351
|
Knapp CM, Whitehead KA. In pursuit of a moving target: nanotherapeutics for the treatment of non-Hodgkin B-cell lymphoma. Expert Opin Drug Deliv 2014; 11:1923-37. [DOI: 10.1517/17425247.2014.945419] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
352
|
Shen C, Zhong N. Long non-coding RNAs: the epigenetic regulators involved in the pathogenesis of reproductive disorder. Am J Reprod Immunol 2014; 73:95-108. [PMID: 25220834 DOI: 10.1111/aji.12315] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/06/2014] [Indexed: 12/22/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are long single-stranded RNAs without translation potential. LncRNAs function in regulating epigenetic and cellular processes through various mechanisms. Nowadays, rapidly growing evidence has shown that abnormally expressed lncRNAs were involved in various inflammation-related states or diseases. Abnormal inflammation responses contribute to reproductive pathology and play vital roles in developing most disorders of the female reproductive system. In this review, we discussed the history of ncRNAs including lncRNAs, methodologies for lncRNA identification, mechanisms of lncRNA expression and regulation and mainly discussed the expression and function of lncRNAs in the female reproductive system with special focus on the inflammation and infection pathway. By analyzing the present available studies of lncRNA transcripts within the reproductive system and the current understanding of the biology of lncRNAs, we have suggested the important diagnostic and therapeutic roles of lncRNAs in the etiology of reproductive disorders.
Collapse
Affiliation(s)
- Chen Shen
- Peking University Center of Medical Genetics, Beijing, China
| | | |
Collapse
|
353
|
Olivieri F, Procopio AD, Montgomery RR. Effect of aging on microRNAs and regulation of pathogen recognition receptors. Curr Opin Immunol 2014; 29:29-37. [PMID: 24769423 PMCID: PMC4119513 DOI: 10.1016/j.coi.2014.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/26/2014] [Accepted: 03/29/2014] [Indexed: 02/06/2023]
Abstract
Immunosenescence is the multifactorial age-associated immune deteriorization that leads to increased susceptibility to infections and decreased responses to vaccines. Recent studies have shown a fundamental role for microRNAs (miRNAs) in regulating immune responses, and nearly all the miRNAs involved in immune regulation show modulation during aging. Aging-associated miRNAs are largely negative regulators of the immune innate response and target central nodes of aging-associated networks, in particular, NF-κB, the downstream effector of TLR signals that leads to induction of proinflammatory responses. Multiple miRNAs have been reported to share similar regulatory activity. Here we review miRNA regulation of human innate immune recognition in aging, including both activation and resolution of inflammation, critical issues in detection, and areas of active investigation into our understanding of immunosenescence.
Collapse
Affiliation(s)
- Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, INRCA-IRCCS Italian National Institute, Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, INRCA-IRCCS Italian National Institute, Ancona, Italy
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
354
|
Ji S, Li W, Bao L, Han P, Yang W, Ma L, Meng F, Cao B. PU.1 promotes miR-191 to inhibit adipogenesis in 3T3-L1 preadipocytes. Biochem Biophys Res Commun 2014; 451:329-33. [DOI: 10.1016/j.bbrc.2014.07.130] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 07/28/2014] [Indexed: 10/24/2022]
|
355
|
Zhou A, Li S, Zhang S. miRNAs and genes expression in MARC-145 cell in response to PRRSV infection. INFECTION GENETICS AND EVOLUTION 2014; 27:173-80. [PMID: 25077995 DOI: 10.1016/j.meegid.2014.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/14/2014] [Accepted: 07/21/2014] [Indexed: 01/30/2023]
Abstract
The regulation of viral replication is under control of miRNAs and their target genes. Several articles report the cross-talk between host and virus. The drastic effects of Porcine reproductive and respiratory syndrome virus (PRRSV) pressed us to investigate the expression profiling of miRNAs and immunity related genes during PRRSV infection. This was performed by qPCR in MARC145 cells during PRRSV infection. It was observed that miRNAs and genes show different expression patterns at different time points during PRRSV infection. The early infected stage was accompanied with increased expression of some miRNAs including miR-204, miR-21, miR-181a, miR-29 while a decrease was observed for the same in late infection stage. The opposite condition also existed in parallel. An interesting observation was seen when miR-145 was strongly induced by PRRSV infection, whereas miR-127 expression was significantly reduced in all infection points. Taken together, our studies have revealed that the expressions of miRNAs and immune-related genes were regulated in PRRSV infected MARC-145 cells and had important roles in the immune response, providing a basis for further investigations.
Collapse
Affiliation(s)
- Ao Zhou
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuaifeng Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Shujun Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
356
|
Zhao J, Feng Y, Yan H, Chen Y, Wang J, Chua B, Stuart C, Yin D. β-arrestin2/miR-155/GSK3β regulates transition of 5'-azacytizine-induced Sca-1-positive cells to cardiomyocytes. J Cell Mol Med 2014; 18:1562-70. [PMID: 24974728 PMCID: PMC4190902 DOI: 10.1111/jcmm.12339] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/14/2014] [Indexed: 11/27/2022] Open
Abstract
Stem-cell antigen 1–positive (Sca-1+) cardiac stem cells (CSCs), a vital kind of CSCs in humans, promote cardiac repair in vivo and can differentiate to cardiomyocytes with 5′-azacytizine treatment in vitro. However, the underlying molecular mechanisms are unknown. β-arrestin2 is an important scaffold protein and highly expressed in the heart. To explore the function of β-arrestin2 in Sca-1+ CSC differentiation, we used β-arrestin2–knockout mice and overexpression strategies. Real-time PCR revealed that β-arrestin2 promoted 5′-azacytizine-induced Sca-1+ CSC differentiation in vitro. Because the microRNA 155 (miR-155) may regulate β-arrestin2 expression, we detected its role and relationship with β-arrestin2 and glycogen synthase kinase 3 (GSK3β), another probable target of miR-155. Real-time PCR revealed that miR-155, inhibited by β-arrestin2, impaired 5′-azacytizine-induced Sca-1+ CSC differentiation. On luciferase report assay, miR-155 could inhibit the activity of β-arrestin2 and GSK3β, which suggests a loop pathway between miR-155 and β-arrestin2. Furthermore, β-arrestin2-knockout inhibited the activity of GSK3β. Akt, the upstream inhibitor of GSK3β, was inhibited in β-arrestin2-Knockout mice, so the activity of GSK3β was regulated by β-arrestin2 not Akt. We transplanted Sca-1+ CSCs from β-arrestin2-knockout mice to mice with myocardial infarction and found similar protective functions as in wild-type mice but impaired arterial elastance. Furthermore, low level of β-arrestin2 agreed with decreased phosphorylation of AKT and increased phophorylation of GSK3β, similar to in vitro findings. The β-arrestin2/miR-155/GSK3β pathway may be a new mechanism with implications for treatment of heart disease.
Collapse
Affiliation(s)
- Jing Zhao
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, China; Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | | | | | | | | | | | | | | |
Collapse
|
357
|
Pareek S, Roy S, Kumari B, Jain P, Banerjee A, Vrati S. MiR-155 induction in microglial cells suppresses Japanese encephalitis virus replication and negatively modulates innate immune responses. J Neuroinflammation 2014; 11:97. [PMID: 24885259 PMCID: PMC4050406 DOI: 10.1186/1742-2094-11-97] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/13/2014] [Indexed: 02/07/2023] Open
Abstract
Background Microglial cells, which are resident macrophages of the central nervous system, play important roles in immune responses and pathogenesis. Japanese encephalitis virus (JEV) is a neurotropic virus that infects microglial cells in brain. Several microRNAs including miR-155 and miR-146a play an important role in defining the microglia inflammatory profile. In this study, we have investigated the effect of miR-155 and miR-146a modulation on JEV infection as well as innate immune responses in human microglial cells. Methods In vitro studies were performed in JEV-infected human microglial CHME3 cells. miR-155 or miR-146a were overexpressed and total RNA and protein were extracted following JEV-infection. Expression of genes involved in innate immune responses was studied by PCR array, quantitative real-time PCR (qPCR), western blot and Fluorescence activated cell sorter (FACS). JEV replication was monitored by studying the viral RNA by qPCR, protein by western blot, and titres by plaque assay. Results Overexpression of miR-155 in CHME3 cells resulted in significantly reduced JEV replication whereas miR-146a overexpression had an insignificant effect. Additionally, interferon regulatory factor 8 (IRF8) and complement factor H (CFH) were induced during JEV infection; however, this induction was attenuated in miR-155 overexpressing cells following JEV infection. Further, JEV-induced NF-κB regulated downstream gene expression was attenuated. Interestingly, an increased level of CD45, a negative regulator of microglia activation and a reduced phosphorylated-Signal Transducers and Activators of Transcription (p-STAT1) expression was observed in miR-155 overexpressing cells upon JEV infection. Conclusion Induction of miR-155 in human microglial cells may negatively modulate JEV-induced innate immune gene expression and may have a beneficial role in limiting JEV replication in human microglial cells.
Collapse
Affiliation(s)
| | | | | | | | - Arup Banerjee
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, 496, Udyog Vihar Phase-III, Gurgaon 122016, India.
| | | |
Collapse
|
358
|
Differential lymphocyte and antibody responses in deer mice infected with Sin Nombre hantavirus or Andes hantavirus. J Virol 2014; 88:8319-31. [PMID: 24829335 DOI: 10.1128/jvi.00004-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Hantavirus cardiopulmonary syndrome (HCPS) is a rodent-borne disease with a high case-fatality rate that is caused by several New World hantaviruses. Each pathogenic hantavirus is naturally hosted by a principal rodent species without conspicuous disease and infection is persistent, perhaps for life. Deer mice (Peromyscus maniculatus) are the natural reservoirs of Sin Nombre virus (SNV), the etiologic agent of most HCPS cases in North America. Deer mice remain infected despite a helper T cell response that leads to high-titer neutralizing antibodies. Deer mice are also susceptible to Andes hantavirus (ANDV), which causes most HCPS cases in South America; however, deer mice clear ANDV. We infected deer mice with SNV or ANDV to identify differences in host responses that might account for this differential outcome. SNV RNA levels were higher in the lungs but not different in the heart, spleen, or kidneys. Most ANDV-infected deer mice had seroconverted 14 days after inoculation, but none of the SNV-infected deer mice had. Examination of lymph node cell antigen recall responses identified elevated immune gene expression in deer mice infected with ANDV and suggested maturation toward a Th2 or T follicular helper phenotype in some ANDV-infected deer mice, including activation of the interleukin 4 (IL-4) pathway in T cells and B cells. These data suggest that the rate of maturation of the immune response is substantially higher and of greater magnitude during ANDV infection, and these differences may account for clearance of ANDV and persistence of SNV. IMPORTANCE Hantaviruses persistently infect their reservoir rodent hosts without pathology. It is unknown how these viruses evade sterilizing immune responses in the reservoirs. We have determined that infection of the deer mouse with its homologous hantavirus, Sin Nombre virus, results in low levels of immune gene expression in antigen-stimulated lymph node cells and a poor antibody response. However, infection of deer mice with a heterologous hantavirus, Andes virus, results in a robust lymph node cell response, signatures of T and B cell maturation, and production of antibodies. These findings suggest that an early and aggressive immune response to hantaviruses may lead to clearance in a reservoir host and suggest that a modest immune response may be a component of hantavirus ecology.
Collapse
|
359
|
Li K, Du Y, Jiang BL, He JF. Increased microRNA-155 and decreased microRNA-146a may promote ocular inflammation and proliferation in Graves' ophthalmopathy. Med Sci Monit 2014; 20:639-43. [PMID: 24743332 PMCID: PMC3999163 DOI: 10.12659/msm.890686] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Graves' ophthalmopathy is an inflammatory autoimmune disease of the orbit, characterized by inflammation and proliferation of the orbital tissue caused by CD4+T cells and orbital fibroblasts. Despite recent substantial findings regarding its cellular and molecular foundations, the pathogenesis of Graves' ophthalmopathy remains unclear. Accumulating data suggest that microRNAs play important roles in the pathophysiology of autoimmunity and proliferation. Specifically, microRNA-155 (miR-155) can promote autoimmune inflammation by enhancing inflammatory T cell development. In contrast to miR-155, microRNA-146a (miR-146a) can inhibit the immune response by suppressing T cell activation. Furthermore, miR-155 and miR-146a are involved in cell proliferation, differentiation, and many other life processes. Thus, miR-155 and miR-146a, with opposite impacts on inflammatory responses carried out by T lymphocytes, appear to have multiple targets in the pathogenesis of Graves' ophthalmopathy. Our previous work showed that the expression of miR-146a was significantly decreased in peripheral blood mononuclear cells from Graves' ophthalmopathy patients compared with normal subjects. Accordingly, we proposed that the expression of miR-155 increased and the expression of miR-146a decreased in the target cells (CD4+T cells and orbital fibroblasts), thus promoting ocular inflammation and proliferation in Graves' ophthalmopathy. The proposed hypothesis warrants further investigation of the function of the differentially expressed microRNAs, which may shed new light on the pathogenesis of Graves' ophthalmopathy and lead to new strategies for its management.
Collapse
Affiliation(s)
- Kaijun Li
- Department of Ophthalmology, First Affiliated Hospital of Guangxi Medical University, Nanning, China (mainland)
| | - Yi Du
- Department of Ophthalmology, First Affiliated Hospital of Guangxi Medical University, Nanning, China (mainland)
| | - Ben-Li Jiang
- Department of Ophthalmology, First People's Hospital of Nanning, Nanning, China (mainland)
| | - Jian-Feng He
- Department of Ophthalmology, First Affiliated Hospital of Guangxi Medical University, Nanning, China (mainland)
| |
Collapse
|
360
|
Wang S, Fu B, Wang J, Long Y, Zhang X, Peng S, Guo P, Tian T, Zhou X. Novel Amplex Red Oxidases Based on Noncanonical DNA Structures: Property Studies and Applications in MicroRNA Detection. Anal Chem 2014; 86:2925-30. [DOI: 10.1021/ac402535a] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Shaoru Wang
- College
of Chemistry and Molecular Sciences, Key Laboratory of Biomedical
Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, P. R. of China
| | - Boshi Fu
- College
of Chemistry and Molecular Sciences, Key Laboratory of Biomedical
Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, P. R. of China
| | - Jiaqi Wang
- College
of Chemistry and Molecular Sciences, Key Laboratory of Biomedical
Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, P. R. of China
| | - Yuelin Long
- College
of Chemistry and Molecular Sciences, Key Laboratory of Biomedical
Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, P. R. of China
| | - Xiaoe Zhang
- College
of Chemistry and Molecular Sciences, Key Laboratory of Biomedical
Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, P. R. of China
| | - Shuang Peng
- College
of Chemistry and Molecular Sciences, Key Laboratory of Biomedical
Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, P. R. of China
| | - Pu Guo
- College
of Chemistry and Molecular Sciences, Key Laboratory of Biomedical
Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, P. R. of China
| | - Tian Tian
- College
of Chemistry and Molecular Sciences, Key Laboratory of Biomedical
Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, P. R. of China
| | - Xiang Zhou
- College
of Chemistry and Molecular Sciences, Key Laboratory of Biomedical
Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, P. R. of China
- State
Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| |
Collapse
|
361
|
Xie GB, Liu WJ, Pan ZJ, Cheng TY, Luo C. Evolution of the mir-155 family and possible targets in cancers and the immune system. Asian Pac J Cancer Prev 2014; 15:7547-7552. [PMID: 25292026 DOI: 10.7314/apjcp.2014.15.18.7547] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The mir-155 family is not only involved in a diversity of cancers, but also as a regulator of the immune system. However, the evolutionary history of this family is still unclear. The present study indicates that mir-155 evolved independently with lineage-specific gain of miRNAs. In addition, arm switching has occurred in the mir-155 family, and alternative splicing could produce two different lengths of ancestral sequences, implying the alternative splicing can also drive evolution for intragenic miRNAs. Here we screened validated target genes and immunity- related proteins, followed by analyzation of the mir-155 family function by high-throughput methods like the gene ontology (GO) and Kyoto Eneyclopedin of Genes and Genemes (KEGG) pathway enrichment analysis. The high-throughput analysis showed that the CCND1 and EGFR genes were outstanding in being significantly enriched, and the target genes cebpb and VCAM1 and the protein SMAD2 were also vital in mir-155-related immune reponse activities. Therefore, we conclude that the mir-155 family is highly conserved in evolution, and CCND1 and EGFR genes might be potential targets of mir-155 with regard to progress of cancers, while the cebpb and VCAM1 genes and the protein SMAD2 might be key factors in the mir-155 regulated immune activities.
Collapse
Affiliation(s)
- Guang-Bing Xie
- College of Orient Science and Technology, Hunan Agriculture University, Changsha, China E-mail :
| | | | | | | | | |
Collapse
|
362
|
Thompson RC, Vardinogiannis I, Gilmore TD. Identification of an NF-κB p50/p65-responsive site in the human MIR155HG promoter. BMC Mol Biol 2013; 14:24. [PMID: 24059932 PMCID: PMC3849010 DOI: 10.1186/1471-2199-14-24] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/16/2013] [Indexed: 12/15/2022] Open
Abstract
Background MicroRNA-155 (miR-155) is the diced product of the MIR155HG gene. miR-155 regulates the expression of many immune-specific transcripts, is overexpressed in many human lymphomas, and has oncogenic activity in mouse transgenic models. MIR155HG has been proposed to be a target gene for transcription factor NF-κB largely due to the positive correlation between high nuclear NF-κB activity and increased miR-155 expression following treatment with NF-κB inducers or in subsets of hematopoietic cancers. Nevertheless, direct regulation of the human MIR155HG promoter by NF-κB has not been convincingly demonstrated previously. Results This report shows that induction of NF-κB activity rapidly leads to increased levels of both primary MIR155HG mRNA and mature miR-155 transcripts. We have mapped an NF-κB-responsive element to a position approximately 178 nt upstream of the MIR155HG transcription start site. The -178 site is specifically bound by the NF-κB p50/p65 heterodimer and is required for p65-induced reporter gene activation. Moreover, the levels of miR-155 in nine human B-lymphoma cell lines generally correlate with increased nuclear NF-κB proteins. Conclusion Overall, the identification of an NF-κB-responsive site in the MIR155HG proximal promoter suggests that MIR155HG is a direct NF-κB target gene in vivo. Understanding NF-κB-mediated regulation of miR-155 could lead to improved immune cell-related diagnostic tools and targeted therapies.
Collapse
Affiliation(s)
- Ryan C Thompson
- Department of Biology, Boston University, Boston, MA 02215, USA.
| | | | | |
Collapse
|
363
|
Kuo YC, Li YSJ, Zhou J, Shih YRV, Miller M, Broide D, Lee OKS, Chien S. Human mesenchymal stem cells suppress the stretch-induced inflammatory miR-155 and cytokines in bronchial epithelial cells. PLoS One 2013; 8:e71342. [PMID: 23967196 PMCID: PMC3742760 DOI: 10.1371/journal.pone.0071342] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/30/2013] [Indexed: 12/31/2022] Open
Abstract
Current research in pulmonary pathology has focused on inflammatory reactions initiated by immunological responses to allergens and irritants. In addition to these biochemical stimuli, physical forces also play an important role in regulating the structure, function, and metabolism of the lung. Hyperstretch of lung tissues can contribute to the inflammatory responses in asthma, but the mechanisms of mechanically induced inflammation in the lung remain unclear. Our results demonstrate that excessive stretch increased the secretion of inflammatory cytokines by human bronchial epithelial cells (hBECs), including IL-8. This increase of IL-8 secretion was due to an elevated microRNA-155 (miR-155) expression, which caused the suppression of Src homology 2 domain–containing inositol 5-phosphatase 1 (SHIP1) production and the subsequent activation of JNK signaling. In vivo studies in our asthmatic mouse model also showed such changes in miR-155, IL-8, and SHIP1 expressions that reflect inflammatory responses. Co-culture with human mesenchymal stem cells (hMSCs) reversed the stretch-induced hBEC inflammatory responses as a result of IL-10 secretion by hMSCs to down-regulate miR-155 expression in hBECs. In summary, we have demonstrated that mechanical stretch modulates the homeostasis of the hBEC secretome involving miR-155 and that hMSCs can be used as a potential therapeutic approach to reverse bronchial epithelial inflammation in asthma.
Collapse
Affiliation(s)
- Yi-Chun Kuo
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Bioengineering and Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Yi-Shuan Julie Li
- Department of Bioengineering and Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Jing Zhou
- Department of Bioengineering and Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Yu-Ru Vernon Shih
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Marina Miller
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - David Broide
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
- * E-mail: (OK-SL); (SC)
| | - Shu Chien
- Department of Bioengineering and Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (OK-SL); (SC)
| |
Collapse
|
364
|
Garitano-Trojaola A, Agirre X, Prósper F, Fortes P. Long non-coding RNAs in haematological malignancies. Int J Mol Sci 2013; 14:15386-422. [PMID: 23887658 PMCID: PMC3759866 DOI: 10.3390/ijms140815386] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 06/28/2013] [Accepted: 07/09/2013] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are functional RNAs longer than 200 nucleotides in length. LncRNAs are as diverse as mRNAs and they normally share the same biosynthetic machinery based on RNA polymerase II, splicing and polyadenylation. However, lncRNAs have low coding potential. Compared to mRNAs, lncRNAs are preferentially nuclear, more tissue specific and expressed at lower levels. Most of the lncRNAs described to date modulate the expression of specific genes by guiding chromatin remodelling factors; inducing chromosomal loopings; affecting transcription, splicing, translation or mRNA stability; or serving as scaffolds for the organization of cellular structures. They can function in cis, cotranscriptionally, or in trans, acting as decoys, scaffolds or guides. These functions seem essential to allow cell differentiation and growth. In fact, many lncRNAs have been shown to exert oncogenic or tumor suppressor properties in several cancers including haematological malignancies. In this review, we summarize what is known about lncRNAs, the mechanisms for their regulation in cancer and their role in leukemogenesis, lymphomagenesis and hematopoiesis. Furthermore, we discuss the potential of lncRNAs in diagnosis, prognosis and therapy in cancer, with special attention to haematological malignancies.
Collapse
Affiliation(s)
- Andoni Garitano-Trojaola
- Laboratory of Myeloproliferative Syndromes, Oncology Area, Foundation for Applied Medical Research, University of Navarra, Pamplona 31008, Spain; E-Mails: (A.G.-T.); (X.A.); (F.P.)
| | - Xabier Agirre
- Laboratory of Myeloproliferative Syndromes, Oncology Area, Foundation for Applied Medical Research, University of Navarra, Pamplona 31008, Spain; E-Mails: (A.G.-T.); (X.A.); (F.P.)
| | - Felipe Prósper
- Laboratory of Myeloproliferative Syndromes, Oncology Area, Foundation for Applied Medical Research, University of Navarra, Pamplona 31008, Spain; E-Mails: (A.G.-T.); (X.A.); (F.P.)
- Hematology Service and Area of Cell Therapy, University of Navarra Clinic, University of Navarra, Pamplona 31008, Spain
| | - Puri Fortes
- Department of Hepatology and Gene Therapy, Foundation for Applied Medical Research, University of Navarra, Pamplona 31008, Spain
| |
Collapse
|
365
|
|
366
|
Neth P, Nazari-Jahantigh M, Schober A, Weber C. MicroRNAs in flow-dependent vascular remodelling. Cardiovasc Res 2013; 99:294-303. [DOI: 10.1093/cvr/cvt096] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
367
|
Civelek M, Hagopian R, Pan C, Che N, Yang WP, Kayne PS, Saleem NK, Cederberg H, Kuusisto J, Gargalovic PS, Kirchgessner TG, Laakso M, Lusis AJ. Genetic regulation of human adipose microRNA expression and its consequences for metabolic traits. Hum Mol Genet 2013; 22:3023-37. [PMID: 23562819 DOI: 10.1093/hmg/ddt159] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The genetics of messenger RNA (mRNA) expression has been extensively studied in humans and other organisms, but little is known about genetic factors contributing to microRNA (miRNA) expression. We examined natural variation of miRNA expression in adipose tissue in a population of 200 men who have been carefully characterized for metabolic syndrome (MetSyn) phenotypes as part of the Metabolic Syndrome in Men (METSIM) study. We genotyped the subjects using high-density single-nucleotide polymorphism microarrays and quantified the mRNA abundance using genome-wide expression arrays and miRNA abundance using next-generation sequencing. We reliably quantified 356 miRNA species that were expressed in human adipose tissue, a limited number of which made up most of the expressed miRNAs. We mapped the miRNA abundance as an expression quantitative trait and determined cis regulation of expression for nine of the miRNAs and of the processing of one miRNA (miR-28). The degree of genetic variation of miRNA expression was substantially less than that of mRNAs. For the majority of the miRNAs, genetic regulation of expression was independent of the expression of mRNA from which the miRNA is transcribed. We also showed that for 108 miRNAs, mapped reads displayed widespread variation from the canonical sequence. We found a total of 24 miRNAs to be significantly associated with MetSyn traits. We suggest a regulatory role for miR-204-5p which was predicted to inhibit acetyl coenzyme A carboxylase β, a key fatty acid oxidation enzyme that has been shown to play a role in regulating body fat and insulin resistance in adipose tissue.
Collapse
Affiliation(s)
- Mete Civelek
- Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|