351
|
Effects of the selective 5-HT7 receptor antagonist SB-269970 and amisulpride on ketamine-induced schizophrenia-like deficits in rats. PLoS One 2013; 8:e66695. [PMID: 23776692 PMCID: PMC3679060 DOI: 10.1371/journal.pone.0066695] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/12/2013] [Indexed: 01/24/2023] Open
Abstract
A wide body of evidence suggests that 5-HT7 receptors are implicated in a variety of central nervous system functions, including control of learning and memory processes. According to recent preclinical data, the selective blockade of these receptors may be a potential target for cognitive improvement in schizophrenia. The first aim of the present study was to evaluate the effects of the selective 5-HT7 receptor antagonist, SB-269970, and the antipsychotic drug with a high affinity for 5-HT7 receptors, amisulpride, on ketamine-induced deficits in attentional set-shifting and novel object recognition tasks in rats. Because the role of 5-HT7 receptor blockade in ameliorating positive and negative symptoms of schizophrenia remains equivocal, the second aim of these experiments was to examine the effectiveness of SB-269970 and amisulpride in reversing ketamine-induced deficits in prepulse inhibition of the startle reflex and in social interaction test in rats. The study revealed that acute administration of SB-269970 (1 mg/kg) or amisulpride (3 mg/kg) ameliorated ketamine-induced cognitive inflexibility and novel object recognition deficit in rats. Both compounds were also effective in attenuating ketamine-evoked disruption of social interactions. In contrast, neither SB-269970 nor amisulpride affected ketamine-disrupted prepulse inhibition or 50 kHz USVs accompanying social behaviour. In conclusion, antagonism of 5-HT7 receptors may represent a useful pharmacological approach in the treatment of cognitive deficits and some negative symptoms of schizophrenia.
Collapse
|
352
|
Featherstone RE, M Tatard-Leitman V, Suh JD, Lin R, Lucki I, Siegel SJ. Electrophysiological and behavioral responses to ketamine in mice with reduced Akt1 expression. Psychopharmacology (Berl) 2013; 227:639-49. [PMID: 23392353 PMCID: PMC3808977 DOI: 10.1007/s00213-013-2997-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/14/2013] [Indexed: 11/25/2022]
Abstract
RATIONALE A number of studies have associated reduced Akt1 expression with vulnerability for schizophrenia. Although mice with deletion of a single copy of the Akt1 gene (Akt1(+/-)) show reduced Akt1 expression relative to wild-type (WT) animals, the extent to which these mice show schizophrenia-like phenotypic changes and/or increased susceptibility to epigenetic or non-genetic factors related to schizophrenia is unknown. OBJECTIVES Mutant mice were assessed on electroencephalographic/event-related potential (EEG/ERP) and behavioral (acoustic startle and pre-pulse inhibition) measures relevant to schizophrenia. Mice were also assessed following exposure to the NMDA receptor antagonist ketamine, a potent psychotomimetic drug, in order to assess the role of reduced Akt1 expression as a vulnerability factor for schizophrenia. Methods Akt1(+/-), Akt1(-/-), and WT mice received a series of paired-click, white noise stimuli, following ketamine (50 mg/kg) and saline injections. EEG was analyzed for ERPs and event-related power. Akt1(+/-) and WT mice were also assessed on PPI following ketamine (50 mg/kg) or saline injection. RESULTS Akt1(+/-) and Akt1(-/-) mice displayed reduced amplitude of the P20 component of the ERP to the first click of a paired-click stimulus, as well as reduced S1-S2 difference for P20 and N40 components, following ketamine. Mutant mice also showed increased reduction in gamma synchrony and theta suppression following ketamine. Akt1(+/-) mice displayed reduced pre-pulse inhibition. CONCLUSIONS Reduced genetic expression of Akt1 facilitated ketamine-induced changes of EEG and behavior in mice, suggesting that reduced Akt1 expression can serve as a vulnerability factor for schizophrenia.
Collapse
Affiliation(s)
- Robert E Featherstone
- Department of Psychiatry, Translational Neuroscience Program, School of Medicine, University of Pennsylvania, 125 South 31st Street, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
353
|
Antipsychotic compounds differentially modulate high-frequency oscillations in the rat nucleus accumbens: a comparison of first- and second-generation drugs. Int J Neuropsychopharmacol 2013; 16:1009-20. [PMID: 23171738 DOI: 10.1017/s1461145712001034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Improved understanding of the actions of antipsychotic compounds is critical for a better treatment of schizophrenia. Abnormal oscillatory activity has been found in schizophrenia and in rat models of the disease. N-Methyl-D-aspartic acid receptor (NMDAR) antagonists, used to model certain features of schizophrenia, increase the frequency and power of high-frequency oscillations (HFO, 130-180 Hz) in the rat nucleus accumbens, a brain region implicated in schizophrenia pathology. Antipsychotics can be classified as first- and second-generation drugs, the latter often reported to have wider benefit in humans and experimental models. This prompted the authors to examine the pre- and post-treatment effects of clozapine, risperidone (second-generation drugs) and sulpiride and haloperidol (first-generation drugs) on ketamine and MK801-enhanced accumbal HFO. Both NMDAR antagonists increased HFO frequency. In contrast, clozapine and risperidone markedly and dose-dependently reduced the frequency of spontaneous and NMDAR-antagonist-enhanced HFO, whilst a moderate effect was found for sulpiride and a much weaker effect for haloperidol. Unexpectedly, we found reductions in HFO frequency were associated with an increase in its power. These findings indicate that modulation of accumbal HFO frequency may be a fundamental effect produced by antipsychotic compounds. Of the drugs investigated, first- and second-generation compounds could be dissociated by their potency on this measure. This effect may partially explain the differences in the clinical profile of these drugs.
Collapse
|
354
|
Zugno AI, Fraga DB, De Luca RD, Ghedim FV, Deroza PF, Cipriano AL, Oliveira MB, Heylmann ASA, Budni J, Souza RP, Quevedo J. Chronic exposure to cigarette smoke during gestation results in altered cholinesterase enzyme activity and behavioral deficits in adult rat offspring: potential relevance to schizophrenia. J Psychiatr Res 2013; 47:740-6. [PMID: 23472836 DOI: 10.1016/j.jpsychires.2013.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 01/18/2023]
Abstract
Prenatal cigarette smoke exposure (PCSE) has been associated with physiological and developmental changes that may be related to an increased risk for childhood and adult neuropsychiatric diseases. The present study investigated locomotor activity and cholinesterase enzyme activity in rats, following PCSE and/or ketamine treatment in adulthood. Pregnant female Wistar rats were exposed to 12 commercially filtered cigarettes per day for a period of 28 days. We evaluated motor activity and cholinesterase activity in the brain and serum of adult male offspring that were administered acute subanesthetic doses of ketamine (5, 15 and 25 mg/kg), which serves as an animal model of schizophrenia. To determine locomotor activity, we used the open field test. Cholinesterase activity was assessed by hydrolysis monitored spectrophotometrically. Our results show that both PCSE and ketamine treatment in the adult offspring induced increase of locomotor activity. Additionally, it was observed increase of acetylcholinesterase and butyrylcholinesterase activity in the brain and serum, respectively. We demonstrated that animals exposed to cigarettes in the prenatal period had increased the risk for psychotic symptoms in adulthood. This also occurs in a dose-dependent manner. These changes provoke molecular events that are not completely understood and may result in abnormal behavioral responses found in neuropsychiatric disorders, such as schizophrenia.
Collapse
Affiliation(s)
- Alexandra I Zugno
- Laboratório de Neurociências, Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), and Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
355
|
Kocsis B, Brown RE, McCarley RW, Hajos M. Impact of ketamine on neuronal network dynamics: translational modeling of schizophrenia-relevant deficits. CNS Neurosci Ther 2013; 19:437-47. [PMID: 23611295 PMCID: PMC3663928 DOI: 10.1111/cns.12081] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/26/2013] [Accepted: 01/28/2013] [Indexed: 12/25/2022] Open
Abstract
Subanesthetic doses of the psychomimetic, ketamine, have been used for many years to elicit behavioral effects reminiscent of schizophrenia in both healthy humans and in animal models of the disease. More recently, there has been a move toward the use of simple neurophysiological measures (event-related potentials, brain oscillations) to assay the functional integrity of neuronal circuits in schizophrenia as these measures can be assessed in patients, healthy controls, intact animals, and even in brain slices. Furthermore, alterations of these measures are correlated with basic information processing deficits that are now considered central to the disease. Thus, here we review recent studies that determine the effect of ketamine on these measures and discuss to what extent they recapitulate findings in patients with schizophrenia. In particular, we examine methodological differences between human and animal studies and compare in vivo and in vitro effects of ketamine. Ketamine acts on multiple cortical and subcortical sites, as well as on receptors other than the N-methyl-d-aspartate receptor. Acute ketamine models' changes correlated with psychotic states (e.g. increased baseline gamma-band oscillations), whereas chronic ketamine causes cortical circuit changes and neurophysiological deficits (e.g. impaired event-related gamma-band oscillations) correlated with cognitive impairments in schizophrenia.
Collapse
Affiliation(s)
- Bernat Kocsis
- Laboratory of Neurophysiology, Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
356
|
O'Tuathaigh CMP, Moran PM, Waddington JL. Genetic models of schizophrenia and related psychotic disorders: progress and pitfalls across the methodological "minefield". Cell Tissue Res 2013; 354:247-57. [PMID: 23715722 DOI: 10.1007/s00441-013-1652-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 04/29/2013] [Indexed: 12/13/2022]
Abstract
The challenge of modelling a complex and multifaceted disorder such as schizophrenia is epitomised by the considerable degree of phenotypic variability described in patients and by the absence of specific and consistent neuropathological biomarkers. The pattern and severity of a range of clinical features, including florid psychotic symptoms such as hallucinations and delusions, negative symptoms and cognitive dysfunction, together with age at onset, course of illness and other indices, can vary greatly between individual patients. The undefined nature of the relationship between diagnosis and underlying aetiology has complicated research in the field of clinical and preclinical neuroscience, thereby making it difficult to generate or evaluate appropriate disease models of schizophrenia. In the present review, we explore those conceptual and practical issues that relate specifically to the genetic modelling of schizophrenia and related disorders in rodents. Practical issues that impact on the robustness of endophenotypic findings and their translational relevance are discussed with reference to evidence from selective genetic models of candidate risk genes and copy number variants implicated in schizophrenia.
Collapse
Affiliation(s)
- Colm M P O'Tuathaigh
- School of Medicine, Brookfield Health Sciences Complex, University College Cork, Cork, Ireland,
| | | | | |
Collapse
|
357
|
MK-801 disrupts and nicotine augments 40 Hz auditory steady state responses in the auditory cortex of the urethane-anesthetized rat. Neuropharmacology 2013; 73:1-9. [PMID: 23688921 DOI: 10.1016/j.neuropharm.2013.05.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 03/30/2013] [Accepted: 05/06/2013] [Indexed: 01/29/2023]
Abstract
Patients with schizophrenia show marked deficits in processing sensory inputs including a reduction in the generation and synchronization of 40 Hz gamma oscillations in response to steady-state auditory stimulation. Such deficits are not readily demonstrable at other input frequencies. Acute administration of NMDA antagonists to healthy human subjects or laboratory animals is known to reproduce many sensory and cognitive deficits seen in schizophrenia patients. In the following study, we tested the hypothesis that the NMDA antagonist MK-801 would selectively disrupt steady-state gamma entrainment in the auditory cortex of urethane-anesthetized rat. Moreover, we further hypothesized that nicotinic receptor activation would alleviate this disruption. Auditory steady state responses were recorded in response to auditory stimuli delivered over a range of frequencies (10-80 Hz) and averaged over 50 trials. Evoked power was computed under baseline condition and after vehicle or MK-801 (0.03 mg/kg, iv). MK-801 produced a significant attenuation in response to 40 Hz auditory stimuli while entrainment to other frequencies was not affected. Time-frequency analysis revealed deficits in both power and phase-locking to 40 Hz. Nicotine (0.1 mg/kg, iv) administered after MK-801 reversed the attenuation of the 40 Hz response. Administered alone, nicotine augmented 40 Hz steady state power and phase-locking. Nicotine's effects were blocked by simultaneous administration of the α4β2 antagonist DHßE. Thus we report for the first time, a rodent model that mimics a core neurophysiological deficit seen in patients with schizophrenia and a pharmacological approach to alleviate it.
Collapse
|
358
|
de Bruin N, van Drimmelen M, Kops M, van Elk J, Wetering MMVD, Schwienbacher I. Effects of risperidone, clozapine and the 5-HT6 antagonist GSK-742457 on PCP-induced deficits in reversal learning in the two-lever operant task in male Sprague Dawley rats. Behav Brain Res 2013; 244:15-28. [DOI: 10.1016/j.bbr.2013.01.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 01/21/2013] [Accepted: 01/26/2013] [Indexed: 12/31/2022]
|
359
|
Mouri A, Nagai T, Ibi D, Yamada K. Animal models of schizophrenia for molecular and pharmacological intervention and potential candidate molecules. Neurobiol Dis 2013; 53:61-74. [DOI: 10.1016/j.nbd.2012.10.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/23/2012] [Accepted: 10/28/2012] [Indexed: 12/22/2022] Open
|
360
|
Yee BK, Singer P. A conceptual and practical guide to the behavioural evaluation of animal models of the symptomatology and therapy of schizophrenia. Cell Tissue Res 2013; 354:221-46. [PMID: 23579553 DOI: 10.1007/s00441-013-1611-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 03/07/2013] [Indexed: 02/08/2023]
Abstract
Schizophrenia is a chronic debilitating brain disorder characterized by a complex set of perceptual and behavioural symptoms that severely disrupt and undermine the patient's psychological well-being and quality of life. Since the exact disease mechanisms remain essentially unknown, holistic animal models are indispensable tools for any serious investigation into the neurobiology of schizophrenia, including the search for remedies, prevention of the disease and possible biological markers. This review provides some practical advice to those confronted with the task of evaluating their animal models for relevance to schizophrenia, a task that inevitably involves behavioural tests with animals. To a novice, this challenge not only is a technical one but also entails attention to interpretative issues concerning validity and translational power. Here, we attempt to offer some guidance to help overcome these obstacles by drawing on our experience of diverse animal models of schizophrenia based on genetics, strain difference, brain lesions, pharmacological induction and early life developmental manipulations. The review pays equal emphasis to the general (theoretical) considerations of experimental design and the illustration of the problems related to critical test parameters and the data analysis of selected exemplar behavioural tests. Finally, the individual differences of behavioural expression in relevant tests observed in wild-type animals might offer an alternative approach in order to explore the mechanism of schizophrenia-related behavioural dysfunction at the molecular, cellular and structural levels, all of which are of more immediate relevance to cell and tissue research.
Collapse
Affiliation(s)
- Benjamin K Yee
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, 1225 NE Second Avenue, Portland, OR 97232, USA,
| | | |
Collapse
|
361
|
Khodaie-Ardakani MR, Seddighi S, Modabbernia A, Rezaei F, Salehi B, Ashrafi M, Shams-Alizadeh N, Mohammad-Karimi M, Esfandiari GR, Hajiaghaee R, Akhondzadeh S. Granisetron as an add-on to risperidone for treatment of negative symptoms in patients with stable schizophrenia: randomized double-blind placebo-controlled study. J Psychiatr Res 2013; 47:472-478. [PMID: 23375406 DOI: 10.1016/j.jpsychires.2013.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 11/28/2012] [Accepted: 01/14/2013] [Indexed: 11/26/2022]
Abstract
Some 5-HT3 antagonists such as ondansetron have shown beneficial effects on negative symptoms of patients with schizophrenia. We aimed to evaluate the efficacy of granisetron (another 5-HT3 antagonist) add-on therapy in the treatment of negative symptoms of patients with stable schizophrenia. In a randomized, double-blind, and placebo-controlled study, forty stable patients with schizophrenia (DSM-IV-TR), were randomized to either granisetron (1 mg twice daily) or placebo (twice daily) in addition to risperidone up to 6 mg/day for eight weeks. The patients were assessed using positive and negative syndrome scale (PANSS) and extrapyramidal symptom rating scale (ESRS) at baseline, week 4 and 8. Hamilton depression rating scale (HDRS) was used to assess depression at baseline and week 8. Thirty-eight patients completed the trial. Granisetron group showed a significantly greater improvement on negative subscale than the placebo group at endpoint [t(38) = 6.046, mean difference (±95% CI) = 3.2(1.8-3.7), P < 0.001]. The same effect was observed for total score [t(38) = 4.168, mean difference (95% CI) = 3.2(1.6-4.7), P < 0.001]. However the placebo and granisetron groups did not differ in their reduction of positive and general psychopathology symptoms scores. HDRS scores and its changes did not differ between the two groups. The ESRS score at week 4 was significantly lower in the granisetron than the placebo group while the two groups showed similar ESRS score at week 8. Frequency of other side effects was similar between the two groups. In summary, granisetron add-on can safely and effectively reduce the primary negative symptoms of patients with schizophrenia.
Collapse
|
362
|
Horiguchi M, Meltzer HY. Blonanserin reverses the phencyclidine (PCP)-induced impairment in novel object recognition (NOR) in rats: role of indirect 5-HT(1A) partial agonism. Behav Brain Res 2013; 247:158-64. [PMID: 23538066 DOI: 10.1016/j.bbr.2013.03.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/11/2013] [Accepted: 03/16/2013] [Indexed: 10/27/2022]
Abstract
Blonanserin is an atypical antipsychotic drug (APD) which, compared to other atypical APDs, is a relatively selective serotonin (5-HT)2A and dopamine D2 antagonist. Comparing blonanserin with more broadly acting atypical APDs could be useful to test the contributions of actions at other monoamine receptors, e.g. 5-HT1A receptors, to the reversal of PCP-induced novel object recognition (NOR) deficit. In this study, we tested the effect of blonanserin alone, and in combination with 5-HT1A agents, on NOR deficit induced by subchronic treatment with the N-methyl-D-aspartate (NMDA) receptor antagonist, phencyclidine (PCP; 2 mg/kg), b.i.d., for 7 days. Blonanserin, 1mg/kg, but not 0.3mg/kg, improved the PCP-induced NOR deficit. However, at 1mg/kg, object exploration was diminished. Co-administration of sub-effective doses of blonanserin (0.3 mg/kg) and the 5-HT1A partial agonist, tandospirone (0.2 mg/kg), significantly reversed the NOR deficit without diminishing activity during the acquisition or retention periods. The combination of WAY100635 (0.6 mg/kg), a 5-HT1A antagonist, and blonanserin (1 mg/kg), also diminished object exploration which prevented assessment of the effect of this combination on NOR. WAY100635 (0.6 mg/kg) blocked the ameliorating effect of risperidone (0.1 mg/kg), another atypical APD with low affinity for 5-HT1A receptors, but did not impair exploration. These results suggest that blonansein and risperidone, atypical APDs which lack a direct action on 5-HT1A receptors require 5-HT1A receptor stimulation to reverse the subchronic PCP-induced NOR deficit and provide a support for clinical trial of blonanserin in combination with tandospirone to ameliorate cognitive impairment in schizophrenia and to have fewer side effects.
Collapse
Affiliation(s)
- M Horiguchi
- Division of Psychiatry and Behavioural Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
363
|
Glass MJ, Robinson DC, Waters E, Pickel VM. Deletion of the NMDA-NR1 receptor subunit gene in the mouse nucleus accumbens attenuates apomorphine-induced dopamine D1 receptor trafficking and acoustic startle behavior. Synapse 2013; 67:265-79. [PMID: 23345061 DOI: 10.1002/syn.21637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 01/15/2013] [Indexed: 12/21/2022]
Abstract
The nucleus accumbens (Acb) contains subpopulations of neurons defined by their receptor content and potential involvement in sensorimotor gating and other behaviors that are dysfunctional in schizophrenia. In Acb neurons, the NMDA NR1 (NR1) subunit is coexpressed not only with the dopamine D1 receptor (D1R), but also with the µ-opioid receptor (µ-OR), which mediates certain behaviors that are adversely impacted by schizophrenia. The NMDA-NR1 subunit has been suggested to play a role in the D1R trafficking and behavioral dysfunctions resulting from systemic administration of apomorphine, a D1R and dopamine D2 receptor agonist that impacts prepulse inhibition to auditory-evoked startle (AS). Together, this evidence suggests that the NMDA receptor may regulate D1R trafficking in Acb neurons, including those expressing µ-OR, in animals exposed to auditory startle and apomorphine. We tested this hypothesis by combining spatial-temporal gene deletion technology, dual labeling immunocytochemistry, and behavioral analysis. Deleting NR1 in Acb neurons prevented the increase in the dendritic density of plasma membrane D1Rs in single D1R and dual (D1R and µ-OR) labeled dendrites in the Acb in response to apomorphine and AS. Deleting NR1 also attenuated the decrease in AS induced by apomorphine. In the absence of apomorphine and startle, deletion of Acb NR1 diminished social interaction, without affecting novel object recognition, or open field activity. These results suggest that NR1 expression in the Acb is essential for apomorphine-induced D1R surface trafficking, as well as auditory startle and social behaviors that are impaired in multiple psychiatric disorders.
Collapse
Affiliation(s)
- Michael J Glass
- Brain and Mind Research Institute, Weill Cornell Medical College, New York 10065, USA.
| | | | | | | |
Collapse
|
364
|
Cioffi CL, Wolf MA, Guzzo PR, Sadalapure K, Parthasarathy V, Dethe D, Maeng JH, Carulli E, Loong DT, Fang X, Hu M, Gupta P, Chung M, Bai M, Moore N, Luche M, Khmelnitsky Y, Love PL, Watson MA, Mhyre AJ, Liu S. Design, synthesis, and SAR of N-((1-(4-(propylsulfonyl)piperazin-1-yl)cycloalkyl)methyl)benzamide inhibitors of glycine transporter-1. Bioorg Med Chem Lett 2013; 23:1257-61. [DOI: 10.1016/j.bmcl.2013.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/19/2012] [Accepted: 01/02/2013] [Indexed: 01/09/2023]
|
365
|
Han RW, Zhang RS, Xu HJ, Chang M, Peng YL, Wang R. Neuropeptide S enhances memory and mitigates memory impairment induced by MK801, scopolamine or Aβ₁₋₄₂ in mice novel object and object location recognition tasks. Neuropharmacology 2013; 70:261-7. [PMID: 23454528 DOI: 10.1016/j.neuropharm.2013.02.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 01/24/2013] [Accepted: 02/02/2013] [Indexed: 11/18/2022]
Abstract
Neuropeptide S (NPS), the endogenous ligand of NPSR, has been shown to promote arousal and anxiolytic-like effects. According to the predominant distribution of NPSR in brain tissues associated with learning and memory, NPS has been reported to modulate cognitive function in rodents. Here, we investigated the role of NPS in memory formation, and determined whether NPS could mitigate memory impairment induced by selective N-methyl-D-aspartate receptor antagonist MK801, muscarinic cholinergic receptor antagonist scopolamine or Aβ₁₋₄₂ in mice, using novel object and object location recognition tasks. Intracerebroventricular (i.c.v.) injection of 1 nmol NPS 5 min after training not only facilitated object recognition memory formation, but also prolonged memory retention in both tasks. The improvement of object recognition memory induced by NPS could be blocked by the selective NPSR antagonist SHA 68, indicating pharmacological specificity. Then, we found that i.c.v. injection of NPS reversed memory disruption induced by MK801, scopolamine or Aβ₁₋₄₂ in both tasks. In summary, our results indicate that NPS facilitates memory formation and prolongs the retention of memory through activation of the NPSR, and mitigates amnesia induced by blockage of glutamatergic or cholinergic system or by Aβ₁₋₄₂, suggesting that NPS/NPSR system may be a new target for enhancing memory and treating amnesia.
Collapse
Affiliation(s)
- Ren-Wen Han
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou 730000, PR China
| | | | | | | | | | | |
Collapse
|
366
|
Gobira PH, Ropke J, Aguiar DC, Crippa JA, Moreira FA. Animal models for predicting the efficacy and side effects of antipsychotic drugs. BRAZILIAN JOURNAL OF PSYCHIATRY 2013; 35 Suppl 2:S132-9. [DOI: 10.1590/1516-4446-2013-1164] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | - Jose A.S. Crippa
- Universidade de Sao Paulo, Brazil; National Science and Technology Institute for Translational Medicine
| | | |
Collapse
|
367
|
Banik A, Anand A. Preclinical non-human models to combat dementia. Ann Neurosci 2013; 20:24-9. [PMID: 25206006 PMCID: PMC4117094 DOI: 10.5214/ans.0972.7531.200109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 12/30/2012] [Accepted: 01/07/2013] [Indexed: 12/16/2022] Open
Abstract
Dementia is characterized by a certain degree of memory loss with disabled intellectual functioning, which mostly presents as Alzheimer's disease. The underlying causes range from gene mutations, lifestyle factors, and other environmental influences to brain injuries and normal aging. Although there have been many rodent and non-human primate models created by various drugs, neurotoxins and genetic ablation but the current scenario does not exhibit a well characterized animal model to evaluate novel compounds and various treatment strategies for dementia. Therefore, a comprehensive model exhibiting the pathologies and neuro-behavioral parameters close to this syndrome is very much needed. This report discusses the various experimental strategies to create animal models of dementia.
Collapse
Affiliation(s)
- Avijit Banik
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, INDIA
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, INDIA
| |
Collapse
|
368
|
Nunes EA, MacKenzie EM, Rossolatos D, Perez-Parada J, Baker GB, Dursun SM. D-serine and schizophrenia: an update. Expert Rev Neurother 2012; 12:801-12. [PMID: 22853788 DOI: 10.1586/ern.12.65] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Considering the lengthy history of pharmacological treatment of schizophrenia, the development of novel antipsychotic agents targeting the glutamatergic system is relatively new. A glutamatergic deficit has been proposed to underlie many of the symptoms typically observed in schizophrenia, particularly the negative and cognitive symptoms (which are less likely to respond to current treatments). D-serine is an important coagonist of the glutamate NMDA receptor, and accumulating evidence suggests that D-serine levels and/or activity may be dysfunctional in schizophrenia and that facilitation of D-serine transmission could provide a significant therapeutic breakthrough, especially where conventional treatments have fallen short. A summary of the relevant animal data, as well as genetic studies and clinical trials examining D-serine as an adjunct to standard antipsychotic therapy, is provided in this article. Together, the evidence suggests that research on the next generation of antipsychotic agents should include studies on increasing brain levels of D-serine or mimicking its action on the NMDA receptor.
Collapse
Affiliation(s)
- Emerson A Nunes
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
369
|
Zhou Y, Liu MD, Fan Y, Ding JH, Du RH, Hu G. Enhanced MK-801-induced locomotion in Kir6.2 knockout mice. Neurosci Res 2012; 74:195-9. [DOI: 10.1016/j.neures.2012.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/03/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
|
370
|
Tarazi FI, Neill JC. The preclinical profile of asenapine: clinical relevance for the treatment of schizophrenia and bipolar mania. Expert Opin Drug Discov 2012; 8:93-103. [DOI: 10.1517/17460441.2013.738193] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Frank I Tarazi
- Harvard Medical School and McLean Hospital, Department of Psychiatry and Neuroscience,
115 Mill Street, Belmont, MA 02478, USA ;
| | - Jo C Neill
- School of Pharmacy and Pharmaceutical Sciences,
The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
371
|
Effects of antipsychotics on dentate gyrus stem cell proliferation and survival in animal models: a critical update. Neural Plast 2012; 2012:832757. [PMID: 23150836 PMCID: PMC3488410 DOI: 10.1155/2012/832757] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/19/2012] [Accepted: 09/20/2012] [Indexed: 12/15/2022] Open
Abstract
Schizophrenia is a complex psychiatric disorder. Although a number of different hypotheses have been developed to explain its aetiopathogenesis, we are far from understanding it. There is clinical and experimental evidence indicating that neurodevelopmental factors play a major role. Disturbances in neurodevelopment might result in alterations of neuroanatomy and neurochemistry, leading to the typical symptoms observed in schizophrenia. The present paper will critically address the neurodevelopmental models underlying schizophrenia by discussing the effects of typical and atypical antipsychotics in animal models. We will specifically discuss the vitamin D deficiency model, the poly I:C model, the ketamine model, and the postnatal ventral hippocampal lesion model, all of which reflect core neurodevelopmental issues underlying schizophrenia onset.
Collapse
|
372
|
Deroza PF, Ghedim FV, Heylmann AS, de Luca RD, Budni J, Souza RP, Quevedo J, Zugno AI. Effect of cigarette smoke exposure in the behavioral changes induced by ketamine. Schizophr Res 2012; 141:104-5. [PMID: 22819778 DOI: 10.1016/j.schres.2012.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 06/26/2012] [Accepted: 07/02/2012] [Indexed: 11/25/2022]
|
373
|
Abstract
Antipsychotic drugs (APDs) are best classified as typical or atypical. The distinction is based solely on their ability to cause extrapyramidal side effects (EPS), including tardive dyskinesia (TD). The two classes differ in mechanism of action, with atypical APDs providing important modulation of serotonergic neurotransmission. TD increases the death rate and can be minimized by limiting use of typical APDs. Clozapine is unique among the atypical APDs in its efficacy for ameliorating psychosis in patients with treatment-resistant schizophrenia (TRS), for reduction of suicide, and for improving longevity. The typical and atypical APDs do not differ in improving psychopathology in non-TRS. The atypicals vary in metabolic side effects: some have little burden. Cognitive benefits of the atypical APDs may be superior for some domains of cognition and require less use of anticholinergic drugs, which impair memory, for treatment of EPS. Overall, choosing among the atypical APDs as first-line treatment represents the best course for schizophrenia and most likely other disorders for which APDs are used.
Collapse
Affiliation(s)
- Herbert Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| |
Collapse
|
374
|
NMDA receptor function in large-scale anticorrelated neural systems with implications for cognition and schizophrenia. Proc Natl Acad Sci U S A 2012; 109:16720-5. [PMID: 23012427 DOI: 10.1073/pnas.1208494109] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glutamatergic neurotransmission mediated by N-methyl-d-aspartate (NMDA) receptors is vital for the cortical computations underlying cognition and might be disrupted in severe neuropsychiatric illnesses such as schizophrenia. Studies on this topic have been limited to processes in local circuits; however, cognition involves large-scale brain systems with multiple interacting regions. A prominent feature of the human brain's global architecture is the anticorrelation of default-mode vs. task-positive systems. Here, we show that administration of an NMDA glutamate receptor antagonist, ketamine, disrupted the reciprocal relationship between these systems in terms of task-dependent activation and connectivity during performance of delayed working memory. Furthermore, the degree of this disruption predicted task performance and transiently evoked symptoms characteristic of schizophrenia. We offer a parsimonious hypothesis for this disruption via biophysically realistic computational modeling, namely cortical disinhibition. Together, the present findings establish links between glutamate's role in the organization of large-scale anticorrelated neural systems, cognition, and symptoms associated with schizophrenia in humans.
Collapse
|
375
|
Horiguchi M, Hannaway KE, Adelekun AE, Huang M, Jayathilake K, Meltzer HY. D(1) receptor agonists reverse the subchronic phencyclidine (PCP)-induced novel object recognition (NOR) deficit in female rats. Behav Brain Res 2012; 238:36-43. [PMID: 23018127 DOI: 10.1016/j.bbr.2012.09.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 09/14/2012] [Accepted: 09/18/2012] [Indexed: 12/26/2022]
Abstract
Development of dopamine (DA) D(1) receptor agonists is a priority to improve cognitive impairment in schizophrenia (CIS). This study examined the dose-response relationship of the selective D(1) agonist, SKF38393 (0.5-40 mg/kg), to reverse the deficit in novel object recognition (NOR), an analog of declarative memory in man, produced by subchronic phencyclidine (PCP), an N-methyl-D-aspartate (NMDA) receptor non-competitive antagonist, and the ability of the D(1) antagonists, SCH23390 (0.05 mg/kg) and SKF83566 (0.15 mg/kg), to impair NOR in normal Long-Evans female rats. We also examined the ability of tandospirone, a serotonin (5-HT)(1A) receptor partial agonist, and LY341495, a mGluR2/3 receptor antagonist, to potentiate or block the effects of SKF38393 on NOR, respectively. SKF38393 reversed the persistent NOR deficit produced by subchronic PCP; the dose-response curve for SKF38393 was an inverted U-shape, with the peak effect at 6 mg/kg. SKF83566 and SCH23390 impaired NOR in normal rats. Co-administration of sub-effective doses of SKF38393 (0.25 mg/kg) and tandospirone (0.2 mg/kg) improved the PCP-induced NOR deficit, while LY341495 (1 mg/kg) blocked the ameliorating effect of SKF38393 (6 mg/kg), respectively. These data provide the first evidence that the reversal of the PCP-induced NOR deficit by D(1) agonism has an inverted U-shaped dose-response curve and that 5-HT(1A) and mGluR2/3 receptor signalling facilitates the efficacy of D(1) agonism to improve these deficits. These data suggest that although D(1) agonists may be useful to improve CIS, these agents, particularly higher doses, may also worsen cognitive function in some patients, because of an inverted U-shaped dose response curve.
Collapse
Affiliation(s)
- Masakuni Horiguchi
- Division of Psychopharmacology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | | | | | | | | | | |
Collapse
|
376
|
Jacklin DL, Goel A, Clementino KJ, Hall AWM, Talpos JC, Winters BD. Severe cross-modal object recognition deficits in rats treated sub-chronically with NMDA receptor antagonists are reversed by systemic nicotine: implications for abnormal multisensory integration in schizophrenia. Neuropsychopharmacology 2012; 37:2322-31. [PMID: 22669170 PMCID: PMC3422496 DOI: 10.1038/npp.2012.84] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Schizophrenia is a complex and debilitating disorder, characterized by positive, negative, and cognitive symptoms. Among the cognitive deficits observed in patients with schizophrenia, recent work has indicated abnormalities in multisensory integration, a process that is important for the formation of comprehensive environmental percepts and for the appropriate guidance of behavior. Very little is known about the neural bases of such multisensory integration deficits, partly because of the lack of viable behavioral tasks to assess this process in animal models. In this study, we used our recently developed rodent cross-modal object recognition (CMOR) task to investigate multisensory integration functions in rats treated sub-chronically with one of two N-methyl-D-aspartate receptor (NMDAR) antagonists, MK-801, or ketamine; such treatment is known to produce schizophrenia-like symptoms. Rats treated with the NMDAR antagonists were impaired on the standard spontaneous object recognition (SOR) task, unimodal (tactile or visual only) versions of SOR, and the CMOR task with intermediate to long retention delays between acquisition and testing phases, but they displayed a selective CMOR task deficit when mnemonic demand was minimized. This selective impairment in multisensory information processing was dose-dependently reversed by acute systemic administration of nicotine. These findings suggest that persistent NMDAR hypofunction may contribute to the multisensory integration deficits observed in patients with schizophrenia and highlight the valuable potential of the CMOR task to facilitate further systematic investigation of the neural bases of, and potential treatments for, this hitherto overlooked aspect of cognitive dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Derek L Jacklin
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Amit Goel
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Kyle J Clementino
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Alexander W M Hall
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - John C Talpos
- Translational Research, Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| | - Boyer D Winters
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada,Department of Psychology, University of Guelph, Guelph, ON, Canada N1G 2W1, Tel: +519 824 4120 (52163), Fax: +519 837 8629, E-mail:
| |
Collapse
|
377
|
McLean SL, Idris NF, Grayson B, Gendle DF, Mackie C, Lesage AS, Pemberton DJ, Neill JC. PNU-120596, a positive allosteric modulator of α7 nicotinic acetylcholine receptors, reverses a sub-chronic phencyclidine-induced cognitive deficit in the attentional set-shifting task in female rats. J Psychopharmacol 2012; 26:1265-70. [PMID: 22182741 DOI: 10.1177/0269881111431747] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The α7 nicotinic acetylcholine receptors (nAChRs) have been highlighted as a target for cognitive enhancement in schizophrenia. Adult female hooded Lister rats received sub-chronic phencyclidine (PCP) (2 mg/kg) or vehicle i.p. twice daily for 7 days, followed by 7 days' washout. PCP-treated rats then received PNU-120596 (10 mg/kg; s.c.) or saline and were tested in the attentional set-shifting task. Sub-chronic PCP produced a significant cognitive deficit in the extra-dimensional shift (EDS) phase of the task (p < 0.001, compared with vehicle). PNU-120596 significantly improved performance of PCP-treated rats in the EDS phase of the attentional set-shifting task (p < 0.001). In conclusion, these data demonstrate that PNU-120596 improves cognitive dysfunction in our animal model of cognitive dysfunction in schizophrenia, most likely via modulation of α7 nACh receptors.
Collapse
|
378
|
Prevention of the phencyclidine-induced impairment in novel object recognition in female rats by co-administration of lurasidone or tandospirone, a 5-HT(1A) partial agonist. Neuropsychopharmacology 2012; 37:2175-83. [PMID: 22739469 PMCID: PMC3422483 DOI: 10.1038/npp.2012.64] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hypoglutamatergic function may contribute to cognitive impairment in schizophrenia (CIS). Subchronic treatment with the N-methyl-D-aspartate receptor antagonist, phencyclidine (PCP), induces enduring deficits in novel object recognition (NOR) in rodents. Acute treatment with atypical antipsychotic drugs (APDs), which are serotonin (5-HT)(2A)/dopamine D(2) antagonists, but not typical APDs, eg, haloperidol, reverses the PCP-induced NOR deficit in rats. We have tested the ability of lurasidone, an atypical APD with potent 5-HT(1A) partial agonist properties, tandospirone, a selective 5-HT(1A) partial agonist, haloperidol, a D(2) antagonist, and pimavanserin, a 5-HT(2A) inverse agonist, to prevent the development of the PCP-induced NOR deficit. Rats were administered lurasidone (0.1 or 1 mg/kg), tandospirone (5 mg/kg), pimavanserin (3 mg/kg), or haloperidol (1 mg/kg) b.i.d. 30 min before PCP (2 mg/kg, b.i.d.) for 7 days (day1-7), followed by a 7-day washout (day 8-14). Subchronic treatment with PCP induced an enduring NOR deficit. Lurasidone (1 mg/kg) but not 0.1 mg/kg, which is effective to acutely reverse the deficit due to subchronic PCP, or tandospirone, but not pimavanserin or haloperidol, significantly prevented the PCP-induced NOR deficit on day 15. The ability of lurasidone co-treatment to prevent the PCP-induced NOR deficit was enduring and still present at day 22. The preventive effect of lurasidone was blocked by WAY100635, a selective 5-HT(1A) antagonists, further evidence for the importance of 5-HT(1A) receptor stimulation in the NOR deficit produced by subchronic PCP. Further study is needed to determine whether these results concerning mechanism and dosage can be the basis for prevention of the development of CIS in at risk populations.
Collapse
|
379
|
Featherstone RE, Liang Y, Saunders JA, Tatard-Leitman VM, Ehrlichman RS, Siegel SJ. Subchronic ketamine treatment leads to permanent changes in EEG, cognition and the astrocytic glutamate transporter EAAT2 in mice. Neurobiol Dis 2012; 47:338-46. [DOI: 10.1016/j.nbd.2012.05.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 04/09/2012] [Accepted: 05/11/2012] [Indexed: 01/11/2023] Open
|
380
|
Nagels A, Kirner-Veselinovic A, Wiese R, Paulus FM, Kircher T, Krach S. Effects of ketamine-induced psychopathological symptoms on continuous overt rhyme fluency. Eur Arch Psychiatry Clin Neurosci 2012; 262:403-14. [PMID: 22189657 DOI: 10.1007/s00406-011-0281-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 12/03/2011] [Indexed: 11/29/2022]
Abstract
The N-methyl-D-aspartate receptor (NMDAR) has been implicated in the pathophysiology of schizophrenia. Administered to healthy individuals, a subanesthetic dose of the noncompetitive NMDAR antagonist ketamine reproduces several psychopathological symptoms commonly observed in patients with schizophrenia. In a counterbalanced, placebo-controlled, double-blind, within-participants study, fifteen healthy subjects were administered a continuous subanesthetic S-ketamine infusion while cortical activation was measured using functional magnetic resonance imaging. While being scanned, subjects performed an overt word generation task. Ketamine-induced psychopathological symptoms were assessed with the Positive and Negative Syndrome Scale (PANSS). Ketamine administration elicited effects on psychopathology, including difficulties in abstract thinking, lack of spontaneity and flow of conversation as well as formal thought disorder. On a behavioral level, verbal fluency performance was unaffected. The PANSS score for formal thought disorder positively correlated with activation measures encompassing the left superior temporal gyrus, the right middle and inferior frontal gyrus and the precuneus. Difficulty in abstract thinking was correlated with pronounced activations in prefrontal as well as in anterior cingulate regions, whereas hyperactivations in the left superior temporal gyrus were found in association with a lack of spontaneity and flow of conversation. In the absence of behavioral impairments during verbal fluency, NMDAR blocking evoked psychopathological symptoms and cortical activations in regions previously reported in schizophrenia patients. The results provide further support for the hypothesis of an NMDAR dysfunction in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Arne Nagels
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Germany.
| | | | | | | | | | | |
Collapse
|
381
|
Ng MC, Hsu CP, Wu YJ, Wu SY, Yang YL, Lu KT. Effect of MK-801-induced impairment of inhibitory avoidance learning in zebrafish via inactivation of extracellular signal-regulated kinase (ERK) in telencephalon. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:1099-1106. [PMID: 22215143 DOI: 10.1007/s10695-011-9595-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 12/20/2011] [Indexed: 05/31/2023]
Abstract
N-Methyl-D-aspartate (NMDA) receptors are implicated in a wide range of complex behavioral functions, including cognitive activity. Numerous studies have shown that using the repetitive administration of a noncompetitive NMDA receptor antagonist, MK-801, induces amnesia in rodents. In this study, the effect of a subchronic MK-801 treatment on the cognitive function of zebrafish was evaluated using a novel inhibitory avoidance task. First, we established a new system to investigate the inhibitory avoidance learning of zebrafish where they were trained to refrain from swimming from a shallow compartment to a deep compartment in order to avoid electric shock. Second, we found that blocking NMDA receptors by MK-801 could significantly attenuate the inhibitory avoidance behavior of the zebrafish and alter the telencephalic extracellular signal-regulated kinase (ERK) phosphorylation level 90 min after the inhibitory avoidance training. These results suggest that the formation of long-term emotional memory is possibly mediated by ERK activation in the telencephalon of zebrafish.
Collapse
Affiliation(s)
- Ming-Chong Ng
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chun-Po Hsu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Yao-Ju Wu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Shih-Yu Wu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Yi-Ling Yang
- Department of Biochemical Science and Technology, National Chia-Yi University, Chia-Yi, Taiwan
| | - Kwok-Tung Lu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
382
|
Sendt KV, Giaroli G, Tracy DK. Beyond dopamine: glutamate as a target for future antipsychotics. ISRN PHARMACOLOGY 2012; 2012:427267. [PMID: 22830044 PMCID: PMC3399404 DOI: 10.5402/2012/427267] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 06/06/2012] [Indexed: 01/25/2023]
Abstract
The dopamine hypothesis of schizophrenia remains the primary theoretical framework for the pharmacological treatment of the disorder. Despite various lines of evidence of dopaminergic abnormalities and reasonable efficacy of current antipsychotic medication, a significant proportion of patients show suboptimal treatment responses, poor tolerability, and a subsequent lack of treatment concordance. In recent decades, intriguing evidence for the critical involvement of other neurotransmitter systems in the pathophysiology of schizophrenia has emerged, most notably of dysfunctions within the glutamate pathways. Consequently, the glutamate synapse has arisen as a promising target for urgently needed novel antipsychotic compounds—particularly in regards to debilitating negative and cognitive symptoms poorly controlled by currently available drugs. In this paper, recent findings integrating glutamatergic and dopaminergic abnormalities in schizophrenia and their implications for novel pharmacological targets are discussed. An overview of compounds in various stages of development is given: drugs enhancing NMDA receptor function as well as metabotropic glutamate receptor (mGluR) agonist and positive allosteric modulators (PAMs) are emphasised. Together with other agents more indirectly affecting glutamatergic neurotransmission, their potential future role in the pharmacotherapy of schizophrenia is critically evaluated.
Collapse
Affiliation(s)
- Kyra-Verena Sendt
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London SE5 8AF, UK
| | | | | |
Collapse
|
383
|
Zheng W, Wang H, Zeng Z, Lin J, Little PJ, Srivastava LK, Quirion R. The possible role of the Akt signaling pathway in schizophrenia. Brain Res 2012; 1470:145-58. [PMID: 22771711 DOI: 10.1016/j.brainres.2012.06.032] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 06/19/2012] [Accepted: 06/25/2012] [Indexed: 02/07/2023]
Abstract
Serine/threonine protein kinase v-akt murine thymoma viral oncogene homolog (Akt) is one of the survival kinases with multiple biological functions in the brain and throughout the body. Schizophrenia is one of the most devastating psychiatric disorders. Accumulating evidence has indicated the involvement of the Akt signaling pathway in the pathogenesis of this disorder. Genetic linkage and association studies have identified Akt-1 as a candidate susceptibility gene related for schizophrenia. The level of Akt-1 protein and its kinase activity decreased significantly both in white blood cells from schizophrenic patients and in postmortem brain tissue of schizophrenic patients. Consistent with these findings, alterations in the upstream and downstream pathways of Akt have also been found in many psychiatric disorders. Furthermore, both typical and atypical antipsychotic drugs modify the Akt signaling pathway in a variety of conditions relative to schizophrenia. In addition as a survival kinase, Akt participates in neurodevelopment, synaptic plasticity, protein synthesis and neurotransmission in the central nervous system. It is thought that reduced activity of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway could at least partially explain the cognitive impairment, synaptic morphologic abnormality, neuronal atrophy and dysfunction of neurotransmitter signaling in schizophrenia. In addition, reduced levels of Akt may increase the effects of risk factors on neurodevelopment, attenuate the effects of growth factors on neurodevelopment and reduce the response of patients to antipsychotic agents. More recently, the role of Akt signaling in the functions of schizophrenia susceptibility genes such as disrupted-in-schizophrenia 1 (DISC-1), neuregulin-1 (NRG-1) and dysbindin-1 has been reported. Thus, Akt deficiency may create a context permissive for the expression of risk-gene effects in neuronal morphology and function. This paper reviews the role of Akt in the pathophysiology of schizophrenia and as a potential therapeutic strategy targeting Akt.
Collapse
Affiliation(s)
- Wenhua Zheng
- Neuropharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | | | | | | | | | | | | |
Collapse
|
384
|
The discovery and development of drugs to treat psychiatric disorders: Historical perspective. Transl Neurosci 2012. [DOI: 10.1017/cbo9780511980053.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
385
|
Redrobe JP, Elster L, Frederiksen K, Bundgaard C, de Jong IEM, Smith GP, Bruun AT, Larsen PH, Didriksen M. Negative modulation of GABAA α5 receptors by RO4938581 attenuates discrete sub-chronic and early postnatal phencyclidine (PCP)-induced cognitive deficits in rats. Psychopharmacology (Berl) 2012; 221:451-68. [PMID: 22124672 DOI: 10.1007/s00213-011-2593-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 11/15/2011] [Indexed: 11/29/2022]
Abstract
RATIONALE A growing body of evidence suggests that negative modulation of γ-aminobutyric acid (GABA) GABA(A) α5 receptors may be a promising strategy for the treatment of certain facets of cognitive impairment; however, selective modulators of GABA(A) α5 receptors have not yet been tested in "schizophrenia-relevant" cognitive assay/model systems in animals. OBJECTIVES The objectives of this study were to investigate the potential of RO4938581, a negative modulator of GABA(A) α5 receptors, and to attenuate cognitive impairments induced following sub-chronic (sub-PCP) and early postnatal PCP (neo-PCP) administration in the novel object recognition (NOR) and intra-extradimensional shift (ID/ED) paradigms in rats. Complementary in vitro, ex vivo and in vivo studies were performed to confirm negative modulatory activity of RO4938581 and to investigate animal model validity, concept validity and potential side effect issues, respectively. RESULTS In vitro studies confirmed the reported negative modulatory activity of RO4938581, whilst immunohistochemical analyses revealed significantly reduced parvalbumin-positive cells in the prefrontal cortex of sub-PCP- and neo-PCP-treated rats. RO4938581 (1 mg/kg) ameliorated both sub-PCP- and neo-PCP-induced cognitive deficits in NOR and ID/ED performance, respectively. In contrast, QH-II-066 (1 and 3 mg/kg), a GABA(A) α5 receptor positive modulator, impaired cognitive performance in the NOR task when administered to vehicle-treated animals. Additional studies revealed that both RO4938581 (1 mg/kg) and QH-II-066 (1 and 3 mg/kg) attenuated amphetamine-induced hyperactivity in rats. CONCLUSIONS Taken together, these novel findings suggest that negative modulation of GABA(A) α5 receptors may represent an attractive treatment option for the cognitive impairments, and potentially positive symptoms, associated with schizophrenia.
Collapse
Affiliation(s)
- John P Redrobe
- Synaptic Transmission I, Neuroscience Research DK, H Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
386
|
Iasevoli F, Latte G, Avvisati L, Sarappa C, Aloj L, de Bartolomeis A. The expression of genes involved in glucose metabolism is affected by N-methyl-D-aspartate receptor antagonism: A putative link between metabolism and an animal model of psychosis. J Neurosci Res 2012; 90:1756-67. [DOI: 10.1002/jnr.23071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/16/2012] [Accepted: 03/22/2012] [Indexed: 01/07/2023]
|
387
|
Deficits in emotional learning and memory in an animal model of schizophrenia. Behav Brain Res 2012; 233:35-44. [PMID: 22569573 DOI: 10.1016/j.bbr.2012.04.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 04/05/2012] [Accepted: 04/28/2012] [Indexed: 11/23/2022]
Abstract
Alterations in N-methyl-D-aspartate (NMDA) receptor function have been linked to numerous behavioral deficits and neurochemical alterations. Recent investigations have begun to explore the role of NMDA receptor function on principally inhibitory neurons and their role in network function. One of the prevailing models of schizophrenia proposes a reduction in NMDA receptor function on inhibitory interneurons and the resulting disinhibition may give rise to aspects of the disorder. Studies using NMDA receptor antagonists such as PCP and ketamine have induced schizophrenia-like behavioral deficits in animal model systems as well as changes in inhibitory circuits. The current study investigated whether the administration of a subanesthetic dose of ketamine (8 mg/kg subcutaneously), that disrupts sensorimotor gating, also produces impairments in a Pavlovian emotional learning and memory task. We utilized both standard delay and trace cued and contextual fear conditioning (CCF) paradigms to examine if ketamine produces differential effects when the task is more difficult and relies on connectivity between specific brain regions. Rats administered ketamine displayed no significant deficits in cued or contextual fear following the delay conditioning protocol. However, ketamine did produce a significant impairment in the more difficult trace conditioning protocol. Analyses of tissue from the hippocampus and amygdala indicated that the administration of ketamine produced an alteration in GABA receptor protein levels differentially depending on the task. These data indicate that 8 mg/kg of ketamine impairs learning in the more difficult emotional classical conditioning task and may be related to altered signaling in GABAergic systems.
Collapse
|
388
|
Savage S, Mattsson A, Olson L. Cholinergic denervation attenuates phencyclidine-induced c-fos responses in rat cortical neurons. Neuroscience 2012; 216:38-45. [PMID: 22561731 DOI: 10.1016/j.neuroscience.2012.04.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 12/15/2022]
Abstract
The cortical cholinergic innervation, which is important for memory and cognition, has been implicated in schizophrenia. To experimentally analyze such a possible role of the cholinergic system, we have used the dissociative drug phencyclidine (PCP), known to produce schizophrenia-like psychosis in humans, to model aspects of schizophrenia in rats. We previously showed that induced cortical cholinergic hypofunction leads to enhanced PCP-induced locomotor activity and attenuated social interaction. After PCP, rats lacking cortical cholinergic innervation also show impaired declarative memory. To directly study the role of the basalo-cortical cholinergic projections for PCP-induced neural activation in different cortical areas, we have now monitored the rapid (30 and 60 min) effects of low doses of PCP (2 and 3mg/kg) on neural activation as reflected by transcriptional activation of c-fos in cortical areas, using quantitative in situ hybridization. We find an almost pan-cortical neural induction of c-fos mRNA with doses of PCP low enough not to alter levels of either BDNF or Nogo receptor mRNA levels. Specific unilateral lesioning of the uncrossed cholinergic projections to the cortical mantle by 192-IgG-saporin immunotoxin delivery to nc basalis (NBM) caused a striking ipsilateral decrease of the PCP-induced cortical c-fos mRNA induction, restricted to areas which had become effectively denervated. Because PCP at low doses is unlikely to directly influence cortical neurons, we suggest that it acts by activation of the cholinergic input, which in turn leads to cortical c-fos mRNA increases. Our results are compatible with a role for the cholinergic system in symptoms of schizophrenia, by showing that the basalo-cortical cholinergic projections are needed in order for PCP to have full activating effects on cortical neurons.
Collapse
Affiliation(s)
- S Savage
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
389
|
Differential effects of AMPA receptor potentiators and glycine reuptake inhibitors on antipsychotic efficacy and prefrontal glutamatergic transmission. Psychopharmacology (Berl) 2012; 221:115-31. [PMID: 22068461 DOI: 10.1007/s00213-011-2554-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 10/17/2011] [Indexed: 12/30/2022]
Abstract
RATIONALE The α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor positive allosteric modulators (AMPA-PAMs), Org 24448 and Org 26576, and the glycine transporter-1 (GlyT-1) inhibitor Org 25935 are developed for treatment of schizophrenia. OBJECTIVES Here we examined experimentally the ability of co-administration of these AMPA-PAMs or the GlyT-1 inhibitor to augment the antipsychotic activity and effect on cortical N-methyl-D: -aspartate (NMDA) receptor-mediated transmission of risperidone, olanzapine, or haloperidol. METHODS We examined antipsychotic efficacy using the conditioned avoidance response (CAR) test, extrapyramidal side effect liability using a catalepsy test, and cortical NMDA receptor-mediated glutamatergic transmission using intracellular electrophysiological recording technique in vitro. RESULTS Both AMPA-PAMs enhanced the suppression of CAR induced by risperidone or olanzapine, and Org 24448 also enhanced the effect of haloperidol. In contrast, the GlyT-1 inhibitor did not cause any behaviorally significant effect in the CAR test. However, the GlyT-1 inhibitor, but not the AMPA-PAMs, produced a large facilitation of NMDA-induced currents. All three drugs potentiated the effect of risperidone but not haloperidol on these currents. The GlyT-1 inhibitor also facilitated the effect of olanzapine. All drugs potentiated the effect of risperidone on electrically stimulated excitatory postsynaptic potentials (EPSP) in cortical pyramidal cells, whereas only the GlyT inhibitor facilitated the effect of olanzapine. CONCLUSIONS Our results suggest that the AMPA-PAMs, when compared to the GlyT-1 inhibitor, show differential effects in terms of augmentation of antipsychotic efficacy, particularly when combined with risperidone or olanzapine. Both AMPA-PAMs and the GlyT-1 inhibitor may also improve negative symptoms and cognitive impairments in schizophrenia, in particular when combined with risperidone.
Collapse
|
390
|
Horiguchi M, Meltzer HY. The role of 5-HT1A receptors in phencyclidine (PCP)-induced novel object recognition (NOR) deficit in rats. Psychopharmacology (Berl) 2012; 221:205-15. [PMID: 22227609 DOI: 10.1007/s00213-011-2561-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 10/27/2011] [Indexed: 12/26/2022]
Abstract
RATIONALE Atypical antipsychotic drugs (APDs), many of which are direct or indirect serotonin (5-HT)(1A) agonists, and tandospirone, a 5-HT(1A) partial agonist, have been reported to improve cognition in schizophrenia. OBJECTIVES AND METHODS We tested the effect of 5-HT(1A) agonism, alone, and in combination with other psychotropic agents, including the atypical APD, lurasidone, in reversing the deficit in novel object recognition (NOR) induced by subchronic treatment with the non-competitive NMDA receptor antagonist, phencyclidine (PCP) (2 mg/kg, b.i.d., for 7 days). RESULTS Subchronic treatment with PCP induced a persistent NOR deficit. Lurasidone (0.1 mg/kg), a potent 5-HT(1A) partial agonist, 5-HT(2A) antagonist, and weaker D(2) antagonist, tandospirone (0.6 mg/kg), and the selective post-synaptic 5-HT(1A) agonist, F15599 (0.16 mg/kg), ameliorated the subchronic PCP-induced-NOR deficit. The 5-HT(1A) antagonist, WAY100635 (0.6 mg/kg), blocked the ameliorating effects of tandospirone and lurasidone. The combination of sub-effective doses of tandospirone (0.2 mg/kg) and lurasidone (0.03 mg/kg) also reversed the PCP-induced NOR-deficit. Buspirone, a less potent partial 5-HT(1A) agonist than tandospirone, was less effective. Co-administration of tandospirone (0.2 mg/kg) and pimavanserin (3 mg/kg), a relatively selective 5-HT(2A) receptor inverse agonist, did not reverse the effect of sub-chronic PCP on NOR. The D(2) antagonist, haloperidol, blocked the ameliorating effect of tandospirone on the PCP-induced deficit in NOR. CONCLUSIONS These results indicate that 5-HT(1A) agonism is adequate to ameliorate the PCP-induced impairment in NOR and suggest further study of utilizing the combination of a 5-HT(1A) agonist and an atypical APD to ameliorate some types of cognitive impairment in schizophrenia.
Collapse
Affiliation(s)
- M Horiguchi
- Division of Psychopharmacology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | | |
Collapse
|
391
|
Kyzar EJ, Collins C, Gaikwad S, Green J, Roth A, Monnig L, El-Ounsi M, Davis A, Freeman A, Capezio N, Stewart AM, Kalueff AV. Effects of hallucinogenic agents mescaline and phencyclidine on zebrafish behavior and physiology. Prog Neuropsychopharmacol Biol Psychiatry 2012; 37:194-202. [PMID: 22251567 PMCID: PMC3294104 DOI: 10.1016/j.pnpbp.2012.01.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 12/20/2011] [Accepted: 01/04/2012] [Indexed: 01/12/2023]
Abstract
Mescaline and phencyclidine (PCP) are potent hallucinogenic agents affecting human and animal behavior. As their psychotropic effects remain poorly understood, further research is necessary to characterize phenotypes they evoke in various animal models. Zebrafish (Danio rerio) are rapidly emerging as a new model organism for neuroscience research. Here, we examine the effects of mescaline (5-20mg/l) and PCP (0.5-3mg/l) in several zebrafish paradigms, including the novel tank, open field and shoaling tests. Mescaline and PCP dose-dependently increased top activity in the novel tank test, also reducing immobility and disrupting the patterning of zebrafish swimming, as assessed by ethograms. PCP, but not mescaline, evoked circling behavior in the open field test. At the highest doses tested, mescaline markedly increased, while PCP did not affect, zebrafish shoaling behavior. Finally, 20mg/l mescaline did not alter, and 3mg/l PCP elevated, whole-body cortisol levels. Overall, our studies indicate high sensitivity of zebrafish models to hallucinogenic compounds with complex behavioral and physiological effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Allan V. Kalueff
- Corresponding Author: Allan V. Kalueff, PhD, Department of Pharmacology, Room SL-83, Tulane University Medical School, 1430 Tulane Ave., New Orleans, LA 70112, USA. Tel/Fax.: +1 504 988 3354.
| |
Collapse
|
392
|
Griebel G, Pichat P, Pruniaux MP, Beeské S, Lopez-Grancha M, Genet E, Terranova JP, Castro A, Sánchez JA, Black M, Varty GB, Weiner I, Arad M, Barak S, De Levie A, Guillot E. SAR110894, a potent histamine H₃-receptor antagonist, displays procognitive effects in rodents. Pharmacol Biochem Behav 2012; 102:203-14. [PMID: 22542742 DOI: 10.1016/j.pbb.2012.04.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/01/2012] [Accepted: 04/10/2012] [Indexed: 12/17/2022]
Abstract
SAR110894 is a novel histamine H₃-R ligand, displaying high and selective affinity for human, rat or mouse H₃-Rs. SAR110894 is a potent H₃-R antagonist at native receptors, reversing R-α-methylhistamine-induced inhibition of electrical field stimulation contraction in the guinea-pig ileum. Additionally, SAR110894 inhibited constitutive GTPγS binding at human H₃-Rs demonstrating inverse agonist properties. In behavioral models addressing certain aspects of cognitive impairment associated with schizophrenia (CIAS) and attention deficit/hyperactivity disorder (ADHD), SAR110894 improved memory performances in several variants of the object recognition task in mice (0.3-3 mg/kg, p.o.) or rats (0.3-1 mg/kg, p.o.). Moreover, SAR110894 (1 mg/kg, p.o.) reversed a deficit in working memory in the Y-maze test, following an acute low dose of phencyclidine (PCP) (0.5 mg/kg, i.p.) in mice sensitized by repeated treatment with a high dose of PCP (10 mg/kg, i.p.). In the latent inhibition (LI) model, SAR110894 potentiated LI in saline-treated rats (1 and 3 mg/kg, i.p.) and reversed abnormally persistent LI induced by neonatal nitric oxide synthase (NOS) inhibition in rodents (0.3-3 mg/kg, i.p.). In a social novelty discrimination task in rats, SAR110894 attenuated selective attention deficit induced by neonatal PCP treatment (3 and 10 mg/kg, p.o.) or a parametric modification of the procedure (3 and 10 mg/kg, p.o.). SAR110894 showed efficacy in several animal models related to the cognitive deficits in Alzheimer's disease (AD). It prevented the occurrence of episodic memory deficit induced by scopolamine in rats (0.01-10 mg/kg, p.o.) or by the central infusion of the toxic amyloid fragment β₂₅₋₃₅ in the object recognition test in mice (1 and 3 mg/kg, p.o.). Altogether, these findings suggest that SAR110894 may be of therapeutic interest for the treatment of the cognitive symptoms of AD, schizophrenia and certain aspects of ADHD.
Collapse
Affiliation(s)
- Guy Griebel
- Sanofi, Exploratory Unit, Chilly-Mazarin, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
393
|
Khani A, Rainer G. Recognition memory in tree shrew (Tupaia belangeri) after repeated familiarization sessions. Behav Processes 2012; 90:364-71. [PMID: 22521708 DOI: 10.1016/j.beproc.2012.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 11/28/2022]
Abstract
Recognition memories are formed during perceptual experience and allow subsequent recognition of previously encountered objects as well as their distinction from novel objects. As a consequence, novel objects are generally explored longer than familiar objects by many species. This novelty preference has been documented in rodents using the novel object recognition (NOR) test, as well is in primates including humans using preferential looking time paradigms. Here, we examine novelty preference using the NOR task in tree shrew, a small animal species that is considered to be an intermediary between rodents and primates. Our paradigm consisted of three phases: arena familiarization, object familiarization sessions with two identical objects in the arena and finally a test session following a 24-h retention period with a familiar and a novel object in the arena. We employed two different object familiarization durations: one and three sessions on consecutive days. After three object familiarization sessions, tree shrews exhibited robust preference for novel objects on the test day. This was accompanied by significant reduction in familiar object exploration time, occurring largely between the first and second day of object familiarization. By contrast, tree shrews did not show a significant preference for the novel object after a one-session object familiarization. Nonetheless, they spent significantly less time exploring the familiar object on the test day compared to the object familiarization day, indicating that they did maintain a memory trace for the familiar object. Our study revealed different time courses for familiar object habituation and emergence of novelty preference, suggesting that novelty preference is dependent on well-consolidated memory of the competing familiar object. Taken together, our results demonstrate robust novelty preference of tree shrews, in general similarity to previous findings in rodents and primates.
Collapse
Affiliation(s)
- Abbas Khani
- Visual Cognition Laboratory, Department of Medicine, Chemin du Musee 5, Fribourg, Switzerland
| | | |
Collapse
|
394
|
Shahid M. Clinical Need and Rationale for Multi-Target Drugs in Psychiatry. DESIGNING MULTI-TARGET DRUGS 2012. [DOI: 10.1039/9781849734912-00014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
High attrition in attempts to discover new pharmacological agents for the treatment of psychiatric disorders has triggered a decline in R&D investment in important disease categories such as schizophrenia and mood disorders. Poor knowledge about disease molecular pathology and molecular target validation coupled with notable costly failures involving clinical trials with highly novel and selective single target agents (STAs) have contributed to the development of this trend. One positive development arising from the current situation is the renewed interest in investigating approaches involving multi-target agents (MTAs), which have historically shown a strong track record of success and utility in the treatment of psychiatric disorders. However, it is clear that the traditional serendipity-dependent drug discovery approach for multi-target agents is suboptimal and has to evolve towards a new model of rationally designed and tailored MTAs. It is of course highly challenging to optimise compounds across several therapeutic targets whilst minimising potential broad receptor promiscuity as well as other properties to generate high quality drug candidates. Nevertheless, recent developments in medicinal chemistry approaches and pharmacological evaluation suggest that feasibility for tailored MTAs is not unrealistic. Appropriately designed MTAs, such as hybrids of validated and unprecedented novel molecular targets, offer a multi-functional pharmacology with the potential for multi-symptomatic efficacy and multi-indicational use. If successful this will help to address the compelling unmet medical need and the treatment requirements of schizophrenia and mood disorder patients as well as easing the burden of carers and the societal costs arising from these devastating illnesses.
Collapse
|
395
|
Young JW, Henry BL, Geyer MA. Predictive animal models of mania: hits, misses and future directions. Br J Pharmacol 2012; 164:1263-84. [PMID: 21410454 DOI: 10.1111/j.1476-5381.2011.01318.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mania has long been recognized as aberrant behaviour indicative of mental illness. Manic states include a variety of complex and multifaceted symptoms that challenge clear clinical distinctions. Symptoms include over-activity, hypersexuality, irritability and reduced need for sleep, with cognitive deficits recently linked to functional outcome. Current treatments have arisen through serendipity or from other disorders. Hence, treatments are not efficacious for all patients, and there is an urgent need to develop targeted therapeutics. Part of the drug discovery process is the assessment of therapeutics in animal models. Here we review pharmacological, environmental and genetic manipulations developed to test the efficacy of therapeutics in animal models of mania. The merits of these models are discussed in terms of the manipulation used and the facet of mania measured. Moreover, the predictive validity of these models is discussed in the context of differentiating drugs that succeed or fail to meet criteria as approved mania treatments. The multifaceted symptomatology of mania has not been reflected in the majority of animal models, where locomotor activity remains the primary measure. This approach has resulted in numerous false positives for putative treatments. Recent work highlights the need to utilize multivariate strategies to enable comprehensive assessment of affective and cognitive dysfunction. Advances in therapeutic treatment may depend on novel models developed with an integrated approach that includes: (i) a comprehensive battery of tests for different aspects of mania, (ii) utilization of genetic information to establish aetiological validity and (iii) objective quantification of patient behaviour with translational cross-species paradigms.
Collapse
Affiliation(s)
- Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093-0804, USA.
| | | | | |
Collapse
|
396
|
Martins-de-Souza D, Alsaif M, Ernst A, Harris LW, Aerts N, Lenaerts I, Peeters PJ, Amess B, Rahmoune H, Bahn S, Guest PC. The application of selective reaction monitoring confirms dysregulation of glycolysis in a preclinical model of schizophrenia. BMC Res Notes 2012; 5:146. [PMID: 22420779 PMCID: PMC3359223 DOI: 10.1186/1756-0500-5-146] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 03/15/2012] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Establishing preclinical models is essential for novel drug discovery in schizophrenia. Most existing models are characterized by abnormalities in behavioral readouts, which are informative, but do not necessarily translate to the symptoms of the human disease. Therefore, there is a necessity of characterizing the preclinical models from a molecular point of view. Selective reaction monitoring (SRM) has already shown promise in preclinical and clinical studies for multiplex measurement of diagnostic, prognostic and treatment-related biomarkers. METHODS We have established an SRM assay for multiplex analysis of 7 enzymes of the glycolysis pathway which is already known to be affected in human schizophrenia and in the widely-used acute PCP rat model of schizophrenia. The selected enzymes were hexokinase 1 (Hk1), aldolase C (Aldoc), triosephosphate isomerase (Tpi1), glyceraldehyde-3-phosphate dehydrogenase (Gapdh), phosphoglycerate mutase 1 (Pgam1), phosphoglycerate kinase 1 (Pgk1) and enolase 2 (Eno2). The levels of these enzymes were analyzed using SRM in frontal cortex from brain tissue of PCP treated rats. RESULTS Univariate analyses showed statistically significant altered levels of Tpi1 and alteration of Hk1, Aldoc, Pgam1 and Gapdh with borderline significance in PCP rats compared to controls. Most interestingly, multivariate analysis which considered the levels of all 7 enzymes simultaneously resulted in generation of a bi-dimensional chart that can distinguish the PCP rats from the controls. CONCLUSIONS This study not only supports PCP treated rats as a useful preclinical model of schizophrenia, but it also establishes that SRM mass spectrometry could be used in the development of multiplex classification tools for complex psychiatric disorders such as schizophrenia.
Collapse
Affiliation(s)
- Daniel Martins-de-Souza
- Dept of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
| | - Murtada Alsaif
- Dept of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
| | - Agnes Ernst
- Dept of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
| | - Laura W Harris
- Dept of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
| | - Nancy Aerts
- Janssen Research & Development, Division of Janssen Pharmaceutica N.V, Beerse, Belgium
| | - Ilse Lenaerts
- Janssen Research & Development, Division of Janssen Pharmaceutica N.V, Beerse, Belgium
| | - Pieter J Peeters
- Janssen Research & Development, Division of Janssen Pharmaceutica N.V, Beerse, Belgium
| | - Bob Amess
- Dept of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
| | - Hassan Rahmoune
- Dept of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
| | - Sabine Bahn
- Dept of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
- Dept of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Paul C Guest
- Dept of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
| |
Collapse
|
397
|
Llorente-Berzal A, Mela V, Borcel E, Valero M, López-Gallardo M, Viveros MP, Marco EM. Neurobehavioral and metabolic long-term consequences of neonatal maternal deprivation stress and adolescent olanzapine treatment in male and female rats. Neuropharmacology 2012; 62:1332-41. [DOI: 10.1016/j.neuropharm.2011.07.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 07/09/2011] [Accepted: 07/19/2011] [Indexed: 12/18/2022]
|
398
|
BARNES SA, YOUNG JW, NEILL JC. Rats tested after a washout period from sub-chronic PCP administration exhibited impaired performance in the 5-Choice Continuous Performance Test (5C-CPT) when the attentional load was increased. Neuropharmacology 2012; 62:1432-41. [PMID: 21569782 PMCID: PMC5870141 DOI: 10.1016/j.neuropharm.2011.04.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 04/05/2011] [Accepted: 04/20/2011] [Indexed: 02/08/2023]
Abstract
It is well documented that schizophrenia patients exhibit dysfunction in various cognitive domains, including attention/vigilance, as demonstrated by impaired performance in the myriad of Continuous Performance Tests (CPTs). NMDA receptor antagonists provide a pharmacological model in animals of the cognitive disruption presented in the disorder. We therefore examined the effects of a sub-chronic PCP treatment regimen (5.0mg/kg 7-days bi-daily) in the recently developed rodent test of vigilance, the 5-Choice Continuous Performance Test (5C-CPT). We assessed the effects of this regimen after at least a 7-day washout period on both baseline performance and when the attentional load was increased. Sub-chronic PCP treatment impaired 5C-CPT performance in a manner consistent with impaired vigilance in patients with schizophrenia, with reduced hit rate and impaired signal sensitivity. These effects were only evident when performance was challenged following parameter manipulations. These data demonstrate that attention/vigilance is sensitive to disruption following sub-chronic PCP treatment in a pre-clinical task that may demonstrate increased analogy to human vigilance tasks. Although the PCP-induced attentional deficits are not as large as those deficits observed in other domains, these data provide evidence that this pharmacological model can affect multiple cognitive domains and may be useful for assessing putative pro-cognitive therapeutics for schizophrenia.
Collapse
Affiliation(s)
- Samuel A BARNES
- The School of Pharmacy, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK
| | - Jared W YOUNG
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0804
| | - Jo C NEILL
- The School of Pharmacy, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK
| |
Collapse
|
399
|
Reynolds GP. The pharmacogenetics of symptom response to antipsychotic drugs. Psychiatry Investig 2012; 9:1-7. [PMID: 22396678 PMCID: PMC3285735 DOI: 10.4306/pi.2012.9.1.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 12/12/2011] [Accepted: 12/12/2011] [Indexed: 12/16/2022] Open
Abstract
Antipsychotic drugs are limited in their efficacy by the relatively poor response of negative and cognitive symptoms of schizophrenia as well as by the substantial variability in response between patients. Pharmacogenetic studies have sought to identify the genetic factors that underlie the individual variability in response to treatment, with a past emphasis on dopamine and serotonin receptors as candidate genes. Few studies have separated effects on positive and negative symptoms, despite the established differences in response to drug treatment between these syndromes. Where this has been done most findings are consistent with the conclusion that dopamine receptor polymorphisms relate to positive symptom response, while negative symptom improvement is influenced by polymorphisms of genes involved in 5-HT neurotransmission. A wide range of polymorphisms in other candidate genes have been investigated, with some positive findings in those genes associated with glutamatergic transmission and/or risk factors for schizophrenia. However, there remains a lack of good replicated findings; furthermore there is little evidence to support drug-specific genetic associations with treatment response. While most past studies focused on single candidate genes, technology now permits genome-wide association studies with response to antipsychotics. Although not without major limitations, these "hypothesis-free" approaches are beginning to identify further important risk factors for treatment response. Again there is little consistency between various studies, although some of the polymorphisms identified are in genes involved in neurodevelopment, which is increasingly being recognized as important in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Gavin P Reynolds
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB U.K.
| |
Collapse
|
400
|
D₁ receptor activation improves vigilance in rats as measured by the 5-choice continuous performance test. Psychopharmacology (Berl) 2012; 220:129-41. [PMID: 21901319 PMCID: PMC5870138 DOI: 10.1007/s00213-011-2460-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 08/17/2011] [Indexed: 12/28/2022]
Abstract
RATIONALE Impaired attention/vigilance is putatively core to schizophrenia. The dopaminergic D(1) receptor system has been reported as one of the most promising targets for improving cognition in patients with schizophrenia, with some evidence suggesting D(1) activation may improve sustained attention. OBJECTIVES The purpose of this study was twofold: firstly assessing the applicability of using rats in the 5-Choice Continuous Performance Test (5 C-CPT), recently validated in mice. Secondly, the effect of systemic administration of a D(1) partial agonist, SKF 38393, on task performance during baseline, and a challenge session consisting of a reduced event-rate was investigated. METHODS Animals were trained to perform the 5 C-CPT with performance assessed following systemic SKF 38393 (2, 4 and 6 mg/kg) vs. vehicle administration. RESULTS Rats could discriminate between target (requiring a response) and non-target (requiring the inhibition of response) trials within the 5 C-CPT. Moreover, SKF 38393 treatment impaired performance during the baseline session reducing target detection, yet improved performance during the reduced event-rate challenge session, increasing target detection and improving signal discrimination indicating an SKF 38393-induced enhancement of vigilance. Thus, these data suggest that activation of the D(1) system affected 5 C-CPT performance in a baseline dependent manner. CONCLUSION Rats can be trained to perform the 5 C-CPT, appropriately withholding from responding to non-target trials. Systemic administration of SKF 38393 impaired performance during baseline conditions. Following a task-related challenge, which reduced the event rate, activation of the dopamine (DA) D(1) system improved performance by heightening the animals' vigilance levels, quantified using signal detection theory.
Collapse
|