351
|
Yeh HS, Yong J. Alternative Polyadenylation of mRNAs: 3'-Untranslated Region Matters in Gene Expression. Mol Cells 2016; 39:281-5. [PMID: 26912084 PMCID: PMC4844933 DOI: 10.14348/molcells.2016.0035] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/11/2016] [Indexed: 12/26/2022] Open
Abstract
Almost all of eukaryotic mRNAs are subjected to polyadenylation during mRNA processing. Recent discoveries showed that many of these mRNAs contain more than one polyadenylation sites in their 3' untranslated regions (UTR) and that alternative polyadenylation (APA) is prevalent among these genes. Many biological processes such as differentiation, proliferation, and tumorigenesis have been correlated to global APA events in the 3' UTR of mRNAs, suggesting that these APA events are tightly regulated and may play important physiological roles. In this review, recent discoveries in the physiological roles of APA events, as well as the known and proposed mechanisms are summarized. Perspective for future directions is also discussed.
Collapse
Affiliation(s)
- Hsin-Sung Yeh
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455,
USA
| | - Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455,
USA
| |
Collapse
|
352
|
Post-transcriptional control of the mammalian circadian clock: implications for health and disease. Pflugers Arch 2016; 468:983-91. [PMID: 27108448 PMCID: PMC4893061 DOI: 10.1007/s00424-016-1820-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/30/2016] [Accepted: 04/04/2016] [Indexed: 12/11/2022]
Abstract
Many aspects of human physiology and behavior display rhythmicity with a period of approximately 24 h. Rhythmic changes are controlled by an endogenous time keeper, the circadian clock, and include sleep-wake cycles, physical and mental performance capability, blood pressure, and body temperature. Consequently, many diseases, such as metabolic, sleep, autoimmune and mental disorders and cancer, are connected to the circadian rhythm. The development of therapies that take circadian biology into account is thus a promising strategy to improve treatments of diverse disorders, ranging from allergic syndromes to cancer. Circadian alteration of body functions and behavior are, at the molecular level, controlled and mediated by widespread changes in gene expression that happen in anticipation of predictably changing requirements during the day. At the core of the molecular clockwork is a well-studied transcription-translation negative feedback loop. However, evidence is emerging that additional post-transcriptional, RNA-based mechanisms are required to maintain proper clock function. Here, we will discuss recent work implicating regulated mRNA stability, translation and alternative splicing in the control of the mammalian circadian clock, and its role in health and disease.
Collapse
|
353
|
Domingues RG, Lago-Baldaia I, Pereira-Castro I, Fachini JM, Oliveira L, Drpic D, Lopes N, Henriques T, Neilson JR, Carmo AM, Moreira A. CD5 expression is regulated during human T-cell activation by alternative polyadenylation, PTBP1, and miR-204. Eur J Immunol 2016; 46:1490-503. [PMID: 27005442 DOI: 10.1002/eji.201545663] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 02/17/2016] [Accepted: 03/16/2016] [Indexed: 01/29/2023]
Abstract
T lymphocytes stimulated through their antigen receptor (TCR) preferentially express mRNA isoforms with shorter 3´ untranslated regions (3´-UTRs) derived from alternative pre-mRNA cleavage and polyadenylation (APA). However, the physiological relevance of APA programs remains poorly understood. CD5 is a T-cell surface glycoprotein that negatively regulates TCR signaling from the onset of T-cell activation. CD5 plays a pivotal role in mediating outcomes of cell survival or apoptosis, and may prevent both autoimmunity and cancer. In human primary T lymphocytes and Jurkat cells we found three distinct mRNA isoforms encoding CD5, each derived from distinct poly(A) signals (PASs). Upon T-cell activation, there is an overall increase in CD5 mRNAs with a specific increase in the relative expression of the shorter isoforms. 3´-UTRs derived from these shorter isoforms confer higher reporter expression in activated T cells relative to the longer isoform. We further show that polypyrimidine tract binding protein (PTB/PTBP1) directly binds to the proximal PAS and PTB siRNA depletion causes a decrease in mRNA derived from this PAS, suggesting an effect on stability or poly(A) site selection to circumvent targeting of the longer CD5 mRNA isoform by miR-204. These mechanisms fine-tune CD5 expression levels and thus ultimately T-cell responses.
Collapse
Affiliation(s)
- Rita G Domingues
- Gene Regulation Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Inês Lago-Baldaia
- Gene Regulation Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Isabel Pereira-Castro
- Gene Regulation Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Joseph M Fachini
- Department of Molecular Physiology and Biophysics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Liliana Oliveira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Cell Activation and Gene Expression Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Danica Drpic
- Gene Regulation Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Nair Lopes
- Gene Regulation Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Telmo Henriques
- Gene Regulation Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Joel R Neilson
- Department of Molecular Physiology and Biophysics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Alexandre M Carmo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Cell Activation and Gene Expression Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Alexandra Moreira
- Gene Regulation Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| |
Collapse
|
354
|
Hwang HW, Park CY, Goodarzi H, Fak JJ, Mele A, Moore MJ, Saito Y, Darnell RB. PAPERCLIP Identifies MicroRNA Targets and a Role of CstF64/64tau in Promoting Non-canonical poly(A) Site Usage. Cell Rep 2016; 15:423-35. [PMID: 27050522 DOI: 10.1016/j.celrep.2016.03.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/11/2016] [Accepted: 03/04/2016] [Indexed: 12/13/2022] Open
Abstract
Accurate and precise annotation of 3' UTRs is critical for understanding how mRNAs are regulated by microRNAs (miRNAs) and RNA-binding proteins (RBPs). Here, we describe a method, poly(A) binding protein-mediated mRNA 3' end retrieval by crosslinking immunoprecipitation (PAPERCLIP), that shows high specificity for mRNA 3' ends and compares favorably with existing 3' end mapping methods. PAPERCLIP uncovers a previously unrecognized role of CstF64/64tau in promoting the usage of a selected group of non-canonical poly(A) sites, the majority of which contain a downstream GUKKU motif. Furthermore, in the mouse brain, PAPERCLIP discovers extended 3' UTR sequences harboring functional miRNA binding sites and reveals developmentally regulated APA shifts, including one in Atp2b2 that is evolutionarily conserved in humans and results in the gain of a functional binding site of miR-137. PAPERCLIP provides a powerful tool to decipher post-transcriptional regulation of mRNAs through APA in vivo.
Collapse
Affiliation(s)
- Hun-Way Hwang
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA.
| | - Christopher Y Park
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA; New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA
| | - Hani Goodarzi
- Laboratory of Systems Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - John J Fak
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Aldo Mele
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Michael J Moore
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Yuhki Saito
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA; New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA.
| |
Collapse
|
355
|
Kaida D. The reciprocal regulation between splicing and 3'-end processing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:499-511. [PMID: 27019070 PMCID: PMC5071671 DOI: 10.1002/wrna.1348] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/05/2016] [Accepted: 02/22/2016] [Indexed: 12/14/2022]
Abstract
Most eukaryotic precursor mRNAs are subjected to RNA processing events, including 5′‐end capping, splicing and 3′‐end processing. These processing events were historically studied independently; however, since the early 1990s tremendous efforts by many research groups have revealed that these processing factors interact with each other to control each other's functions. U1 snRNP and its components negatively regulate polyadenylation of precursor mRNAs. Importantly, this function is necessary for protecting the integrity of the transcriptome and for regulating gene length and the direction of transcription. In addition, physical and functional interactions occur between splicing factors and 3′‐end processing factors across the last exon. These interactions activate or inhibit splicing and 3′‐end processing depending on the context. Therefore, splicing and 3′‐end processing are reciprocally regulated in many ways through the complex protein–protein interaction network. Although interesting questions remain, future studies will illuminate the molecular mechanisms underlying the reciprocal regulation. WIREs RNA 2016, 7:499–511. doi: 10.1002/wrna.1348 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Daisuke Kaida
- Frontier Research Core for Life Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
356
|
Song L, Sabunciyan S, Florea L. CLASS2: accurate and efficient splice variant annotation from RNA-seq reads. Nucleic Acids Res 2016; 44:e98. [PMID: 26975657 PMCID: PMC4889935 DOI: 10.1093/nar/gkw158] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/28/2016] [Indexed: 11/29/2022] Open
Abstract
Next generation sequencing of cellular RNA is making it possible to characterize genes and alternative splicing in unprecedented detail. However, designing bioinformatics tools to accurately capture splicing variation has proven difficult. Current programs can find major isoforms of a gene but miss lower abundance variants, or are sensitive but imprecise. CLASS2 is a novel open source tool for accurate genome-guided transcriptome assembly from RNA-seq reads based on the model of splice graph. An extension of our program CLASS, CLASS2 jointly optimizes read patterns and the number of supporting reads to score and prioritize transcripts, implemented in a novel, scalable and efficient dynamic programming algorithm. When compared against reference programs, CLASS2 had the best overall accuracy and could detect up to twice as many splicing events with precision similar to the best reference program. Notably, it was the only tool to produce consistently reliable transcript models for a wide range of applications and sequencing strategies, including ribosomal RNA-depleted samples. Lightweight and multi-threaded, CLASS2 requires <3GB RAM and can analyze a 350 million read set within hours, and can be widely applied to transcriptomics studies ranging from clinical RNA sequencing, to alternative splicing analyses, and to the annotation of new genomes.
Collapse
Affiliation(s)
- Li Song
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sarven Sabunciyan
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Liliana Florea
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
357
|
Chen F, Zhou Y, Qi YB, Khivansara V, Li H, Chun SY, Kim JK, Fu XD, Jin Y. Context-dependent modulation of Pol II CTD phosphatase SSUP-72 regulates alternative polyadenylation in neuronal development. Genes Dev 2016; 29:2377-90. [PMID: 26588990 PMCID: PMC4691892 DOI: 10.1101/gad.266650.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chen et al. find that loss of function in ssup-72, a Ser5 phosphatase for the RNA polymerase II C-terminal domain (CTD), dampens transcription termination at a strong intronic poly(A) site (PAS) in unc-44/ankyrin yet promotes termination at the weak intronic PAS of the MAP kinase dlk-1. This work reveals a mechanism by which regulation of CTD phosphorylation controls coding region alternative polyadenylation in the nervous system. Alternative polyadenylation (APA) is widespread in neuronal development and activity-mediated neural plasticity. However, the underlying molecular mechanisms are largely unknown. We used systematic genetic studies and genome-wide surveys of the transcriptional landscape to identify a context-dependent regulatory pathway controlling APA in the Caenorhabditis elegans nervous system. Loss of function in ssup-72, a Ser5 phosphatase for the RNA polymerase II (Pol II) C-terminal domain (CTD), dampens transcription termination at a strong intronic polyadenylation site (PAS) in unc-44/ankyrin yet promotes termination at the weak intronic PAS of the MAP kinase dlk-1. A nuclear protein, SYDN-1, which regulates neuronal development, antagonizes the function of SSUP-72 and several nuclear polyadenylation factors. This regulatory pathway allows the production of a neuron-specific isoform of unc-44 and an inhibitory isoform of dlk-1. Dysregulation of the unc-44 and dlk-1 mRNA isoforms in sydn-1 mutants impairs neuronal development. Deleting the intronic PAS of unc-44 results in increased pre-mRNA processing of neuronal ankyrin and suppresses sydn-1 mutants. These results reveal a mechanism by which regulation of CTD phosphorylation controls coding region APA in the nervous system.
Collapse
Affiliation(s)
- Fei Chen
- Neurobiology Section, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093, USA; Howard Hughes Medical Institute, University of California at San Diego, La Jolla, California 92093, USA
| | - Yu Zhou
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Yingchuan B Qi
- Neurobiology Section, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093, USA
| | - Vishal Khivansara
- Life Sciences Institute, Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Hairi Li
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Sang Young Chun
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - John K Kim
- Life Sciences Institute, Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093, USA; Howard Hughes Medical Institute, University of California at San Diego, La Jolla, California 92093, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
358
|
Lamas-Maceiras M, Singh BN, Hampsey M, Freire-Picos MA. Promoter-Terminator Gene Loops Affect Alternative 3'-End Processing in Yeast. J Biol Chem 2016; 291:8960-8. [PMID: 26929407 DOI: 10.1074/jbc.m115.687491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Indexed: 11/06/2022] Open
Abstract
Many eukaryotic genes undergo alternative 3'-end poly(A)-site selection producing transcript isoforms with 3'-UTRs of different lengths and post-transcriptional fates. Gene loops are dynamic structures that juxtapose the 3'-ends of genes with their promoters. Several functions have been attributed to looping, including memory of recent transcriptional activity and polarity of transcription initiation. In this study, we investigated the relationship between gene loops and alternative poly(A)-site. Using the KlCYC1 gene of the yeast Kluyveromyces lactis, which includes a single promoter and two poly(A) sites separated by 394 nucleotides, we demonstrate in two yeast species the formation of alternative gene loops (L1 and L2) that juxtapose the KlCYC1 promoter with either proximal or distal 3'-end processing sites, resulting in the synthesis of short and long forms of KlCYC1 mRNA. Furthermore, synthesis of short and long mRNAs and formation of the L1 and L2 loops are growth phase-dependent. Chromatin immunoprecipitation experiments revealed that the Ssu72 RNA polymerase II carboxyl-terminal domain phosphatase, a critical determinant of looping, peaks in early log phase at the proximal poly(A) site, but as growth phase advances, it extends to the distal site. These results define a cause-and-effect relationship between gene loops and alternative poly(A) site selection that responds to different physiological signals manifested by RNA polymerase II carboxyl-terminal domain phosphorylation status.
Collapse
Affiliation(s)
- Mónica Lamas-Maceiras
- From the Departamento de Biología Celular e Molecular, Facultad de Ciencias, Universidade da Coruña, Campus de A Coruña, Rúa da Fraga 10, 15008 A Coruña, Spain and
| | - Badri Nath Singh
- the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854
| | - Michael Hampsey
- the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854
| | - María A Freire-Picos
- From the Departamento de Biología Celular e Molecular, Facultad de Ciencias, Universidade da Coruña, Campus de A Coruña, Rúa da Fraga 10, 15008 A Coruña, Spain and
| |
Collapse
|
359
|
Avakyan N, Greschner AA, Aldaye F, Serpell CJ, Toader V, Petitjean A, Sleiman HF. Reprogramming the assembly of unmodified DNA with a small molecule. Nat Chem 2016; 8:368-76. [PMID: 27001733 DOI: 10.1038/nchem.2451] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 01/07/2016] [Indexed: 02/08/2023]
Abstract
The ability of DNA to store and encode information arises from base pairing of the four-letter nucleobase code to form a double helix. Expanding this DNA 'alphabet' by synthetic incorporation of new bases can introduce new functionalities and enable the formation of novel nucleic acid structures. However, reprogramming the self-assembly of existing nucleobases presents an alternative route to expand the structural space and functionality of nucleic acids. Here we report the discovery that a small molecule, cyanuric acid, with three thymine-like faces, reprogrammes the assembly of unmodified poly(adenine) (poly(A)) into stable, long and abundant fibres with a unique internal structure. Poly(A) DNA, RNA and peptide nucleic acid (PNA) all form these assemblies. Our studies are consistent with the association of adenine and cyanuric acid units into a hexameric rosette, which brings together poly(A) triplexes with a subsequent cooperative polymerization. Fundamentally, this study shows that small hydrogen-bonding molecules can be used to induce the assembly of nucleic acids in water, which leads to new structures from inexpensive and readily available materials.
Collapse
Affiliation(s)
- Nicole Avakyan
- Department of Chemistry and Centre for Self-assembled Chemical Structures, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Andrea A Greschner
- Department of Chemistry and Centre for Self-assembled Chemical Structures, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.,INRS: Centre Énergie Matériaux Télécommunications, 1650 Boul. Lionel-Boulet, Varennes Quebec J3X 1S2, Canada
| | - Faisal Aldaye
- Department of Chemistry and Centre for Self-assembled Chemical Structures, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Christopher J Serpell
- Department of Chemistry and Centre for Self-assembled Chemical Structures, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.,School of Physical Sciences, Ingram Building, University of Kent, Canterbury CT2 7NH, Kent, UK
| | - Violeta Toader
- Department of Chemistry and Centre for Self-assembled Chemical Structures, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Anne Petitjean
- Department of Chemistry, Queen's University, Chernoff Hall, 90 Bader Lane, Kingston Ontario K7L 3N6, Canada
| | - Hanadi F Sleiman
- Department of Chemistry and Centre for Self-assembled Chemical Structures, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
360
|
Roque CG, Wong HHW, Lin JQ, Holt CE. Tumor protein Tctp regulates axon development in the embryonic visual system. Development 2016; 143:1134-48. [PMID: 26903505 PMCID: PMC4852495 DOI: 10.1242/dev.131060] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/11/2016] [Indexed: 12/11/2022]
Abstract
The transcript encoding translationally controlled tumor protein (Tctp), a molecule associated with aggressive breast cancers, was identified among the most abundant in genome-wide screens of axons, suggesting that Tctp is important in neurons. Here, we tested the role of Tctp in retinal axon development in Xenopus laevis. We report that Tctp deficiency results in stunted and splayed retinotectal projections that fail to innervate the optic tectum at the normal developmental time owing to impaired axon extension. Tctp-deficient axons exhibit defects associated with mitochondrial dysfunction and we show that Tctp interacts in the axonal compartment with myeloid cell leukemia 1 (Mcl1), a pro-survival member of the Bcl2 family. Mcl1 knockdown gives rise to similar axon misprojection phenotypes, and we provide evidence that the anti-apoptotic activity of Tctp is necessary for the normal development of the retinotectal projection. These findings suggest that Tctp supports the development of the retinotectal projection via its regulation of pro-survival signalling and axonal mitochondrial homeostasis, and establish a novel and fundamental role for Tctp in vertebrate neural circuitry assembly. Highlighted article: The cancer-associated protein Tctp controls neural circuitry in Xenopus via its regulation of pro-survival signalling and axonal mitochondrial homeostasis.
Collapse
Affiliation(s)
- Cláudio Gouveia Roque
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
| | - Hovy Ho-Wai Wong
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Julie Qiaojin Lin
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| |
Collapse
|
361
|
Taliaferro JM, Vidaki M, Oliveira R, Olson S, Zhan L, Saxena T, Wang ET, Graveley BR, Gertler FB, Swanson MS, Burge CB. Distal Alternative Last Exons Localize mRNAs to Neural Projections. Mol Cell 2016; 61:821-33. [PMID: 26907613 DOI: 10.1016/j.molcel.2016.01.020] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/10/2015] [Accepted: 01/15/2016] [Indexed: 11/30/2022]
Abstract
Spatial restriction of mRNA to distinct subcellular locations enables local regulation and synthesis of proteins. However, the organizing principles of mRNA localization remain poorly understood. Here we analyzed subcellular transcriptomes of neural projections and soma of primary mouse cortical neurons and two neuronal cell lines and found that alternative last exons (ALEs) often confer isoform-specific localization. Surprisingly, gene-distal ALE isoforms were four times more often localized to neurites than gene-proximal isoforms. Localized isoforms were induced during neuronal differentiation and enriched for motifs associated with muscleblind-like (Mbnl) family RNA-binding proteins. Depletion of Mbnl1 and/or Mbnl2 reduced localization of hundreds of transcripts, implicating Mbnls in localization of mRNAs to neurites. We provide evidence supporting a model in which the linkage between genomic position of ALEs and subcellular localization enables coordinated induction of localization-competent mRNA isoforms through a post-transcriptional regulatory program that is induced during differentiation and reversed in cellular reprogramming and cancer.
Collapse
Affiliation(s)
- J Matthew Taliaferro
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Marina Vidaki
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Ruan Oliveira
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Sara Olson
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Lijun Zhan
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Tanvi Saxena
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Eric T Wang
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Frank B Gertler
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Christopher B Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
362
|
Mattijssen S, Maraia RJ. LARP4 Is Regulated by Tumor Necrosis Factor Alpha in a Tristetraprolin-Dependent Manner. Mol Cell Biol 2016; 36:574-84. [PMID: 26644407 PMCID: PMC4751689 DOI: 10.1128/mcb.00804-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/14/2015] [Accepted: 11/20/2015] [Indexed: 01/09/2023] Open
Abstract
LARP4 is a protein with unknown function that independently binds to poly(A) RNA, RACK1, and the poly(A)-binding protein (PABPC1). Here, we report on its regulation. We found a conserved AU-rich element (ARE) in the human LARP4 mRNA 3' untranslated region (UTR). This ARE, but not its antisense version or a point-mutated version, significantly decreased the stability of β-globin reporter mRNA. We found that overexpression of tristetraprolin (TTP), but not its RNA binding mutant or the other ARE-binding proteins tested, decreased cellular LARP4 levels. RNA coimmunoprecipitation showed that TTP specifically associated with LARP4 mRNA in vivo. Consistent with this, mouse LARP4 accumulated to higher levels in TTP gene knockout (KO) cells than in control cells. Stimulation of WT cells with tumor necrosis factor alpha (TNF-α), which rapidly induces TTP, robustly decreased LARP4 with a coincident time course but had no such effect on LARP4B or La protein or on LARP4 in the TTP KO cells. The TNF-α-induced TTP pulse was followed by a transient decrease in LARP4 mRNA that was quickly followed by a subsequent transient decrease in LARP4 protein. Involvement of LARP4 as a target of TNF-α-TTP regulation provides a clue as to how its functional activity may be used in a physiologic pathway.
Collapse
Affiliation(s)
- Sandy Mattijssen
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA Commissioned Corps, U.S. Public Health Service, Washington, DC, USA
| |
Collapse
|
363
|
Ginanova V, Golubkova E, Kliver S, Bychkova E, Markoska K, Ivankova N, Tretyakova I, Evgen'ev M, Mamon L. Testis-specific products of the Drosophila melanogaster sbr gene, encoding nuclear export factor 1, are necessary for male fertility. Gene 2016; 577:153-160. [PMID: 26621383 DOI: 10.1016/j.gene.2015.11.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/18/2015] [Accepted: 11/21/2015] [Indexed: 01/08/2023]
Abstract
The evolutionarily conserved nuclear export factor 1 (NXF1) provides mRNA export from the nucleus to the cytoplasm. We described several testis-specific transcripts of the Drosophila melanogaster nxf1 gene designated “sbr” in this species via different PCR approaches and CAGE-seq analysis. Characteristically, most of them have truncated 3′UTRs compared with those in other organs. In addition to regular transcripts, there are shorter transcripts that begin in intron 3 of the sbr gene. These short, 5′-truncated testis-specific transcripts vary in terms of transcription start site and their ability to exclude or retain the last 237 nucleotides of intron 3 in their 5′UTR. Using an anti-SBR antibody against the C-terminal portion of this protein, we detected the major SBR protein (74 kDa) in all analyzed organs of the fly as well as a new smaller protein (60 kDa) found only in the testes. This protein corresponds to the detected sbr transcripts that start in intron 3, based on its molecular mass. We investigated the sbr12 allele of the sbr gene, which is lethal in homozygous females and causes dominant sterility in heterozygous males. Sequencing of the sbr12 gene allele revealed a 30-bp deletion in exon 9 without a frame shift.Western blot analysiswith an SBR-specific antibody revealed two bands of the expected size in the testes of heterozygous males. Thus, a mutant protein along with the normal protein presents in the testes of lethal allele-bearing flies and the described shorter testis-specific variant of SBR may account for male sterility.
Collapse
Affiliation(s)
- Victoria Ginanova
- Animal Genetics Laboratory, Department of Genetics and Biotechnology, Faculty of Biology, Saint-Petersburg State University, Universitetskaya nab. 7-9, Saint-Petersburg 199034, Russia
| | - Elena Golubkova
- Animal Genetics Laboratory, Department of Genetics and Biotechnology, Faculty of Biology, Saint-Petersburg State University, Universitetskaya nab. 7-9, Saint-Petersburg 199034, Russia
| | - Sergei Kliver
- Animal Genetics Laboratory, Department of Genetics and Biotechnology, Faculty of Biology, Saint-Petersburg State University, Universitetskaya nab. 7-9, Saint-Petersburg 199034, Russia
| | - Elina Bychkova
- Animal Genetics Laboratory, Department of Genetics and Biotechnology, Faculty of Biology, Saint-Petersburg State University, Universitetskaya nab. 7-9, Saint-Petersburg 199034, Russia
| | - Katerina Markoska
- Animal Genetics Laboratory, Department of Genetics and Biotechnology, Faculty of Biology, Saint-Petersburg State University, Universitetskaya nab. 7-9, Saint-Petersburg 199034, Russia
| | - Natalia Ivankova
- Animal Genetics Laboratory, Department of Genetics and Biotechnology, Faculty of Biology, Saint-Petersburg State University, Universitetskaya nab. 7-9, Saint-Petersburg 199034, Russia
| | - Irina Tretyakova
- Animal Genetics Laboratory, Department of Genetics and Biotechnology, Faculty of Biology, Saint-Petersburg State University, Universitetskaya nab. 7-9, Saint-Petersburg 199034, Russia
| | - Michael Evgen'ev
- Institute of Cell Biophysics RAS, Pushchino, Moscow region 142290, Russia; Engelhardt Institute of Molecular Biology RAS, Vavilov str. 32, Moscow 119991, Russia.
| | - Ludmila Mamon
- Animal Genetics Laboratory, Department of Genetics and Biotechnology, Faculty of Biology, Saint-Petersburg State University, Universitetskaya nab. 7-9, Saint-Petersburg 199034, Russia
| |
Collapse
|
364
|
Cyrek M, Fedak H, Ciesielski A, Guo Y, Sliwa A, Brzezniak L, Krzyczmonik K, Pietras Z, Kaczanowski S, Liu F, Swiezewski S. Seed Dormancy in Arabidopsis Is Controlled by Alternative Polyadenylation of DOG1. PLANT PHYSIOLOGY 2016; 170:947-55. [PMID: 26620523 PMCID: PMC4734566 DOI: 10.1104/pp.15.01483] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/25/2015] [Indexed: 05/19/2023]
Abstract
DOG1 (Delay of Germination 1) is a key regulator of seed dormancy in Arabidopsis (Arabidopsis thaliana) and other plants. Interestingly, the C terminus of DOG1 is either absent or not conserved in many plant species. Here, we show that in Arabidopsis, DOG1 transcript is subject to alternative polyadenylation. In line with this, mutants in RNA 3' processing complex display weakened seed dormancy in parallel with defects in DOG1 proximal polyadenylation site selection, suggesting that the short DOG1 transcript is functional. This is corroborated by the finding that the proximally polyadenylated short DOG1 mRNA is translated in vivo and complements the dog1 mutant. In summary, our findings indicate that the short DOG1 protein isoform produced from the proximally polyadenylated DOG1 mRNA is a key player in the establishment of seed dormancy in Arabidopsis and characterizes a set of mutants in RNA 3' processing complex required for production of proximally polyadenylated functional DOG1 transcript.
Collapse
Affiliation(s)
- Malgorzata Cyrek
- Institute of Biochemistry and Biophysics, Department of Protein Biosynthesis, Pawinskiego 5a, 02-106 Warsaw, Poland (M.C., H.F., A.C., Y.G., A.S., L.B., K.K., Z.P., S.K., S.S.); Warsaw University, Department of Chemistry, Pasteura 1, 02-093 Warsaw, Poland (A.C.); andQueen's University Belfast, School of Biological Sciences, Belfast BT9 7BL, Northern Ireland (F.L.)
| | - Halina Fedak
- Institute of Biochemistry and Biophysics, Department of Protein Biosynthesis, Pawinskiego 5a, 02-106 Warsaw, Poland (M.C., H.F., A.C., Y.G., A.S., L.B., K.K., Z.P., S.K., S.S.); Warsaw University, Department of Chemistry, Pasteura 1, 02-093 Warsaw, Poland (A.C.); andQueen's University Belfast, School of Biological Sciences, Belfast BT9 7BL, Northern Ireland (F.L.)
| | - Arkadiusz Ciesielski
- Institute of Biochemistry and Biophysics, Department of Protein Biosynthesis, Pawinskiego 5a, 02-106 Warsaw, Poland (M.C., H.F., A.C., Y.G., A.S., L.B., K.K., Z.P., S.K., S.S.); Warsaw University, Department of Chemistry, Pasteura 1, 02-093 Warsaw, Poland (A.C.); andQueen's University Belfast, School of Biological Sciences, Belfast BT9 7BL, Northern Ireland (F.L.)
| | - Yanwu Guo
- Institute of Biochemistry and Biophysics, Department of Protein Biosynthesis, Pawinskiego 5a, 02-106 Warsaw, Poland (M.C., H.F., A.C., Y.G., A.S., L.B., K.K., Z.P., S.K., S.S.); Warsaw University, Department of Chemistry, Pasteura 1, 02-093 Warsaw, Poland (A.C.); andQueen's University Belfast, School of Biological Sciences, Belfast BT9 7BL, Northern Ireland (F.L.)
| | - Aleksandra Sliwa
- Institute of Biochemistry and Biophysics, Department of Protein Biosynthesis, Pawinskiego 5a, 02-106 Warsaw, Poland (M.C., H.F., A.C., Y.G., A.S., L.B., K.K., Z.P., S.K., S.S.); Warsaw University, Department of Chemistry, Pasteura 1, 02-093 Warsaw, Poland (A.C.); andQueen's University Belfast, School of Biological Sciences, Belfast BT9 7BL, Northern Ireland (F.L.)
| | - Lien Brzezniak
- Institute of Biochemistry and Biophysics, Department of Protein Biosynthesis, Pawinskiego 5a, 02-106 Warsaw, Poland (M.C., H.F., A.C., Y.G., A.S., L.B., K.K., Z.P., S.K., S.S.); Warsaw University, Department of Chemistry, Pasteura 1, 02-093 Warsaw, Poland (A.C.); andQueen's University Belfast, School of Biological Sciences, Belfast BT9 7BL, Northern Ireland (F.L.)
| | - Katarzyna Krzyczmonik
- Institute of Biochemistry and Biophysics, Department of Protein Biosynthesis, Pawinskiego 5a, 02-106 Warsaw, Poland (M.C., H.F., A.C., Y.G., A.S., L.B., K.K., Z.P., S.K., S.S.); Warsaw University, Department of Chemistry, Pasteura 1, 02-093 Warsaw, Poland (A.C.); andQueen's University Belfast, School of Biological Sciences, Belfast BT9 7BL, Northern Ireland (F.L.)
| | - Zbigniew Pietras
- Institute of Biochemistry and Biophysics, Department of Protein Biosynthesis, Pawinskiego 5a, 02-106 Warsaw, Poland (M.C., H.F., A.C., Y.G., A.S., L.B., K.K., Z.P., S.K., S.S.); Warsaw University, Department of Chemistry, Pasteura 1, 02-093 Warsaw, Poland (A.C.); andQueen's University Belfast, School of Biological Sciences, Belfast BT9 7BL, Northern Ireland (F.L.)
| | - Szymon Kaczanowski
- Institute of Biochemistry and Biophysics, Department of Protein Biosynthesis, Pawinskiego 5a, 02-106 Warsaw, Poland (M.C., H.F., A.C., Y.G., A.S., L.B., K.K., Z.P., S.K., S.S.); Warsaw University, Department of Chemistry, Pasteura 1, 02-093 Warsaw, Poland (A.C.); andQueen's University Belfast, School of Biological Sciences, Belfast BT9 7BL, Northern Ireland (F.L.)
| | - Fuquan Liu
- Institute of Biochemistry and Biophysics, Department of Protein Biosynthesis, Pawinskiego 5a, 02-106 Warsaw, Poland (M.C., H.F., A.C., Y.G., A.S., L.B., K.K., Z.P., S.K., S.S.); Warsaw University, Department of Chemistry, Pasteura 1, 02-093 Warsaw, Poland (A.C.); andQueen's University Belfast, School of Biological Sciences, Belfast BT9 7BL, Northern Ireland (F.L.)
| | - Szymon Swiezewski
- Institute of Biochemistry and Biophysics, Department of Protein Biosynthesis, Pawinskiego 5a, 02-106 Warsaw, Poland (M.C., H.F., A.C., Y.G., A.S., L.B., K.K., Z.P., S.K., S.S.); Warsaw University, Department of Chemistry, Pasteura 1, 02-093 Warsaw, Poland (A.C.); andQueen's University Belfast, School of Biological Sciences, Belfast BT9 7BL, Northern Ireland (F.L.)
| |
Collapse
|
365
|
Zhang KX, Tan L, Pellegrini M, Zipursky SL, McEwen JM. Rapid Changes in the Translatome during the Conversion of Growth Cones to Synaptic Terminals. Cell Rep 2016; 14:1258-1271. [PMID: 26832407 DOI: 10.1016/j.celrep.2015.12.102] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 12/04/2015] [Accepted: 12/21/2015] [Indexed: 12/01/2022] Open
Abstract
A common step in the formation of neural circuits is the conversion of growth cones to presynaptic terminals. Characterizing patterns of global gene expression during this process is problematic due to the cellular diversity of the brain and the complex temporal dynamics of development. Here, we take advantage of the synchronous conversion of Drosophila photoreceptor growth cones into presynaptic terminals to explore global changes in gene expression during presynaptic differentiation. Using a tandemly tagged ribosome trap (T-TRAP) and RNA sequencing (RNA-seq) at multiple developmental times, we observed dramatic changes in coding and non-coding RNAs with presynaptic differentiation. Marked changes in the mRNA encoding transmembrane and secreted proteins occurred preferentially. The 3' UTRs of transcripts encoding synaptic proteins were preferentially lengthened, and these extended UTRs were preferentially enriched for sites recognized by RNA binding proteins. These data provide a rich resource for uncovering the regulatory logic underlying presynaptic differentiation.
Collapse
Affiliation(s)
- Kelvin Xi Zhang
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles CA 90095, USA
| | - Liming Tan
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles CA 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, P.O. Box 951606, Los Angeles, CA 90095, USA
| | - S Lawrence Zipursky
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles CA 90095, USA.
| | - Jason M McEwen
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles CA 90095, USA
| |
Collapse
|
366
|
Huang G, Huang S, Wang R, Yan X, Li Y, Feng Y, Wang S, Yang X, Chen L, Li J, You L, Chen S, Luo G, Xu A. Dynamic Regulation of Tandem 3' Untranslated Regions in Zebrafish Spleen Cells during Immune Response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:715-725. [PMID: 26673144 DOI: 10.4049/jimmunol.1500847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 11/08/2015] [Indexed: 12/24/2022]
Abstract
Alternative polyadenylation (APA) has been found to be involved in tumorigenesis, development, and cell differentiation, as well as in the activation of several subsets of immune cells in vitro. Whether APA takes place in immune responses in vivo is largely unknown. We profiled the variation in tandem 3' untranslated regions (UTRs) in pathogen-challenged zebrafish and identified hundreds of APA genes with ∼ 10% being immune response genes. The detected immune response APA genes were enriched in TLR signaling, apoptosis, and JAK-STAT signaling pathways. A greater number of microRNA target sites and AU-rich elements were found in the extended 3' UTRs than in the common 3' UTRs of these APA genes. Further analysis suggested that microRNA and AU-rich element-mediated posttranscriptional regulation plays an important role in modulating the expression of APA genes. These results indicate that APA is extensively involved in immune responses in vivo, and it may be a potential new paradigm for immune regulation.
Collapse
Affiliation(s)
- Guangrui Huang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China; State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Shengfeng Huang
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Ruihua Wang
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Xinyu Yan
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Yuxin Li
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Yuchao Feng
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Shaozhou Wang
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Xia Yang
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Liutao Chen
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Jun Li
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Leiming You
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China; State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Guangbin Luo
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Anlong Xu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China; State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| |
Collapse
|
367
|
Ikeda T, Yoshitomi Y, Saito H, Shimasaki T, Yamaya H, Kobata T, Ishigaki Y, Tomosugi N, Yoshitake Y, Yonekura H. Regulation of soluble Flt-1 (VEGFR-1) production by hnRNP D and protein arginine methylation. Mol Cell Biochem 2016; 413:155-64. [DOI: 10.1007/s11010-015-2649-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 12/23/2015] [Indexed: 11/30/2022]
|
368
|
Neve J, Burger K, Li W, Hoque M, Patel R, Tian B, Gullerova M, Furger A. Subcellular RNA profiling links splicing and nuclear DICER1 to alternative cleavage and polyadenylation. Genome Res 2015; 26:24-35. [PMID: 26546131 PMCID: PMC4691748 DOI: 10.1101/gr.193995.115] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 11/04/2015] [Indexed: 11/25/2022]
Abstract
Alternative cleavage and polyadenylation (APA) plays a crucial role in the regulation of gene expression across eukaryotes. Although APA is extensively studied, its regulation within cellular compartments and its physiological impact remains largely enigmatic. Here, we used a rigorous subcellular fractionation approach to compare APA profiles of cytoplasmic and nuclear RNA fractions from human cell lines. This approach allowed us to extract APA isoforms that are subjected to differential regulation and provided us with a platform to interrogate the molecular regulatory pathways that shape APA profiles in different subcellular locations. Here, we show that APA isoforms with shorter 3' UTRs tend to be overrepresented in the cytoplasm and appear to be cell-type-specific events. Nuclear retention of longer APA isoforms occurs and is partly a result of incomplete splicing contributing to the observed cytoplasmic bias of transcripts with shorter 3' UTRs. We demonstrate that the endoribonuclease III, DICER1, contributes to the establishment of subcellular APA profiles not only by expected cytoplasmic miRNA-mediated destabilization of APA mRNA isoforms, but also by affecting polyadenylation site choice.
Collapse
Affiliation(s)
- Jonathan Neve
- Department of Biochemistry, University of Oxford, OX1 3QU, United Kingdom
| | - Kaspar Burger
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom
| | - Wencheng Li
- Department of Biochemistry and Molecular Biology, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Mainul Hoque
- Department of Biochemistry and Molecular Biology, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Radhika Patel
- Department of Biochemistry, University of Oxford, OX1 3QU, United Kingdom
| | - Bin Tian
- Department of Biochemistry and Molecular Biology, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom
| | - Andre Furger
- Department of Biochemistry, University of Oxford, OX1 3QU, United Kingdom
| |
Collapse
|
369
|
Coordination of RNA Polymerase II Pausing and 3' End Processing Factor Recruitment with Alternative Polyadenylation. Mol Cell Biol 2015; 36:295-303. [PMID: 26527620 DOI: 10.1128/mcb.00898-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/28/2015] [Indexed: 11/20/2022] Open
Abstract
Most mammalian genes produce transcripts whose 3' ends are processed at multiple alternative positions by cleavage/polyadenylation (CPA). Poly(A) site cleavage frequently occurs cotranscriptionally and is facilitated by CPA factor binding to the RNA polymerase II (Pol II) C-terminal domain (CTD) phosphorylated on Ser2 residues of its heptad repeats (YS2PTSPS). The function of cotranscriptional events in the selection of alternative poly(A) sites is poorly understood. We investigated Pol II pausing, CTD Ser2 phosphorylation, and processing factor CstF recruitment at wild-type and mutant IgM transgenes that use alternative poly(A) sites to produce mRNAs encoding the secreted and membrane-bound forms of the immunoglobulin (Ig) heavy chain. The results show that the sites of Pol II pausing and processing factor recruitment change depending on which poly(A) site is utilized. In contrast, the extent of Pol II CTD Ser2 phosphorylation does not closely correlate with poly(A) site selection. We conclude that changes in properties of the transcription elongation complex closely correlate with utilization of different poly(A) sites, suggesting that cotranscriptional events may influence the decision between alternative modes of pre-mRNA 3' end processing.
Collapse
|
370
|
Afonso-Grunz F. Putative alternative polyadenylation (APA) events in the early interaction of Salmonella enterica Typhimurium and human host cells. GENOMICS DATA 2015; 6:222-7. [PMID: 26697380 PMCID: PMC4664775 DOI: 10.1016/j.gdata.2015.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Fabian Afonso-Grunz
- Goethe University Frankfurt am Main, Institute for Molecular BioSciences, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.Goethe University Frankfurt am MainInstitute for Molecular BioSciencesMax-von-Laue-Str. 9Frankfurt am Main60438Germany.
| |
Collapse
|
371
|
Abstract
Alternative pre-mRNA processing greatly increases the coding capacity of the human genome and regulatory factors involved in RNA processing play critical roles in tissue development and maintenance. Indeed, abnormal functions of RNA processing factors have been associated with a wide range of human diseases from cancer to neurodegenerative disorders. While many studies have emphasized the importance of alternative splicing (AS), recent high-throughput sequencing efforts have also allowed global surveys of alternative polyadenylation (APA). For the majority of pre-mRNAs, as well as some non-coding transcripts such as lncRNAs, APA selects different 3'-ends and thus modulates the availability of regulatory sites recognized by trans-acting regulatory effectors, including miRs and RNA binding proteins (RBPs). Here, we compare the available technologies for assessing global polyadenylation patterns, summarize the roles of auxiliary factors on APA, and discuss the impact of differential polyA site (pA) selection in the determination of cell fate, transformation and disease.
Collapse
Affiliation(s)
- Ranjan Batra
- a Department of Cellular and Molecular Medicine ; Institute for Genomic Medicine; UCSD Stem Cell Program; University of California ; San Diego , CA USA
| | | | | |
Collapse
|
372
|
Abstract
A majority of messenger RNA precursors (pre-mRNAs) in the higher eukaryotes undergo alternative splicing to generate more than one mature product. By targeting the open reading frame region this process increases diversity of protein isoforms beyond the nominal coding capacity of the genome. However, alternative splicing also frequently controls output levels and spatiotemporal features of cellular and organismal gene expression programs. Here we discuss how these non-coding functions of alternative splicing contribute to development through regulation of mRNA stability, translational efficiency and cellular localization.
Collapse
|
373
|
Naumann N, Schwaab J, Metzgeroth G, Jawhar M, Haferlach C, Göhring G, Schlegelberger B, Dietz CT, Schnittger S, Lotfi S, Gärtner M, Dang TA, Hofmann WK, Cross NCP, Reiter A, Fabarius A. Fusion of PDGFRB to MPRIP, CPSF6, and GOLGB1 in three patients with eosinophilia-associated myeloproliferative neoplasms. Genes Chromosomes Cancer 2015; 54:762-70. [PMID: 26355392 DOI: 10.1002/gcc.22287] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/02/2015] [Accepted: 07/02/2015] [Indexed: 12/26/2022] Open
Abstract
In eosinophilia-associated myeloproliferative neoplasms (MPN-eo), constitutive activation of protein tyrosine kinases (TK) as consequence of translocations, inversions, or insertions and creation of TK fusion genes is recurrently observed. The most commonly involved TK and their potential TK inhibitors include PDGFRA at 4q12 or PDGFRB at 5q33 (imatinib), FGFR1 at 8p11 (ponatinib), and JAK2 at 9p24 (ruxolitinib). We here report the identification of three new PDGFRB fusion genes in three male MPN-eo patients: MPRIP-PDGFRB in a case with t(5;17)(q33;p11), CPSF6-PDGFRB in a case with t(5;12)(q33;q15), and GOLGB1-PDGFRB in a case with t(3;5)(q13;q33). The fusion proteins identified by 5'-rapid amplification of cDNA ends polymerase chain reaction (PCR) or DNA-based long distance inverse PCR are predicted to contain the TK domain of PDGFRB. The partner genes contain domains like coiled-coil structures, which are likely to cause dimerization and activation of the TK. In all patients, imatinib induced rapid and durable complete remissions.
Collapse
Affiliation(s)
- Nicole Naumann
- III. Medizinische Klinik, Universitätsmedizin Mannheim, Mannheim, Germany
| | - Juliana Schwaab
- III. Medizinische Klinik, Universitätsmedizin Mannheim, Mannheim, Germany
| | - Georgia Metzgeroth
- III. Medizinische Klinik, Universitätsmedizin Mannheim, Mannheim, Germany
| | - Mohamad Jawhar
- III. Medizinische Klinik, Universitätsmedizin Mannheim, Mannheim, Germany
| | | | - Gudrun Göhring
- Institut Für Humangenetik, Medizinische Hochschule Hannover, Hannover, Germany
| | | | - Christian T Dietz
- III. Medizinische Klinik, Universitätsmedizin Mannheim, Mannheim, Germany
| | | | - Sina Lotfi
- Onkologie MVZ Am Siloah St. Trudpert Klinikum Pforzheim, Pforzheim, Germany
| | | | - Tu-Anh Dang
- Medizinische Klinik V, Klinikum Darmstadt, Darmstadt, Germany
| | | | - Nicholas C P Cross
- Wessex Regional Genetics Laboratory, Salisbury, UK.,Faculty of Medicine, University of Southampton, UK
| | - Andreas Reiter
- III. Medizinische Klinik, Universitätsmedizin Mannheim, Mannheim, Germany
| | - Alice Fabarius
- III. Medizinische Klinik, Universitätsmedizin Mannheim, Mannheim, Germany
| |
Collapse
|
374
|
Afonso-Grunz F, Müller S. Principles of miRNA-mRNA interactions: beyond sequence complementarity. Cell Mol Life Sci 2015; 72:3127-41. [PMID: 26037721 PMCID: PMC11114000 DOI: 10.1007/s00018-015-1922-2] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/26/2015] [Accepted: 05/04/2015] [Indexed: 11/24/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression by altering the translation efficiency and/or stability of targeted mRNAs. In vertebrates, more than 50% of all protein-coding RNAs are assumed to be subject to miRNA-mediated control, but current high-throughput methods that reliably measure miRNA-mRNA interactions either require prior knowledge of target mRNAs or elaborate preparation procedures. Consequently, experimentally validated interactions are relatively rare. Furthermore, in silico prediction based on sequence complementarity of miRNAs and their corresponding target sites suffers from extremely high false positive rates. Apparently, sequence complementarity alone is often insufficient to reflect the complex post-transcriptional regulation of mRNAs by miRNAs, which is especially true for animals. Therefore, combined analysis of small non-coding and protein-coding RNAs is indispensable to better understand and predict the complex dynamics of miRNA-regulated gene expression. Single-nucleotide polymorphisms (SNPs) and alternative polyadenylation (APA) can affect miRNA binding of a given transcript from different individuals and tissues, and especially APA is currently emerging as a major factor that contributes to variations in miRNA-mRNA interplay in animals. In this review, we focus on the influence of APA and SNPs on miRNA-mediated gene regulation and discuss the computational approaches that take these mechanisms into account.
Collapse
Affiliation(s)
- Fabian Afonso-Grunz
- GenXPro GmbH, Frankfurt Innovation Center Biotechnology, Altenhöferallee 3, 60438, Frankfurt am Main, Germany,
| | | |
Collapse
|
375
|
Harrison PF, Powell DR, Clancy JL, Preiss T, Boag PR, Traven A, Seemann T, Beilharz TH. PAT-seq: a method to study the integration of 3'-UTR dynamics with gene expression in the eukaryotic transcriptome. RNA (NEW YORK, N.Y.) 2015; 21:1502-10. [PMID: 26092945 PMCID: PMC4509939 DOI: 10.1261/rna.048355.114] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 04/20/2015] [Indexed: 05/21/2023]
Abstract
A major objective of systems biology is to quantitatively integrate multiple parameters from genome-wide measurements. To integrate gene expression with dynamics in poly(A) tail length and adenylation site, we developed a targeted next-generation sequencing approach, Poly(A)-Test RNA-sequencing. PAT-seq returns (i) digital gene expression, (ii) polyadenylation site/s, and (iii) the polyadenylation-state within and between eukaryotic transcriptomes. PAT-seq differs from previous 3' focused RNA-seq methods in that it depends strictly on 3' adenylation within total RNA samples and that the full-native poly(A) tail is included in the sequencing libraries. Here, total RNA samples from budding yeast cells were analyzed to identify the intersect between adenylation state and gene expression in response to loss of the major cytoplasmic deadenylase Ccr4. Furthermore, concordant changes to gene expression and adenylation-state were demonstrated in the classic Crabtree-Warburg metabolic shift. Because all polyadenylated RNA is interrogated by the approach, alternative adenylation sites, noncoding RNA and RNA-decay intermediates were also identified. Most important, the PAT-seq approach uses standard sequencing procedures, supports significant multiplexing, and thus replication and rigorous statistical analyses can for the first time be brought to the measure of 3'-UTR dynamics genome wide.
Collapse
Affiliation(s)
- Paul F Harrison
- Victorian Bioinformatics Consortium, Monash University, Clayton 3800, Australia Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative, Carlton 3053, Australia Monash Bioinformatics Platform, Monash University, Clayton 3800, Australia
| | - David R Powell
- Victorian Bioinformatics Consortium, Monash University, Clayton 3800, Australia Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative, Carlton 3053, Australia Monash Bioinformatics Platform, Monash University, Clayton 3800, Australia
| | - Jennifer L Clancy
- EMBL-Australia Collaborating Laboratory, Genome Biology Department, The John Curtin School of Medical Research (JCSMR), The Australian National University, Acton (Canberra) 2601, Australian Capital Territory, Australia
| | - Thomas Preiss
- EMBL-Australia Collaborating Laboratory, Genome Biology Department, The John Curtin School of Medical Research (JCSMR), The Australian National University, Acton (Canberra) 2601, Australian Capital Territory, Australia Victor Chang Cardiac Research Institute, Darlinghurst (Sydney), New South Wales 2010, Australia
| | - Peter R Boag
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Australia
| | - Ana Traven
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Australia
| | - Torsten Seemann
- Victorian Bioinformatics Consortium, Monash University, Clayton 3800, Australia Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative, Carlton 3053, Australia
| | - Traude H Beilharz
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Australia
| |
Collapse
|
376
|
Masuda A, Takeda JI, Okuno T, Okamoto T, Ohkawara B, Ito M, Ishigaki S, Sobue G, Ohno K. Position-specific binding of FUS to nascent RNA regulates mRNA length. Genes Dev 2015; 29:1045-57. [PMID: 25995189 PMCID: PMC4441052 DOI: 10.1101/gad.255737.114] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
More than half of all human genes produce prematurely terminated polyadenylated short mRNAs. Masuda et al. show that FUS is frequently clustered around an alternative polyadenylation (APA) site of nascent RNA, stalls RNAP II, and prematurely terminates transcription in neuronal cells. Position-specific regulation of mRNA lengths by FUS is operational in two-thirds of transcripts in neuronal cells, with enrichment in genes involved in synaptic activities. More than half of all human genes produce prematurely terminated polyadenylated short mRNAs. However, the underlying mechanisms remain largely elusive. CLIP-seq (cross-linking immunoprecipitation [CLIP] combined with deep sequencing) of FUS (fused in sarcoma) in neuronal cells showed that FUS is frequently clustered around an alternative polyadenylation (APA) site of nascent RNA. ChIP-seq (chromatin immunoprecipitation [ChIP] combined with deep sequencing) of RNA polymerase II (RNAP II) demonstrated that FUS stalls RNAP II and prematurely terminates transcription. When an APA site is located upstream of an FUS cluster, FUS enhances polyadenylation by recruiting CPSF160 and up-regulates the alternative short transcript. In contrast, when an APA site is located downstream from an FUS cluster, polyadenylation is not activated, and the RNAP II-suppressing effect of FUS leads to down-regulation of the alternative short transcript. CAGE-seq (cap analysis of gene expression [CAGE] combined with deep sequencing) and PolyA-seq (a strand-specific and quantitative method for high-throughput sequencing of 3' ends of polyadenylated transcripts) revealed that position-specific regulation of mRNA lengths by FUS is operational in two-thirds of transcripts in neuronal cells, with enrichment in genes involved in synaptic activities.
Collapse
Affiliation(s)
- Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Showa-ku, Nagoya 466-8550, Japan
| | - Jun-ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Showa-ku, Nagoya 466-8550, Japan
| | - Tatsuya Okuno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Showa-ku, Nagoya 466-8550, Japan
| | - Takaaki Okamoto
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Showa-ku, Nagoya 466-8550, Japan
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Showa-ku, Nagoya 466-8550, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Showa-ku, Nagoya 466-8550, Japan
| | - Shinsuke Ishigaki
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Showa-ku, Nagoya 466-8550, Japan;
| |
Collapse
|
377
|
Gordon SP, Tseng E, Salamov A, Zhang J, Meng X, Zhao Z, Kang D, Underwood J, Grigoriev IV, Figueroa M, Schilling JS, Chen F, Wang Z. Widespread Polycistronic Transcripts in Fungi Revealed by Single-Molecule mRNA Sequencing. PLoS One 2015; 10:e0132628. [PMID: 26177194 PMCID: PMC4503453 DOI: 10.1371/journal.pone.0132628] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/16/2015] [Indexed: 12/27/2022] Open
Abstract
Genes in prokaryotic genomes are often arranged into clusters and co-transcribed into polycistronic RNAs. Isolated examples of polycistronic RNAs were also reported in some higher eukaryotes but their presence was generally considered rare. Here we developed a long-read sequencing strategy to identify polycistronic transcripts in several mushroom forming fungal species including Plicaturopsis crispa, Phanerochaete chrysosporium, Trametes versicolor, and Gloeophyllum trabeum. We found genome-wide prevalence of polycistronic transcription in these Agaricomycetes, involving up to 8% of the transcribed genes. Unlike polycistronic mRNAs in prokaryotes, these co-transcribed genes are also independently transcribed. We show that polycistronic transcription may interfere with expression of the downstream tandem gene. Further comparative genomic analysis indicates that polycistronic transcription is conserved among a wide range of mushroom forming fungi. In summary, our study revealed, for the first time, the genome prevalence of polycistronic transcription in a phylogenetic range of higher fungi. Furthermore, we systematically show that our long-read sequencing approach and combined bioinformatics pipeline is a generic powerful tool for precise characterization of complex transcriptomes that enables identification of mRNA isoforms not recovered via short-read assembly.
Collapse
Affiliation(s)
- Sean P. Gordon
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Elizabeth Tseng
- Pacific Biosciences, Menlo Park, California, United States of America
| | - Asaf Salamov
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Jiwei Zhang
- Department of Bioproducts & Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Xiandong Meng
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Zhiying Zhao
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Dongwan Kang
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Jason Underwood
- Pacific Biosciences, Menlo Park, California, United States of America
| | - Igor V. Grigoriev
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Melania Figueroa
- Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Jonathan S. Schilling
- Department of Bioproducts & Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Feng Chen
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Zhong Wang
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
- School of Natural Sciences, University of California at Merced, Merced, California, United States of America
- * E-mail:
| |
Collapse
|
378
|
Shi Y, Manley JL. The end of the message: multiple protein-RNA interactions define the mRNA polyadenylation site. Genes Dev 2015; 29:889-97. [PMID: 25934501 PMCID: PMC4421977 DOI: 10.1101/gad.261974.115] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Recent studies have significantly reshaped current models for the protein–RNA interactions involved in poly(A) site recognition. Here, Shi and Manley review the recent advances in this area and provide a perspective for future studies. The key RNA sequence elements and protein factors necessary for 3′ processing of polyadenylated mRNA precursors are well known. Recent studies, however, have significantly reshaped current models for the protein–RNA interactions involved in poly(A) site recognition, painting a picture more complex than previously envisioned and also providing new insights into regulation of this important step in gene expression. Here we review the recent advances in this area and provide a perspective for future studies.
Collapse
Affiliation(s)
- Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, California 92697, USA;
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
379
|
The mesmiRizing complexity of microRNAs for striated muscle tissue engineering. Adv Drug Deliv Rev 2015; 88:37-52. [PMID: 25912658 DOI: 10.1016/j.addr.2015.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 03/31/2015] [Accepted: 04/15/2015] [Indexed: 12/12/2022]
Abstract
microRNAs (miRs) are small non-protein-coding RNAs, able to post-transcriptionally regulate many genes and exert pleiotropic effects. Alteration of miR levels in tissues and in the circulation has been associated with various pathological and regenerative conditions. In this regard, tissue engineering of cardiac and skeletal muscles is a fascinating context for harnessing the complexity of miR-based circuitries and signals. In this review, we will focus on miR-driven regulation of cardiac and skeletal myogenic routes in homeostatic and challenging states. Furthermore, we will survey the intriguing perspective of exosomal and circulating miRs as novel paracrine players, potentially useful for current and future approaches of regenerative medicine for the striated muscles.
Collapse
|
380
|
Zhang Y, Gu L, Hou Y, Wang L, Deng X, Hang R, Chen D, Zhang X, Zhang Y, Liu C, Cao X. Integrative genome-wide analysis reveals HLP1, a novel RNA-binding protein, regulates plant flowering by targeting alternative polyadenylation. Cell Res 2015; 25:864-76. [PMID: 26099751 PMCID: PMC4493284 DOI: 10.1038/cr.2015.77] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/17/2015] [Accepted: 05/25/2015] [Indexed: 12/19/2022] Open
Abstract
Alternative polyadenylation (APA) is a widespread mechanism for gene regulation and has been implicated in flowering, but the molecular basis governing the choice of a specific poly(A) site during the vegetative-to-reproductive growth transition remains unclear. Here we characterize HLP1, an hnRNP A/B protein as a novel regulator for pre-mRNA 3′-end processing in Arabidopsis. Genetic analysis reveals that HLP1 suppresses Flowering Locus C (FLC), a key repressor of flowering in Arabidopsis. Genome-wide mapping of HLP1-RNA interactions indicates that HLP1 binds preferentially to A-rich and U-rich elements around cleavage and polyadenylation sites, implicating its role in 3′-end formation. We show HLP1 is significantly enriched at transcripts involved in RNA metabolism and flowering. Comprehensive profiling of the poly(A) site usage reveals that HLP1 mutations cause thousands of poly(A) site shifts. A distal-to-proximal poly(A) site shift in the flowering regulator FCA, a direct target of HLP1, leads to upregulation of FLC and delayed flowering. Our results elucidate that HLP1 is a novel factor involved in 3′-end processing and controls reproductive timing via targeting APA.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lianfeng Gu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yifeng Hou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lulu Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Runlai Hang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dong Chen
- Center for Genome Analysis, ABLife Inc., Novonest Building, 8 Nanhu Avenue, East Lake Hi-Tech Development Zone, Wuhan, Hubei 430064, China
| | - Xiansheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yi Zhang
- Center for Genome Analysis, ABLife Inc., Novonest Building, 8 Nanhu Avenue, East Lake Hi-Tech Development Zone, Wuhan, Hubei 430064, China
| | - Chunyan Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaofeng Cao
- 1] State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China [2] Collaborative Innovation Center of Genetics and Development, Shanghai 200433, China
| |
Collapse
|
381
|
Yamtich J, Heo SJ, Dhahbi J, Martin DIK, Boffelli D. piRNA-like small RNAs mark extended 3'UTRs present in germ and somatic cells. BMC Genomics 2015; 16:462. [PMID: 26076733 PMCID: PMC4469462 DOI: 10.1186/s12864-015-1662-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/29/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Piwi-interacting RNAs (piRNAs) are a class of small RNAs; distinct types of piRNAs are expressed in the mammalian testis at different stages of development. The function of piRNAs expressed in the adult testis is not well established. We conducted a detailed characterization of piRNAs aligning at or near the 3' UTRs of protein-coding genes in a deep dataset of small RNAs from adult mouse testis. RESULTS We identified 2710 piRNA clusters associated with 3' UTRs, including 1600 that overlapped genes not previously associated with piRNAs. 35% of the clusters extend beyond the annotated transcript; we find that these clusters correspond to, and are likely derived from, novel polyadenylated mRNA isoforms that contain previously unannotated extended 3'UTRs. Extended 3' UTRs, and small RNAs derived from them, are also present in somatic tissues; a subset of these somatic 3'UTR small RNA clusters are absent in mice lacking MIWI2, indicating a role for MIWI2 in the metabolism of somatic small RNAs. CONCLUSIONS The finding that piRNAs are processed from extended 3' UTRs suggests a role for piRNAs in the remodeling of 3' UTRs. The presence of both clusters and extended 3'UTRs in somatic cells, with evidence for involvement of MIWI2, indicates that this pathway is more broadly distributed than currently appreciated.
Collapse
Affiliation(s)
- Jennifer Yamtich
- Children's Hospital Oakland Research Institute, Oakland, CA, 94609, USA.
| | - Seok-Jin Heo
- Children's Hospital Oakland Research Institute, Oakland, CA, 94609, USA.
| | - Joseph Dhahbi
- Children's Hospital Oakland Research Institute, Oakland, CA, 94609, USA.
| | - David I K Martin
- Children's Hospital Oakland Research Institute, Oakland, CA, 94609, USA.
| | - Dario Boffelli
- Children's Hospital Oakland Research Institute, Oakland, CA, 94609, USA.
| |
Collapse
|
382
|
Velten L, Anders S, Pekowska A, Järvelin AI, Huber W, Pelechano V, Steinmetz LM. Single-cell polyadenylation site mapping reveals 3' isoform choice variability. Mol Syst Biol 2015; 11:812. [PMID: 26040288 PMCID: PMC4501847 DOI: 10.15252/msb.20156198] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cell-to-cell variability in gene expression is important for many processes in biology, including embryonic development and stem cell homeostasis. While heterogeneity of gene expression levels has been extensively studied, less attention has been paid to mRNA polyadenylation isoform choice. 3′ untranslated regions regulate mRNA fate, and their choice is tightly controlled during development, but how 3′ isoform usage varies within genetically and developmentally homogeneous cell populations has not been explored. Here, we perform genome-wide quantification of polyadenylation site usage in single mouse embryonic and neural stem cells using a novel single-cell transcriptomic method, BATSeq. By applying BATBayes, a statistical framework for analyzing single-cell isoform data, we find that while the developmental state of the cell globally determines isoform usage, single cells from the same state differ in the choice of isoforms. Notably this variation exceeds random selection with equal preference in all cells, a finding that was confirmed by RNA FISH data. Variability in 3′ isoform choice has potential implications on functional cell-to-cell heterogeneity as well as utility in resolving cell populations.
Collapse
Affiliation(s)
- Lars Velten
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Simon Anders
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Aleksandra Pekowska
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Aino I Järvelin
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Wolfgang Huber
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Vicent Pelechano
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Lars M Steinmetz
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany Stanford Genome Technology Center, Palo Alto, CA, USA Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
383
|
Burger K, Gullerova M. Swiss army knives: non-canonical functions of nuclear Drosha and Dicer. Nat Rev Mol Cell Biol 2015; 16:417-30. [DOI: 10.1038/nrm3994] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
384
|
Abstract
With the advances in deep-sequencing techniques over the last decade, the study of alternative cleavage and polyadenylation (APA) has shifted from individual gene to whole transcriptome analysis. Findings from such global studies have elevated APA to its currently accepted status as a major player in the regulation of eukaryotic gene expression. Although ~70% of human genes have been shown to contain multiple cleavage and polyadenylation sites, the extent of the consequences of APA and its role in regulating physiological processes are still largely unknown. The present review aims to summarize the experimental evidence that supports a physiological role of APA and highlights some of the shortcomings that need addressing to substantiate the widely proposed claim that APA is a key player in global gene regulation.
Collapse
|
385
|
Poly(A) Polymerase and the Nuclear Poly(A) Binding Protein, PABPN1, Coordinate the Splicing and Degradation of a Subset of Human Pre-mRNAs. Mol Cell Biol 2015; 35:2218-30. [PMID: 25896913 PMCID: PMC4456446 DOI: 10.1128/mcb.00123-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/11/2015] [Indexed: 12/13/2022] Open
Abstract
Most human protein-encoding transcripts contain multiple introns that are removed by splicing. Although splicing catalysis is frequently cotranscriptional, some introns are excised after polyadenylation. Accumulating evidence suggests that delayed splicing has regulatory potential, but the mechanisms are still not well understood. Here we identify a terminal poly(A) tail as being important for a subset of intron excision events that follow cleavage and polyadenylation. In these cases, splicing is promoted by the nuclear poly(A) binding protein, PABPN1, and poly(A) polymerase (PAP). PABPN1 promotes intron excision in the context of 3′-end polyadenylation but not when bound to internal A-tracts. Importantly, the ability of PABPN1 to promote splicing requires its RNA binding and, to a lesser extent, PAP-stimulatory functions. Interestingly, an N-terminal alanine expansion in PABPN1 that is thought to cause oculopharyngeal muscular dystrophy cannot completely rescue the effects of PABPN1 depletion, suggesting that this pathway may have relevance to disease. Finally, inefficient polyadenylation is associated with impaired recruitment of splicing factors to affected introns, which are consequently degraded by the exosome. Our studies uncover a new function for polyadenylation in controlling the expression of a subset of human genes via pre-mRNA splicing.
Collapse
|
386
|
Kim M, You BH, Nam JW. Global estimation of the 3' untranslated region landscape using RNA sequencing. Methods 2015; 83:111-7. [PMID: 25899044 DOI: 10.1016/j.ymeth.2015.04.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 11/26/2022] Open
Abstract
The 3' untranslated region (3' UTR) of mRNA contains elements that play regulatory roles in polyadenylation, localization, translation efficiency, and mRNA stability. Despite the significance of the 3' UTR, there is no popular method for annotating 3' UTRs and for profiling their isoforms. Recently, poly(A)-position profiling by sequencing (3P-seq) and other similar methods have successfully been used to annotate 3' UTRs; however, they contain complex RNA-biochemical experimental steps, resulting in a low yield of products. In this paper, we propose heuristic and regression methods to estimate and quantify the usage of 3' UTRs with widely profiled RNA sequencing (RNA-seq) data. With this approach, the 3' UTR usage estimated from RNA-seq was found to be highly correlated to that of 3P-seq, and poly(A) cleavage signals of 3' UTRs were detected upstream of the predicted poly(A) cleavage sites. Our methods predicted greater number of 3' UTRs than 3P-seq, which allows the profiling of the 3' UTRs of most expressed genes in diverse cell-types, stages, and species. Hence, the computational RNA-seq method for the estimation of the 3' UTR landscape would be useful as a tool for studying not only the functional roles of 3' UTR but also gene regulation by 3' UTR in a cell type-specific context. The method is implemented in open-source code, which is available at http://big.hanyang.ac.kr/GETUTR.
Collapse
Affiliation(s)
- MinHyeok Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133791, Republic of Korea; Institute of Computer Technology, Seoul National University, Seoul 151742, Republic of Korea
| | - Bo-Hyun You
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133791, Republic of Korea; Research Institute for Natural Sciences, Hanyang University, Seoul 133791, Republic of Korea
| | - Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133791, Republic of Korea; Research Institute for Natural Sciences, Hanyang University, Seoul 133791, Republic of Korea.
| |
Collapse
|
387
|
MicroRNA29a regulates IL-33-mediated tissue remodelling in tendon disease. Nat Commun 2015; 6:6774. [PMID: 25857925 PMCID: PMC4403384 DOI: 10.1038/ncomms7774] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 02/25/2015] [Indexed: 01/04/2023] Open
Abstract
MicroRNA (miRNA) has the potential for cross-regulation and functional integration of discrete biological processes during complex physiological events. Utilizing the common human condition tendinopathy as a model system to explore the cross-regulation of immediate inflammation and matrix synthesis by miRNA we observed that elevated IL-33 expression is a characteristic of early tendinopathy. Using in vitro tenocyte cultures and in vivo models of tendon damage, we demonstrate that such IL-33 expression plays a pivotal role in the transition from type 1 to type 3 collagen (Col3) synthesis and thus early tendon remodelling. Both IL-33 effector function, via its decoy receptor sST2, and Col3 synthesis are regulated by miRNA29a. Downregulation of miRNA29a in human tenocytes is sufficient to induce an increase in Col3 expression. These data provide a molecular mechanism of miRNA-mediated integration of the early pathophysiologic events that facilitate tissue remodelling in human tendon after injury.
Collapse
|
388
|
Jin Y, Geisberg JV, Moqtaderi Z, Ji Z, Hoque M, Tian B, Struhl K. Mapping 3' mRNA isoforms on a genomic scale. ACTA ACUST UNITED AC 2015; 110:4.23.1-4.23.17. [PMID: 25827089 DOI: 10.1002/0471142727.mb0423s110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Most eukaryotic genes are transcribed into mRNAs with alternative poly(A) sites. Emerging evidence suggests that mRNA isoforms with alternative poly(A) sites can perform critical regulatory functions in numerous biological processes. In recent years, a number of strategies utilizing high-throughput sequencing technologies have been developed to aid in the identification of genome-wide poly(A) sites. This unit describes a modified protocol for a recently published 3'READS (3' region extraction and deep sequencing) method that accurately identifies genome-wide poly(A) sites and that can be used to quantify the relative abundance of the resulting 3' mRNA isoforms. This approach minimizes nonspecific sequence reads due to internal priming and typically yields a high percentage of sequence reads that are ideally suited for accurate poly(A) identification.
Collapse
Affiliation(s)
- Yi Jin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Joseph V Geisberg
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Zarmik Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Zhe Ji
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Mainul Hoque
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
389
|
Smith JE, Baker KE. Nonsense-mediated RNA decay--a switch and dial for regulating gene expression. Bioessays 2015; 37:612-23. [PMID: 25820233 DOI: 10.1002/bies.201500007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Nonsense-mediated RNA decay (NMD) represents an established quality control checkpoint for gene expression that protects cells from consequences of gene mutations and errors during RNA biogenesis that lead to premature termination during translation. Characterization of NMD-sensitive transcriptomes has revealed, however, that NMD targets not only aberrant transcripts but also a broad array of mRNA isoforms expressed from many endogenous genes. NMD is thus emerging as a master regulator that drives both fine and coarse adjustments in steady-state RNA levels in the cell. Importantly, while NMD activity is subject to autoregulation as a means to maintain homeostasis, modulation of the pathway by external cues provides a means to reprogram gene expression and drive important biological processes. Finally, the unanticipated observation that transcripts predicted to lack protein-coding capacity are also sensitive to this translation-dependent surveillance mechanism implicates NMD in regulating RNA function in new and diverse ways.
Collapse
Affiliation(s)
- Jenna E Smith
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Kristian E Baker
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
390
|
Hinske LC, Galante PAF, Limbeck E, Möhnle P, Parmigiani RB, Ohno-Machado L, Camargo AA, Kreth S. Alternative polyadenylation allows differential negative feedback of human miRNA miR-579 on its host gene ZFR. PLoS One 2015; 10:e0121507. [PMID: 25799583 PMCID: PMC4370670 DOI: 10.1371/journal.pone.0121507] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/31/2015] [Indexed: 02/02/2023] Open
Abstract
About half of the known miRNA genes are located within protein-coding host genes, and are thus subject to co-transcription. Accumulating data indicate that this coupling may be an intrinsic mechanism to directly regulate the host gene's expression, constituting a negative feedback loop. Inevitably, the cell requires a yet largely unknown repertoire of methods to regulate this control mechanism. We propose APA as one possible mechanism by which negative feedback of intronic miRNA on their host genes might be regulated. Using in-silico analyses, we found that host genes that contain seed matching sites for their intronic miRNAs yield longer 32UTRs with more polyadenylation sites. Additionally, the distribution of polyadenylation signals differed significantly between these host genes and host genes of miRNAs that do not contain potential miRNA binding sites. We then transferred these in-silico results to a biological example and investigated the relationship between ZFR and its intronic miRNA miR-579 in a U87 cell line model. We found that ZFR is targeted by its intronic miRNA miR-579 and that alternative polyadenylation allows differential targeting. We additionally used bioinformatics analyses and RNA-Seq to evaluate a potential cross-talk between intronic miRNAs and alternative polyadenylation. CPSF2, a gene previously associated with alternative polyadenylation signal recognition, might be linked to intronic miRNA negative feedback by altering polyadenylation signal utilization.
Collapse
Affiliation(s)
- Ludwig Christian Hinske
- Research Group Molecular Medicine, Department of Anaesthesiology, Clinic of the University of Munich, Munich, Germany
| | | | - Elisabeth Limbeck
- Molecular Oncology Center, Sírio Libanês Hospital, São Paulo, Brazil
| | - Patrick Möhnle
- Research Group Molecular Medicine, Department of Anaesthesiology, Clinic of the University of Munich, Munich, Germany
| | | | - Lucila Ohno-Machado
- Division of Biomedical Informatics, University of California San Diego, La Jolla, California, United States of America
| | | | - Simone Kreth
- Research Group Molecular Medicine, Department of Anaesthesiology, Clinic of the University of Munich, Munich, Germany
| |
Collapse
|
391
|
Lai DP, Tan S, Kang YN, Wu J, Ooi HS, Chen J, Shen TT, Qi Y, Zhang X, Guo Y, Zhu T, Liu B, Shao Z, Zhao X. Genome-wide profiling of polyadenylation sites reveals a link between selective polyadenylation and cancer metastasis. Hum Mol Genet 2015; 24:3410-7. [DOI: 10.1093/hmg/ddv089] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/06/2015] [Indexed: 01/10/2023] Open
|
392
|
Genomic analysis of ADAR1 binding and its involvement in multiple RNA processing pathways. Nat Commun 2015; 6:6355. [PMID: 25751603 PMCID: PMC4355961 DOI: 10.1038/ncomms7355] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/22/2015] [Indexed: 12/15/2022] Open
Abstract
Adenosine deaminases acting on RNA (ADARs) are the primary factors underlying adenosine to inosine (A-to-I) editing in metazoans. Here we report the first global study of ADAR1-RNA interaction in human cells using CLIP-Seq. A large number of CLIP sites are observed in Alu repeats, consistent with ADAR1's function in RNA editing. Surprisingly, thousands of other CLIP sites are located in non-Alu regions, revealing functional and biophysical targets of ADAR1 in the regulation of alternative 3' UTR usage and miRNA biogenesis. We observe that binding of ADAR1 to 3' UTRs precludes binding by other factors, causing 3' UTR lengthening. Similarly, ADAR1 interacts with DROSHA and DGCR8 in the nucleus and possibly out-competes DGCR8 in primary miRNA binding, which enhances mature miRNA expression. These functions are dependent on ADAR1's editing activity, at least for a subset of targets. Our study unfolds a broad landscape of the functional roles of ADAR1.
Collapse
|
393
|
Abstract
Gene expression is controlled by diverse mechanisms before, during, and after transcription. Chromatin modification factors as well as transcriptional repressors, silencers, and enhancers all feed into how eukaryotes transcribe RNA in the nucleus. However, there is increasing evidence that post-transcriptional regulation of gene expression is as widespread as transcriptional control if not more so. Studies of specific transcripts in oocytes and embryos are at the core of our mechanistic understanding of many post-transcriptional events. Coupled with genome-wide and large-scale experimental approaches, research is bringing to light how these regulatory events function independently and in concert to regulate protein expression.
Collapse
|
394
|
Kraynik SM, Gabanic A, Anthony SR, Kelley M, Paulding WR, Roessler A, McGuinness M, Tranter M. The stress-induced heat shock protein 70.3 expression is regulated by a dual-component mechanism involving alternative polyadenylation and HuR. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:688-96. [PMID: 25727182 DOI: 10.1016/j.bbagrm.2015.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/31/2015] [Accepted: 02/21/2015] [Indexed: 10/23/2022]
Abstract
Heat shock protein 70.3 (Hsp70.3) expression increases in response to cellular stress and plays a cytoprotective role. We have previously shown that Hsp70.3 expression is controlled through coordinated post-transcriptional regulation by miRNAs and alternative polyadenylation (APA), and APA-mediated shortening of the Hsp70.3 3'-UTR facilitates increased protein expression. A stress-induced increase in Hsp70.3 mRNA and protein expression is accompanied by alternative polyadenylation (APA)-mediated truncation of the 3'UTR of the Hsp70.3 mRNA transcript. However, the role that APA plays in stress-induced expression of Hsp70.3 remains unclear. Our results show that APA-mediated truncation of the Hsp70.3 3'UTR increases protein expression through enhanced polyribosome loading. Additionally, we demonstrate that the RNA binding protein HuR, which has been previously shown to play a role in mediating APA, is necessary for heat shock mediated increase in Hsp70.3 mRNA and protein. However, it is somewhat surprising to note that HuR does not play a role in APA of the Hsp70.3 mRNA, and these two regulatory events appear to be mutually exclusive regulators of Hsp70.3 expression. These results not only provide important insight to the regulation of stress response genes following heat shock, but also contribute an enhanced understanding of how alternative polyadenylation contributes to gene regulation.
Collapse
Affiliation(s)
- Stephen M Kraynik
- Dept. of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Andrew Gabanic
- Dept. of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Sarah R Anthony
- Dept. of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Melissa Kelley
- Dept. of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | | | - Anne Roessler
- Dept. of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Michael McGuinness
- Dept. of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Michael Tranter
- Dept. of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
395
|
Chau A, Kalsotra A. Developmental insights into the pathology of and therapeutic strategies for DM1: Back to the basics. Dev Dyn 2015; 244:377-90. [PMID: 25504326 DOI: 10.1002/dvdy.24240] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/25/2014] [Accepted: 11/27/2014] [Indexed: 12/25/2022] Open
Abstract
Myotonic Dystrophy type 1 (DM1), the most prevalent adult onset muscular dystrophy, is a trinucleotide repeat expansion disease caused by CTG expansion in the 3'-UTR of DMPK gene. This expansion results in the expression of toxic gain-of-function RNA that forms ribonuclear foci and disrupts normal activities of RNA-binding proteins belonging to the MBNL and CELF families. Changes in alternative splicing, translation, localization, and mRNA stability due to sequestration of MBNL proteins and up-regulation of CELF1 are key to DM1 pathology. However, recent discoveries indicate that pathogenic mechanisms of DM1 involves many other factors as well, including repeat associated translation, activation of PKC-dependent signaling pathway, aberrant polyadenylation, and microRNA deregulation. Expression of the toxic repeat RNA culminates in the developmental remodeling of the transcriptome, which produces fetal isoforms of proteins that are unable to fulfill the physiological requirements of adult tissues. This review will describe advances in the understanding of DM1 pathogenesis as well as current therapeutic developments for DM1.
Collapse
Affiliation(s)
- Anthony Chau
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Illinois; Department of Medical Biochemistry, University of Illinois, Urbana-Champaign, Illinois; Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Illinois
| | | |
Collapse
|
396
|
Zhao H, Li QQ. In vitro analysis of cleavage and polyadenylation in Arabidopsis. Methods Mol Biol 2015; 1255:79-89. [PMID: 25487206 DOI: 10.1007/978-1-4939-2175-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In eukaryotes, pre-messenger RNA (pre-mRNA) cleavage and polyadenylation is one of the necessary processing steps that produce a mature and functional mRNA. Regulation on pre-mRNA cleavage and polyadenylation affects other processes such as mRNA translocation, stability, and translation. The process of pre-mRNA cleavage and polyadenylation, and its relationship with RNA splicing and translation, have been extensively studied due to its importance in vivo. A successful in vitro system has provided enormous amount of information to the study of cleavage and polyadenylation in the mammalian and yeast systems. Here, we describe an in vitro pre-mRNA cleavage system that faithfully cleaves pre-mRNA substrate using Arabidopsis cell/tissue cultures.
Collapse
Affiliation(s)
- Hongwei Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China,
| | | |
Collapse
|
397
|
Abstract
Alternative polyadenylation has been demonstrated as a tier of gene expression regulation in eukaryotes. However, its role has not been elucidated at the cellular level. Equipped with techniques to isolate single cells by fluorescence-activated cell sorting (FACS) and laser captured micro-dissection, analysis of alternative polyadenylation in specific cell types becomes possible. We present a method to generate poly(A) tags for high-throughput sequencing (PAT-seq) libraries from very low amount of total RNA. This protocol targets the junction of the 3'-UTR and poly(A) tail of transcripts. Ten nanograms of total RNA isolated from the FACS-sorted cells was reverse-transcribed to double stranded cDNA with a anchored oligo dT(18) primer containing maximal T7 promoter sequence. Then, an RNA amplification step using in vitro transcription of T7 RNA polymerase was carried out. Achieved cRNA was fragmented by partial digestion. First strand synthesis was carried out by using a partial adaptor sequence with random 9-nt primer to introduce the adaptor at the 5' end. An anchored oligo dT primer containing adaptor sequence on 3' end was introduced through second strand cDNA synthesis. This new method has been applied to investigate polyadenylation using nanogram amount of total RNA from Arabidopsis cells.
Collapse
Affiliation(s)
- Jingyi Cao
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | | |
Collapse
|
398
|
Bradley T, Cook ME, Blanchette M. SR proteins control a complex network of RNA-processing events. RNA (NEW YORK, N.Y.) 2015; 21:75-92. [PMID: 25414008 PMCID: PMC4274639 DOI: 10.1261/rna.043893.113] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 10/15/2014] [Indexed: 05/23/2023]
Abstract
SR proteins are a well-conserved class of RNA-binding proteins that are essential for regulation of splice-site selection, and have also been implicated as key regulators during other stages of RNA metabolism. For many SR proteins, the complexity of the RNA targets and specificity of RNA-binding location are poorly understood. It is also unclear if general rules governing SR protein alternative pre-mRNA splicing (AS) regulation uncovered for individual SR proteins on few model genes, apply to the activity of all SR proteins on endogenous targets. Using RNA-seq, we characterize the global AS regulation of the eight Drosophila SR protein family members. We find that a majority of AS events are regulated by multiple SR proteins, and that all SR proteins can promote exon inclusion, but also exon skipping. Most coregulated targets exhibit cooperative regulation, but some AS events are antagonistically regulated. Additionally, we found that SR protein levels can affect alternative promoter choices and polyadenylation site selection, as well as overall transcript levels. Cross-linking and immunoprecipitation coupled with high-throughput sequencing (iCLIP-seq), reveals that SR proteins bind a distinct and functionally diverse class of RNAs, which includes several classes of noncoding RNAs, uncovering possible novel functions of the SR protein family. Finally, we find that SR proteins exhibit positional RNA binding around regulated AS events. Therefore, regulation of AS by the SR proteins is the result of combinatorial regulation by multiple SR protein family members on most endogenous targets, and SR proteins have a broader role in integrating multiple layers of gene expression regulation.
Collapse
Affiliation(s)
- Todd Bradley
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Malcolm E Cook
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Marco Blanchette
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
399
|
You L, Wu J, Feng Y, Fu Y, Guo Y, Long L, Zhang H, Luan Y, Tian P, Chen L, Huang G, Huang S, Li Y, Li J, Chen C, Zhang Y, Chen S, Xu A. APASdb: a database describing alternative poly(A) sites and selection of heterogeneous cleavage sites downstream of poly(A) signals. Nucleic Acids Res 2015; 43:D59-D67. [PMID: 25378337 PMCID: PMC4383914 DOI: 10.1093/nar/gku1076] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/02/2014] [Accepted: 10/16/2014] [Indexed: 11/12/2022] Open
Abstract
Increasing amounts of genes have been shown to utilize alternative polyadenylation (APA) 3'-processing sites depending on the cell and tissue type and/or physiological and pathological conditions at the time of processing, and the construction of genome-wide database regarding APA is urgently needed for better understanding poly(A) site selection and APA-directed gene expression regulation for a given biology. Here we present a web-accessible database, named APASdb (http://mosas.sysu.edu.cn/utr), which can visualize the precise map and usage quantification of different APA isoforms for all genes. The datasets are deeply profiled by the sequencing alternative polyadenylation sites (SAPAS) method capable of high-throughput sequencing 3'-ends of polyadenylated transcripts. Thus, APASdb details all the heterogeneous cleavage sites downstream of poly(A) signals, and maintains near complete coverage for APA sites, much better than the previous databases using conventional methods. Furthermore, APASdb provides the quantification of a given APA variant among transcripts with different APA sites by computing their corresponding normalized-reads, making our database more useful. In addition, APASdb supports URL-based retrieval, browsing and display of exon-intron structure, poly(A) signals, poly(A) sites location and usage reads, and 3'-untranslated regions (3'-UTRs). Currently, APASdb involves APA in various biological processes and diseases in human, mouse and zebrafish.
Collapse
Affiliation(s)
- Leiming You
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Jiexin Wu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Yuchao Feng
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Yonggui Fu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Yanan Guo
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Liyuan Long
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Hui Zhang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Yijie Luan
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Peng Tian
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Liangfu Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Guangrui Huang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Shengfeng Huang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Yuxin Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Jie Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Chengyong Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Yaqing Zhang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| |
Collapse
|
400
|
Wang Y, Liu J, Huang BO, Xu YM, Li J, Huang LF, Lin J, Zhang J, Min QH, Yang WM, Wang XZ. Mechanism of alternative splicing and its regulation. Biomed Rep 2014; 3:152-158. [PMID: 25798239 DOI: 10.3892/br.2014.407] [Citation(s) in RCA: 267] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/10/2014] [Indexed: 12/11/2022] Open
Abstract
Alternative splicing of precursor mRNA is an essential mechanism to increase the complexity of gene expression, and it plays an important role in cellular differentiation and organism development. Regulation of alternative splicing is a complicated process in which numerous interacting components are at work, including cis-acting elements and trans-acting factors, and is further guided by the functional coupling between transcription and splicing. Additional molecular features, such as chromatin structure, RNA structure and alternative transcription initiation or alternative transcription termination, collaborate with these basic components to generate the protein diversity due to alternative splicing. All these factors contributing to this one fundamental biological process add up to a mechanism that is critical to the proper functioning of cells. Any corruption of the process may lead to disruption of normal cellular function and the eventuality of disease. Cancer is one of those diseases, where alternative splicing may be the basis for the identification of novel diagnostic and prognostic biomarkers, as well as new strategies for therapy. Thus, an in-depth understanding of alternative splicing regulation has the potential not only to elucidate fundamental biological principles, but to provide solutions for various diseases.
Collapse
Affiliation(s)
- Yan Wang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Jing Liu
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - B O Huang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Yan-Mei Xu
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Jing Li
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Lin-Feng Huang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Jin Lin
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Jing Zhang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Qing-Hua Min
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Wei-Ming Yang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Xiao-Zhong Wang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| |
Collapse
|