351
|
Ehrenshaft M, Zhao B, Andley UP, Mason RP, Roberts JE. Immunological detection of N-formylkynurenine in porphyrin-mediated photooxided lens α-crystallin. Photochem Photobiol 2011; 87:1321-9. [PMID: 21770952 PMCID: PMC3598576 DOI: 10.1111/j.1751-1097.2011.00979.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crystallin proteins are responsible for maintaining lens transparency and allowing the lens to focus light undistorted onto the retina. The α-crystallins are the major lens crystallins, and function as both structural proteins and chaperones to protect all lens proteins from damage leading to lens deterioration. Because lens crystallin proteins do not turn over, the damage they accumulate can lead to cataracts, the world's leading cause of blindness. Photosensitizing porphyrins can accumulate in the eye through either endogenous metabolism or through therapeutic or diagnostic procedures. Porphyrin buildup exacerbates lens aging through increased levels of singlet oxygen, resulting in protein polymerization and amino acid residue alteration. Tryptophans oxidize to kynurenine and N-formylkynurenine (NFK) causing irreversible changes in the refractive index of the normally transparent lens, leading to development of cataracts. Additionally, NFK is itself a photosensitizer, and its presence exacerbates lens deterioration. This work uses anti-NFK antiserum to study porphyrin-facilitated photooxidation of α-crystallin tryptophan residues. In vitro experiments show that four biologically interesting porphyrins mediate α-crystallin polymerization and accumulation of both protein radicals and NFK. Confocal microscopy of cultured human lens epithelial cells indicates that while all four porphyrins photosensitize cellular proteins, not all oxidize the tryptophans of cellular α-crystallin to NFK.
Collapse
Affiliation(s)
- Marilyn Ehrenshaft
- Laboratory of Pharmacology and Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| | | | | | | | | |
Collapse
|
352
|
Mohanan D, Gander B, Kündig TM, Johansen P. Encapsulation of antigen in poly(D,L-lactide-co-glycolide) microspheres protects from harmful effects of γ-irradiation as assessed in mice. Eur J Pharm Biopharm 2011; 80:274-81. [PMID: 22024408 DOI: 10.1016/j.ejpb.2011.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/06/2011] [Accepted: 10/10/2011] [Indexed: 01/16/2023]
Abstract
During the last two decades, synthetic polymers such as poly(lactide-co-glycolide) (PLGA) have been investigated for the development of nano- or microparticles as adjuvants or antigen vehicles. To enable transfer of this technology to human settings, the issue of sterilisation is of central importance. Since most polymers are heat-sensitive, sterilisation of polymeric microspheres for parenteral administration is assured either by costly and laborious aseptical preparation or the more preferred γ-irradiation. Many studies have investigated the effect of γ-irradiation on various physiochemical properties of the microspheres, but investigations on immunological effects are rare. We prepared poly(lactide-co-glycolide) (PLGA) microspheres containing ovalbumin (OVA) and tested the effect of γ-irradiation on the various immunological properties in mice. For reference, OVA was γ-irradiated and tested equivalently. The ability of encapsulated or non-encapsulated OVA to trigger activation of dendritic cells (DCs) was not affected by irradiation. However, while γ-irradiation of free OVA strongly influenced the antigen presentation, encapsulated OVA was not affected by irradiation. γ-Irradiation of OVA also reduced the immunogenicity in mice with regard to OVA-specific IgG1 production. In contrast, the antibody and the T-cell responses in mice immunised with PLGA-encapsulated OVA were similar irrespective of the γ-irradiation status. Hence, encapsulation of antigen into PLGA microspheres protects antigen from the potential detrimental effect of γ-irradiation leading to inactivation or altered immunogenicity. Sterilisation by γ-irradiation therefore enables a cost-effective production of PLGA-based antigen-delivery systems as compared to the more laborious and expensive aseptical production of such vaccines.
Collapse
Affiliation(s)
- Deepa Mohanan
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
353
|
Jesenská S, Plíštil L, Kubát P, Lang K, Brožová L, Popelka Š, Szatmáry L, Mosinger J. Antibacterial nanofiber materials activated by light. J Biomed Mater Res A 2011; 99:676-83. [DOI: 10.1002/jbm.a.33218] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/26/2011] [Accepted: 07/27/2011] [Indexed: 12/13/2022]
|
354
|
Chiarelli-Neto O, Pavani C, Ferreira AS, Uchoa AF, Severino D, Baptista MS. Generation and suppression of singlet oxygen in hair by photosensitization of melanin. Free Radic Biol Med 2011; 51:1195-202. [PMID: 21723388 DOI: 10.1016/j.freeradbiomed.2011.06.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 01/20/2023]
Abstract
We have studied the spectroscopic properties of hair (white, blond, red, brown, and black) under illumination with visible light, giving special emphasis to the photoinduced generation of singlet oxygen ((1)O(2)). Irradiation of hair shafts (λ(ex)>400 nm) changed their properties by degrading the melanin. Formation of C3 hydroperoxides in the melanin indol groups was proven by (1)H NMR. After 532-nm excitation, all hair shafts presented the characteristic (1)O(2) emission (λ(em)=1270 nm), whose intensity varied inversely with the melanin content. (1)O(2) lifetime was also shown to vary with hair type, being five times shorter in black hair than in blond hair, indicating the role of melanin as a (1)O(2) suppressor. Lifetime ranged from tenths of a nanosecond to a few microseconds, which is much shorter than the lifetime expected for (1)O(2) in the solvents in which the hair shafts were suspended, indicating that (1)O(2) is generated and suppressed inside the hair structure. Both eumelanin and pheomelanin were shown to produce and to suppress (1)O(2), with similar efficiencies. The higher amount of (1)O(2) generated in blond hair and its longer lifetime is compatible with the stronger damage that light exposure causes in blond hair. We propose a model to explain the formation and suppression of (1)O(2) in hair by photosensitization of melanin with visible light and the deleterious effects that an excess of visible light may cause in hair and skin.
Collapse
Affiliation(s)
- Orlando Chiarelli-Neto
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05509–900, Brazil
| | | | | | | | | | | |
Collapse
|
355
|
Abstract
Photo-induced damage to proteins occurs via multiple pathways. Direct damage induced by UVB (λ 280-320 nm) and UVA radiation (λ 320-400 nm) is limited to a small number of amino acid residues, principally tryptophan (Trp), tyrosine (Tyr), histidine (His) and disulfide (cystine) residues, with this occurring via both excited state species and radicals. Indirect protein damage can occur via singlet oxygen ((1)O(2)(1)Δ(g)), with this resulting in damage to Trp, Tyr, His, cystine, cysteine (Cys) and methionine (Met) residues. Although initial damage is limited to these residues multiple secondary processes, that occur both during and after radiation exposure, can result in damage to other intra- and inter-molecular sites. Secondary damage can arise via radicals (e.g. Trp, Tyr and Cys radicals), from reactive intermediates generated by (1)O(2) (e.g. Trp, Tyr and His peroxides) and via molecular reactions of photo-products (e.g. reactive carbonyls). These processes can result in protein fragmentation, aggregation, altered physical and chemical properties (e.g. hydrophobicity and charge) and modulated biological turnover. Accumulating evidence implicates these events in cellular and tissue dysfunction (e.g. apoptosis, necrosis and altered cell signaling), and multiple human pathologies.
Collapse
Affiliation(s)
- David I Pattison
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW 2042, Australia
| | | | | |
Collapse
|
356
|
Liu F, Fang Y, Chen Y, Liu J. Dissociative Excitation Energy Transfer in the Reactions of Protonated Cysteine and Tryptophan with Electronically Excited Singlet Molecular Oxygen (a1Δg). J Phys Chem B 2011; 115:9898-909. [DOI: 10.1021/jp205235d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fangwei Liu
- Department of Chemistry and Biochemistry, Queens College and the Graduate Center of the City University of New York, 65-30 Kissena Boulevard, Flushing, New York 11367, United States
| | - Yigang Fang
- Department of Chemistry and Biochemistry, Queens College and the Graduate Center of the City University of New York, 65-30 Kissena Boulevard, Flushing, New York 11367, United States
| | - Yun Chen
- Department of Chemistry and Biochemistry, Queens College and the Graduate Center of the City University of New York, 65-30 Kissena Boulevard, Flushing, New York 11367, United States
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College and the Graduate Center of the City University of New York, 65-30 Kissena Boulevard, Flushing, New York 11367, United States
| |
Collapse
|
357
|
Dreaden TM, Chen J, Rexroth S, Barry BA. N-formylkynurenine as a marker of high light stress in photosynthesis. J Biol Chem 2011; 286:22632-41. [PMID: 21527632 PMCID: PMC3121407 DOI: 10.1074/jbc.m110.212928] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 04/28/2011] [Indexed: 11/06/2022] Open
Abstract
Photosystem II (PSII) is the membrane protein complex that catalyzes the photo-induced oxidation of water at a manganese-calcium active site. Light-dependent damage and repair occur in PSII under conditions of high light stress. The core reaction center complex is composed of the D1, D2, CP43, and CP47 intrinsic polypeptides. In this study, a new chromophore formed from the oxidative post-translational modification of tryptophan is identified in the CP43 subunit. Tandem mass spectrometry peptide sequencing is consistent with the oxidation of the CP43 tryptophan side chain, Trp-365, to produce N-formylkynurenine (NFK). Characterization with ultraviolet visible absorption and ultraviolet resonance Raman spectroscopy supports this assignment. An optical assay suggests that the yield of NFK increases 2-fold (2.2 ± 0.5) under high light illumination. A concomitant 2.4 ± 0.5-fold decrease is observed in the steady-state rate of oxygen evolution under the high light conditions. NFK is the product formed from reaction of tryptophan with singlet oxygen, which can be produced under high light stress in PSII. Reactive oxygen species reactions lead to oxidative damage of the reaction center, D1 protein turnover, and inhibition of electron transfer. Our results are consistent with a role for the CP43 NFK modification in photoinhibition.
Collapse
Affiliation(s)
- Tina M. Dreaden
- From the School of Chemistry and Biochemistry and the Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Jun Chen
- From the School of Chemistry and Biochemistry and the Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Sascha Rexroth
- From the School of Chemistry and Biochemistry and the Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Bridgette A. Barry
- From the School of Chemistry and Biochemistry and the Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| |
Collapse
|
358
|
Freinbichler W, Colivicchi MA, Stefanini C, Bianchi L, Ballini C, Misini B, Weinberger P, Linert W, Varešlija D, Tipton KF, Della Corte L. Highly reactive oxygen species: detection, formation, and possible functions. Cell Mol Life Sci 2011; 68:2067-79. [PMID: 21533983 PMCID: PMC11114910 DOI: 10.1007/s00018-011-0682-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/27/2011] [Accepted: 03/29/2011] [Indexed: 12/16/2022]
Abstract
The so-called reactive oxygen species (ROS) are defined as oxygen-containing species that are more reactive than O(2) itself, which include hydrogen peroxide and superoxide. Although these are quite stable, they may be converted in the presence of transition metal ions, such as Fe(II), to the highly reactive oxygen species (hROS). hROS may exist as free hydroxyl radicals (HO·), as bound ("crypto") radicals or as Fe(IV)-oxo (ferryl) species and the somewhat less reactive, non-radical species, singlet oxygen. This review outlines the processes by which hROS may be formed, their damaging potential, and the evidence that they might have signaling functions. Since our understanding of the formation and actions of hROS depends on reliable procedures for their detection, particular attention is given to procedures for hROS detection and quantitation and their applicability to in vivo studies.
Collapse
Affiliation(s)
- Wolfhardt Freinbichler
- Institute for Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, 1060 Vienna, Austria
| | - Maria A. Colivicchi
- Dipartimento di Farmacologia Preclinica e Clinica M. Aiazzi Mancini, Università degli Studi di Firenze, Viale G. Pieraccini 6, 50139 Florence, Italy
| | - Chiara Stefanini
- Dipartimento di Farmacologia Preclinica e Clinica M. Aiazzi Mancini, Università degli Studi di Firenze, Viale G. Pieraccini 6, 50139 Florence, Italy
| | - Loria Bianchi
- Dipartimento di Farmacologia Preclinica e Clinica M. Aiazzi Mancini, Università degli Studi di Firenze, Viale G. Pieraccini 6, 50139 Florence, Italy
- Present Address: Azienda USL 3 di Pistoia, 51100 Pistoia, Italy
| | - Chiara Ballini
- Dipartimento di Farmacologia Preclinica e Clinica M. Aiazzi Mancini, Università degli Studi di Firenze, Viale G. Pieraccini 6, 50139 Florence, Italy
| | - Bashkim Misini
- Institute for Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, 1060 Vienna, Austria
| | - Peter Weinberger
- Institute for Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, 1060 Vienna, Austria
| | - Wolfgang Linert
- Institute for Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, 1060 Vienna, Austria
| | - Damir Varešlija
- Department of Biochemistry, Trinity College, Dublin 2, Ireland
| | - Keith F. Tipton
- Department of Biochemistry, Trinity College, Dublin 2, Ireland
| | - Laura Della Corte
- Dipartimento di Farmacologia Preclinica e Clinica M. Aiazzi Mancini, Università degli Studi di Firenze, Viale G. Pieraccini 6, 50139 Florence, Italy
| |
Collapse
|
359
|
Greenwell R, Nam TW, Donohue TJ. Features of Rhodobacter sphaeroides ChrR required for stimuli to promote the dissociation of σ(E)/ChrR complexes. J Mol Biol 2011; 407:477-91. [PMID: 21295582 DOI: 10.1016/j.jmb.2011.01.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/14/2011] [Accepted: 01/28/2011] [Indexed: 10/18/2022]
Abstract
In the photosynthetic bacterium Rhodobacter sphaeroides, a transcriptional response to the reactive oxygen species singlet oxygen ((1)O(2)) is mediated by ChrR, a zinc metalloprotein that binds to and inhibits the activity of the alternative σ factor σ(E). We provide evidence that (1)O(2) promotes the dissociation of σ(E) from ChrR to activate transcription in vivo. To identify what is required for (1)O(2) to promote the dissociation of σ(E)/ChrR complexes, we analyzed the in vivo properties of variant ChrR proteins with amino acid changes in conserved residues of the C-terminal cupin-like domain (ChrR-CLD). We found that (1)O(2) was unable to promote the detectable dissociation of σ(E)/ChrR complexes when the ChrR-CLD zinc ligands (His141, His143, Glu147, and His177) were substituted with alanine, even though individual substitutions caused a 2-fold to 10-fold decrease in zinc affinity for this domain relative to that for wild-type ChrR (K(d)∼4.6×10(-)(10) M). We conclude that the side chains of these invariant residues play a crucial role in the response to (1)O(2). Additionally, we found that cells containing variant ChrR proteins with single amino acid substitutions at Cys187 or Cys189 exhibited σ(E) activity similar to those containing wild-type ChrR when exposed to (1)O(2), suggesting that these thiol side chains are not required for (1)O(2) to induce σ(E) activity in vivo. Finally, we found that the same aspects of R. sphaeroides ChrR needed for a response to (1)O(2) are required for the dissociation of σ(E)/ChrR complexes in the presence of the organic hydroperoxide t-butyl hydroperoxide.
Collapse
Affiliation(s)
- Roger Greenwell
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
360
|
Gracanin M, Lam MA, Morgan PE, Rodgers KJ, Hawkins CL, Davies MJ. Amino acid, peptide, and protein hydroperoxides and their decomposition products modify the activity of the 26S proteasome. Free Radic Biol Med 2011; 50:389-99. [PMID: 21111806 DOI: 10.1016/j.freeradbiomed.2010.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/14/2010] [Accepted: 11/11/2010] [Indexed: 10/18/2022]
Abstract
Proteins are major biological targets for oxidative damage within cells because of their high abundance and rapid rates of reaction with radicals and singlet oxygen. These reactions generate high yields of hydroperoxides. The turnover of both native and modified/damaged proteins is critical for maintaining cell homeostasis, with this occurring via the proteasomal and endosomal-lysosomal systems; the former is of particular importance for intracellular proteins. In this study we have examined whether oxidation products generated on amino acids, peptides, and proteins modulate 26S proteasome activity. We show that oxidation products, and particularly protein hydroperoxides, are efficient inhibitors of the 26S proteasome tryptic and chymotryptic activities, with this depending, at least in part, on the presence of hydroperoxide groups. Removal of these species by reduction significantly reduces proteasome inhibition. This loss of activity is accompanied by a loss of thiol residues, but an absence of radical formation, consistent with molecular, rather than radical, reactions being responsible for proteasome inhibition. Aldehydes also seem to play a role in the inhibition of chymotryptic activity, with this prevented by treatment with NaBH(4), which reduces these groups. Inhibition occurred at hydroperoxide concentrations of ≥1μM for oxidized amino acids and peptides and ≥10μM for oxidized proteins, compared with ca. 100μM for H(2)O(2), indicating that H(2)O(2) is a much less effective inhibitor. These data indicate that the formation of oxidized proteins within cells may modulate cell function by interfering with the turnover of native proteins and the clearance of modified materials.
Collapse
Affiliation(s)
- Michelle Gracanin
- Free Radical Group, The Heart Research Institute, Newtown, Sydney, NSW 2042, Australia
| | | | | | | | | | | |
Collapse
|
361
|
Ronsein GE, de Oliveira MCB, de Medeiros MHG, Di Mascio P. Mechanism of dioxindolylalanine formation by singlet molecular oxygen-mediated oxidation of tryptophan residues. Photochem Photobiol Sci 2011; 10:1727-30. [DOI: 10.1039/c1pp05181d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
362
|
Removal of amino acid, peptide and protein hydroperoxides by reaction with peroxiredoxins 2 and 3. Biochem J 2010; 432:313-21. [PMID: 20840079 DOI: 10.1042/bj20101156] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Prxs (peroxiredoxins) are a ubiquitous family of cysteine-dependent peroxidases that react rapidly with H2O2 and alkyl hydroperoxides and provide defence against these reactive oxidants. Hydroperoxides are also formed on amino acids and proteins during oxidative stress, and they too are a potential cause of biological damage. We have investigated whether Prxs react with amino acid, peptide and protein hydroperoxides, and whether the reactions are sufficiently rapid for these enzymes to provide antioxidant protection against these oxidants. Isolated Prx2, which is a cytosolic protein, and Prx3, which resides within mitochondria, were reacted with a selection of hydroperoxides generated by γ-radiolysis or singlet oxygen, on free amino acids, peptides and proteins. Reactions were followed by measuring the accumulation of disulfide-linked Prx dimers, via non-reducing SDS/PAGE, or the loss of the corresponding hydroperoxide, using quench-flow and LC (liquid chromatography)/MS. All the hydroperoxides induced rapid oxidation, with little difference in reactivity between Prx2 and Prx3. N-acetyl leucine hydroperoxides reacted with Prx2 with a rate constant of 4 × 10(4) M-1 · s-1. Hydroperoxides present on leucine, isoleucine or tyrosine reacted at a comparable rate, whereas histidine hydroperoxides were ~10-fold less reactive. Hydroperoxides present on lysozyme and BSA reacted with rate constants of ~100 M-1 · s-1. Addition of an uncharged derivative of leucine hydroperoxide to intact erythrocytes caused Prx2 oxidation with no concomitant loss in GSH, as did BSA hydroperoxide when added to concentrated erythrocyte lysate. Prxs are therefore favoured intracellular targets for peptide/protein hydroperoxides and have the potential to detoxify these species in vivo.
Collapse
|
363
|
Weiner L, Roth E, Silman I. Targeted oxidation of Torpedo californica acetylcholinesterase by singlet oxygen. Photochem Photobiol 2010; 87:308-16. [PMID: 21155827 DOI: 10.1111/j.1751-1097.2010.00857.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The photosensitizer, methylene blue (MB), is a strong reversible inhibitor of Torpedo californica acetylcholinesterase (AChE) in the dark. Under illumination it causes irreversible inactivation. Loss of fluorescence of the singlet oxygen ((1)O(2)) trap, 9,10-dimethylanthracene, was retarded in the presence of AChE, and the rate of photo-inactivation was increased in the presence of D(2)O, indicating that inactivation was due to (1)O(2) generated by the photosensitizer. CD revealed slightly reduced far-UV ellipticity, and slightly enhanced binding of an amphiphilic probe, indicating limited unfolding of the photo-oxidized AChE. However, both near-UV ellipticity and intrinsic fluorescence were markedly reduced, suggesting photo-oxidative damage to tryptophans, (Trp) supported by appearance of novel emission peaks ascribed to N'-formylkynurenine and/or kynurenine. Like other partially unfolded forms, the photo-oxidized AChE was sensitive to proteolysis. Photosensitized inactivation produced exclusively chemically cross-linked dimers, whereas irradiation of a partially unfolded state generated higher-order oligomers. The active-site gorge of AChE contains Trp in inhibitor-binding sites that might be targets for photo-oxidation. Indeed, reversible inhibitors retard photo-inactivation, and photo-inactivation destroys their binding sites. An excess of AChE protects paraoxonase from photo-inactivation by sequestering the photosensitizer. Affinity photo-oxidation of AChE by MB thus provides a valuable model for studying site-specific photo-inactivation of enzymes in both fundamental and clinical contexts.
Collapse
Affiliation(s)
- Lev Weiner
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovoth, Israel.
| | | | | |
Collapse
|
364
|
Rahmanto AS, Morgan PE, Hawkins CL, Davies MJ. Cellular effects of photogenerated oxidants and long-lived, reactive, hydroperoxide photoproducts. Free Radic Biol Med 2010; 49:1505-15. [PMID: 20708682 DOI: 10.1016/j.freeradbiomed.2010.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 08/02/2010] [Accepted: 08/05/2010] [Indexed: 11/22/2022]
Abstract
Reaction of radicals and singlet oxygen ((1)O(2)) with proteins results in both direct damage and the formation of long-lived reactive hydroperoxides. Elevated levels of protein hydroperoxide-derived products have been detected in multiple human pathologies, suggesting that these secondary oxidants contribute to tissue damage. Previous studies have provided evidence for protein hydroperoxide-mediated inhibition of thiol-dependent enzymes and modulation of signaling processes in isolated systems. In this study (1)O(2) and hydroperoxides have been generated in J774A.1 macrophage-like cells using visible light and the photosensitizer rose bengal, with the consequences of oxidant formation examined both immediately and after subsequent (dark-phase) incubation. Significant losses of GSH (≤50%), total thiols (≤20%), and activity of thiol-dependent proteins (GAPDH, thioredoxin, protein tyrosine phosphatases, creatine kinase, and cathepsins B and L; 10-50% inhibition) were detected after 1 or 2 min photo-oxidation. Non-thiol-dependent enzymes were not affected. In contrast, NADPH levels increased, together with the activity of glutathione reductase, glutathione peroxidase, and thioredoxin reductase; these increases may be components of a rapid global cytoprotective cellular response to stress. Neither oxidized thioredoxin nor radical-mediated protein oxidation products were detected at significant levels. Further decreases in thiol levels and enzyme activity occurred during dark-phase incubation, with this accompanied by decreased cell viability. These secondary events are ascribed to the reactions of long-lived hydroperoxides, generated by (1)O(2)-mediated reactions. Overall, this study provides novel insights into early cellular responses to photo-oxidative damage and indicates that long-lived hydroperoxides can play a significant role in cellular damage.
Collapse
|
365
|
Lei W, Jiang G, Zhou Q, Zhang B, Wang X. Greatly enhanced binding of a cationic porphyrin towards bovine serum albumin by cucurbit[8]uril. Phys Chem Chem Phys 2010; 12:13255-60. [PMID: 20824256 DOI: 10.1039/c001013h] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Binding affinity towards serum albumin and intracellular proteins is of importance for a photodynamic therapy (PDT) sensitizer to selectively localize in tumours and efficiently induce cell death. In this paper, it was found that cucurbit[8]uril (CB8) can greatly improve the binding affinity of 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin tetra(p-toluenesulfonate) (TMPyP), a promising PDT photosensitizer, towards bovine serum albumin (BSA). Absorption, fluorescence emission, (1)H NMR, dynamic light scattering, atomic force microscope, as well as protein photocleavage measurements suggest that the binding enhancement originates from the formation of a ternary complex of CB8·TMPyP·tryptophan residues. This finding opens up a new approach for the development of more efficient PDT agents.
Collapse
Affiliation(s)
- Wanhua Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | | | | | | | | |
Collapse
|
366
|
Popova TV, Reinbolt J, Ehresmann B, Shakirov MM, Serebriakova MV, Gerassimova YV, Knorre DG, Godovikova TS. Why do p-nitro-substituted aryl azides provide unintended dark reactions with proteins? JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2010; 100:19-29. [PMID: 20570168 DOI: 10.1016/j.jphotobiol.2010.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 04/08/2010] [Accepted: 04/08/2010] [Indexed: 05/29/2023]
Abstract
Aryl azide-mediated photo cross-linking has been widely used to obtain structural features in biological systems, even though the reactive species generated upon photolysis in aqueous solution have not been well characterized. We have established a mechanistic framework for the formation of adducts between photoactivated 5-azido-2-nitrobenzoyl reagents and protein functional groups. Photolysis of the aryl azide tethered to biotin via an amide linkage yields a cross-link with streptavidin. The ability of the pre-irradiated reagent to form a similar cross-link indicates that it is the long-lived reactive intermediate that contributes to the cross-link formation. The reactive intermediate forms an adduct with tryptophan. The sequence of the labeled peptide is found to be GlyTrp(*)ThrValAlaTrp(*)LysAsn, corresponding to residues 74-81 of the streptavidin sequence, where Trp(*) designates the modified Trp-75 and Trp-79. A peak at m/z 1455.1 corresponding to the calculated [M(peptide)+aryl nitrene+2O](+) molecular ion value has been observed for the labeled peptide. Product structure identification experiments support the assignment that the long-lived reactive intermediate is a p-nitro-N-arylhydroxylamine, which undergoes a number of transformations in aqueous solution leading to nitroso derivatives. A plausible mechanism of the interaction between tryptophan and nitroso compound is discussed.
Collapse
Affiliation(s)
- Tatyana V Popova
- Institute of Chemical Biology and Fundamental Medicine of the Siberian branch of the Russian Academy of Science, Novosibirsk 630090, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
367
|
Ehrenshaft M, Bonini MG, Feng L, Chignell CF, Mason RP. Partial colocalization of oxidized, N-formylkynurenine-containing proteins in mitochondria and Golgi of keratinocytes. Photochem Photobiol 2010; 86:752-6. [PMID: 20408979 PMCID: PMC3615536 DOI: 10.1111/j.1751-1097.2010.00718.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Proteins are the dominant cellular target for oxidative reactions because they comprise the majority of macromolecules. Posttranslational oxidative protein modifications include fragmentation, aggregation and alteration of specific amino acid residues. The amino acids and amino acid residues most susceptible to oxidative modification are those containing sulfur and those with aromatic rings. Tryptophan reacts with radicals, ozone and singlet oxygen to form the end product N-formylkynurenine (NFK). We recently described a novel anti-NFK antiserum and validated its use in immunological assays for the specific detection of NFK in isolated proteins and protein mixtures. Here we photo-oxidize rose bengal-containing HaCaT keratinocyte cells and examine the results using fluorescent confocal microscopy and staining with anti-NFK antiserum and markers for both Golgi and mitochondria. We show that photosensitization mediates the accumulation of NFK and that NFK can be detected in photosensitized cells with only slightly decreased viability. Additionally, we detect NFK-modified proteins in both Golgi and mitochondria of photosensitized cells. These experiments demonstrate that we have developed a tool for the specific detection of oxidized tryptophan residues in cells and suggest that this tool could be useful in tracking the fate of these oxidized proteins.
Collapse
Affiliation(s)
- Marilyn Ehrenshaft
- Laboratory of Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| | | | | | | | | |
Collapse
|
368
|
Jiang GY, Lei WH, Zhou QX, Hou YJ, Wang XS, Zhang BW. A new Phenol Red-modified porphyrin as efficient protein photocleaving agent. Phys Chem Chem Phys 2010; 12:12229-36. [DOI: 10.1039/c0cp00012d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
369
|
Grosvenor AJ, Morton JD, Dyer JM. Profiling of residue-level photo-oxidative damage in peptides. Amino Acids 2009; 39:285-96. [PMID: 20091070 DOI: 10.1007/s00726-009-0440-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Accepted: 12/01/2009] [Indexed: 12/14/2022]
Abstract
Protein and peptide oxidation is a key feature in the progression of a variety of disease states and in the poor performance of protein-based products. The present work demonstrates a mass spectrometry-based approach to profiling degradation at the amino acid residue level. Synthetic peptides containing the photosensitive residues, tryptophan and tyrosine, were used as models for protein-bound residue photodegradation. Electrospray ionisation tandem mass spectrometry (ESI-MS/MS) was utilised to characterise and provide relative quantitative information on the formation of photoproducts localised to specific residues, including the characterisation of low abundance photomodifications not previously reported, including W + 4O modification, hydroxy-bis-tryptophandione and topaquinone. Other photoproducts observed were consistent with the formation of tyrosine-derived dihydroxyphenylalanine (dopa), trihydroxyphenylalanine, dopa-quinone and nitrotyrosine, and tryptophan-derived hydroxytryptophan, dihydroxytryptophan/N-formylkynurenine, kynurenine, hydroxyformylkynurenine, tryptophandiones, tetrahydro-beta-carboline and nitrotryptophan. This approach combined product identification and abundance tracking to generate a photodegradation profile of the model system. The profile of products formed yields information on formative mechanisms. Profiling of product formation offers new routes to identify damage markers for use in tracking and controlling oxidative damage to polypeptides.
Collapse
Affiliation(s)
- Anita J Grosvenor
- Growth and Development Section, Lincoln Research Centre, AgResearch, Lincoln, New Zealand
| | | | | |
Collapse
|
370
|
Fang Y, Liu J. Reaction of Protonated Tyrosine with Electronically Excited Singlet Molecular Oxygen (a1Δg): An Experimental and Trajectory Study. J Phys Chem A 2009; 113:11250-61. [DOI: 10.1021/jp905978z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yigang Fang
- Department of Chemistry and Biochemistry, Queens College and the Graduate Center of the City University of New York, 65-30 Kissena Blvd., Flushing, New York 11367
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College and the Graduate Center of the City University of New York, 65-30 Kissena Blvd., Flushing, New York 11367
| |
Collapse
|