move the field forward and provide a novel perspective for understanding tubular regeneration.
Collapse
Affiliation(s)
- Paola Romagnani
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy.
| |
Collapse
|
375
|
Romagnani P, Lasagni L, Remuzzi G. Renal progenitors: an evolutionary conserved strategy for kidney regeneration. Nat Rev Nephrol 2013; 9:137-46. [PMID: 23338209 DOI: 10.1038/nrneph.2012.290] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Following kidney injury, repair can result in functional tissue becoming a patch of cells and disorganized extracellular matrix--a scar--or it can recapitulate the original tissue architecture through the process of regeneration. Regeneration can potentially occur in all animal species and humans. Indeed, the repair of portions of the existing nephron after tubular damage, a response that has been designated classically as cellular regeneration, is conserved in all animal species from the ancestral phases of evolution. By contrast, another type of regenerative response--nephron neogenesis--has been described in lower branches of the animal kingdom, but does not occur in adult mammals. Converging evidence suggests that a renal progenitor system is present in the adult kidney across different stages of evolution, with renal progenitors having been identified as the main drivers of kidney regenerative responses in fish, insects, rodents and humans. In this Review, we describe similarities and differences between the renal progenitor systems through evolution, and propose explanations for how progressive kidney adaptation to environmental changes both required and permitted neonephrogenesis to be given up and for cellular regeneration to be retained as the main regenerative strategy. Understanding the mechanisms that drive renal progenitor growth and differentiation represent the key step for modulating this potential for therapeutic purposes.
Collapse
Affiliation(s)
- Paola Romagnani
- Pediatric Nephrology Unit, Meyer Children's Hospital, University of Florence, Viale Pieraccini 24, 50139 Florence, Italy.
| | | | | |
Collapse
|
376
|
Solana J. Closing the circle of germline and stem cells: the Primordial Stem Cell hypothesis. EvoDevo 2013; 4:2. [PMID: 23294912 PMCID: PMC3599645 DOI: 10.1186/2041-9139-4-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/04/2012] [Indexed: 01/14/2023] Open
Abstract
Background Germline determination is believed to occur by either preformation or epigenesis. Animals that undergo germ cell specification by preformation have a continuous germline. However, animals with germline determination by epigenesis have a discontinuous germline, with somatic cells intercalated. This vision is contrary to August Weismann’s Germ Plasm Theory and has led to several controversies. Recent data from metazoans as diverse as planarians, annelids and sea urchins reveal the presence of pluripotent stem cell populations that express germ plasm components, despite being considered to be somatic. These data also show that germ plasm is continuous in some of these animals, despite their discontinuous germline. Presentation of the hypothesis Here, based on recent molecular data on germ plasm components, I revise the germline concept. I introduce the concept of primordial stem cells, which are evolutionarily conserved stem cells that carry germ plasm components from the zygote to the germ cells. These cells, delineated by the classic concept of the Weismann barrier, can contribute to different extents to somatic tissues or be present in a rudimentary state. The primordial stem cells are a part of the germline that can drive asexual reproduction. Testing the hypothesis Molecular information on the expression of germ plasm components is needed during early development of non-classic model organisms, with special attention to those capable of undergoing asexual reproduction and regeneration. The cell lineage of germ plasm component-containing cells will also shed light on their position with respect to the Weismann barrier. This information will help in understanding the germline and its associated stem cells across metazoan phylogeny. Implications of the hypothesis This revision of the germline concept explains the extensive similarities observed among stem cells and germline cells in a wide variety of animals, and predicts the expression of germ plasm components in many others. The life history of these animals can be simply explained by changes in the extent of self-renewal, proliferation and developmental potential of the primordial stem cells. The inclusion of the primordial stem cells as a part of the germline, therefore, solves many controversies and provides a continuous germline, just as originally envisaged by August Weismann.
Collapse
Affiliation(s)
- Jordi Solana
- Laboratory of Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
377
|
Simkin J, Han M, Yu L, Yan M, Muneoka K. The mouse digit tip: from wound healing to regeneration. Methods Mol Biol 2013; 1037:419-35. [PMID: 24029950 DOI: 10.1007/978-1-62703-505-7_24] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A challenge to the study of regeneration is determining at what point the processes of wound healing and regeneration diverge. The mouse displays level-specific regeneration responses. An amputation through the distal third of the terminal phalanx will prompt a regeneration response and result in a new digit tip that mimics the morphology of the lost digit tip. Conversely, an amputation through the distal third of the intermediate phalanx initiates a wound healing and scarring response. The mouse, therefore, provides a model for studying the transition between wound healing and regeneration in the same animal. This chapter details the methods used in the study of mammalian digit regeneration, including a method to introduce exogenous protein into the mouse digit amputation model via microcarrier beads and methods for analysis of bone regeneration.
Collapse
Affiliation(s)
- Jennifer Simkin
- Division of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | | | | | | | | |
Collapse
|
378
|
The "Stars and Stripes" Metaphor for Animal Regeneration-Elucidating Two Fundamental Strategies along a Continuum. Cells 2012; 2:1-18. [PMID: 24709641 PMCID: PMC3972663 DOI: 10.3390/cells2010001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/17/2012] [Accepted: 12/17/2012] [Indexed: 01/03/2023] Open
Abstract
A number of challenges have hindered the development of a unified theory for metazoan regeneration. To describe the full range of complex regeneration phenomena in Animalia, we suggest that metazoans that regenerate missing body parts exhibit biological attributes that are tailored along a morpho-spatial regeneration continuum, illustrated in its polar scenarios by the USA “stars and stripes” flag. Type 1 organisms (“T1, ‘stars’”) are typical colonial organisms (but contain unitary taxa) that are able to regenerate “whole new stars”, namely, whole bodies and colonial modules, through systemic induction and sometimes multiple regeneration foci (hollow regeneration spheres, resembling the blastula) that compete for dominance. They regenerate soma and germ constituents with pluripotent adult stem cells and exhibit somatic-embryogenesis mode of ontogeny. Type 2 organisms (“T2, ‘stripes’”) are capable of limited regeneration of somatic constituents via fate-restricted stem cells, and regenerate through centralized inductions that lead to a single regeneration front. T2 organisms are unitary and use preformistic mode of ontogeny. T1 and T2 organisms also differ in interpretation of what constitutes positional information. T2 organisms also execute alternative, less effective, regeneration designs (i.e., scar formation). We assigned 15 characteristics that distinguish between T1/T2 strategies: those involving specific regeneration features and those operating on biological features at the whole-organism level. Two model organisms are discussed, representing the two strategies of T1/T2 along the regeneration continuum, the Botrylloides whole body regeneration (T1) and the mouse digit-tip regeneration (T2) phenomena. The above working hypothesis also postulates that regeneration is a primeval attribute of metazoans. As specified, the “stars and stripes” paradigm allows various combinations of the biological features assigned to T1 and T2 regeneration strategies. It does not consider any concentration gradient or thresholds and does not refer to the “epimorphosis” and “morphallaxis” terms, regeneration types across phyla or across body plans. The “stars and stripes” paradigm also ignores, at this stage of analysis, cases of regeneration loss that may obscure biological trajectories. The main advantage of the “stars and stripes” paradigm is that it allows us to compare T1/T2 regeneration, as well as other modes of regeneration, through critical determining characteristics.
Collapse
|
379
|
Stem cells in the context of evolution and development. Dev Genes Evol 2012; 223:1-3. [PMID: 23223955 DOI: 10.1007/s00427-012-0430-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 11/12/2012] [Indexed: 10/27/2022]
|
380
|
Regeneration and reprogramming. Curr Opin Genet Dev 2012; 22:485-93. [PMID: 23084810 DOI: 10.1016/j.gde.2012.09.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 08/24/2012] [Accepted: 09/17/2012] [Indexed: 01/14/2023]
Abstract
Recent reprogramming studies indicate that mammalian, somatic cells have the potential to achieve pluripotent states and undergo cell type switching. Such cellular traits are observed under natural conditions in animals that regenerate complex organs. A number of invertebrates display the amazing trait of whole body regeneration. Underlying this trait is the maintenance of pluripotent cells in somatic tissue, and molecular studies indicate the use of common players associated with pluripotency and germ cell properties between these invertebrates and mammalian pluripotent cells. In regenerative vertebrates, heart regeneration, lens regeneration, and retinal regeneration provide good examples of dedifferentiation and transdifferentiation. The molecular factors associated with these phenomena are discussed.
Collapse
|
381
|
Yoo SK, Freisinger CM, LeBert DC, Huttenlocher A. Early redox, Src family kinase, and calcium signaling integrate wound responses and tissue regeneration in zebrafish. ACTA ACUST UNITED AC 2012; 199:225-34. [PMID: 23045550 PMCID: PMC3471241 DOI: 10.1083/jcb.201203154] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Redox, SFK, and calcium signaling are immediate “wound signals” that integrate early wound responses and late epimorphic regeneration. Tissue injury can lead to scar formation or tissue regeneration. How regenerative animals sense initial tissue injury and transform wound signals into regenerative growth is an unresolved question. Previously, we found that the Src family kinase (SFK) Lyn functions as a redox sensor in leukocytes that detects H2O2 at wounds in zebrafish larvae. In this paper, using zebrafish larval tail fins as a model, we find that wounding rapidly activated SFK and calcium signaling in epithelia. The immediate SFK and calcium signaling in epithelia was important for late epimorphic regeneration of amputated fins. Wound-induced activation of SFKs in epithelia was dependent on injury-generated H2O2. A SFK member, Fynb, was responsible for fin regeneration. This work provides a new link between early wound responses and late regeneration and suggests that redox, SFK, and calcium signaling are immediate “wound signals” that integrate early wound responses and late epimorphic regeneration.
Collapse
Affiliation(s)
- Sa Kan Yoo
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
382
|
Itou J, Oishi I, Kawakami H, Glass TJ, Richter J, Johnson A, Lund TC, Kawakami Y. Migration of cardiomyocytes is essential for heart regeneration in zebrafish. Development 2012; 139:4133-42. [PMID: 23034636 DOI: 10.1242/dev.079756] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adult zebrafish possess a significant ability to regenerate injured heart tissue through proliferation of pre-existing cardiomyocytes, which contrasts with the inability of mammals to do so after the immediate postnatal period. Zebrafish therefore provide a model system in which to study how an injured heart can be repaired. However, it remains unknown what important processes cardiomyocytes are involved in other than partial de-differentiation and proliferation. Here we show that migration of cardiomyocytes to the injury site is essential for heart regeneration. Ventricular amputation induced expression of cxcl12a and cxcr4b, genes encoding a chemokine ligand and its receptor. We found that cxcl12a was expressed in the epicardial tissue and that Cxcr4 was expressed in cardiomyocytes. We show that pharmacological blocking of Cxcr4 function as well as genetic loss of cxcr4b function causes failure to regenerate the heart after ventricular resection. Cardiomyocyte proliferation was not affected but a large portion of proliferating cardiomyocytes remained localized outside the injury site. A photoconvertible fluorescent reporter-based cardiomyocyte-tracing assay demonstrates that cardiomyocytes migrated into the injury site in control hearts but that migration was inhibited in the Cxcr4-blocked hearts. By contrast, the epicardial cells and vascular endothelial cells were not affected by blocking Cxcr4 function. Our data show that the migration of cardiomyocytes into the injury site is regulated independently of proliferation, and that coordination of both processes is necessary for heart regeneration.
Collapse
Affiliation(s)
- Junji Itou
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
383
|
Worley MI, Setiawan L, Hariharan IK. Regeneration and transdetermination in Drosophila imaginal discs. Annu Rev Genet 2012; 46:289-310. [PMID: 22934642 DOI: 10.1146/annurev-genet-110711-155637] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The study of regeneration in Drosophila imaginal discs provides an opportunity to use powerful genetic tools to address fundamental problems pertaining to tissue regeneration and cell plasticity. We present a historical overview of the field and describe how the application of modern methods has made the study of disc regeneration amenable to genetic analysis. Discs respond to tissue damage in several ways: (a) Removal of part of the disc elicits localized cell proliferation and regeneration of the missing tissue. (b) Damage at specific locations in the disc can cause cells to generate disc-inappropriate structures (e.g., wing instead of leg), a phenomenon known as transdetermination. (c) Diffuse damage to imaginal discs, results in compensatory proliferation of surviving cells. Candidate-gene approaches have implicated the JNK, Wingless, and Hippo pathways in regeneration. Recently developed systems will enable extensive genetic screens that could provide new insights into tissue regeneration, transdetermination and compensatory proliferation.
Collapse
Affiliation(s)
- Melanie I Worley
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA.
| | | | | |
Collapse
|
384
|
Chuong CM, Randall VA, Widelitz RB, Wu P, Jiang TX. Physiological regeneration of skin appendages and implications for regenerative medicine. Physiology (Bethesda) 2012; 27:61-72. [PMID: 22505663 DOI: 10.1152/physiol.00028.2011] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The concept of regenerative medicine is relatively new, but animals are well known to remake their hair and feathers regularly by normal regenerative physiological processes. Here, we focus on 1) how extrafollicular environments can regulate hair and feather stem cell activities and 2) how different configurations of stem cells can shape organ forms in different body regions to fulfill changing physiological needs.
Collapse
Affiliation(s)
- Cheng-Ming Chuong
- Department of Pathology, University of Southern California, School of Medicine, Los Angeles, California, USA.
| | | | | | | | | |
Collapse
|
385
|
Nyberg KG, Conte MA, Kostyun JL, Forde A, Bely AE. Transcriptome characterization via 454 pyrosequencing of the annelid Pristina leidyi, an emerging model for studying the evolution of regeneration. BMC Genomics 2012; 13:287. [PMID: 22747785 PMCID: PMC3464666 DOI: 10.1186/1471-2164-13-287] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/29/2012] [Indexed: 11/23/2022] Open
Abstract
Background The naid annelids contain a number of species that vary in their ability to regenerate lost body parts, making them excellent candidates for evolution of regeneration studies. However, scant sequence data exists to facilitate such studies. We constructed a cDNA library from the naid Pristina leidyi, a species that is highly regenerative and also reproduces asexually by fission, using material from a range of regeneration and fission stages for our library. We then sequenced the transcriptome of P. leidyi using 454 technology. Results 454 sequencing produced 1,550,174 reads with an average read length of 376 nucleotides. Assembly of 454 sequence reads resulted in 64,522 isogroups and 46,679 singletons for a total of 111,201 unigenes in this transcriptome. We estimate that over 95% of the transcripts in our library are present in our transcriptome. 17.7% of isogroups had significant BLAST hits to the UniProt database and these include putative homologs of a number of genes relevant to regeneration research. Although many sequences are incomplete, the mean sequence length of transcripts (isotigs) is 707 nucleotides. Thus, many sequences are large enough to be immediately useful for downstream applications such as gene expression analyses. Using in situ hybridization, we show that two Wnt/β-catenin pathway genes (homologs of frizzled and β-catenin) present in our transcriptome are expressed in the regeneration blastema of P. leidyi, demonstrating the usefulness of this resource for regeneration research. Conclusions 454 sequencing is a rapid and efficient approach for identifying large numbers of genes in an organism that lacks a sequenced genome. This transcriptome dataset will be a valuable resource for molecular analyses of regeneration in P. leidyi and will serve as a starting point for comparisons to non-regenerating naids. It also contributes significantly to the still limited genomic resources available for annelids and lophotrochozoans more generally.
Collapse
Affiliation(s)
- Kevin G Nyberg
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
386
|
Weber CM, Martindale MQ, Tapscott SJ, Unguez GA. Activation of Pax7-positive cells in a non-contractile tissue contributes to regeneration of myogenic tissues in the electric fish S. macrurus. PLoS One 2012; 7:e36819. [PMID: 22685526 PMCID: PMC3365140 DOI: 10.1371/journal.pone.0036819] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 04/15/2012] [Indexed: 11/19/2022] Open
Abstract
The ability to regenerate tissues is shared across many metazoan taxa, yet the type and extent to which multiple cellular mechanisms come into play can differ across species. For example, urodele amphibians can completely regenerate all lost tissues, including skeletal muscles after limb amputation. This remarkable ability of urodeles to restore entire limbs has been largely linked to a dedifferentiation-dependent mechanism of regeneration. However, whether cell dedifferentiation is the fundamental factor that triggers a robust regeneration capacity, and whether the loss or inhibition of this process explains the limited regeneration potential in other vertebrates is not known. Here, we studied the cellular mechanisms underlying the repetitive regeneration of myogenic tissues in the electric fish S. macrurus. Our in vivo microinjection studies of high molecular weight cell lineage tracers into single identified adult myogenic cells (muscle or noncontractile muscle-derived electrocytes) revealed no fragmentation or cellularization proximal to the amputation plane. In contrast, ultrastructural and immunolabeling studies verified the presence of myogenic stem cells that express the satellite cell marker Pax7 in mature muscle fibers and electrocytes of S. macrurus. These data provide the first example of Pax-7 positive muscle stem cells localized within a non-contractile electrogenic tissue. Moreover, upon amputation, Pax-7 positive cells underwent a robust replication and were detected exclusively in regions that give rise to myogenic cells and dorsal spinal cord components revealing a regeneration process in S. macrurus that is dependent on the activation of myogenic stem cells for the renewal of both skeletal muscle and the muscle-derived electric organ. These data are consistent with the emergent concept in vertebrate regeneration that different tissues provide a distinct progenitor cell population to the regeneration blastema, and these progenitor cells subsequently restore the original tissue.
Collapse
Affiliation(s)
- Christopher M. Weber
- Biology Department, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Mark Q. Martindale
- Kewalo Marine Lab, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Stephen J. Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Graciela A. Unguez
- Biology Department, New Mexico State University, Las Cruces, New Mexico, United States of America
| |
Collapse
|
387
|
Simon A, Tanaka EM. Limb regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:291-300. [DOI: 10.1002/wdev.73] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
388
|
Somorjai IML, Lohmann JU, Holstein TW, Zhao Z. Stem cells: a view from the roots. Biotechnol J 2012; 7:704-22. [PMID: 22581706 DOI: 10.1002/biot.201100349] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 03/15/2012] [Accepted: 04/12/2012] [Indexed: 12/22/2022]
Abstract
In both plants and animals, regeneration requires the activation of stem cells. This is possibly related to the origin and requirements of multicellularity. Although long diverged from a common ancestry, plant and animal models such as Arabidopsis, Drosophila and mouse share considerable similarities in stem cell regulation. This includes stem cell niche organisation, epigenetic modification of DNA and histones, and the role of small RNA machinery in differentiation and pluripotency states. Dysregulation of any of these can lead to premature ageing, patterning and specification defects, as well as cancers. Moreover, emerging basal animal and plant systems are beginning to provide important clues concerning the diversity and evolutionary history of stem cell regulatory mechanisms in eukaryotes. This review provides a comparative framework, highlighting both the commonalities and differences among groups, which should promote the intelligent design of artificial stem cell systems, and thereby fuel the field of biomaterials science.
Collapse
Affiliation(s)
- Ildiko M L Somorjai
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany.
| | | | | | | |
Collapse
|
389
|
Singh SP, Holdway JE, Poss KD. Regeneration of amputated zebrafish fin rays from de novo osteoblasts. Dev Cell 2012; 22:879-86. [PMID: 22516203 PMCID: PMC3341140 DOI: 10.1016/j.devcel.2012.03.006] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 01/04/2012] [Accepted: 03/13/2012] [Indexed: 10/28/2022]
Abstract
Determining the cellular source of new skeletal elements is critical for understanding appendage regeneration in amphibians and fish. Recent lineage-tracing studies indicated that zebrafish fin ray bone regenerates through the dedifferentiation and proliferation of spared osteoblasts, with limited if any contribution from other cell types. Here, we examined the requirement for this mechanism by using genetic ablation techniques to destroy virtually all skeletal osteoblasts in adult zebrafish fins. Animals survived this injury and restored the osteoblast population within 2 weeks. Moreover, amputated fins depleted of osteoblasts regenerated new fin ray structures at rates indistinguishable from fins possessing a resident osteoblast population. Inducible genetic fate mapping confirmed that new bone cells do not arise from dedifferentiated osteoblasts under these conditions. Our findings demonstrate diversity in the cellular origins of appendage bone and reveal that de novo osteoblasts can fully support the regeneration of amputated zebrafish fins.
Collapse
Affiliation(s)
- Sumeet Pal Singh
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
390
|
Abstract
Prion protein (PrP) can be considered a pivotal molecule because it interacts with several partners to perform a diverse range of critical biological functions that might differ in embryonic and adult cells. In recent years, there have been major advances in elucidating the putative role of PrP in the basic biology of stem cells in many different systems. Here, we review the evidence indicating that PrP is a key molecule involved in driving different aspects of the potency of embryonic and tissue-specific stem cells in self-perpetuation and differentiation in many cell types. It has been shown that PrP is involved in stem cell self-renewal, controlling pluripotency gene expression, proliferation, and neural and cardiomyocyte differentiation. PrP also has essential roles in distinct processes that regulate tissue-specific stem cell biology in nervous and hematopoietic systems and during muscle regeneration. Results from our own investigations have shown that PrP is able to modulate self-renewal and proliferation in neural stem cells, processes that are enhanced by PrP interactions with stress inducible protein 1 (STI1). Thus, the available data reveal the influence of PrP in acting upon the maintenance of pluripotent status or the differentiation of stem cells from the early embryogenesis through adulthood.
Collapse
Affiliation(s)
- Marilene H Lopes
- Department of Cell and Developmental Biology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, Brazil.
| | | |
Collapse
|
391
|
Rodrigues AMC, Christen B, Martí M, Izpisúa Belmonte JC. Skeletal muscle regeneration in Xenopus tadpoles and zebrafish larvae. BMC DEVELOPMENTAL BIOLOGY 2012; 12:9. [PMID: 22369050 PMCID: PMC3313851 DOI: 10.1186/1471-213x-12-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/15/2011] [Accepted: 02/27/2012] [Indexed: 12/03/2022]
Abstract
Background Mammals are not able to restore lost appendages, while many amphibians are. One important question about epimorphic regeneration is related to the origin of the new tissues and whether they come from mature cells via dedifferentiation and/or from stem cells. Several studies in urodele amphibians (salamanders) indicate that, after limb or tail amputation, the multinucleated muscle fibres do dedifferentiate by fragmentation and proliferation, thereby contributing to the regenerate. In Xenopus laevis tadpoles, however, it was shown that muscle fibres do not contribute directly to the tail regenerate. We set out to study whether dedifferentiation was present during muscle regeneration of the tadpole limb and zebrafish larval tail, mainly by cell tracing and histological observations. Results Cell tracing and histological observations indicate that zebrafish tail muscle do not dedifferentiate during regeneration. Technical limitations did not allow us to trace tadpole limb cells, nevertheless we observed no signs of dedifferentiation histologically. However, ultrastructural and gene expression analysis of regenerating muscle in tadpole tail revealed an unexpected dedifferentiation phenotype. Further histological studies showed that dedifferentiating tail fibres did not enter the cell cycle and in vivo cell tracing revealed no evidences of muscle fibre fragmentation. In addition, our results indicate that this incomplete dedifferentiation was initiated by the retraction of muscle fibres. Conclusions Our results show that complete skeletal muscle dedifferentiation is less common than expected in lower vertebrates. In addition, the discovery of incomplete dedifferentiation in muscle fibres of the tadpole tail stresses the importance of coupling histological studies with in vivo cell tracing experiments to better understand the regenerative mechanisms.
Collapse
|
392
|
|
393
|
Blum N, Begemann G. Retinoic acid signaling controls the formation, proliferation and survival of the blastema during adult zebrafish fin regeneration. Development 2012; 139:107-16. [PMID: 22096078 DOI: 10.1242/dev.065391] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Adult teleosts rebuild amputated fins through a proliferation-dependent process called epimorphic regeneration, in which a blastema of cycling progenitor cells replaces the lost fin tissue. The genetic networks that control formation of blastema cells from formerly quiescent stump tissue and subsequent blastema function are still poorly understood. Here, we investigated the cellular and molecular consequences of genetically interfering with retinoic acid (RA) signaling for the formation of the zebrafish blastema. We show that RA signaling is upregulated within the first few hours after fin amputation in the stump mesenchyme, where it controls Fgf, Wnt/β-catenin and Igf signaling. Genetic inhibition of the RA pathway at this stage blocks blastema formation by inhibiting cell cycle entry of stump cells and impairs the formation of the basal epidermal layer, a signaling center in the wound epidermis. In the established blastema, RA signaling remains active to ensure the survival of the highly proliferative blastemal population by controlling expression of the anti-apoptotic factor bcl2. In addition, RA signaling maintains blastema proliferation through the activation of growth-stimulatory signals mediated by Fgf and Wnt/β-catenin signaling, as well as by reducing signaling through the growth-inhibitory non-canonical Wnt pathway. The endogenous roles of RA in adult vertebrate appendage regeneration are uncovered here for the first time. They provide a mechanistic framework to understand previous observations in salamanders that link endogenous sources of RA to the regeneration process itself and support the hypothesis that the RA signaling pathway is an essential component of vertebrate tissue regeneration.
Collapse
Affiliation(s)
- Nicola Blum
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Gerrit Begemann
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
394
|
Hammond CL, Moro E. Using transgenic reporters to visualize bone and cartilage signaling during development in vivo. Front Endocrinol (Lausanne) 2012; 3:91. [PMID: 22826703 PMCID: PMC3399225 DOI: 10.3389/fendo.2012.00091] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 07/03/2012] [Indexed: 01/11/2023] Open
Abstract
Green fluorescent protein was first used as a marker of protein expression in vivo 18 years ago, heralding the beginning of what became known as the Green Revolution. Since then, there has been an explosion in the number of transgenic lines in existence, and these transgenic tools are now being applied to skeletal research. Advances in transgenesis are also leading to increasing use of new model organisms for studying skeletogenesis. Such new models include the small teleosts zebrafish and medaka, which due to their optical translucency offer imaging possibilities in the live animals. In this review, we will introduce a number of recent advances in genetic engineering and transgenesis and the new genetic tools that are currently being developed. We will provide examples of how zebrafish and medaka transgenic lines are helping us to understand the behavior of skeletal cells in vivo. Finally, we will discuss future prospects for the application of transgenic technology to skeletal research.
Collapse
Affiliation(s)
- Chrissy L. Hammond
- Departments of Biochemistry, Physiology and Pharmacology, University of Bristol, Bristol, UK
- *Correspondence: Chrissy L. Hammond, Departments of Biochemistry, Physiology and Pharmacology, Medical Sciences, University of Bristol, University Walk, BS8 1TD Bristol, UK. e-mail:
| | - Enrico Moro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
395
|
Abstract
The heart is a pump that is comprised of cardiac myocytes and other cell types and whose proper function is critical to quality of life. The ability to trigger regeneration of heart muscle following injury eludes adult mammals, a deficiency of great clinical impact. Major research efforts are attempting to change this through advances in cell therapy or activating endogenous regenerative mechanisms that exist only early in life. In contrast with mammals, lower vertebrates like zebrafish demonstrate an impressive natural capacity for cardiac regeneration throughout life. This review will cover recent progress in the field of heart regeneration with a focus on endogenous regenerative capacity and its potential manipulation.
Collapse
Affiliation(s)
- Wen-Yee Choi
- Department of Cell Biology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina, USA
| | | |
Collapse
|