351
|
Updike DL, Hachey SJ, Kreher J, Strome S. P granules extend the nuclear pore complex environment in the C. elegans germ line. J Cell Biol 2011; 192:939-48. [PMID: 21402789 PMCID: PMC3063144 DOI: 10.1083/jcb.201010104] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 02/15/2011] [Indexed: 11/23/2022] Open
Abstract
The immortal and totipotent properties of the germ line depend on determinants within the germ plasm. A common characteristic of germ plasm across phyla is the presence of germ granules, including P granules in Caenorhabditis elegans, which are typically associated with the nuclear periphery. In C. elegans, nuclear pore complex (NPC)-like FG repeat domains are found in the VASA-related P-granule proteins GLH-1, GLH-2, and GLH-4 and other P-granule components. We demonstrate that P granules, like NPCs, are held together by weak hydrophobic interactions and establish a size-exclusion barrier. Our analysis of intestine-expressed proteins revealed that GLH-1 and its FG domain are not sufficient to form granules, but require factors like PGL-1 to nucleate the localized concentration of GLH proteins. GLH-1 is necessary but not sufficient for the perinuclear location of granules in the intestine. Our results suggest that P granules extend the NPC environment in the germ line and provide insights into the roles of the PGL and GLH family proteins.
Collapse
Affiliation(s)
- Dustin L Updike
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | | | | | | |
Collapse
|
352
|
Abstract
Small non-coding RNAs, through association with Argonaute protein family members, have a variety of functions during the development of an organism. Although there is increased mechanistic understanding of the RNA interference (RNAi) pathways surrounding these small RNAs, how their effects are modulated by subcellular compartmentalization and cross-pathway functional interactions is only beginning to be explored. This review examines the current understanding of these aspects of RNAi pathways and the biological functions of these pathways.
Collapse
Affiliation(s)
- René F Ketting
- Hubrecht Institute-KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
353
|
Khurana JS, Theurkauf W. piRNAs, transposon silencing, and Drosophila germline development. ACTA ACUST UNITED AC 2011; 191:905-13. [PMID: 21115802 PMCID: PMC2995163 DOI: 10.1083/jcb.201006034] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transposons are prominent features of most eukaryotic genomes and mobilization of these elements triggers genetic instability. Transposon silencing is particularly critical in the germline, which maintains the heritable genetic complement. Piwi-interacting RNAs (piRNAs) have emerged as central players in transposon silencing and genome maintenance during germline development. In particular, research on Drosophila oogenesis has provided critical insights into piRNA biogenesis and transposon silencing. In this system, the ability to place piRNA mutant phenotypes within a well-defined developmental framework has been instrumental in elucidating the molecular mechanisms underlying the connection between piRNAs and transposon control.
Collapse
Affiliation(s)
- Jaspreet S Khurana
- Program in Cell and Developmental Dynamics, and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
354
|
Berninger P, Jaskiewicz L, Khorshid M, Zavolan M. Conserved generation of short products at piRNA loci. BMC Genomics 2011; 12:46. [PMID: 21247452 PMCID: PMC3037900 DOI: 10.1186/1471-2164-12-46] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 01/19/2011] [Indexed: 02/01/2023] Open
Abstract
Background The piRNA pathway operates in animal germ lines to ensure genome integrity through retrotransposon silencing. The Piwi protein-associated small RNAs (piRNAs) guide Piwi proteins to retrotransposon transcripts, which are degraded and thereby post-transcriptionally silenced through a ping-pong amplification process. Cleavage of the retrotransposon transcript defines at the same time the 5' end of a secondary piRNA that will in turn guide a Piwi protein to a primary piRNA precursor, thereby amplifying primary piRNAs. Although several studies provided evidence that this mechanism is conserved among metazoa, how the process is initiated and what enzymatic activities are responsible for generating the primary and secondary piRNAs are not entirely clear. Results Here we analyzed small RNAs from three mammalian species, seeking to gain further insight into the mechanisms responsible for the piRNA amplification loop. We found that in all these species piRNA-directed targeting is accompanied by the generation of short sequences that have a very precisely defined length, 19 nucleotides, and a specific spatial relationship with the guide piRNAs. Conclusions This suggests that the processing of the 5' product of piRNA-guided cleavage occurs while the piRNA target is engaged by the Piwi protein. Although they are not stabilized through methylation of their 3' ends, the 19-mers are abundant not only in testes lysates but also in immunoprecipitates of Miwi and Mili proteins. They will enable more accurate identification of piRNA loci in deep sequencing data sets.
Collapse
Affiliation(s)
- Philipp Berninger
- Biozentrum, Universität Basel and Swiss Institute of Bioinformatics, Klingelbergstrasse 50-70, 4056 Basel, Switzerland
| | | | | | | |
Collapse
|
355
|
mut-16 and other mutator class genes modulate 22G and 26G siRNA pathways in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2011; 108:1201-8. [PMID: 21245313 DOI: 10.1073/pnas.1018695108] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Argonaute-associated siRNAs and Piwi-associated piRNAs have overlapping roles in silencing mobile genetic elements in animals. In Caenorhabditis elegans, mutator (mut) class genes mediate siRNA-guided repression of transposons as well as exogenous RNAi, but their roles in endogenous RNA silencing pathways are not well-understood. To characterize the endogenous small RNAs dependent on mut class genes, small RNA populations from a null allele of mut-16 as well as a regulatory mut-16(mg461) allele that disables only somatic RNAi were subjected to deep sequencing. Additionally, each of the mut class genes was tested for a requirement in 26G siRNA pathways. The results indicate that mut-16 is an essential factor in multiple endogenous germline and somatic siRNA pathways involving several distinct Argonautes and RNA-dependent RNA polymerases. The results also reveal essential roles for mut-2 and mut-7 in the ERGO-1 class 26G siRNA pathway and less critical roles for mut-8, mut-14, and mut-15. We show that transposons are hypersusceptible to mut-16-dependent silencing and identify a requirement for the siRNA machinery in piRNA biogenesis from Tc1 transposons. We also show that the soma-specific mut-16(mg461) mutant allele is present in multiple C. elegans laboratory strains.
Collapse
|
356
|
Jan CH, Friedman RC, Ruby JG, Bartel DP. Formation, regulation and evolution of Caenorhabditis elegans 3'UTRs. Nature 2011; 469:97-101. [PMID: 21085120 PMCID: PMC3057491 DOI: 10.1038/nature09616] [Citation(s) in RCA: 381] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 10/29/2010] [Indexed: 11/24/2022]
Abstract
Post-transcriptional gene regulation frequently occurs through elements in mRNA 3' untranslated regions (UTRs). Although crucial roles for 3'UTR-mediated gene regulation have been found in Caenorhabditis elegans, most C. elegans genes have lacked annotated 3'UTRs. Here we describe a high-throughput method for reliable identification of polyadenylated RNA termini, and we apply this method, called poly(A)-position profiling by sequencing (3P-Seq), to determine C. elegans 3'UTRs. Compared to standard methods also recently applied to C. elegans UTRs, 3P-Seq identified 8,580 additional UTRs while excluding thousands of shorter UTR isoforms that do not seem to be authentic. Analysis of this expanded and corrected data set suggested that the high A/U content of C. elegans 3'UTRs facilitated genome compaction, because the elements specifying cleavage and polyadenylation, which are A/U rich, can more readily emerge in A/U-rich regions. Indeed, 30% of the protein-coding genes have mRNAs with alternative, partially overlapping end regions that generate another 10,480 cleavage and polyadenylation sites that had gone largely unnoticed and represent potential evolutionary intermediates of progressive UTR shortening. Moreover, a third of the convergently transcribed genes use palindromic arrangements of bidirectional elements to specify UTRs with convergent overlap, which also contributes to genome compaction by eliminating regions between genes. Although nematode 3'UTRs have median length only one-sixth that of mammalian 3'UTRs, they have twice the density of conserved microRNA sites, in part because additional types of seed-complementary sites are preferentially conserved. These findings reveal the influence of cleavage and polyadenylation on the evolution of genome architecture and provide resources for studying post-transcriptional gene regulation.
Collapse
Affiliation(s)
- Calvin H. Jan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Robin C. Friedman
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - J. Graham Ruby
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - David P. Bartel
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| |
Collapse
|
357
|
Gu W, Claycomb JM, Batista PJ, Mello CC, Conte D. Cloning Argonaute-associated small RNAs from Caenorhabditis elegans. Methods Mol Biol 2011; 725:251-80. [PMID: 21528459 DOI: 10.1007/978-1-61779-046-1_17] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Small RNA pathways fulfill a plethora of gene-regulatory functions in a variety of organisms. In the nematode worm, Caenorhabditis elegans, a number of endogenous small RNA pathways have been described, including the microRNA pathway, the 21U/piRNA pathway, the 26G-RNA pathways, and the 22G-RNA pathways. Argonaute proteins are key effector molecules of each pathway that, together with their small RNA cofactors regulate various processes including developmental timing, fertility, transposon silencing, and chromosome segregation. Although several of the 26 Argonautes in the worm have been studied to date, a number have yet to be fully characterized or their small RNA binding complement defined. The identification of small RNAs that copurify with an Argonaute family member is central to understanding the targets and assessing the function of that Argonaute. Here we discuss the rationale for generating reagents to immunoprecipitate Argonaute complexes and provide a cohesive protocol for the cloning and Illumina deep-sequencing of Argonaute-associated small RNAs in C. elegans.
Collapse
Affiliation(s)
- Weifeng Gu
- Program in Molecular Medicine, University of Massachusetts, Medical School, Worcester, MA, USA
| | | | | | | | | |
Collapse
|
358
|
Abstract
Originally discovered in C. elegans, microRNAs (miRNAs) are small RNAs that regulate fundamental cellular processes in diverse organisms. MiRNAs are encoded within the genome and are initially transcribed as primary transcripts that can be several kilobases in length. Primary transcripts are successively cleaved by two RNase III enzymes, Drosha in the nucleus and Dicer in the cytoplasm, to produce ∼70 nucleotide (nt) long precursor miRNAs and 22 nt long mature miRNAs, respectively. Mature miRNAs regulate gene expression post-transcriptionally by imperfectly binding target mRNAs in association with the multiprotein RNA induced silencing complex (RISC). The conserved sequence, expression pattern, and function of some miRNAs across distinct species as well as the importance of specific miRNAs in many biological pathways have led to an explosion in the study of miRNA biogenesis, miRNA target identification, and miRNA target regulation. Many advances in our understanding of miRNA biology have come from studies in the powerful model organism C. elegans. This chapter reviews the current methods used in C. elegans to study miRNA biogenesis, small RNA populations, miRNA-protein complexes, and miRNA target regulation.
Collapse
Affiliation(s)
| | - Shih-Peng Chan
- Department of Molecular, Cellular and Developmental Biology,Yale University, New Haven, Connecticut, USA
| | - Frank J Slack
- Department of Molecular, Cellular and Developmental Biology,Yale University, New Haven, Connecticut, USA
| | - Amy E Pasquinelli
- Department of Biology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
359
|
Abstract
Large numbers of diverse small non-coding RNAs have been discovered and characterized in eukaryotic RNA interference pathways. These small RNAs have distinctive characteristics and are associated with Argonaute family proteins to regulate gene expression and genomes at various levels. These small RNAs include the Dicer-dependent group such as microRNAs (miRNAs) and small interfering RNAs (siRNAs), and the Dicer-independent group such as Piwi-interacting RNAs (piRNAs). This review summarizes the various classes of eukaryotic small RNAs and the general knowledge of their characteristics, biogenesis, and functions, with emphasis on some of the recently identified small RNAs.
Collapse
Affiliation(s)
- Liande Li
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | |
Collapse
|
360
|
Lu Y, Li C, Zhang K, Sun H, Tao D, Liu Y, Zhang S, Ma Y. Identification of piRNAs in Hela cells by massive parallel sequencing. BMB Rep 2010; 43:635-41. [PMID: 20846497 DOI: 10.5483/bmbrep.2010.43.9.635] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Piwi proteins and Piwi-interacting RNAs (piRNAs) have been implicated in transposon control in germline from Drosophila to mammals. To examine the profile of small RNA expression in human cancer cells and explore difference in small RNA transcriptome, small RNA libraries prepared from wildtype, HILI overexpressed and HILI knockdowned Hela cells were sequenced using Solexa technology. piRNAs and other repeat- associated small RNAs were observed in Hela cells. By using in situ hybridization, piR-49322 was localized in the nucleolus and around the periphery of nuclear membrane in Hela cells. Following the overexpression of HILI, the retrotransposon elements LINE1 was significantly repressed, while LINE1-associated small RNAs decreased in abundance. The present study demonstrated that HILI along with piRNAs plays a role in LINE1 suppression in Hela cancer cell line.
Collapse
Affiliation(s)
- Yilu Lu
- Department of Medical Genetics, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | |
Collapse
|
361
|
Chung WJ, Agius P, Westholm JO, Chen M, Okamura K, Robine N, Leslie CS, Lai EC. Computational and experimental identification of mirtrons in Drosophila melanogaster and Caenorhabditis elegans. Genome Res 2010; 21:286-300. [PMID: 21177960 DOI: 10.1101/gr.113050.110] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mirtrons are intronic hairpin substrates of the dicing machinery that generate functional microRNAs. In this study, we describe experimental assays that defined the essential requirements for entry of introns into the mirtron pathway. These data informed a bioinformatic screen that effectively identified functional mirtrons from the Drosophila melanogaster transcriptome. These included 17 known and six confident novel mirtrons among the top 51 candidates, and additional candidates had limited read evidence in available small RNA data. Our computational model also proved effective on Caenorhabditis elegans, for which the identification of 14 cloned mirtrons among the top 22 candidates more than tripled the number of validated mirtrons in this species. A few low-scoring introns generated mirtron-like read patterns from atypical RNA structures, but their paucity suggests that relatively few such loci were not captured by our model. Unexpectedly, we uncovered examples of clustered mirtrons in both fly and worm genomes, including a <8-kb region in C. elegans harboring eight distinct mirtrons. Altogether, we demonstrate that discovery of functional mirtrons, unlike canonical miRNAs, is amenable to computational methods independent of evolutionary constraint.
Collapse
Affiliation(s)
- Wei-Jen Chung
- Department of Developmental Biology, Sloan-Kettering Institute, 1017 Rockefeller Research Laboratories, New York, New York 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
362
|
de Lencastre A, Pincus Z, Zhou K, Kato M, Lee SS, Slack FJ. MicroRNAs both promote and antagonize longevity in C. elegans. Curr Biol 2010; 20:2159-68. [PMID: 21129974 PMCID: PMC3023310 DOI: 10.1016/j.cub.2010.11.015] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 10/18/2010] [Accepted: 11/04/2010] [Indexed: 01/15/2023]
Abstract
BACKGROUND aging is under genetic control in C. elegans, but the mechanisms of life-span regulation are not completely known. MicroRNAs (miRNAs) regulate various aspects of development and metabolism, and one miRNA has been previously implicated in life span. RESULTS here we show that multiple miRNAs change expression in C. elegans aging, including novel miRNAs, and that mutations in several of the most upregulated miRNAs lead to life-span defects. Some act to promote normal life span and stress resistance, whereas others inhibit these phenomena. We find that these miRNAs genetically interact with genes in the DNA damage checkpoint response pathway and in the insulin signaling pathway. CONCLUSIONS our findings reveal that miRNAs both positively and negatively influence life span. Because several miRNAs upregulated during aging regulate genes in conserved pathways of aging and thereby influence life span in C. elegans, we propose that miRNAs may play important roles in stress response and aging of more complex organisms.
Collapse
Affiliation(s)
- Alexandre de Lencastre
- Dept. of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511 USA
| | - Zachary Pincus
- Dept. of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511 USA
| | - Katherine Zhou
- Dept. of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511 USA
| | - Masaomi Kato
- Dept. of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511 USA
| | - Siu Sylvia Lee
- Dept. of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Frank J. Slack
- Dept. of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511 USA
| |
Collapse
|
363
|
Khurana JS, Xu J, Weng Z, Theurkauf WE. Distinct functions for the Drosophila piRNA pathway in genome maintenance and telomere protection. PLoS Genet 2010; 6:e1001246. [PMID: 21179579 PMCID: PMC3003142 DOI: 10.1371/journal.pgen.1001246] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 11/11/2010] [Indexed: 12/30/2022] Open
Abstract
Transposons and other selfish DNA elements can be found in all phyla, and mobilization of these elements can compromise genome integrity. The piRNA (PIWI-interacting RNA) pathway silences transposons in the germline, but it is unclear if this pathway has additional functions during development. Here we show that mutations in the Drosophila piRNA pathway genes, armi, aub, ago3, and rhi, lead to extensive fragmentation of the zygotic genome during the cleavage stage of embryonic divisions. Additionally, aub and armi show defects in telomere resolution during meiosis and the cleavage divisions; and mutations in lig-IV, which disrupt non-homologous end joining, suppress these fusions. By contrast, lig-IV mutations enhance chromosome fragmentation. Chromatin immunoprecipitation studies show that aub and armi mutations disrupt telomere binding of HOAP, which is a component of the telomere protection complex, and reduce expression of a subpopulation of 19- to 22-nt telomere-specific piRNAs. Mutations in rhi and ago3, by contrast, do not block HOAP binding or production of these piRNAs. These findings uncover genetically separable functions for the Drosophila piRNA pathway. The aub, armi, rhi, and ago3 genes silence transposons and maintain chromosome integrity during cleavage-stage embryonic divisions. However, the aub and armi genes have an additional function in assembly of the telomere protection complex.
Collapse
Affiliation(s)
- Jaspreet S. Khurana
- Program in Cell and Developmental Dynamics and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jia Xu
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology and Department in Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - William E. Theurkauf
- Program in Cell and Developmental Dynamics and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
364
|
Senti KA, Brennecke J. The piRNA pathway: a fly's perspective on the guardian of the genome. Trends Genet 2010; 26:499-509. [PMID: 20934772 PMCID: PMC4988489 DOI: 10.1016/j.tig.2010.08.007] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 08/27/2010] [Accepted: 08/31/2010] [Indexed: 11/29/2022]
Abstract
Throughout the eukaryotic lineage, small RNA silencing pathways protect the genome against the deleterious influence of selfish genetic elements such as transposons. In animals an elaborate small RNA pathway centered on PIWI proteins and their interacting piRNAs silences transposons within the germline. In contrast to other small RNA silencing pathways, we lack a mechanistic understanding of this genome defense system. However, genetic and molecular studies have uncovered a fascinating conceptual framework for this pathway that is conserved from sponges to mammals. We discuss our current understanding of the piRNA pathway in Drosophila with an emphasis on origin and biogenesis of piRNAs.
Collapse
Affiliation(s)
- Kirsten-André Senti
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Julius Brennecke
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohrgasse 3, 1030 Vienna, Austria
| |
Collapse
|
365
|
Abstract
The germline of multicellular animals is segregated from somatic tissues, which is an essential developmental process for the next generation. Although certain ecdysozoans and chordates segregate their germline during embryogenesis, animals from other taxa segregate their germline after embryogenesis from multipotent progenitor cells. An overlapping set of genes, including vasa, nanos and piwi, operate in both multipotent precursors and in the germline. As we propose here, this conservation implies the existence of an underlying germline multipotency program in these cell types that has a previously underappreciated and conserved function in maintaining multipotency.
Collapse
Affiliation(s)
- Celina E. Juliano
- Department of Molecular and Cellular Biology, Brown University, Providence, RI 02912, USA
| | - S. Zachary Swartz
- Department of Molecular and Cellular Biology, Brown University, Providence, RI 02912, USA
| | - Gary M. Wessel
- Department of Molecular and Cellular Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
366
|
Yuan H, Yamashita YM. Germline stem cells: stems of the next generation. Curr Opin Cell Biol 2010; 22:730-6. [PMID: 20817500 PMCID: PMC2993778 DOI: 10.1016/j.ceb.2010.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 08/10/2010] [Indexed: 01/05/2023]
Abstract
Germline stem cells (GSCs) sustain gametogenesis during the life of organisms. Recent progress has substantially extended our understanding of GSC behavior, including the mechanisms of stem cell self-renewal, asymmetric stem cell division, stem cell niches, dedifferentiation, and tissue aging. GSCs typically are highly proliferative, owing to organismal requirement to produce large number of differentiated cells. While many somatic stem cells are multipotent, with multiple differentiation pathways, GSCs are unipotent. For these relatively simple characteristics (e.g. constant proliferation and unipotency), GSCs have served as ideal model systems for the study of adult stem cell behavior, leading to many important discoveries. Here, we summarize recent progress in GSC biology, with an emphasis on evolutionarily conserved mechanisms.
Collapse
Affiliation(s)
- Hebao Yuan
- Life Sciences Institute, Center for Stem Cell Biology, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | | |
Collapse
|
367
|
Abstract
Small RNAs directly or indirectly impact nearly every biological process in eukaryotic cells. To perform their myriad roles, not only must precise small RNA species be generated, but they must also be loaded into specific effector complexes called RNA-induced silencing complexes (RISCs). Argonaute proteins form the core of RISCs and different members of this large family have specific expression patterns, protein binding partners and biochemical capabilities. In this Review, we explore the mechanisms that pair specific small RNA strands with their partner proteins, with an eye towards the substantial progress that has been recently made in understanding the sorting of the major small RNA classes - microRNAs (miRNAs) and small interfering RNAs (siRNAs) - in plants and animals.
Collapse
Affiliation(s)
- Benjamin Czech
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
368
|
Huang QX, Cheng XY, Mao ZC, Wang YS, Zhao LL, Yan X, Ferris VR, Xu RM, Xie BY. MicroRNA discovery and analysis of pinewood nematode Bursaphelenchus xylophilus by deep sequencing. PLoS One 2010; 5:e13271. [PMID: 20967259 PMCID: PMC2953492 DOI: 10.1371/journal.pone.0013271] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 09/07/2010] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are considered to be very important in regulating the growth, development, behavior and stress response in animals and plants in post-transcriptional gene regulation. Pinewood nematode, Bursaphelenchus xylophilus, is an important invasive plant parasitic nematode in Asia. To have a comprehensive knowledge about miRNAs of the nematode is necessary for further in-depth study on roles of miRNAs in the ecological adaptation of the invasive species. METHODS AND FINDINGS Five small RNA libraries were constructed and sequenced by Illumina/Solexa deep-sequencing technology. A total of 810 miRNA candidates (49 conserved and 761 novel) were predicted by a computational pipeline, of which 57 miRNAs (20 conserved and 37 novel) encoded by 53 miRNA precursors were identified by experimental methods. Ten novel miRNAs were considered to be species-specific miRNAs of B. xylophilus. Comparison of expression profiles of miRNAs in the five small RNA libraries showed that many miRNAs exhibited obviously different expression levels in the third-stage dispersal juvenile and at a cold-stressed status. Most of the miRNAs exhibited obviously down-regulated expression in the dispersal stage. But differences among the three geographic libraries were not prominent. A total of 979 genes were predicted to be targets of these authentic miRNAs. Among them, seven heat shock protein genes were targeted by 14 miRNAs, and six FMRFamide-like neuropeptides genes were targeted by 17 miRNAs. A real-time quantitative polymerase chain reaction was used to quantify the mRNA expression levels of target genes. CONCLUSIONS Basing on the fact that a negative correlation existed between the expression profiles of miRNAs and the mRNA expression profiles of their target genes (hsp, flp) by comparing those of the nematodes at a cold stressed status and a normal status, we suggested that miRNAs might participate in ecological adaptation and behavior regulation of the nematode. This is the first description of miRNAs in plant parasitic nematodes. The results provide a useful resource for further in-depth study on molecular regulation and evolution of miRNAs in plant parasitic nematodes.
Collapse
Affiliation(s)
- Qi-Xing Huang
- College of Life Sciences, Beijing Normal University, Beijing, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin-Yue Cheng
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Zhen-Chuan Mao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yun-Sheng Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Hunan Province Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, China
| | - Li-Lin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xia Yan
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Virginia R. Ferris
- Department of Entomology, Purdue University, West Lafayette, Indiana, United States of America
| | - Ru-Mei Xu
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Bing-Yan Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
369
|
Prasad A, Croydon-Sugarman MJF, Murray RL, Cutter AD. Temperature-dependent fecundity associates with latitude in Caenorhabditis briggsae. Evolution 2010; 65:52-63. [PMID: 20731713 DOI: 10.1111/j.1558-5646.2010.01110.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Populations of organisms separated by latitude provide striking examples of local adaptation, by virtue of ecological gradients that correlate with latitudinal position on the globe. Ambient temperature forms one key ecological variable that varies with latitude, and here we investigate its effects on the fecundity of self-fertilizing nematodes of the species Caenorhabditis briggsae that exhibits strong genetically based differentiation in association with latitude. We find that isogenic strains from a Tropical phylogeographic clade have greater lifetime fecundity when reared at extreme high temperatures and lower lifetime fecundity at extreme low temperatures than do strains from a Temperate phylogeographic clade, consistent with adaptation to local temperature regimes. Further, we determine experimentally that the mechanism underlying reduced fecundity at extreme temperatures differs for low versus high temperature extremes, but that the total number of sperm produced by the gonad is unaffected by rearing temperature. Low rearing temperatures result in facultatively reduced oocyte production by hermaphrodites, whereas extreme high temperatures experienced during development induce permanent defects in sperm fertility. Available and emerging genetic tools for this organism will permit the characterization of the evolutionary genetic basis to this putative example of adaptation in latitudinally separated populations.
Collapse
Affiliation(s)
- Anisha Prasad
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | | | | | | |
Collapse
|
370
|
Wu TF, Nera B, Chu DS, Shakes DC. Elucidating gene regulatory mechanisms for sperm function through the integration of classical and systems approaches in C. elegans. Syst Biol Reprod Med 2010; 56:222-35. [PMID: 20536322 DOI: 10.3109/19396361003749986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
From worms to mammals, successful spermatogenesis depends on a gene expression profile that balances activating and repressive mechanisms. Besides developmental control of specific spermatogenic genes, male fertility requires temporal shifts in global gene expression and dramatic changes in chromatin structure and condensation. Recent studies are beginning to elucidate the molecular processes that both drive these temporal changes in gene expression and underlie fertility. In this review, we provide an overview of relevant C. elegans studies that have laid the groundwork for modern approaches. Next, we highlight recent studies that investigate how gene expression in C. elegans is modulated during spermatogenesis. These studies use large-scale genomic profiling in combination with bioinformatics, genetics, biochemistry, and in vitro methods to target specific stages or processes during sperm formation. Such studies are beginning to elucidate the multiple layers of gene regulation required during spermatogenesis, i.e., transcriptional, post-transcriptional, and epigenetic. Moreover, knowledge of how C. elegans coordinately regulates gene expression during spermatogenesis promises to provide key insights into parallel processes in mammals that are vital for fertility.
Collapse
Affiliation(s)
- Tammy F Wu
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | | | | | | |
Collapse
|
371
|
Lau NC. Small RNAs in the animal gonad: guarding genomes and guiding development. Int J Biochem Cell Biol 2010; 42:1334-47. [PMID: 20227517 PMCID: PMC2902580 DOI: 10.1016/j.biocel.2010.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 03/08/2010] [Indexed: 10/19/2022]
Abstract
Germ cells must safeguard, apportion, package, and deliver their genomes with exquisite precision to ensure proper reproduction and embryonic development. Classical genetic approaches have identified many genes controlling animal germ cell development, but only recently have some of these genes been linked to the RNA interference (RNAi) pathway, a gene silencing mechanism centered on small regulatory RNAs. Germ cells contain microRNAs (miRNAs), endogenous siRNAs (endo-siRNAs), and Piwi-interacting RNAs (piRNAs); these are bound by members of the Piwi/Argonaute protein family. piwi genes were known to specify germ cell development, but we now understand that mutations disrupting germline development can also affect small RNA accumulation. Small RNA studies in germ cells have revealed a surprising diversity of regulatory mechanisms and a unifying function for germline genes in controlling the spread of transposable elements. Future challenges will be to understand the production of germline small RNAs and to identify the full breadth of gene regulation by these RNAs. Progress in this area will likely impact biomedical goals of manipulating stem cells and preventing diseases caused by the transposition of mobile DNA elements.
Collapse
Affiliation(s)
- Nelson C Lau
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| |
Collapse
|
372
|
Taft RJ, Simons C, Nahkuri S, Oey H, Korbie DJ, Mercer TR, Holst J, Ritchie W, Wong JJL, Rasko JEJ, Rokhsar DS, Degnan BM, Mattick JS. Nuclear-localized tiny RNAs are associated with transcription initiation and splice sites in metazoans. Nat Struct Mol Biol 2010; 17:1030-4. [PMID: 20622877 DOI: 10.1038/nsmb.1841] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 04/27/2010] [Indexed: 12/21/2022]
Abstract
We have recently shown that transcription initiation RNAs (tiRNAs) are derived from sequences immediately downstream of transcription start sites. Here, using cytoplasmic and nuclear small RNA high-throughput sequencing datasets, we report the identification of a second class of nuclear-specific approximately 17- to 18-nucleotide small RNAs whose 3' ends map precisely to the splice donor site of internal exons in animals. These splice-site RNAs (spliRNAs) are associated with highly expressed genes and show evidence of developmental stage- and region-specific expression. We also show that tiRNAs are localized to the nucleus, are enriched at chromatin marks associated with transcription initiation and possess a 3'-nucleotide bias. Additionally, we find that microRNA-offset RNAs (moRNAs), the miR-15/16 cluster previously linked to oncosuppression and most small nucleolar RNA (snoRNA)-derived small RNAs (sdRNAs) are enriched in the nucleus, whereas most miRNAs and two H/ACA sdRNAs are cytoplasmically enriched. We propose that nuclear-localized tiny RNAs are involved in the epigenetic regulation of gene expression.
Collapse
Affiliation(s)
- Ryan J Taft
- Institute for Molecular Bioscience, School of Integrative Biology, University of Queensland, St. Lucia, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
373
|
Lee HC, Li L, Gu W, Xue Z, Crosthwaite SK, Pertsemlidis A, Lewis ZA, Freitag M, Selker EU, Mello CC, Liu Y. Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering RNAs in fungi. Mol Cell 2010; 38:803-14. [PMID: 20417140 PMCID: PMC2902691 DOI: 10.1016/j.molcel.2010.04.005] [Citation(s) in RCA: 272] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 03/10/2010] [Accepted: 04/02/2010] [Indexed: 12/30/2022]
Abstract
A variety of small RNAs, including the Dicer-dependent miRNAs and the Dicer-independent Piwi-interacting RNAs, associate with Argonaute family proteins to regulate gene expression in diverse cellular processes. These two species of small RNA have not been found in fungi. Here, by analyzing small RNAs associated with the Neurospora Argonaute protein QDE-2, we show that diverse pathways generate miRNA-like small RNAs (milRNAs) and Dicer-independent small interfering RNAs (disiRNAs) in this filamentous fungus. Surprisingly, milRNAs are produced by at least four different mechanisms that use a distinct combination of factors, including Dicers, QDE-2, the exonuclease QIP, and an RNase III domain-containing protein, MRPL3. In contrast, disiRNAs originate from loci producing overlapping sense and antisense transcripts, and do not require the known RNAi components for their production. Taken together, these results uncover several pathways for small RNA production in filamentous fungi, shedding light on the diversity and evolutionary origins of eukaryotic small RNAs.
Collapse
Affiliation(s)
- Heng-Chi Lee
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Liande Li
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Weifeng Gu
- Howard Hughes Medical Institute, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Zhihong Xue
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | | | - Alexander Pertsemlidis
- McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Zachary A. Lewis
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1229, USA
| | - Michael Freitag
- Center for Genome Research and Biocomputing, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| | - Eric U. Selker
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1229, USA
| | - Craig C. Mello
- Howard Hughes Medical Institute, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| |
Collapse
|
374
|
Clark AM, Goldstein LD, Tevlin M, Tavaré S, Shaham S, Miska EA. The microRNA miR-124 controls gene expression in the sensory nervous system of Caenorhabditis elegans. Nucleic Acids Res 2010; 38:3780-93. [PMID: 20176573 PMCID: PMC2887956 DOI: 10.1093/nar/gkq083] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 01/28/2010] [Accepted: 01/28/2010] [Indexed: 12/19/2022] Open
Abstract
miR-124 is a highly conserved microRNA (miRNA) whose in vivo function is poorly understood. Here, we identify miR-124 targets based on the analysis of the first mir-124 mutant in any organism. We find that miR-124 is expressed in many sensory neurons in Caenorhabditis elegans and onset of expression coincides with neuronal morphogenesis. We analyzed the transcriptome of miR-124 expressing and nonexpressing cells from wild-type and mir-124 mutants. We observe that many targets are co-expressed with and actively repressed by miR-124. These targets are expressed at reduced relative levels in sensory neurons compared to the rest of the animal. Our data from mir-124 mutant animals show that this effect is due to a large extent to the activity of miR-124. Genes with nonconserved target sites show reduced absolute expression levels in sensory neurons. In contrast, absolute expression levels of genes with conserved sites are comparable to control genes, suggesting a tuning function for many of these targets. We conclude that miR-124 contributes to defining cell-type-specific gene activity by repressing a diverse set of co-expressed genes.
Collapse
Affiliation(s)
- Alejandra M. Clark
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, The Henry Wellcome Building of Cancer and Developmental Biology, Tennis Court Rd, Cambridge CB2 1QN, Department of Biochemistry, University of Cambridge, Tennis Court Rd, Cambridge CB2 1GA, Department of Oncology, University of Cambridge, Hills Rd, Cambridge CB2 2XZ, Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Rd, Cambridge CB3 0WA, UK and Laboratory of Developmental Genetics, 1033 Weiss Research Building, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Leonard D. Goldstein
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, The Henry Wellcome Building of Cancer and Developmental Biology, Tennis Court Rd, Cambridge CB2 1QN, Department of Biochemistry, University of Cambridge, Tennis Court Rd, Cambridge CB2 1GA, Department of Oncology, University of Cambridge, Hills Rd, Cambridge CB2 2XZ, Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Rd, Cambridge CB3 0WA, UK and Laboratory of Developmental Genetics, 1033 Weiss Research Building, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Maya Tevlin
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, The Henry Wellcome Building of Cancer and Developmental Biology, Tennis Court Rd, Cambridge CB2 1QN, Department of Biochemistry, University of Cambridge, Tennis Court Rd, Cambridge CB2 1GA, Department of Oncology, University of Cambridge, Hills Rd, Cambridge CB2 2XZ, Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Rd, Cambridge CB3 0WA, UK and Laboratory of Developmental Genetics, 1033 Weiss Research Building, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Simon Tavaré
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, The Henry Wellcome Building of Cancer and Developmental Biology, Tennis Court Rd, Cambridge CB2 1QN, Department of Biochemistry, University of Cambridge, Tennis Court Rd, Cambridge CB2 1GA, Department of Oncology, University of Cambridge, Hills Rd, Cambridge CB2 2XZ, Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Rd, Cambridge CB3 0WA, UK and Laboratory of Developmental Genetics, 1033 Weiss Research Building, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Shai Shaham
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, The Henry Wellcome Building of Cancer and Developmental Biology, Tennis Court Rd, Cambridge CB2 1QN, Department of Biochemistry, University of Cambridge, Tennis Court Rd, Cambridge CB2 1GA, Department of Oncology, University of Cambridge, Hills Rd, Cambridge CB2 2XZ, Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Rd, Cambridge CB3 0WA, UK and Laboratory of Developmental Genetics, 1033 Weiss Research Building, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Eric A. Miska
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, The Henry Wellcome Building of Cancer and Developmental Biology, Tennis Court Rd, Cambridge CB2 1QN, Department of Biochemistry, University of Cambridge, Tennis Court Rd, Cambridge CB2 1GA, Department of Oncology, University of Cambridge, Hills Rd, Cambridge CB2 2XZ, Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Rd, Cambridge CB3 0WA, UK and Laboratory of Developmental Genetics, 1033 Weiss Research Building, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
375
|
Kaymak E, Wee L, Ryder SP. Structure and function of nematode RNA-binding proteins. Curr Opin Struct Biol 2010; 20:305-12. [PMID: 20418095 PMCID: PMC2916969 DOI: 10.1016/j.sbi.2010.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 03/29/2010] [Indexed: 01/27/2023]
Abstract
RNA-binding proteins are critical effectors of gene expression. They guide mRNA localization, translation, and stability, and potentially play a role in regulating mRNA synthesis. The structural basis for RNA recognition by RNA-binding proteins is the key to understand how they target specific transcripts for regulation. Compared to other metazoans, nematode genomes contain a significant expansion in several RNA-binding protein families, including Pumilio-FBF (PUF), TTP-like zinc finger (TZF), and Argonaute-like (AGO) proteins. Genetic data suggest that individual members of each family have distinct functions, presumably due to sequence variations that alter RNA-binding specificity or protein interaction partners. In this review, we highlight example structures and identify the variable regions that likely contribute to functional divergence in nematodes.
Collapse
Affiliation(s)
- Ebru Kaymak
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - L.M. Wee
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Sean P. Ryder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
376
|
Welker NC, Pavelec DM, Nix DA, Duchaine TF, Kennedy S, Bass BL. Dicer's helicase domain is required for accumulation of some, but not all, C. elegans endogenous siRNAs. RNA (NEW YORK, N.Y.) 2010; 16:893-903. [PMID: 20354150 PMCID: PMC2856884 DOI: 10.1261/rna.2122010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 02/16/2010] [Indexed: 05/12/2023]
Abstract
Years after the discovery that Dicer is a key enzyme in gene silencing, the role of its helicase domain remains enigmatic. Here we show that this domain is critical for accumulation of certain endogenous small interfering RNAs (endo-siRNAs) in Caenorhabditis elegans. The domain is required for the production of the direct products of Dicer, or primary endo-siRNAs, and consequently affects levels of downstream intermediates, the secondary endo-siRNAs. Consistent with the role of endo-siRNAs in silencing, their loss correlates with an increase in cognate mRNA levels. We find that the helicase domain of Dicer is not necessary for microRNA (miRNA) processing, or RNA interference following exposure to exogenous double-stranded RNA. Comparisons of wild-type and helicase-defective strains using deep-sequencing analyses show that the helicase domain is required by a subset of annotated endo-siRNAs, in particular, those associated with the slightly longer 26-nucleotide small RNA species containing a 5' guanosine.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Genetically Modified
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/metabolism
- Gene Deletion
- Genes, Helminth
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Molecular Sequence Data
- Point Mutation
- Protein Structure, Tertiary
- RNA Helicases/chemistry
- RNA Helicases/genetics
- RNA Helicases/metabolism
- RNA Interference
- RNA Processing, Post-Transcriptional
- RNA, Helminth/genetics
- RNA, Helminth/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Ribonuclease III/chemistry
- Ribonuclease III/genetics
- Ribonuclease III/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Noah C Welker
- 1Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | |
Collapse
|
377
|
Abstract
Genes in nematode and ascidian genomes frequently occur in operons--multiple genes sharing a common promoter to generate a polycistronic primary transcript--and such genes comprise 15-20% of the coding genome for Caenorhabditis elegans and Ciona intestinalis. Recent work in nematodes has demonstrated that the identity of genes within operons is highly conserved among species and that the unifying feature of genes within operons is that they are expressed in germline tissue. However, it is generally unknown what processes are responsible for generating the distribution of operon sizes across the genome, which are composed of up to eight genes per operon. Here we investigate several models for operon evolution to better understand their abundance, distribution of sizes, and evolutionary dynamics over time. We find that birth-death models of operon evolution reasonably describe the relative abundance of operons of different sizes in the C. elegans and Ciona genomes and generate predictions about the number of monocistronic, nonoperon genes that likely participate in the birth-death process. This theory, and applications to C. elegans and Ciona, motivates several new and testable hypotheses about eukaryote operon evolution.
Collapse
|
378
|
Siomi MC, Mannen T, Siomi H. How does the royal family of Tudor rule the PIWI-interacting RNA pathway? Genes Dev 2010; 24:636-46. [PMID: 20360382 DOI: 10.1101/gad.1899210] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PIWI (P-element-induced wimpy testis) proteins are a subset of the Argonaute proteins and are expressed predominantly in the germlines of a variety of organisms, including Drosophila and mammals. PIWI proteins associate specifically with PIWI-interacting RNAs (piRNAs), small RNAs that are also expressed predominantly in germlines, and silence transposable DNA elements and other genes showing complementarities to the sequences of associated piRNAs. This mechanism helps to maintain the integrity of the genome and the development of gametes. PIWI proteins have been shown recently to contain symmetrical dimethyl arginines (sDMAs), and this modification is mediated by the methyltransferase PRMT5 (also known as Dart5 or Capsuleen). It was then demonstrated that multiple members of the Tudor (Tud) family of proteins, which are necessary for gametogenesis in both flies and mice, associate with PIWI proteins specifically through sDMAs in various but particular combinations. Although Tud domains in Tud family members are known to be sDMA-binding modules, involvement of the Tudor family at the molecular level in the piRNA pathway has only recently come into focus.
Collapse
Affiliation(s)
- Mikiko C Siomi
- Keio University School of Medicine, Tokyo 160-8582, Japan.
| | | | | |
Collapse
|
379
|
Fischer SEJ. Small RNA-mediated gene silencing pathways in C. elegans. Int J Biochem Cell Biol 2010; 42:1306-15. [PMID: 20227516 DOI: 10.1016/j.biocel.2010.03.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 09/23/2009] [Accepted: 03/08/2010] [Indexed: 12/14/2022]
Abstract
Small RNA pathways, including the RNA interference (RNAi) pathway and the microRNA (miRNA) pathway, regulate gene expression, defend against transposable elements and viruses, and, in some organisms, guide genome rearrangements. The nematode Caenorhabditis elegans (C. elegans) has been at the forefront of small RNA research; not only were the first miRNAs and their function as regulators of gene expression discovered in C. elegans, but also double-stranded RNA-induced gene silencing by RNAi was discovered in this model organism. Since then, genetic and RNAi-mediated screens, candidate gene approaches, and biochemical studies have uncovered numerous factors in the small RNA pathways and painted a rich palette of interacting pathways. Here we review the different small RNAs that have been discovered in C. elegans and discuss our understanding of their biogenesis pathways and mechanisms of action.
Collapse
Affiliation(s)
- Sylvia E J Fischer
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA.
| |
Collapse
|
380
|
Argonautes ALG-3 and ALG-4 are required for spermatogenesis-specific 26G-RNAs and thermotolerant sperm in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2010; 107:3588-93. [PMID: 20133686 DOI: 10.1073/pnas.0911685107] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gametogenesis is a thermosensitive process in numerous metazoans, ranging from worms to man. In Caenorhabditis elegans, a variety of RNA-binding proteins that associate with germ-line nuage (P granules), including the Piwi-clade argonaute PRG-1, have been implicated in maintaining fertility at elevated temperature. Here we describe the role of two AGO-class paralogs, alg-3 (T22B3.2) and alg-4 (ZK757.3), in promoting thermotolerant male fertility. A rescuing GFP::alg-3 transgene is localized to P granules beginning at the late pachytene stage of male gametogenesis. alg-3/4 double mutants lack a subgroup of small RNAs, the 26G-RNAs which target and appear to down-regulate numerous spermatogenesis-expressed mRNAs. These findings add to a growing number of AGO pathways required for thermotolerant fertility in C. elegans and support a model in which AGOs and their small RNA cofactors function to promote robustness in gene-expression networks.
Collapse
|
381
|
Sequential rounds of RNA-dependent RNA transcription drive endogenous small-RNA biogenesis in the ERGO-1/Argonaute pathway. Proc Natl Acad Sci U S A 2010; 107:3582-7. [PMID: 20133583 DOI: 10.1073/pnas.0911908107] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Argonaute (AGO) proteins interact with distinct classes of small RNAs to direct multiple regulatory outcomes. In many organisms, including plants, fungi, and nematodes, cellular RNA-dependent RNA polymerases (RdRPs) use AGO targets as templates for amplification of silencing signals. Here, we show that distinct RdRPs function sequentially to produce small RNAs that target endogenous loci in Caenorhabditis elegans. We show that DCR-1, the RdRP RRF-3, and the dsRNA-binding protein RDE-4 are required for the biogenesis of 26-nt small RNAs with a 5' guanine (26G-RNAs) and that 26G-RNAs engage the Piwi-clade AGO, ERGO-1. Our findings support a model in which targeting by ERGO-1 recruits a second RdRP (RRF-1 or EGO-1), which in turn transcribes 22G-RNAs that interact with worm-specific AGOs (WAGOs) to direct gene silencing. ERGO-1 targets exhibit a nonrandom distribution in the genome and appear to include many gene duplications, suggesting that this pathway may control overexpression resulting from gene expansion.
Collapse
|
382
|
Racher H, Hansen D. Translational control in the C. elegans hermaphrodite germ line. Genome 2010; 53:83-102. [DOI: 10.1139/g09-090] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The formation of a fully developed gamete from an undifferentiated germ cell requires progression through numerous developmental stages and cell fate decisions. The precise timing and level of gene expression guides cells through these stages. Translational regulation is highly utilized in the germ line of many species, including Caenorhabditis elegans , to regulate gene expression and ensure the proper formation of gametes. In this review, we discuss some of the developmental stages and cell fate decisions involved in the formation of functional gametes in the C. elegans germ line in which translational control has been implicated. These stages include the mitosis versus meiosis decision, the sperm/oocyte decision, and gamete maturation. We also discuss some of the techniques used to identify mRNA targets; the identification of these targets is necessary to clearly understand the role each RNA-binding protein plays in these decisions. Relatively few mRNA targets have been identified, thus providing a major focus for future research. Finally, we propose some reasons why translational control may be utilized so heavily in the germ line. Given that many species have this substantial reliance on translational regulation for the control of gene expression in the germ line, an understanding of translational regulation in the C. elegans germ line is likely to increase our understanding of gamete formation in general.
Collapse
Affiliation(s)
- Hilary Racher
- University of Calgary, 2500 University Drive, Department of Biological Sciences, Calgary, AB T2N 1N4, Canada
| | - Dave Hansen
- University of Calgary, 2500 University Drive, Department of Biological Sciences, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
383
|
Abstract
The discovery of RNA interference (RNAi) heralded a revolution in RNA biology. Researchers uncovered 'hidden' layers of regulation of gene expression, in which many previously unidentified families of small RNAs (consisting of approximately 20-30 nucleotides) mediate gene silencing in transcriptional and post-transcriptional levels. In eukaryotes, these small RNAs, including siRNAs, miRNAs, piRNAs, scnRNAs, 21U-RNAs, and some others, regulate gene expression, helping to control cellular metabolism, growth, and differentiation, to maintain genome integrity, to regulate stem cell renewal, and to combat viruses and mobile genetic elements. This review summarizes the current advancement in the identification and biosynthesis of small RNAs and their roles in gene regulation.
Collapse
|
384
|
[Regulation of fertility by the small RNA pathway that defends the genome against transposons]. YI CHUAN = HEREDITAS 2010; 32:11-6. [PMID: 20085880 DOI: 10.3724/sp.j.1005.2010.00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Small RNAs can silence transposons at transcriptional or post-transcriptional level. Newly identified small RNAs (e.g., piRNAs and endo-siRNAs) can repress the activity of transposons. Drosophila piRNAs, mouse piRNAs, mouse endo-siRNAs, and their related proteins are expressed primarily within the germline. This suggests that the small RNA pathway plays an important role in transposon silencing of the germline. Recent studies revealed the connection between small RNAs, transposon silencing, and the regulation of fertility, but the mechanism has not been clarified in detail. In this review, the advances in the control of genomic transposon activity and the regulation of fertility by the small RNA pathway were summarized and discussed.
Collapse
|
385
|
Grillari J, Grillari-Voglauer R. Novel modulators of senescence, aging, and longevity: Small non-coding RNAs enter the stage. Exp Gerontol 2010; 45:302-11. [PMID: 20080172 DOI: 10.1016/j.exger.2010.01.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Revised: 12/08/2009] [Accepted: 01/08/2010] [Indexed: 02/06/2023]
Abstract
During the last decade evidence has accumulated that the aging process is driven by limited allocation of energy to somatic maintenance resulting in accumulation of stochastic damage. This damage, affecting molecules, cells, and tissues, is counteracted by genetically programmed repair, the efficiency of which thus importantly determines the life and 'health span' of organisms. Therefore, understanding the regulation of gene expression during cellular and organismal aging as well as upon exposure to various damaging events is important to understand the biology of aging and to positively influence the health span. The recent identification of small non-coding RNAs (ncRNAs), has added an additional layer of complexity to the regulation of gene expression with the classes of endogenous small inhibitory RNAs (siRNAs), PIWI-interacting RNAs (piRNAs), QDE1-interacting RNAs (qiRNAs) and microRNAs (miRNAs). Some of these ncRNAs have not yet been identified in mammalian cells and are dependent on RNA-dependent RNA polymerases. The first mammalian enzyme with such activity has only now emerged and surprisingly consists of the catalytic subunit of telomerase (hTERT) together with RMPR, an alternative RNA component. The so far most studied small non-coding RNAs, miRNAs, however, are now increasingly found to operate in the complex network of cellular aging. Recent findings show that (i) miRNAs are regulated during cellular senescence in vitro, (ii) they contribute to tissue regeneration by regulation of stem cell function, and (iii) at least one miRNA modulates the life span of the model organism C. elegans. Additionally, (iv) they act as inhibitors of proteins mediating the insulin/IGF1 and target of rapamycin (TOR) signalling, both of which are conserved modulators of organism life span. Here we will give an overview on the current status of these topics. Since little is so far known on the functions of small ncRNAs in the context of aging and longevity, the entry of the RNA world into the field of biogerontology certainly holds additional surprises and promises. Even more so, as miRNAs are implicated in many age-associated pathologies, and as RNAi and miRNA based therapeutics are on their way to clinics.
Collapse
Affiliation(s)
- Johannes Grillari
- Department of Biotechnology, University of Natural Resources and Applied Life Sciences Vienna, Austria.
| | | |
Collapse
|
386
|
Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAs. Proc Natl Acad Sci U S A 2010; 107:1606-11. [PMID: 20080648 DOI: 10.1073/pnas.0911353107] [Citation(s) in RCA: 354] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In response to infection, invertebrates process replicating viral RNA genomes into siRNAs of discrete sizes to guide virus clearance by RNA interference. Here, we show that viral siRNAs sequenced from fruit fly, mosquito, and nematode cells were all overlapping in sequence, suggesting a possibility of using siRNAs for viral genome assembly and virus discovery. To test this idea, we examined contigs assembled from published small RNA libraries and discovered five previously undescribed viruses from cultured Drosophila cells and adult mosquitoes, including three with a positive-strand RNA genome and two with a dsRNA genome. Notably, four of the identified viruses exhibited only low sequence similarities to known viruses, such that none could be assigned into an existing virus genus. We also report detection of virus-derived PIWI-interacting RNAs (piRNAs) in Drosophila melanogaster that have not been previously described in any other host species and demonstrate viral genome assembly from viral piRNAs in the absence of viral siRNAs. Thus, this study provides a powerful culture-independent approach for virus discovery in invertebrates by assembling viral genomes directly from host immune response products without prior virus enrichment or amplification. We propose that invertebrate viruses discovered by this approach may include previously undescribed human and vertebrate viral pathogens that are transmitted by arthropod vectors.
Collapse
|
387
|
Aravin AA, van der Heijden GW, Castañeda J, Vagin VV, Hannon GJ, Bortvin A. Cytoplasmic compartmentalization of the fetal piRNA pathway in mice. PLoS Genet 2009; 5:e1000764. [PMID: 20011505 PMCID: PMC2785470 DOI: 10.1371/journal.pgen.1000764] [Citation(s) in RCA: 234] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 11/11/2009] [Indexed: 01/18/2023] Open
Abstract
Derepression of transposable elements (TEs) in the course of epigenetic reprogramming of the mouse embryonic germline necessitates the existence of a robust defense that is comprised of PIWI/piRNA pathway and de novo DNA methylation machinery. To gain further insight into biogenesis and function of piRNAs, we studied the intracellular localization of piRNA pathway components and used the combination of genetic, molecular, and cell biological approaches to examine the performance of the piRNA pathway in germ cells of mice lacking Maelstrom (MAEL), an evolutionarily conserved protein implicated in transposon silencing in fruit flies and mice. Here we show that principal components of the fetal piRNA pathway, MILI and MIWI2 proteins, localize to two distinct types of germinal cytoplasmic granules and exhibit differential association with components of the mRNA degradation/translational repression machinery. The first type of granules, pi-bodies, contains the MILI-TDRD1 module of the piRNA pathway and is likely equivalent to the enigmatic “cementing material” first described in electron micrographs of rat gonocytes over 35 years ago. The second type of granules, piP-bodies, harbors the MIWI2-TDRD9-MAEL module of the piRNA pathway and signature components of P-bodies, GW182, DCP1a, DDX6/p54, and XRN1 proteins. piP-bodies are found predominantly in the proximity of pi-bodies and the two frequently share mouse VASA homolog (MVH) protein, an RNA helicase. In Mael-mutant gonocytes, MIWI2, TDRD9, and MVH are lost from piP-bodies, whereas no effects on pi-body composition are observed. Further analysis revealed that MAEL appears to specifically facilitate MIWI2-dependent aspects of the piRNA pathway including biogenesis of secondary piRNAs, de novo DNA methylation, and efficient downregulation of TEs. Cumulatively, our data reveal elaborate cytoplasmic compartmentalization of the fetal piRNA pathway that relies on MAEL function. Vast territories of animal genomes are populated by numerous types of mobile genetic elements (or transposons) that act predominantly as selfish parasites unconcerned with the impact of their activity on the well-being of the host. In response to the danger posed by transposons, organisms have evolved a defensive mechanism that employs a particular class of small RNAs known as piRNAs to identify and selectively silence transposons. We have studied the subcellular organization of such a defensive mechanism, the piRNA pathway, in germ cells of mouse male embryos. We discovered that key proteins involved in the genesis of small RNAs, MILI and MIWI2, occupy specific domains within the cytoplasm of germ cells. Surprisingly, MIWI2 shares its domain with proteins known to degrade RNAs and repress synthesis of cellular proteins, thus raising a possibility of cooperation of the two mechanisms in transposon defense. Genetic ablation of MAEL, a protein also found within the MIWI2 domain, disrupts normal MIWI2 localization and piRNA production leading to transposon activation. This study demonstrates that an elaborate compartmentalization of the defensive mechanism is required for the efficient recognition and destruction of active transposons in germ cells of mice.
Collapse
Affiliation(s)
- Alexei A. Aravin
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | | | - Julio Castañeda
- Department of Embryology, Carnegie Institution of Washington, Baltimore, Maryland, United States of America
| | - Vasily V. Vagin
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Gregory J. Hannon
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- * E-mail: (GJH); (AB)
| | - Alex Bortvin
- Department of Embryology, Carnegie Institution of Washington, Baltimore, Maryland, United States of America
- * E-mail: (GJH); (AB)
| |
Collapse
|
388
|
Yang JH, Shao P, Zhou H, Chen YQ, Qu LH. deepBase: a database for deeply annotating and mining deep sequencing data. Nucleic Acids Res 2009; 38:D123-30. [PMID: 19966272 PMCID: PMC2808990 DOI: 10.1093/nar/gkp943] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Advances in high-throughput next-generation sequencing technology have reshaped the transcriptomic research landscape. However, exploration of these massive data remains a daunting challenge. In this study, we describe a novel database, deepBase, which we have developed to facilitate the comprehensive annotation and discovery of small RNAs from transcriptomic data. The current release of deepBase contains deep sequencing data from 185 small RNA libraries from diverse tissues and cell lines of seven organisms: human, mouse, chicken, Ciona intestinalis, Drosophila melanogaster, Caenhorhabditis elegans and Arabidopsis thaliana. By analyzing ∼14.6 million unique reads that perfectly mapped to more than 284 million genomic loci, we annotated and identified ∼380 000 unique ncRNA-associated small RNAs (nasRNAs), ∼1.5 million unique promoter-associated small RNAs (pasRNAs), ∼4.0 million unique exon-associated small RNAs (easRNAs) and ∼6 million unique repeat-associated small RNAs (rasRNAs). Furthermore, 2038 miRNA and 1889 snoRNA candidates were predicted by miRDeep and snoSeeker. All of the mapped reads can be grouped into about 1.2 million RNA clusters. For the purpose of comparative analysis, deepBase provides an integrative, interactive and versatile display. A convenient search option, related publications and other useful information are also provided for further investigation. deepBase is available at: http://deepbase.sysu.edu.cn/.
Collapse
Affiliation(s)
- Jian-Hua Yang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | | | | | | | | |
Collapse
|
389
|
Gent JI, Schvarzstein M, Villeneuve AM, Gu SG, Jantsch V, Fire AZ, Baudrimont A. A Caenorhabditis elegans RNA-directed RNA polymerase in sperm development and endogenous RNA interference. Genetics 2009; 183:1297-314. [PMID: 19805814 PMCID: PMC2787422 DOI: 10.1534/genetics.109.109686] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 10/01/2009] [Indexed: 11/18/2022] Open
Abstract
Short interfering RNAs (siRNAs) are a class of regulatory effectors that enforce gene silencing through formation of RNA duplexes. Although progress has been made in identifying the capabilities of siRNAs in silencing foreign RNA and transposable elements, siRNA functions in endogenous gene regulation have remained mysterious. In certain organisms, siRNA biosynthesis involves novel enzymes that act as RNA-directed RNA polymerases (RdRPs). Here we analyze the function of a Caenorhabditis elegans RdRP, RRF-3, during spermatogenesis. We found that loss of RRF-3 function resulted in pleiotropic defects in sperm development and that sperm defects led to embryonic lethality. Notably, sperm nuclei in mutants of either rrf-3 or another component of the siRNA pathway, eri-1, were frequently surrounded by ectopic microtubule structures, with spindle abnormalities in a subset of the resulting embryos. Through high-throughput small RNA sequencing, we identified a population of cellular mRNAs from spermatogenic cells that appear to serve as templates for antisense siRNA synthesis. This set of genes includes the majority of genes known to have enriched expression during spermatogenesis, as well as many genes not previously known to be expressed during spermatogenesis. In a subset of these genes, we found that RRF-3 was required for effective siRNA accumulation. These and other data suggest a working model in which a major role of the RRF-3/ERI pathway is to generate siRNAs that set patterns of gene expression through feedback repression of a set of critical targets during spermatogenesis.
Collapse
Affiliation(s)
- Jonathan I. Gent
- Department of Genetics, Department of Developmental Biology, and Department of Pathology, Stanford University School of Medicine, Stanford, California 94305 and Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Mara Schvarzstein
- Department of Genetics, Department of Developmental Biology, and Department of Pathology, Stanford University School of Medicine, Stanford, California 94305 and Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Anne M. Villeneuve
- Department of Genetics, Department of Developmental Biology, and Department of Pathology, Stanford University School of Medicine, Stanford, California 94305 and Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Sam Guoping Gu
- Department of Genetics, Department of Developmental Biology, and Department of Pathology, Stanford University School of Medicine, Stanford, California 94305 and Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Verena Jantsch
- Department of Genetics, Department of Developmental Biology, and Department of Pathology, Stanford University School of Medicine, Stanford, California 94305 and Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Andrew Z. Fire
- Department of Genetics, Department of Developmental Biology, and Department of Pathology, Stanford University School of Medicine, Stanford, California 94305 and Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Antoine Baudrimont
- Department of Genetics, Department of Developmental Biology, and Department of Pathology, Stanford University School of Medicine, Stanford, California 94305 and Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| |
Collapse
|
390
|
Updike D, Strome S. P granule assembly and function in Caenorhabditis elegans germ cells. ACTA ACUST UNITED AC 2009; 31:53-60. [PMID: 19875490 DOI: 10.2164/jandrol.109.008292] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Germ granules are large, non-membrane-bound, ribonucleoprotein (RNP) organelles found in the germ line cytoplasm of most, if not all, animals. The term germ granule is synonymous with the perinuclear nuage in mouse and human germ cells. These large RNPs are complexed with germ line-specific cytoplasmic structures such as the mitochondrial cloud, intermitochondrial cement, and chromatoid bodies. The widespread presence of germ granules across species and the associated germ line defects when germ granules are compromised suggest that germ granules are key determinants of the identity and special properties of germ cells. The nematode Caenorhabditis elegans has been a very fruitful model system for the study of germ granules, wherein they are referred to as P granules. P granules contain a heterogeneous mixture of RNAs and proteins. To date, most of the known germ granule proteins across species, and all of the known P granule components in C elegans, are associated with RNA metabolism, which suggests that a main function of germ granules is posttranscriptional regulation. Here we review P granule structure and localization, P granule composition, the genetic pathway of P granule assembly, and the consequences in the germ line when P granule components are lost. The findings in C elegans have important implications for the germ granule function during postnatal germ cell differentiation in mammals.
Collapse
Affiliation(s)
- Dustin Updike
- Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
391
|
Claycomb JM, Batista PJ, Pang KM, Gu W, Vasale JJ, van Wolfswinkel JC, Chaves DA, Shirayama M, Mitani S, Ketting RF, Conte D, Mello CC. The Argonaute CSR-1 and its 22G-RNA cofactors are required for holocentric chromosome segregation. Cell 2009; 139:123-34. [PMID: 19804758 DOI: 10.1016/j.cell.2009.09.014] [Citation(s) in RCA: 346] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 07/01/2009] [Accepted: 09/11/2009] [Indexed: 12/11/2022]
Abstract
RNAi-related pathways regulate diverse processes, from developmental timing to transposon silencing. Here, we show that in C. elegans the Argonaute CSR-1, the RNA-dependent RNA polymerase EGO-1, the Dicer-related helicase DRH-3, and the Tudor-domain protein EKL-1 localize to chromosomes and are required for proper chromosome segregation. In the absence of these factors chromosomes fail to align at the metaphase plate and kinetochores do not orient to opposing spindle poles. Surprisingly, the CSR-1-interacting small RNAs (22G-RNAs) are antisense to thousands of germline-expressed protein-coding genes. Nematodes assemble holocentric chromosomes in which continuous kinetochores must span the expressed domains of the genome. We show that CSR-1 interacts with chromatin at target loci but does not downregulate target mRNA or protein levels. Instead, our findings support a model in which CSR-1 complexes target protein-coding domains to promote their proper organization within the holocentric chromosomes of C. elegans.
Collapse
Affiliation(s)
- Julie M Claycomb
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01606, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
392
|
Poole CB, Davis PJ, Jin J, McReynolds LA. Cloning and bioinformatic identification of small RNAs in the filarial nematode, Brugia malayi. Mol Biochem Parasitol 2009; 169:87-94. [PMID: 19874857 DOI: 10.1016/j.molbiopara.2009.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 10/15/2009] [Accepted: 10/16/2009] [Indexed: 11/16/2022]
Abstract
Characterization of small RNAs from the filarial nematode Brugia malayi is the initial step in understanding their role in gene silencing. Both RNA cloning and bioinformatics were used to identify 32 microRNAs (miRNAs) belonging to 24 families. One family, miR-36 only occurs in helminths including B. malayi. Several of the miRNAs are arranged in clusters and are coordinately expressed as determined by northern blot analysis. In addition, small RNAs were identified from Pao/Bleo retrotransposons and their associated repeat sequences indicating that B. malayi uses an RNAi mechanism to maintain genome integrity. Analysis of these data provides a first glimpse into how small RNA-mediated silencing pathways regulate the parasitic life cycle of B. malayi.
Collapse
|
393
|
26G endo-siRNAs regulate spermatogenic and zygotic gene expression in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2009; 106:18674-9. [PMID: 19846761 DOI: 10.1073/pnas.0906378106] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endogenous small interfering RNAs (endo-siRNAs) regulate diverse gene expression programs in eukaryotes by either binding and cleaving mRNA targets or mediating heterochromatin formation; however, the mechanisms of endo-siRNA biogenesis, sorting, and target regulation remain poorly understood. Here we report the identification and function of a specific class of germline-generated endo-siRNAs in Caenorhabditis elegans that are 26 nt in length and contain a guanine at the first nucleotide position (i.e., 26G RNAs). 26G RNAs regulate gene expression during spermatogenesis and zygotic development, and their biogenesis requires the ERI-1 exonuclease and the RRF-3 RNA-dependent RNA polymerase (RdRP). Remarkably, we identified two nonoverlapping subclasses of 26G RNAs that sort into specific RNA-induced silencing complexes (RISCs) and differentially regulate distinct mRNA targets. Class I 26G RNAs target genes are expressed during spermatogenesis, whereas class II 26G RNAs are maternally inherited and silence gene expression during zygotic development. These findings implicate a class of endo-siRNAs in the global regulation of transcriptional programs required for fertility and development.
Collapse
|
394
|
A genomewide RNAi screen for genes that affect the stability, distribution and function of P granules in Caenorhabditis elegans. Genetics 2009; 183:1397-419. [PMID: 19805813 DOI: 10.1534/genetics.109.110171] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
P granules are non-membrane-bound organelles found in the germ-line cytoplasm throughout Caenorhabditis elegans development. Like their "germ granule" counterparts in other animals, P granules are thought to act as determinants of the identity and special properties of germ cells, properties that include the unique ability to give rise to all tissues of future generations of an organism. Therefore, understanding how P granules work is critical to understanding how cellular immortality and totipotency are retained, gained, and lost. Here we report on a genomewide RNAi screen in C. elegans, which identified 173 genes that affect the stability, localization, and function of P granules. Many of these genes fall into specific classes with shared P-granule phenotypes, allowing us to better understand how cellular processes such as protein degradation, translation, splicing, nuclear transport, and mRNA homeostasis converge on P-granule assembly and function. One of the more striking phenotypes is caused by the depletion of CSR-1, an Argonaute associated with an endogenous siRNA pathway that functions in the germ line. We show that CSR-1 and two other endo-siRNA pathway members, the RNA-dependent RNA polymerase EGO-1 and the helicase DRH-3, act to antagonize RNA and P-granule accumulation in the germ line. Our findings strengthen the emerging view that germ granules are involved in numerous aspects of RNA metabolism, including an endo-siRNA pathway in germ cells.
Collapse
|
395
|
Armisen J, Gilchrist MJ, Wilczynska A, Standart N, Miska EA. Abundant and dynamically expressed miRNAs, piRNAs, and other small RNAs in the vertebrate Xenopus tropicalis. Genome Res 2009; 19:1766-75. [PMID: 19628731 PMCID: PMC2765267 DOI: 10.1101/gr.093054.109] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 07/14/2009] [Indexed: 12/16/2022]
Abstract
Small regulatory RNAs have recently emerged as key regulators of eukaryotic gene expression. Here we used high-throughput sequencing to determine small RNA populations in the germline and soma of the African clawed frog Xenopus tropicalis. We identified a number of miRNAs that were expressed in the female germline. miRNA expression profiling revealed that miR-202-5p is an oocyte-enriched miRNA. We identified two novel miRNAs that were expressed in the soma. In addition, we sequenced large numbers of Piwi-associated RNAs (piRNAs) and other endogenous small RNAs, likely representing endogenous siRNAs (endo-siRNAs). Of these, only piRNAs were restricted to the germline, suggesting that endo-siRNAs are an abundant class of small RNAs in the vertebrate soma. In the germline, both endogenous small RNAs and piRNAs mapped to many high copy number loci. Furthermore, endogenous small RNAs mapped to the same specific subsets of repetitive elements in both the soma and the germline, suggesting that these RNAs might act to silence repetitive elements in both compartments. Data presented here suggest a conserved role for miRNAs in the vertebrate germline. Furthermore, this study provides a basis for the functional analysis of small regulatory RNAs in an important vertebrate model system.
Collapse
Affiliation(s)
- Javier Armisen
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, The Henry Wellcome Building of Cancer and Developmental Biology, Cambridge CB2 1QN, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Michael J. Gilchrist
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, The Henry Wellcome Building of Cancer and Developmental Biology, Cambridge CB2 1QN, United Kingdom
| | - Anna Wilczynska
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Nancy Standart
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Eric A. Miska
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, The Henry Wellcome Building of Cancer and Developmental Biology, Cambridge CB2 1QN, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| |
Collapse
|
396
|
Distinct argonaute-mediated 22G-RNA pathways direct genome surveillance in the C. elegans germline. Mol Cell 2009; 36:231-44. [PMID: 19800275 DOI: 10.1016/j.molcel.2009.09.020] [Citation(s) in RCA: 386] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 08/29/2009] [Accepted: 09/15/2009] [Indexed: 01/01/2023]
Abstract
Endogenous small RNAs (endo-siRNAs) interact with Argonaute (AGO) proteins to mediate sequence-specific regulation of diverse biological processes. Here, we combine deep-sequencing and genetic approaches to explore the biogenesis and function of endo-siRNAs in C. elegans. We describe conditional alleles of the Dicer-related helicase, drh-3, that abrogate both RNA interference and the biogenesis of endo-siRNAs, called 22G-RNAs. DRH-3 is a core component of RNA-dependent RNA polymerase (RdRP) complexes essential for several distinct 22G-RNA systems. We show that, in the germline, one system is dependent on worm-specific AGOs, including WAGO-1, which localizes to germline nuage structures called P granules. WAGO-1 silences certain genes, transposons, pseudogenes, and cryptic loci. Finally, we demonstrate that components of the nonsense-mediated decay pathway function in at least one WAGO-mediated surveillance pathway. These findings broaden our understanding of the biogenesis and diversity of 22G-RNAs and suggest additional regulatory functions for small RNAs.
Collapse
|
397
|
Lehrbach NJ, Armisen J, Lightfoot HL, Murfitt KJ, Bugaut A, Balasubramanian S, Miska EA. LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 microRNA processing in Caenorhabditis elegans. Nat Struct Mol Biol 2009; 16:1016-20. [PMID: 19713957 PMCID: PMC2988485 DOI: 10.1038/nsmb.1675] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 08/20/2009] [Indexed: 12/21/2022]
Abstract
The let-7 microRNA (miRNA) is an ultraconserved regulator of stem cell differentiation and developmental timing and a candidate tumor suppressor. Here we show that LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 processing in Caenorhabditis elegans. We demonstrate that lin-28 is necessary and sufficient to block let-7 activity in vivo; LIN-28 directly binds let-7 pre-miRNA to prevent Dicer processing. Moreover, we have identified a poly(U) polymerase, PUP-2, which regulates the stability of LIN-28-blockaded let-7 pre-miRNA and contributes to LIN-28-dependent regulation of let-7 during development. We show that PUP-2 and LIN-28 interact directly, and that LIN-28 stimulates uridylation of let-7 pre-miRNA by PUP-2 in vitro. Our results demonstrate that LIN-28 and let-7 form an ancient regulatory switch, conserved from nematodes to humans, and provide insight into the mechanism of LIN-28 action in vivo. Uridylation by a PUP-2 ortholog might regulate let-7 and additional miRNAs in other species. Given the roles of Lin28 and let-7 in stem cell and cancer biology, we propose that such poly(U) polymerases are potential therapeutic targets.
Collapse
Affiliation(s)
- Nicolas J Lehrbach
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, The Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
398
|
Requirement for the ERI/DICER complex in endogenous RNA interference and sperm development in Caenorhabditis elegans. Genetics 2009; 183:1283-95. [PMID: 19797044 DOI: 10.1534/genetics.109.108134] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Small regulatory RNAs are key regulators of gene expression. One class of small regulatory RNAs, termed the endogenous small interfering RNAs (endo siRNAs), is thought to negatively regulate cellular transcripts via an RNA interference (RNAi)-like mechanism termed endogenous RNAi (endo RNAi). A complex of proteins composed of ERI-1/3/5, RRF-3, and DICER (the ERI/DICER complex) mediates endo RNAi processes in Caenorhabditis elegans. We conducted a genetic screen to identify additional components of the endo RNAi machinery. Our screen recovered alleles of eri-9, which encodes a novel DICER-interacting protein, and a missense mutation within the helicase domain of DICER [DCR-1(G492R)]. ERI-9(-) and DCR-1(G492) animals exhibit defects in endo siRNA expression and a concomitant failure to regulate mRNAs that exhibit sequence homology to these endo siRNAs, indicating that ERI-9 and the DCR-1 helicase domain function in the C. elegans endo RNAi pathway. We define a subset of Eri mutant animals (including eri-1, rrf-3, eri-3, and dcr-1, but not eri-9 or ergo-1) that exhibit temperature-sensitive, sperm-specific sterility and defects in X chromosome segregation. Among these mutants we find multiple aberrations in sperm development beginning with cytokinesis and extending through terminal differentiation. These results identify novel components of the endo RNAi machinery, demonstrate differential requirements for the Eri factors in the sperm-producing germline, and begin to delineate the functional requirement for the ERI/DICER complex in sperm development.
Collapse
|
399
|
de Wit E, Linsen SEV, Cuppen E, Berezikov E. Repertoire and evolution of miRNA genes in four divergent nematode species. Genome Res 2009; 19:2064-74. [PMID: 19755563 DOI: 10.1101/gr.093781.109] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
miRNAs are approximately 22-nt RNA molecules that play important roles in post-transcriptional regulation. We have performed small RNA sequencing in the nematodes Caenorhabditis elegans, C. briggsae, C. remanei, and Pristionchus pacificus, which have diverged up to 400 million years ago, to establish the repertoire and evolutionary dynamics of miRNAs in these species. In addition to previously known miRNA genes from C. elegans and C. briggsae we demonstrate expression of many of their homologs in C. remanei and P. pacificus, and identified in total more than 100 novel expressed miRNA genes, the majority of which belong to P. pacificus. Interestingly, more than half of all identified miRNA genes are conserved at the seed level in all four nematode species, whereas only a few miRNAs appear to be species specific. In our compendium of miRNAs we observed evidence for known mechanisms of miRNA evolution including antisense transcription and arm switching, as well as miRNA family expansion through gene duplication. In addition, we identified a novel mode of miRNA evolution, termed "hairpin shifting," in which an alternative hairpin is formed with up- or downstream sequences, leading to shifting of the hairpin and creation of novel miRNA* species. Finally, we identified 21U-RNAs in all four nematodes, including P. pacificus, where the upstream 21U-RNA motif is more diverged. The identification and systematic analysis of small RNA repertoire in four nematode species described here provides a valuable resource for understanding the evolutionary dynamics of miRNA-mediated gene regulation.
Collapse
Affiliation(s)
- Elzo de Wit
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Cancer Genomics Center, Utrecht 3584 CT, The Netherlands
| | | | | | | |
Collapse
|
400
|
Large-scale sorting of C. elegans embryos reveals the dynamics of small RNA expression. Nat Methods 2009; 6:745-51. [PMID: 19734907 PMCID: PMC2756031 DOI: 10.1038/nmeth.1370] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 08/10/2009] [Indexed: 11/08/2022]
Abstract
Caenorhabditis elegans is one of the most prominent model systems for embryogenesis, but collecting many precisely staged embryos has been impractical. Thus, early C. elegans embryogenesis has not been amenable to most high-throughput genomics or biochemistry assays. To overcome this problem, we devised a method to collect staged C. elegans embryos by fluorescence-activated cell sorting (eFACS). In a proof-of-principle experiment, we found that a single eFACS run routinely yielded tens of thousands of almost perfectly staged 1-cell stage embryos. As the earliest embryonic events are driven by posttranscriptional regulation, we combined eFACS with second-generation sequencing to profile the embryonic expression of small, noncoding RNAs. We discovered complex and orchestrated changes in the expression between and within almost all classes of small RNAs, including microRNAs and 26G-RNAs, during embryogenesis.
Collapse
|