351
|
Boettler T, Marjot T, Newsome PN, Mondelli MU, Maticic M, Cordero E, Jalan R, Moreau R, Cornberg M, Berg T. Impact of COVID-19 on the care of patients with liver disease: EASL-ESCMID position paper after 6 months of the pandemic. JHEP Rep 2020; 2:100169. [PMID: 32835190 PMCID: PMC7402276 DOI: 10.1016/j.jhepr.2020.100169] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023] Open
Abstract
During the early stages of the coronavirus disease 2019 (COVID-19) pandemic, EASL and ESCMID published a position paper to provide guidance for physicians involved in the care of patients with chronic liver disease. While some healthcare systems are returning to a more normal routine, many countries and healthcare systems have been, or still are, overwhelmed by the pandemic, which is significantly impacting on the care of these patients. In addition, many studies have been published focusing on how COVID-19 may affect the liver and how pre-existing liver diseases might influence the clinical course of COVID-19. While many aspects remain poorly understood, it has become increasingly evident that pre-existing liver diseases and liver injury during the disease course must be kept in mind when caring for patients with COVID-19. This review should serve as an update on the previous position paper, summarising the evidence for liver disease involvement during COVID-19 and providing recommendations on how to return to routine care wherever possible.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme 2
- ACLF, acute-on-chronic liver failure
- COVID-19
- COVID-19, coronavirus disease 2019
- Cancer
- Cirrhosis
- ERC, endoscopic retrograde cholangiography
- HCC, hepatocellular carcinoma
- IL-6, interleukin-6
- LT, liver transplant
- Liver
- MELD, model for end-stage liver disease
- NAFLD
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- OGD, oesophagogastroduodenoscopy
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- Telemedicine
- Transplantation
- ULN, upper limit of normal
Collapse
Affiliation(s)
- Tobias Boettler
- Department of Medicine II, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Marjot
- Oxford Liver Unit, Translational Gastroenterology Unit, Oxford University Hospitals NHS Foundation Trust, University of Oxford, UK
| | - Philip N. Newsome
- National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Mario U. Mondelli
- Division of Infectious Diseases and Immunology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Mojca Maticic
- Clinic for Infectious Diseases and Febrile Illnesses, University Medical Centre Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Slovenia
| | - Elisa Cordero
- Department of Medicine, University of Seville, Clinical Unit of Infectious Diseases University Hospital Virgen del Rocio, Institute of Biomedicine, Sevilla, CSIC, Spain
| | - Rajiv Jalan
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK
| | - Richard Moreau
- Inserm, Université de Paris, U1149, Centre de Recherche sur l'Inflammation (CRI), UMRS1149, Paris, France
- Service d'Hépatologie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- Centre for Individualised Infection Medicine (CIIM), Hannover, Germany
| | - Thomas Berg
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| |
Collapse
|
352
|
|
353
|
Ferron PJ, Gicquel T, Mégarbane B, Clément B, Fromenty B. Treatments in Covid-19 patients with pre-existing metabolic dysfunction-associated fatty liver disease: A potential threat for drug-induced liver injury? Biochimie 2020; 179:266-274. [PMID: 32891697 PMCID: PMC7468536 DOI: 10.1016/j.biochi.2020.08.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Obese patients who often present metabolic dysfunction-associated fatty liver disease (MAFLD) are at risk of severe presentation of coronavirus disease 2019 (COVID-19). These patients are more likely to be hospitalized and receive antiviral agents and other drugs required to treat acute respiratory distress syndrome and systemic inflammation, combat bacterial and fungal superinfections and reverse multi-organ failure. Among these pharmaceuticals, antiretrovirals such as lopinavir/ritonavir and remdesivir, antibiotics and antifungal agents can induce drug-induced liver injury (DILI), whose mechanisms are not always understood. In the present article, we hypothesize that obese COVID-19 patients with MAFLD might be at higher risk for DILI than non-infected healthy individuals or MAFLD patients. These patients present several concomitant factors, which individually can favour DILI: polypharmacy, systemic inflammation at risk of cytokine storm, fatty liver and sometimes nonalcoholic steatohepatitis (NASH) as well as insulin resistance and other diseases linked to obesity. Hence, in obese COVID-19 patients, some drugs might cause more severe (and/or more frequent) DILI, while others might trigger the transition of fatty liver to NASH, or worsen pre-existing steatosis, necroinflammation and fibrosis. We also present the main mechanisms whereby drugs can be more hepatotoxic in MAFLD including impaired activity of xenobiotic-metabolizing enzymes, mitochondrial dysfunction, altered lipid homeostasis and oxidative stress. Although comprehensive investigations are needed to confirm our hypothesis, we believe that the current epidemic of obesity and related metabolic diseases has extensively contributed to increase the number of cases of DILI in COVID-19 patients, which may have participated in presentation severity and death.
Collapse
Affiliation(s)
- Pierre-Jean Ferron
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000, Rennes, France
| | - Thomas Gicquel
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000, Rennes, France; CHU Rennes, Laboratoire de toxicologie médico-légale, F-35000, Rennes, France
| | - Bruno Mégarbane
- Department of Medical and Toxicological Critical Care, Lariboisière Hospital, University of Paris, INSERM, UMRS, 1144, Paris, France
| | - Bruno Clément
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000, Rennes, France
| | - Bernard Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000, Rennes, France.
| |
Collapse
|
354
|
Soto ME, Guarner-Lans V, Soria-Castro E, Manzano Pech L, Pérez-Torres I. Is Antioxidant Therapy a Useful Complementary Measure for Covid-19 Treatment? An Algorithm for Its Application. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E386. [PMID: 32752010 PMCID: PMC7466376 DOI: 10.3390/medicina56080386] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causes the corona virus disease-19 which is accompanied by severe pneumonia, pulmonary alveolar collapses and which stops oxygen exchange. Viral transmissibility and pathogenesis depend on recognition by a receptor in the host, protease cleavage of the host membrane and fusion. SARS-CoV-2 binds to the angiotensin converting enzyme 2 receptor. Here, we discuss the general characteristics of the virus, its mechanism of action and the way in which the mechanism correlates with the comorbidities that increase the death rate. We also discuss the currently proposed therapeutic measures and propose the use of antioxidant drugs to help patients infected with the SARS-CoV-2. Oxidizing agents come from phagocytic leukocytes such as neutrophils, monocytes, macrophages and eosinophils that invade tissue. Free radicals promote cytotoxicity thus injuring cells. They also trigger the mechanism of inflammation by mediating the activation of NFkB and inducing the transcription of cytokine production genes. Release of cytokines enhances the inflammatory response. Oxidative stress is elevated during critical illnesses and contributes to organ failure. In corona virus disease-19 there is an intense inflammatory response known as a cytokine storm that could be mediated by oxidative stress. Although antioxidant therapy has not been tested in corona virus disease-19, the consequences of antioxidant therapy in sepsis, acute respiratory distress syndrome and acute lung injury are known. It improves oxygenation rates, glutathione levels and strengthens the immune response. It reduces mechanical ventilation time, the length of stay in the intensive care unit, multiple organ dysfunctions and the length of stay in the hospital and mortality rates in acute lung injury/acute respiratory distress syndrome and could thus help patients with corona virus disease-19.
Collapse
Affiliation(s)
- María Elena Soto
- Immunology Department, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - Verónica Guarner-Lans
- Physiology Department, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - Elizabeth Soria-Castro
- Vascular Biomedicine Department, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico; (E.S.-C.); (L.M.P.)
| | - Linaloe Manzano Pech
- Vascular Biomedicine Department, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico; (E.S.-C.); (L.M.P.)
| | - Israel Pérez-Torres
- Vascular Biomedicine Department, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico; (E.S.-C.); (L.M.P.)
| |
Collapse
|
355
|
Jacka BP, Phipps E, Marshall BDL. Drug use during a pandemic: Convergent risk of novel coronavirus and invasive bacterial and viral infections among people who use drugs. THE INTERNATIONAL JOURNAL OF DRUG POLICY 2020; 83:102895. [PMID: 32741718 PMCID: PMC7388892 DOI: 10.1016/j.drugpo.2020.102895] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Brendan P Jacka
- Department of Epidemiology, Brown University School of Public Health, 121 South Main Street (Box G-S121-2), Providence 02912, RI, USA.
| | - Emily Phipps
- National Infection Service, Public Health England
| | - Brandon D L Marshall
- Department of Epidemiology, Brown University School of Public Health, 121 South Main Street (Box G-S121-2), Providence 02912, RI, USA
| |
Collapse
|
356
|
Jothimani D, Venugopal R, Vij M, Rela M. Post liver transplant recurrent and de novo viral infections. Best Pract Res Clin Gastroenterol 2020; 46-47:101689. [PMID: 33158469 PMCID: PMC7519014 DOI: 10.1016/j.bpg.2020.101689] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/31/2023]
Abstract
Survival following liver transplantation has changed dramatically owing to improvement in surgical techniques, peri-operative care and optimal immunosuppressive therapy. Post-Liver transplant (LT) de novo or recurrent viral infection continues to cause major allograft dysfunction, leading to poor graft and patient survival in untreated patients. Availability of highly effective antiviral drugs has significantly improved post-LT survival. Patients transplanted for chronic hepatitis B infection should receive life-long nucleos(t)ide analogues, with or without HBIg for effective viral control. Patients with chronic hepatitis C should be commenced on directly acting antiviral (DAA) drugs prior to transplantation. DAA therapy for post-LT recurrent hepatitis C infection is associated with close to 100% sustained virological response (SVR), irrespective of genotype. De novo chronic Hepatitis E infection is an increasingly recognised cause of allograft dysfunction in LT recipients. Untreated chronic HEV infection of the graft may lead to liver fibrosis and allograft failure. CMV and EBV can reactivate leading to systemic illness following liver transplantation. With COVID-19 pandemic, post-transplant patients are at risk of SARS-Co-V2 infection. Majority of the LT recipients require hospitalization, and the mortality in this population is around 20%. Early recognition of allograft dysfunction and identification of viral aetiology is essential in the management of post-LT de novo or recurrent infections. Optimising immunosuppression is an important step in reducing the severity of allograft damage in the treatment of post-transplant viral infections. Viral clearance or control can be achieved by early initiation of high potency antiviral therapy.
Collapse
Affiliation(s)
- Dinesh Jothimani
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Centre, Bharath Institute of Higher Education and Research, Chennai, India.
| | - Radhika Venugopal
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Centre, Bharath Institute of Higher Education and Research, Chennai, India
| | - Mukul Vij
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Centre, Bharath Institute of Higher Education and Research, Chennai, India
| | - Mohamed Rela
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Centre, Bharath Institute of Higher Education and Research, Chennai, India
| |
Collapse
|