351
|
Amo R, Fredes F, Kinoshita M, Aoki R, Aizawa H, Agetsuma M, Aoki T, Shiraki T, Kakinuma H, Matsuda M, Yamazaki M, Takahoko M, Tsuboi T, Higashijima SI, Miyasaka N, Koide T, Yabuki Y, Yoshihara Y, Fukai T, Okamoto H. The habenulo-raphe serotonergic circuit encodes an aversive expectation value essential for adaptive active avoidance of danger. Neuron 2014; 84:1034-48. [PMID: 25467985 DOI: 10.1016/j.neuron.2014.10.035] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2014] [Indexed: 12/24/2022]
Abstract
Anticipation of danger at first elicits panic in animals, but later it helps them to avoid the real threat adaptively. In zebrafish, as fish experience more and more danger, neurons in the ventral habenula (vHb) showed tonic increase in the activity to the presented cue and activated serotonergic neurons in the median raphe (MR). This neuronal activity could represent the expectation of a dangerous outcome and be used for comparison with a real outcome when the fish is learning how to escape from a dangerous to a safer environment. Indeed, inhibiting synaptic transmission from vHb to MR impaired adaptive avoidance learning, while panic behavior induced by classical fear conditioning remained intact. Furthermore, artificially triggering this negative outcome expectation signal by optogenetic stimulation of vHb neurons evoked place avoidance behavior. Thus, vHb-MR circuit is essential for representing the level of expected danger and behavioral programming to adaptively avoid potential hazard.
Collapse
Affiliation(s)
- Ryunosuke Amo
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, Saitama 351-0198, Japan; Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Tokyo 162-8430, Japan
| | - Felipe Fredes
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Masae Kinoshita
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Ryo Aoki
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, Saitama 351-0198, Japan; Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - Hidenori Aizawa
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Masakazu Agetsuma
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Tazu Aoki
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Toshiyuki Shiraki
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Hisaya Kakinuma
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Masaru Matsuda
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
| | - Masako Yamazaki
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Mikako Takahoko
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Takashi Tsuboi
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - Shin-ichi Higashijima
- National Institutes of Natural Sciences, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, Aichi 444-8787, Japan
| | - Nobuhiko Miyasaka
- Laboratory for Neurobiology of Synapse, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Tetsuya Koide
- Laboratory for Neurobiology of Synapse, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Yoichi Yabuki
- Laboratory for Neurobiology of Synapse, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Yoshihiro Yoshihara
- Laboratory for Neurobiology of Synapse, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Tomoki Fukai
- Laboratory for Neural Circuit Theory, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Hitoshi Okamoto
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, Saitama 351-0198, Japan; Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Tokyo 162-8430, Japan; Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan.
| |
Collapse
|
352
|
Qi J, Zhang S, Wang HL, Wang H, de Jesus Aceves Buendia J, Hoffman AF, Lupica CR, Seal RP, Morales M. A glutamatergic reward input from the dorsal raphe to ventral tegmental area dopamine neurons. Nat Commun 2014; 5:5390. [PMID: 25388237 PMCID: PMC4231541 DOI: 10.1038/ncomms6390] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/26/2014] [Indexed: 02/07/2023] Open
Abstract
Electrical stimulation of the dorsal raphe (DR) and ventral tegmental area (VTA) activates the fibres of the same reward pathway but the phenotype of this pathway and the direction of the reward-relevant fibres have not been determined. Here we report rewarding effects following activation of a DR-originating pathway consisting of vesicular glutamate transporter 3 (VGluT3) containing neurons that form asymmetric synapses onto VTA dopamine neurons that project to nucleus accumbens. Optogenetic VTA activation of this projection elicits AMPA-mediated synaptic excitatory currents in VTA mesoaccumbens dopaminergic neurons and causes dopamine release in nucleus accumbens. Activation also reinforces instrumental behaviour and establishes conditioned place preferences. These findings indicate that the DR-VGluT3 pathway to VTA utilizes glutamate as a neurotransmitter and is a substrate linking the DR-one of the most sensitive reward sites in the brain--to VTA dopaminergic neurons.
Collapse
Affiliation(s)
- Jia Qi
- National Institute on Drug Abuse, Neuronal Networks Section, National Institutes of Health, Baltimore, Maryland, USA
| | - Shiliang Zhang
- National Institute on Drug Abuse, Neuronal Networks Section, National Institutes of Health, Baltimore, Maryland, USA
| | - Hui-Ling Wang
- National Institute on Drug Abuse, Neuronal Networks Section, National Institutes of Health, Baltimore, Maryland, USA
| | - Huikun Wang
- National Institute on Drug Abuse, Electrophysiology Research Section, National Institutes of Health, Baltimore, Maryland, USA
| | - Jose de Jesus Aceves Buendia
- National Institute on Drug Abuse, Neuronal Networks Section, National Institutes of Health, Baltimore, Maryland, USA
| | - Alexander F. Hoffman
- National Institute on Drug Abuse, Electrophysiology Research Section, National Institutes of Health, Baltimore, Maryland, USA
| | - Carl R. Lupica
- National Institute on Drug Abuse, Electrophysiology Research Section, National Institutes of Health, Baltimore, Maryland, USA
| | - Rebecca P. Seal
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Marisela Morales
- National Institute on Drug Abuse, Neuronal Networks Section, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
353
|
|
354
|
Abstract
People think they are in control of their own decisions: what to eat or drink, whom to marry or pick a fight with, where to live, what to buy. Behavioural economists and neurophysiologists have long studied decision-making behaviours. However, these behaviours have only recently been studied through the light of molecular genetics. Here, we review recent research in mice, Drosophila melanogaster and Caenorhabditis elegans, that analyses the molecular and cellular mechanisms underlying decision-making. These studies interrogate decision-making about food, sexual behaviour, aggression or foraging strategies, and add molecular and cell biology understanding onto the consilience of brain and decision.
Collapse
Affiliation(s)
- Nilay Yapici
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY, USA
| | - Manuel Zimmer
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Ana I Domingos
- Obesity Laboratory, Gulbenkian Science Institute, Rua Da Quinta Grande, Oeiras, Portugal
| |
Collapse
|
355
|
Serotonergic versus nonserotonergic dorsal raphe projection neurons: differential participation in reward circuitry. Cell Rep 2014; 8:1857-1869. [PMID: 25242321 DOI: 10.1016/j.celrep.2014.08.037] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/22/2014] [Accepted: 08/15/2014] [Indexed: 12/20/2022] Open
Abstract
The dorsal raphe nucleus (DRN) contains the largest group of serotonin-producing neurons in the brain and projects to regions controlling reward. Although pharmacological studies suggest that serotonin inhibits reward seeking, electrical stimulation of the DRN strongly reinforces instrumental behavior. Here, we provide a targeted assessment of the behavioral, anatomical, and electrophysiological contributions of serotonergic and nonserotonergic DRN neurons to reward processes. To explore DRN heterogeneity, we used a simultaneous two-vector knockout/optogenetic stimulation strategy, as well as cre-induced and cre-silenced vectors in several cre-expressing transgenic mouse lines. We found that the DRN is capable of reinforcing behavior primarily via nonserotonergic neurons, for which the main projection target is the ventral tegmental area (VTA). Furthermore, these nonserotonergic projections provide glutamatergic excitation of VTA dopamine neurons and account for a large majority of the DRN-VTA pathway. These findings help to resolve apparent discrepancies between the roles of serotonin versus the DRN in behavioral reinforcement.
Collapse
|
356
|
Zhao H, Zhang BL, Yang SJ, Rusak B. The role of lateral habenula-dorsal raphe nucleus circuits in higher brain functions and psychiatric illness. Behav Brain Res 2014; 277:89-98. [PMID: 25234226 DOI: 10.1016/j.bbr.2014.09.016] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/06/2014] [Accepted: 09/08/2014] [Indexed: 11/25/2022]
Abstract
Serotonergic neurons in the dorsal raphe nucleus (DRN) play an important role in regulation of many physiological functions. The lateral nucleus of the habenular complex (LHb) is closely connected to the DRN both morphologically and functionally. The LHb is a key regulator of the activity of DRN serotonergic neurons, and it also receives reciprocal input from the DRN. The LHb is also a major way-station that receives limbic system input via the stria medullaris and provides output to the DRN and thereby indirectly connects a number of other brain regions to the DRN. The complex interactions of the LHb and DRN contribute to the regulation of numerous important behavioral and physiological mechanisms, including those regulating cognition, reward, pain sensitivity and patterns of sleep and waking. Disruption of these functions is characteristic of major psychiatric illnesses, so there has been a great deal of interest in how disturbed LHb-DRN interactions may contribute to the symptoms of these illnesses. This review summarizes recent research related to the roles of the LHb-DRN system in regulation of higher brain functions and the possible role of disturbed LHb-DRN function in the pathogenesis of psychiatric disorders, especially depression.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China.
| | - Bei-Lin Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China
| | - Shao-Jun Yang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China
| | - Benjamin Rusak
- Departments of Psychiatry and Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, B3H 2E2, Canada
| |
Collapse
|
357
|
Miyazaki K, Miyazaki K, Tanaka K, Yamanaka A, Takahashi A, Tabuchi S, Doya K. Optogenetic Activation of Dorsal Raphe Serotonin Neurons Enhances Patience for Future Rewards. Curr Biol 2014; 24:2033-40. [DOI: 10.1016/j.cub.2014.07.041] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 05/19/2014] [Accepted: 07/16/2014] [Indexed: 11/26/2022]
|
358
|
Dugué GP, Lörincz ML, Lottem E, Audero E, Matias S, Correia PA, Léna C, Mainen ZF. Optogenetic recruitment of dorsal raphe serotonergic neurons acutely decreases mechanosensory responsivity in behaving mice. PLoS One 2014; 9:e105941. [PMID: 25148042 PMCID: PMC4141837 DOI: 10.1371/journal.pone.0105941] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/29/2014] [Indexed: 01/10/2023] Open
Abstract
The inhibition of sensory responsivity is considered a core serotonin function, yet this hypothesis lacks direct support due to methodological obstacles. We adapted an optogenetic approach to induce acute, robust and specific firing of dorsal raphe serotonergic neurons. In vitro, the responsiveness of individual dorsal raphe serotonergic neurons to trains of light pulses varied with frequency and intensity as well as between cells, and the photostimulation protocol was therefore adjusted to maximize their overall output rate. In vivo, the photoactivation of dorsal raphe serotonergic neurons gave rise to a prominent light-evoked field response that displayed some sensitivity to a 5-HT1A agonist, consistent with autoreceptor inhibition of raphe neurons. In behaving mice, the photostimulation of dorsal raphe serotonergic neurons produced a rapid and reversible decrease in the animals' responses to plantar stimulation, providing a new level of evidence that serotonin gates sensory-driven responses.
Collapse
Affiliation(s)
- Guillaume P. Dugué
- Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown, Lisbon, Portugal
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS) UMR8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, Paris, France
- * E-mail: (GPD); (ZFM)
| | - Magor L. Lörincz
- Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown, Lisbon, Portugal
- MTA-SZTE Research Group for Cortical Microcircuits, Department of Physiology, University of Szeged, Szeged, Hungary
| | - Eran Lottem
- Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Enrica Audero
- Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Sara Matias
- Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Patricia A. Correia
- Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Clément Léna
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS) UMR8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, Paris, France
| | - Zachary F. Mainen
- Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown, Lisbon, Portugal
- * E-mail: (GPD); (ZFM)
| |
Collapse
|
359
|
The role of serotonin in adult hippocampal neurogenesis. Behav Brain Res 2014; 277:49-57. [PMID: 25125239 DOI: 10.1016/j.bbr.2014.07.038] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 12/17/2022]
Abstract
Serotonin is probably best known for its role in conveying a sense of contentedness and happiness. It is one of the most unique and pharmacologically complex monoamines in both the peripheral and central nervous system (CNS). Serotonin has become in focus of interest for the treatment of depression with multiple serotonin-mimetic and modulators of adult neurogenesis used clinically. Here we will take a broad view of serotonin from development to its physiological role as a neurotransmitter and its contribution to homeostasis of the adult rodent hippocampus. This chapter reflects the most significant findings on cellular and molecular mechanisms from neuroscientists in the field over the last two decades. We illustrate the action of serotonin by highlighting basic receptor targeting studies, and how receptors impact brain function. We give an overview of recent genetically modified mouse models that differ in serotonin availability and focus on the role of the monoamine in antidepressant response. We conclude with a synthesis of the most recent data surrounding the role of serotonin in activity and hippocampal neurogenesis. This synopsis sheds light on the mechanisms and potential therapeutic model by which serotonin plays a critical role in the maintenance of mood.
Collapse
|
360
|
Kim JY, Kim A, Zhao ZQ, Liu XY, Chen ZF. Postnatal maintenance of the 5-Ht1a-Pet1 autoregulatory loop by serotonin in the raphe nuclei of the brainstem. Mol Brain 2014; 7:48. [PMID: 24972638 PMCID: PMC4086287 DOI: 10.1186/1756-6606-7-48] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/24/2014] [Indexed: 01/06/2023] Open
Abstract
Background Despite the importance of 5-HT1A as a major target for the action of several anxiolytics/antidepressant drugs, little is known about its regulation in central serotonin (5-hydroxytryptamine, 5-HT) neurons. Results We report that expression of 5-HT1A and the transcription factor Pet1 was impaired in the rostral raphe nuclei of mice lacking tryptophan hydroxylase 2 (Tph2) after birth. The downregulation of Pet1 was recapitulated in 5-Ht1a-/- mice. Using an explant culture system, we show that reduction of Pet1 and 5-HT1A was rescued in Tph2-/- brainstem by exogenous 5-HT. In contrast, 5-HT failed to rescue reduced expression of Pet1 in 5-Ht1a-/- brainstem explant culture. Conclusions These results suggest a causal relationship between 5-HT1A and Pet1, and reveal a potential mechanism by which 5-HT1A-Pet1 autoregulatory loop is maintained by 5-HT in a spatiotemporal-specific manner during postnatal development. Our results are relevant to understanding the pathophysiology of certain psychiatric and developmental disorders.
Collapse
Affiliation(s)
| | | | | | | | - Zhou-Feng Chen
- Center for the Study of Itch, Washington University School of Medicine, St, Louis 63110, USA.
| |
Collapse
|
361
|
Mosienko V, Beis D, Pasqualetti M, Waider J, Matthes S, Qadri F, Bader M, Alenina N. Life without brain serotonin: reevaluation of serotonin function with mice deficient in brain serotonin synthesis. Behav Brain Res 2014; 277:78-88. [PMID: 24928769 DOI: 10.1016/j.bbr.2014.06.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/23/2014] [Accepted: 06/02/2014] [Indexed: 12/19/2022]
Abstract
Tryptophan hydroxylase (TPH) is a rate limiting enzyme in the synthesis of serotonin (5-HT), a monoamine which works as an autacoid in the periphery and as a neurotransmitter in the central nervous system. In 2003 we have discovered the existence of a second Tph gene, which is expressed exclusively in the brain, and, therefore, is responsible for the 5-HT synthesis in the central nervous system. In the following years several research groups have independently generated Tph2-deficient mice. In this review we will summarize the data gained from the existing mouse models with constitutive or conditional deletion of the Tph2 gene, focusing on biochemical, developmental, and behavioral consequences of Tph2-deficiency.
Collapse
Affiliation(s)
| | - Daniel Beis
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Massimo Pasqualetti
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
| | - Jonas Waider
- Laboratory of Translational Neuroscience, Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics, and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Susann Matthes
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | | | - Michael Bader
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Natalia Alenina
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
362
|
Roberts ID, Way BM. Using 'hug drugs' to understand affiliative behavior: the value of the social neurochemistry perspective. Commentary on: 'Ecstasy' as a social drug: MDMA preferentially affects responses to emotional stimuli with social content by Wardle, Kirkpatrick, and de Wit (2014). Soc Cogn Affect Neurosci 2014; 9:1053-4. [PMID: 24795439 DOI: 10.1093/scan/nsu069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ian D Roberts
- The Department of Psychology and The Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH 43210, USA
| | - Baldwin M Way
- The Department of Psychology and The Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|