351
|
Zarrinpar A, Kim UB, Boominathan V. Phenotypic Response and Personalized Medicine in Liver Cancer and Transplantation: Approaches to Complex Systems. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ali Zarrinpar
- Department of Surgery, College of MedicineUniversity of Florida Gainesville FL 32610 USA
- Department of Biochemistry and Molecular Biology, College of MedicineUniversity of Florida Gainesville FL 32610 USA
- Department of Bioengineering, Herbert Wertheim College of EngineeringUniversity of Florida Gainesville FL 32610 USA
| | - Un Bi Kim
- Department of Surgery, College of MedicineUniversity of Florida Gainesville FL 32610 USA
| | - Vijay Boominathan
- Department of Surgery, College of MedicineUniversity of Florida Gainesville FL 32610 USA
| |
Collapse
|
352
|
Reincke M. Metformin: the white knight fighting corticosteroid side-effects. Lancet Diabetes Endocrinol 2020; 8:258-259. [PMID: 32109423 DOI: 10.1016/s2213-8587(20)30040-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich 80336, Germany
| |
Collapse
|
353
|
Extra-adrenal glucocorticoid biosynthesis: implications for autoimmune and inflammatory disorders. Genes Immun 2020; 21:150-168. [PMID: 32203088 PMCID: PMC7276297 DOI: 10.1038/s41435-020-0096-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
Abstract
Glucocorticoid synthesis is a complex, multistep process that starts with cholesterol being delivered to the inner membrane of mitochondria by StAR and StAR-related proteins. Here its side chain is cleaved by CYP11A1 producing pregnenolone. Pregnenolone is converted to cortisol by the enzymes 3-βHSD, CYP17A1, CYP21A2 and CYP11B1. Glucocorticoids play a critical role in the regulation of the immune system and exert their action through the glucocorticoid receptor (GR). Although corticosteroids are primarily produced in the adrenal gland, they can also be produced in a number of extra-adrenal tissue including the immune system, skin, brain, and intestine. Glucocorticoid production is regulated by ACTH, CRH, and cytokines such as IL-1, IL-6 and TNFα. The bioavailability of cortisol is also dependent on its interconversion to cortisone which is inactive, by 11βHSD1/2. Local and systemic glucocorticoid biosynthesis can be stimulated by ultraviolet B, explaining its immunosuppressive activity. In this review, we want to emphasize that dysregulation of extra-adrenal glucocorticoid production can play a key role in a variety of autoimmune diseases including multiple sclerosis (MS), lupus erythematosus (LE), rheumatoid arthritis (RA), and skin inflammatory disorders such as psoriasis and atopic dermatitis (AD). Further research on local glucocorticoid production and its bioavailability may open doors into new therapies for autoimmune diseases.
Collapse
|
354
|
Li J, Xiao H, Luo H, Tan Y, Ni Q, He C, Magdalou J, Chen L, Wang H. GR/HDAC2/TGFβR1 pathway contributes to prenatal caffeine induced-osteoarthritis susceptibility in male adult offspring rats. Food Chem Toxicol 2020; 140:111279. [PMID: 32199975 DOI: 10.1016/j.fct.2020.111279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/05/2020] [Accepted: 03/15/2020] [Indexed: 12/25/2022]
Abstract
Prenatal caffeine exposure (PCE) induces developmental toxicity of multi-organ and susceptibility to multi-disease in offspring. However, the effects of PCE on osteoarthritis susceptibility in adult offspring and its intrauterine programming mechanism remain to be further investigated. Here, we found that PCE induced susceptibility to osteoarthritis in male adult offspring rats, which was related to the inhibited function of cartilage matrix synthesis from fetuses to adults. Meanwhile, PCE consistently downregulated the H3K9ac and expression levels of transforming growth factor β receptor 1 (TGFβR1), and then blocked TGFβ signaling pathway, which contributed to the suppressed cartilage matrix synthesis. Moreover, the high level of corticosterone caused by PCE reduced the H3K9ac level on TGFβR1 promoter region through acting on glucocorticoids receptor (GR) and recruiting histone deacetylase 2 (HDAC2) into the nucleus of fetal chondrocytes. Taken together, PCE induced osteoarthritis susceptibility in male adult offspring rats, which was attributed to the low-functional programming of TGFβR1 induced by corticosterone via GR/HDAC2 signaling.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Hao Xiao
- Department of Orthopedic Surgery, Wuhan University Zhongnan Hospital, Wuhan, 430071, China
| | - Hanwen Luo
- Department of Orthopedic Surgery, Wuhan University Zhongnan Hospital, Wuhan, 430071, China
| | - Yang Tan
- Department of Orthopedic Surgery, Wuhan University Zhongnan Hospital, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Qubo Ni
- Department of Orthopedic Surgery, Wuhan University Zhongnan Hospital, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Chunjiang He
- Department of Medical Genetics, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | | | - Liaobin Chen
- Department of Orthopedic Surgery, Wuhan University Zhongnan Hospital, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
355
|
Young C, Walzl G, Du Plessis N. Therapeutic host-directed strategies to improve outcome in tuberculosis. Mucosal Immunol 2020; 13:190-204. [PMID: 31772320 PMCID: PMC7039813 DOI: 10.1038/s41385-019-0226-5] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 02/04/2023]
Abstract
Bacille Calmette-Guérin (BCG) is the only licenced tuberculosis (TB) vaccine, but has limited efficacy against pulmonary TB disease development and modest protection against extrapulmonary TB. Preventative antibiotic treatment for Mycobacterium tuberculosis (Mtb) infections in high-prevalence settings is unfeasible due to unclear treatment durability, drug toxicity, logistical constraints related to directly observed treatment strategy (DOTS) and the lengthy treatment protocols. Together, these factors promote non-adherence, contributing to relapse and establishment of drug-resistant Mtb strains. Although antibiotic treatment of drug-susceptible Mtb is generally effective, drug-resistant TB has a treatment efficacy below 50% and can, in a proportion, develop into progressive, untreatable disease. Other immune compromising co-infections and/or co-morbidities require more complex prevention/treatment approaches, posing huge financial burdens to national health services. Novel TB treatment strategies, such as host-directed therapeutics, are required to complement pathogen-targeted approaches. Pre-clinical studies have highlighted promising candidates that enhance endogenous pathways and/or limit destructive host responses. This review discusses promising pre-clinical candidates and forerunning compounds at advanced stages of clinical investigation in TB host-directed therapeutic (HDT) efficacy trials. Such approaches are rationalized to improve outcome in TB and shorten treatment strategies.
Collapse
Affiliation(s)
- C Young
- South African Medical Research Council, Centre for Tuberculosis Research, Department of Science and Technology/DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - G Walzl
- South African Medical Research Council, Centre for Tuberculosis Research, Department of Science and Technology/DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - N Du Plessis
- South African Medical Research Council, Centre for Tuberculosis Research, Department of Science and Technology/DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
356
|
Sales TA, Marcussi S, Ramalho TC. Current Anti-Inflammatory Therapies and the Potential of Secretory Phospholipase A2 Inhibitors in the Design of New Anti-Inflammatory Drugs: A Review of 2012 - 2018. Curr Med Chem 2020; 27:477-497. [PMID: 30706775 DOI: 10.2174/0929867326666190201120646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 11/12/2018] [Accepted: 12/11/2018] [Indexed: 01/30/2023]
Abstract
The inflammatory process is a natural self-defense response of the organism to damage agents and its action mechanism involves a series of complex reactions. However, in some cases, this process can become chronic, causing much harm to the body. Therefore, over the years, many anti-inflammatory drugs have been developed aiming to decrease the concentrations of inflammatory mediators in the organism, which is a way of controlling these abnormal chain reactions. The main target of conventional anti-inflammatory drugs is the cyclooxygenase (COX) enzyme, but its use implies several side effects. Thus, based on these limitations, many studies have been performed, aiming to create new drugs, with new action mechanisms. In this sense, the phospholipase A2 (PLA2) enzymes stand out. Among all the existing isoforms, secretory PLA2 is the major target for inhibitor development, since many studies have proven that this enzyme participates in various inflammatory conditions, such as cancer, Alzheimer and arthritis. Finally, for the purpose of developing anti-inflammatory drugs that are sPLA2 inhibitors, many molecules have been designed. Accordingly, this work presents an overview of inflammatory processes and mediators, the current available anti-inflammatory drugs, and it briefly covers the PLA2 enzymes, as well as the diverse structural array of the newest sPLA2 inhibitors as a possible target for the production of new anti-inflammatory drugs.
Collapse
Affiliation(s)
- Thais A Sales
- Molecular Modeling Laboratory, Chemistry Department, Federal University of Lavras, 37200-000 Lavras, Brazil
| | - Silvana Marcussi
- Biochemistry Laboratory, Chemistry Department, Federal University of Lavras, 37200-000 Lavras, Brazil
| | - Teodorico C Ramalho
- Molecular Modeling Laboratory, Chemistry Department, Federal University of Lavras, 37200-000 Lavras, Brazil.,Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, 62, 50003 Rokitanskeho, Czech Republic
| |
Collapse
|
357
|
Yao Q, Guo Y, Xue J, Kong D, Li J, Tian X, Hao C, Zhou T. Development and validation of a LC-MS/MS method for simultaneous determination of six glucocorticoids and its application to a pharmacokinetic study in nude mice. J Pharm Biomed Anal 2020; 179:112980. [DOI: 10.1016/j.jpba.2019.112980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/04/2019] [Accepted: 11/08/2019] [Indexed: 01/18/2023]
|
358
|
Farmakidis C, Dimachkie MM, Pasnoor M, Barohn RJ. Immunosuppressive and immunomodulatory therapies for neuromuscular diseases. Part I: Traditional agents. Muscle Nerve 2020; 61:5-16. [PMID: 31509257 DOI: 10.1002/mus.26708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 12/23/2022]
Abstract
Immunosuppressive and immunomodulatory therapies have had a major effect on the treatment of immune-mediated neuromuscular diseases. After the landmark introduction of synthetic corticosteroids, other therapies have become available, including plasma exchange (PLEX), immunoglobulin G (IgG), and steroid-sparing immunosuppressive drugs. More recently, novel biologically derived and antigen-specific pharmaceuticals have entered neuromuscular practice. Various levels of evidence guide the use of these treatments. This article reviews current immune-based therapies in neuromuscular diseases and is divided into two parts. Part I provides an update on the evidence and use of traditional therapies, such as corticosteroids, PLEX, intravenously delivered IgG (IVIG), and steroid-sparing immunosuppressive drugs. Part II focuses on the recently US Food and Drug Administration-approved therapies eculizumab and subcutaneous IgG (SCIG), the current indications for rituximab in neuromuscular disease, and on novel immunosuppressive therapeutic approaches under development.
Collapse
Affiliation(s)
| | - Mazen M Dimachkie
- Neurology Department, University of Kansas Medical Center, Kansas City, Kansas
| | - Mamatha Pasnoor
- Neurology Department, University of Kansas Medical Center, Kansas City, Kansas
| | - Richard J Barohn
- Neurology Department, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
359
|
Van Moortel L, Gevaert K, De Bosscher K. Improved Glucocorticoid Receptor Ligands: Fantastic Beasts, but How to Find Them? Front Endocrinol (Lausanne) 2020; 11:559673. [PMID: 33071974 PMCID: PMC7541956 DOI: 10.3389/fendo.2020.559673] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/26/2020] [Indexed: 01/01/2023] Open
Abstract
Exogenous glucocorticoids are widely used in the clinic for the treatment of inflammatory disorders and hematological cancers. Unfortunately, their use is associated with debilitating side effects, including hyperglycemia, osteoporosis, mood swings, and weight gain. Despite the continued efforts of pharma as well as academia, the search for so-called selective glucocorticoid receptor modulators (SEGRMs), compounds with strong anti-inflammatory or anti-cancer properties but a reduced number or level of side effects, has had limited success so far. Although monoclonal antibody therapies have been successfully introduced for the treatment of certain disorders (such as anti-TNF for rheumatoid arthritis), glucocorticoids remain the first-in-line option for many other chronic diseases including asthma, multiple sclerosis, and multiple myeloma. This perspective offers our opinion on why a continued search for SEGRMs remains highly relevant in an era where small molecules are sometimes unrightfully considered old-fashioned. Besides a discussion on which bottlenecks and pitfalls might have been overlooked in the past, we elaborate on potential solutions and recent developments that may push future research in the right direction.
Collapse
Affiliation(s)
- Laura Van Moortel
- Translational Nuclear Receptor Research (TNRR) Laboratory, VIB, Ghent, Belgium
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Karolien De Bosscher
- Translational Nuclear Receptor Research (TNRR) Laboratory, VIB, Ghent, Belgium
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- *Correspondence: Karolien De Bosscher
| |
Collapse
|
360
|
Cardoso BA. The Bone Marrow Niche - The Tumor Microenvironment That Ensures Leukemia Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:259-293. [PMID: 32130704 DOI: 10.1007/978-3-030-34025-4_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The human body requires a constant delivery of fresh blood cells that are needed to maintain body homeostasis. Hematopoiesis is the process that drives the formation of new blood cells from a single stem cell. This is a complex, orchestrated and tightly regulated process that occurs within the bone marrow. When such process is faulty or deregulated, leukemia arises, develops and thrives by subverting normal hematopoiesis and availing the supplies of this rich milieu.In this book chapter we will describe and characterize the bone marrow microenvironment and its key importance for leukemia expansion. The several components of the bone marrow niche, their interaction with the leukemic cells and the cellular pathways activated within the malignant cells will be emphasized. Finally, novel therapeutic strategies to target this sibling interaction will also be discussed.
Collapse
Affiliation(s)
- Bruno António Cardoso
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
361
|
Mazzarino M, Piantadosi C, Comunità F, Torre X, Botrè F. Urinary excretion profile of prednisone and prednisolone after different administration routes. Drug Test Anal 2019; 11:1601-1614. [DOI: 10.1002/dta.2733] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Monica Mazzarino
- Laboratorio Antidoping Federazione Medico Sportiva Italiana, Largo Giulio Onesti, 1, 00197 Rome Italy
| | - Chiara Piantadosi
- Laboratorio Antidoping Federazione Medico Sportiva Italiana, Largo Giulio Onesti, 1, 00197 Rome Italy
| | - Fabio Comunità
- Laboratorio Antidoping Federazione Medico Sportiva Italiana, Largo Giulio Onesti, 1, 00197 Rome Italy
| | - Xavier Torre
- Laboratorio Antidoping Federazione Medico Sportiva Italiana, Largo Giulio Onesti, 1, 00197 Rome Italy
| | - Francesco Botrè
- Laboratorio Antidoping Federazione Medico Sportiva Italiana, Largo Giulio Onesti, 1, 00197 Rome Italy
- Dipartimento di Medicina Sperimentale“Sapienza” Università di Roma Viale Regina Elena 324, 00161 Rome Italy
| |
Collapse
|
362
|
Adverse effects of noise stress on glucose homeostasis and insulin resistance in Sprague-Dawley rats. Heliyon 2019; 5:e03004. [PMID: 31890958 PMCID: PMC6926183 DOI: 10.1016/j.heliyon.2019.e03004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/11/2019] [Accepted: 12/05/2019] [Indexed: 12/03/2022] Open
Abstract
Noise pollution remains a pervasive health hazard that people encounter especially in large commercial metropolis and has been implicated in many adverse non-auditory health conditions such as hypertension, atherosclerosis, vascular (endothelial) dysfunction and metabolic disorders. There is a growing body of evidence showing that chronic noise exposure is associated with an increased risk of hypercholesterol, adiposity and development of type 2 diabetes. The present study investigated the effect of noise stress on parameters of glucose homeostasis in male rats and possible recovery after noise cessation. Twenty-four (24) adult male Sprague-Dawley rats were designated into four groups (n = 6 per group). All rats except the control group were exposed to 95dB noise using a noise generator for 28 consecutive days. A group of rats was investigated immediately after 28 days of noise exposure (NE28), while others were left to recover from noise stress for 7 days (NER7) or 14 days (NER14). OGTT and ITT were performed using standard methods. Plasma levels of triglyceride (TRIG), total cholesterol (CHOL), low density lipoprotein (LDL) and high-density lipoprotein (HDL) were determined. Serum level of insulin, corticosterone (CORT) and corticosterone-releasing-factor (CRF) were determined using ELISA. Homeostasis model assessment-insulin resistance (HOMA-IR) and glycogen content in liver as well as gastrocnemius muscle were also determined. Although glucose tolerance remained unchanged in the noise-exposed groups, insulin sensitivity was however significantly reduced compared with control. There was significant increase (P < 0.05) in the level of CHOL, LDL and HDL. Noise also increased (P < 0.05) both insulin and CORT levels; and elicited a higher HOMA-IR index in NE28 rats. Hepatic and myocytic glycogen content were lower (P < 0.05) in NE28 rats relative to control. The reported changes above were reversed following a 14-day noise withdrawal period. Noise-induced insulin resistance may result from dysregulation of the stress axis and appears to be reversible with noise cessation.
Collapse
|
363
|
Blagojevic J, Legendre P, Matucci-Cerinic M, Mouthon L. Is there today a place for corticosteroids in the treatment of scleroderma? Autoimmun Rev 2019; 18:102403. [DOI: 10.1016/j.autrev.2019.102403] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 12/21/2022]
|
364
|
Ghaseminejad F, Kaplan L, Pfaller AM, Hauck SM, Grosche A. The role of Müller cell glucocorticoid signaling in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2019; 258:221-230. [PMID: 31734719 DOI: 10.1007/s00417-019-04521-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/14/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Diabetic retinopathy (DR) is a sight-threatening complication associated with the highly prevalent diabetes disorder. Both the microvascular damage and neurodegeneration detected in the retina caused by chronic hyperglycemia have brought special attention to Müller cells, the major macroglia of the retina that are responsible for retinal homeostasis. Given the role of glucocorticoid signaling in anti-inflammatory responses and the almost exclusive expression of glucocorticoid receptors (GRs) in retinal Müller cells, administration of corticosteroid agonists as a potential treatment option has been widely studied. Although these approaches have been moderately efficacious in treating or de-escalating DR pathomechanisms, there are various side effects and gaps of knowledge with regard to introducing exogenous glucocorticoids to the diseased retina. In this paper, we provide a review of the literature concerning the available evidence for the role of Müller cell glucocorticoid signaling in DR and we discuss previously investigated approaches in modulating this system as possible treatment options. Furthermore, we propose a novel alternative to the available choices of treatment by using gene therapy as a tool to regulate the expression of GR in retinal Müller cells. Upregulating GR expression allows for induced glucocorticoid signaling with more enduring effects compared to injection of agonists. Hence, repetitive injections would no longer be required. Lastly, side effects of glucocorticoid therapy such as glucocorticoid resistance of GR following chronic exposure to excess ligands or agonists can be avoided.
Collapse
Affiliation(s)
- Farhad Ghaseminejad
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, Martinsried, Germany
| | - Lew Kaplan
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, Martinsried, Germany
| | - Anna M Pfaller
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, Martinsried, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Heidemannstr. 1, Neuherberg, Germany
| | - Antje Grosche
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, Martinsried, Germany.
| |
Collapse
|
365
|
Allegra A, Innao V, Allegra AG, Leanza R, Musolino C. Selective Inhibitors of Nuclear Export in the Treatment of Hematologic Malignancies. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2019; 19:689-698. [PMID: 31543372 DOI: 10.1016/j.clml.2019.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/08/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
Abstract
The correct localization of molecules between nucleus and cytoplasm is fundamental for cellular homeostasis and is controlled by a bidirectional transport system. Exportin 1 (XPO1) regulates the passage of numerous cancer-related proteins. In this review, we summarize the development of a novel class of antitumor agents, known as selective inhibitors of nuclear export (SINEs). We report results of preclinical studies and clinical trials, and discuss the mechanism of action of SINEs and their effects in multiple myeloma, non-Hodgkin lymphomas, lymphoblastic leukemia, and acute and chronic myeloid leukemia. In the future, the numerous experimental studies currently underway will allow us to define the role of SINEs and will possibly permit these substances to be introduced into daily clinical practice.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi," University of Messina, Messina, Italy.
| | - Vanessa Innao
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi," University of Messina, Messina, Italy
| | - Andrea Gaetano Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi," University of Messina, Messina, Italy
| | - Rossana Leanza
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi," University of Messina, Messina, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi," University of Messina, Messina, Italy
| |
Collapse
|
366
|
Stokes K, Yoon P, Makiya M, Gebreegziabher M, Holland-Thomas N, Ware J, Wetzler L, Khoury P, Klion AD. Mechanisms of glucocorticoid resistance in hypereosinophilic syndromes. Clin Exp Allergy 2019; 49:1598-1604. [PMID: 31657082 DOI: 10.1111/cea.13509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/16/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Glucocorticoids (GC) are considered first-line therapy for most patients with hypereosinophilic syndrome (HES). Although response rates are generally high, many patients require moderate to high doses for control of eosinophilia and symptoms, and up to 15% of patients do not respond at all. Despite this, little is known about the mechanisms of GC resistance in patients with HES. OBJECTIVE To explore the aetiology of GC resistance in HES. METHODS Clinical data and samples from 26 patients with HES enrolled on a prospective study of GC responsiveness and 23 patients with HES enrolled on a natural history study of eosinophilia for whom response to GC was known were analysed retrospectively. Expression of GC receptor isoforms was assessed by quantitative RT-PCR in purified eosinophils. Serum cytokine levels were quantified by suspension array assay in multiplex. RESULTS Despite an impaired eosinophil response to GC after 7 days of treatment, the expected rise in absolute neutrophil count was seen in 7/7 GC-resistant patients, suggesting that GC resistance in HES is not a global phenomenon. Eosinophil mRNA expression of glucocorticoid receptor (GR) isoforms (α, β, and P) was similar between GC-sensitive (n = 20) and GC-resistant (n = 9) patients with HES. Whereas geometric mean serum levels were also comparable between GC-r (n = 11) and GC-s (n = 19) for all cytokines tested, serum IL-5 levels were >100 pg/mL only in GC-r patients. CONCLUSIONS AND CLINICAL RELEVANCE These data suggest that the mechanism of GC resistance in HES is not due to a global phenomenon affecting all lineages, but may be due, at least in some patients, to impairment of eosinophil apoptosis by increased levels of IL-5.
Collapse
Affiliation(s)
- Kindra Stokes
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland
| | - Pryscilla Yoon
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland
| | - Michelle Makiya
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland
| | - Meheret Gebreegziabher
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland
| | - Nicole Holland-Thomas
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland
| | - JeanAnne Ware
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland
| | - Lauren Wetzler
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland
| | - Paneez Khoury
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland
| | - Amy D Klion
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
367
|
Aranda CJ, Arredondo-Amador M, Ocón B, Lavín JL, Aransay AM, Martínez-Augustin O, Sánchez de Medina F. Intestinal epithelial deletion of the glucocorticoid receptor NR3C1 alters expression of inflammatory mediators and barrier function. FASEB J 2019; 33:14067-14082. [PMID: 31657630 DOI: 10.1096/fj.201900404rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Glucocorticoids (GCs) are important hormones involved in the regulation of multiple physiologic functions. GCs are also widely used in anti-inflammatory/immunosuppressant drugs. GCs are synthesized by the adrenal cortex as part of the hypothalamus-pituitary-adrenal axis and also by intestinal epithelial cells, among other peripheral sites. GCs are one of the main therapy choices for the exacerbations of inflammatory bowel disease, but they are not useful to prolong remission, and development of tolerance with secondary treatment failure is frequent. Thus, GC actions at the intestinal epithelial level are of great importance, both physiologically and pharmacologically. We generated a tamoxifen-inducible nuclear receptor subfamily 3 group C member 1 (NR3C1)ΔIEC mouse model to study the effects of GCs on epithelial cells in vivo. Nr3c1 deletion in epithelial cells of the small intestine and colon was associated with limited colonic inflammation at 1 wk postdeletion, involving augmented epithelial proliferation and mucus production, plus local and systemic immune/inflammatory changes. This phenotype regressed substantially, but not completely, after 2 wk. The mechanism may involve augmented inflammatory signaling by epithelial cells or defective barrier function. We conclude that the epithelial GC receptor plays a significant role in colonic homeostasis in basal conditions, but its deficiency can be compensated in the short term. Future studies are required to assess the impact of Nr3c1 deletion in other conditions such as experimental colitis.-Aranda, C. J., Arredondo-Amador, M., Ocón, B., Lavín, J. L., Aransay, A. M., Martínez-Augustin, O., Sánchez de Medina, F. Intestinal epithelial deletion of the glucocorticoid receptor NR3C1 alters expression of inflammatory mediators and barrier function.
Collapse
Affiliation(s)
- Carlos J Aranda
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria, University of Granada, Granada, Spain
| | - María Arredondo-Amador
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria, University of Granada, Granada, Spain
| | - Borja Ocón
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria, University of Granada, Granada, Spain
| | - José Luis Lavín
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Spain
| | - Ana María Aransay
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Spain
| | - Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria, University of Granada, Granada, Spain
| | - Fermín Sánchez de Medina
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria, University of Granada, Granada, Spain
| |
Collapse
|
368
|
Patel GC, Millar JC, Clark AF. Glucocorticoid Receptor Transactivation Is Required for Glucocorticoid-Induced Ocular Hypertension and Glaucoma. Invest Ophthalmol Vis Sci 2019; 60:1967-1978. [PMID: 31050723 PMCID: PMC6890434 DOI: 10.1167/iovs.18-26383] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Purpose Glucocorticoid (GC)–induced ocular hypertension (GC-OHT) is a serious side effect of prolonged GC therapy that can lead to glaucoma and permanent vision loss. GCs cause a plethora of changes in the trabecular meshwork (TM), an ocular tissue that regulates intraocular pressure (IOP). GCs act through the glucocorticoid receptor (GR), and the GR regulates transcription both through transactivation and transrepression. Many of the anti-inflammatory properties of GCs are mediated by GR transrepression, while GR transactivation largely accounts for GC metabolic effects and side effects of GC therapy. There is no evidence showing which of the two mechanisms plays a role in GC-OHT. Methods GRdim transgenic mice (which have active transrepression and impaired transactivation) and wild-type (WT) C57BL/6J mice received weekly periocular dexamethasone acetate (DEX-Ac) injections. IOP, outflow facilities, and biochemical changes to the TM were determined. Results GRdim mice did not develop GC-OHT after continued DEX treatment, while WT mice had significantly increased IOP and decreased outflow facilities. Both TM tissue in eyes of DEX-treated GRdim mice and cultured TM cells isolated from GRdim mice had reduced or no change in the expression of fibronectin, myocilin, collagen type I, and α-smooth muscle actin (α-SMA). GRdim mouse TM (MTM) cells also had a significant reduction in DEX-induced cytoskeletal changes, which was clearly seen in WT MTM cells. Conclusions We provide the first evidence for the role of GR transactivation in regulating GC-mediated gene expression in the TM and in the development of GC-OHT. This discovery suggests a novel therapeutic approach for treating ocular inflammation without causing GC-OHT and glaucoma.
Collapse
Affiliation(s)
- Gaurang C Patel
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - J Cameron Millar
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Abbot F Clark
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
369
|
Liu B, Zhang TN, Knight JK, Goodwin JE. The Glucocorticoid Receptor in Cardiovascular Health and Disease. Cells 2019; 8:cells8101227. [PMID: 31601045 PMCID: PMC6829609 DOI: 10.3390/cells8101227] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/19/2022] Open
Abstract
The glucocorticoid receptor is a member of the nuclear receptor family that controls many distinct gene networks, governing various aspects of development, metabolism, inflammation, and the stress response, as well as other key biological processes in the cardiovascular system. Recently, research in both animal models and humans has begun to unravel the profound complexity of glucocorticoid signaling and convincingly demonstrates that the glucocorticoid receptor has direct effects on the heart and vessels in vivo and in vitro. This research has contributed directly to improving therapeutic strategies in human disease. The glucocorticoid receptor is activated either by the endogenous steroid hormone cortisol or by exogenous glucocorticoids and acts within the cardiovascular system via both genomic and non-genomic pathways. Polymorphisms of the glucocorticoid receptor are also reported to influence the progress and prognosis of cardiovascular disease. In this review, we provide an update on glucocorticoid signaling and highlight the critical role of this signaling in both physiological and pathological conditions of the cardiovascular system. With increasing in-depth understanding of glucocorticoid signaling, the future is promising for the development of targeted glucocorticoid treatments and improved clinical outcomes.
Collapse
Affiliation(s)
- Bing Liu
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Tie-Ning Zhang
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Jessica K Knight
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Julie E Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
370
|
Kaikaew K, Steenbergen J, van Dijk TH, Grefhorst A, Visser JA. Sex Difference in Corticosterone-Induced Insulin Resistance in Mice. Endocrinology 2019; 160:2367-2387. [PMID: 31265057 PMCID: PMC6760317 DOI: 10.1210/en.2019-00194] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/26/2019] [Indexed: 12/19/2022]
Abstract
Prolonged exposure to glucocorticoids (GCs) causes various metabolic derangements. These include obesity and insulin resistance, as inhibiting glucose utilization in adipose tissues is a major function of GCs. Although adipose tissue distribution and glucose homeostasis are sex-dependently regulated, it has not been evaluated whether GCs affect glucose metabolism and adipose tissue functions in a sex-dependent manner. In this study, high-dose corticosterone (rodent GC) treatment in C57BL/6J mice resulted in nonfasting hyperglycemia in male mice only, whereas both sexes displayed hyperinsulinemia with normal fasting glucose levels, indicative of insulin resistance. Metabolic testing using stable isotope-labeled glucose techniques revealed a sex-specific corticosterone-driven glucose intolerance. Corticosterone treatment increased adipose tissue mass in both sexes, which was reflected by elevated serum leptin levels. However, female mice showed more metabolically protective adaptations of adipose tissues than did male mice, demonstrated by higher serum total and high-molecular-weight adiponectin levels, more hyperplastic morphological changes, and a stronger increase in mRNA expression of adipogenic differentiation markers. Subsequently, in vitro studies in 3T3-L1 (white) and T37i (brown) adipocytes suggest that the increased leptin and adiponectin levels were mainly driven by the elevated insulin levels. In summary, this study demonstrates that GC-induced insulin resistance is more severe in male mice than in female mice, which can be partially explained by a sex-dependent adaptation of adipose tissues.
Collapse
Affiliation(s)
- Kasiphak Kaikaew
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jacobie Steenbergen
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Theo H van Dijk
- Department of Laboratory Medicine, University Medical Center Groningen, Groningen, Netherlands
| | - Aldo Grefhorst
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, Netherlands
| | - Jenny A Visser
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
371
|
Zayny A, Almokhtar M, Wikvall K, Ljunggren Ö, Ubhayasekera K, Bergquist J, Kibar P, Norlin M. Effects of glucocorticoids on vitamin D 3-metabolizing 24-hydroxylase (CYP24A1) in Saos-2 cells and primary human osteoblasts. Mol Cell Endocrinol 2019; 496:110525. [PMID: 31352041 DOI: 10.1016/j.mce.2019.110525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 06/19/2019] [Accepted: 07/24/2019] [Indexed: 12/16/2022]
Abstract
Vitamin D is essential for bone function and deficiency in active vitamin D hormone can lead to bone disorders. Long-term treatment with glucocorticoids results in osteoporosis and increased risk of fractures. Much remains unclear regarding the effects of these compounds in bone cells. In the current study, human osteosarcoma Saos-2 cells and primary human osteoblasts were found to express mRNA for the vitamin D receptor as well as activating and deactivating enzymes in vitamin D3 metabolism. These bone cells exhibited CYP24A1-mediated 24-hydroxylation which is essential for deactivation of the active vitamin form. However, bioactivating vitamin D3 hydroxylase activities could not be detected in either of these cells. Several glucocorticoids, including prednisolone, down regulated CYP24A1 mRNA and CYP24A1-mediated 24-hydroxylase activity in both Saos-2 and primary human osteoblasts. Also, prednisolone significantly suppressed a human CYP24A1 promoter-luciferase reporter gene in Saos-2 cells co-transfected with the glucocorticoid receptor. Thus, the results of the present study show suppression by glucocorticoids on CYP24A1 mRNA, CYP24A1-mediated metabolism and CYP24A1 promoter activity in human osteoblast-like cells. As part of this study we examined if glucocorticoids are formed locally in Saos-2 cells. The experiments indicate formation of 11-deoxycortisol, a steroid with glucocorticoid activity, which can bind the glucocorticoid receptor. Our data showing suppression by glucocorticoids on CYP24A1 expression in human osteoblasts suggest a previously unknown mechanism for effects of glucocorticoids in human bone, where these compounds may interfere with regulation of active vitamin D levels.
Collapse
Affiliation(s)
- Ahmad Zayny
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Mokhtar Almokhtar
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Kjell Wikvall
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Östen Ljunggren
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Kumari Ubhayasekera
- Department of Chemistry - Biomedical Center, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry - Biomedical Center, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala, Sweden
| | - Pinar Kibar
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Maria Norlin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
372
|
Muñoz-Cano RM, Casas-Saucedo R, Valero Santiago A, Bobolea I, Ribó P, Mullol J. Platelet-Activating Factor (PAF) in Allergic Rhinitis: Clinical and Therapeutic Implications. J Clin Med 2019; 8:jcm8091338. [PMID: 31470575 PMCID: PMC6780525 DOI: 10.3390/jcm8091338] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 11/16/2022] Open
Abstract
Platelet-activating factor (PAF) is a lipid mediator involved in several allergic reactions. It is released from multiple cells of the immune system, such as eosinophils, neutrophils, and mast cells, and also exerts its effect on most of them upon specific binding to its receptor, becoming a pleiotropic mediator. PAF is considered a potential relevant mediator in allergic rhinitis, with a key role in nasal congestion and rhinorrhoea due to its effect on vascular permeability. Interestingly, despite its potential relevance as a therapeutic target, no specific PAF inhibitors have been studied in humans. However, rupatadine, a second-generation antihistamine with dual antihistamine and anti-PAF effects has shown promising results by both blocking nasal symptoms and inhibiting mast cell activation induced by PAF, in comparison to antihistamine receptor drugs. In conclusion, the inhibition of PAF may be an interesting approach in the treatment of allergic rhinitis as part of a global strategy directed at blocking as many relevant inflammatory mediators as possible.
Collapse
Affiliation(s)
- Rosa M Muñoz-Cano
- Allergy Section, Pheumology & Allergy Department, Hospital Clinic, Barcelona, 08036 Catalonia, Spain.
- Clinical & Experimental Respiratory Immunoallergy, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, 08036 Catalonia, Spain.
- ARADyAL, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Rocio Casas-Saucedo
- Allergy Section, Pheumology & Allergy Department, Hospital Clinic, Barcelona, 08036 Catalonia, Spain
- Clinical & Experimental Respiratory Immunoallergy, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, 08036 Catalonia, Spain
- ARADyAL, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Antonio Valero Santiago
- Allergy Section, Pheumology & Allergy Department, Hospital Clinic, Barcelona, 08036 Catalonia, Spain
- Clinical & Experimental Respiratory Immunoallergy, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, 08036 Catalonia, Spain
- CIBER of Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Irina Bobolea
- Allergy Section, Pheumology & Allergy Department, Hospital Clinic, Barcelona, 08036 Catalonia, Spain
- Clinical & Experimental Respiratory Immunoallergy, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, 08036 Catalonia, Spain
- CIBER of Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Paula Ribó
- Allergy Section, Pheumology & Allergy Department, Hospital Clinic, Barcelona, 08036 Catalonia, Spain
- Clinical & Experimental Respiratory Immunoallergy, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, 08036 Catalonia, Spain
- CIBER of Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Joaquim Mullol
- Clinical & Experimental Respiratory Immunoallergy, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, 08036 Catalonia, Spain
- CIBER of Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Rhinology Unit & Smell Clinic, ENT Department, Hospital Clinic, Barcelona, 08036 Catalonia, Spain
| |
Collapse
|
373
|
Affiliation(s)
- R Louise Rushworth
- From the School of Medicine, Sydney (R.L.R.), the University of Notre Dame Australia, Darlinghurst, NSW (R.L.R.), the Endocrine and Metabolic Unit, Royal Adelaide Hospital and University of Adelaide, North Terrace, Adelaide, SA (D.J.T.), and the Menzies School of Health Research and Royal Darwin Hospital, Tiwi, NT (H.F.) - all in Australia; and the Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, and the Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm (H.F.)
| | - David J Torpy
- From the School of Medicine, Sydney (R.L.R.), the University of Notre Dame Australia, Darlinghurst, NSW (R.L.R.), the Endocrine and Metabolic Unit, Royal Adelaide Hospital and University of Adelaide, North Terrace, Adelaide, SA (D.J.T.), and the Menzies School of Health Research and Royal Darwin Hospital, Tiwi, NT (H.F.) - all in Australia; and the Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, and the Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm (H.F.)
| | - Henrik Falhammar
- From the School of Medicine, Sydney (R.L.R.), the University of Notre Dame Australia, Darlinghurst, NSW (R.L.R.), the Endocrine and Metabolic Unit, Royal Adelaide Hospital and University of Adelaide, North Terrace, Adelaide, SA (D.J.T.), and the Menzies School of Health Research and Royal Darwin Hospital, Tiwi, NT (H.F.) - all in Australia; and the Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, and the Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm (H.F.)
| |
Collapse
|
374
|
Escoter-Torres L, Caratti G, Mechtidou A, Tuckermann J, Uhlenhaut NH, Vettorazzi S. Fighting the Fire: Mechanisms of Inflammatory Gene Regulation by the Glucocorticoid Receptor. Front Immunol 2019; 10:1859. [PMID: 31440248 PMCID: PMC6693390 DOI: 10.3389/fimmu.2019.01859] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
For many decades, glucocorticoids have been widely used as the gold standard treatment for inflammatory conditions. Unfortunately, their clinical use is limited by severe adverse effects such as insulin resistance, cardiometabolic diseases, muscle and skin atrophies, osteoporosis, and depression. Glucocorticoids exert their effects by binding to the Glucocorticoid Receptor (GR), a ligand-activated transcription factor which both positively, and negatively regulates gene expression. Extensive research during the past several years has uncovered novel mechanisms by which the GR activates and represses its target genes. Genome-wide studies and mouse models have provided valuable insight into the molecular mechanisms of inflammatory gene regulation by GR. This review focusses on newly identified target genes and GR co-regulators that are important for its anti-inflammatory effects in innate immune cells, as well as mutations within the GR itself that shed light on its transcriptional activity. This research progress will hopefully serve as the basis for the development of safer immune suppressants with reduced side effect profiles.
Collapse
Affiliation(s)
- Laura Escoter-Torres
- Molecular Endocrinology, Helmholtz Zentrum München (HMGU), German Center for Diabetes Research (DZD), Institute for Diabetes and Cancer IDC, Munich, Germany
| | - Giorgio Caratti
- Department of Biology, Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Aikaterini Mechtidou
- Molecular Endocrinology, Helmholtz Zentrum München (HMGU), German Center for Diabetes Research (DZD), Institute for Diabetes and Cancer IDC, Munich, Germany
| | - Jan Tuckermann
- Department of Biology, Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Nina Henriette Uhlenhaut
- Molecular Endocrinology, Helmholtz Zentrum München (HMGU), German Center for Diabetes Research (DZD), Institute for Diabetes and Cancer IDC, Munich, Germany.,Gene Center, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Sabine Vettorazzi
- Department of Biology, Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| |
Collapse
|
375
|
Nicolaides NC, Polyzos A, Koniari E, Lamprokostopoulou A, Papageorgiou I, Golfinopoulou E, Papathanasiou C, Sertedaki A, Thanos D, Chrousos GP, Charmandari E. Transcriptomics in tissue glucocorticoid sensitivity. Eur J Clin Invest 2019; 49:e13129. [PMID: 31091335 DOI: 10.1111/eci.13129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/03/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Synthetic glucocorticoids are widely used in the treatment of several inflammatory, autoimmune and lymphoproliferative disorders. However, considerable variation in response to therapeutic doses of glucocorticoids has been documented among individuals. The aim of our study was to identify novel glucocorticoid sensitivity-determining genes using genome-wide expression profiling in healthy subjects. METHODS One hundred one healthy subjects [mean age ± standard error of the mean (SEM); 26.52 ± 0.50 years] were given 0.25 mg dexamethasone at midnight, and serum cortisol concentrations were determined at 08:00 hours the following morning. Subjects were stratified into the 10% most glucocorticoid-sensitive and 10% most glucocorticoid-resistant according to the serum cortisol concentrations. Genomic DNA, RNA and plasma samples were obtained in the 22 subjects one month later. RESULTS Transcriptomic analysis showed variability between glucocorticoid-resistant and glucocorticoid-sensitive subjects. One hundred thirty-three genes were upregulated and 49 downregulated in the glucocorticoid-resistant compared to the glucocorticoid-sensitive group. Further analysis revealed differences between 3 glucocorticoid-resistant and 3 glucocorticoid-sensitive subjects. The majority of the 1058 upregulated genes and 1139 downregulated genes were found to participate in telomere maintenance, systemic lupus erythematosus and Alzheimer's disease. Interestingly, Synuclein A, a key molecule in Parkinson's disease, was upregulated in the subgroup of glucocorticoid-sensitive subjects. CONCLUSIONS We have identified differences in tissue sensitivity to glucocorticoids among healthy subjects at the transcriptomic level. These differences are associated with differential expression of genes related to autoimmune and neurological disorders.
Collapse
Affiliation(s)
- Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece.,Division of Endocrinology and Metabolism, Center for Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Alexandros Polyzos
- Institute of Molecular Biology, Genetics and Biotechnology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Eleni Koniari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Agaristi Lamprokostopoulou
- Division of Endocrinology and Metabolism, Center for Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Ifigeneia Papageorgiou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Eleni Golfinopoulou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Chrysanthi Papathanasiou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Amalia Sertedaki
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Dimitris Thanos
- Institute of Molecular Biology, Genetics and Biotechnology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - George P Chrousos
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece.,Division of Endocrinology and Metabolism, Center for Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece.,Division of Endocrinology and Metabolism, Center for Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
376
|
Rodríguez Y, Vatti N, Ramírez-Santana C, Chang C, Mancera-Páez O, Gershwin ME, Anaya JM. Chronic inflammatory demyelinating polyneuropathy as an autoimmune disease. J Autoimmun 2019; 102:8-37. [DOI: 10.1016/j.jaut.2019.04.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/13/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022]
|
377
|
Zhang Y, Yang A, Huang J. Identification of Gene Changes Induced by Dexamethasone in the Anterior Segment of the Human Eye Using Bioinformatics Analysis. Med Sci Monit 2019; 25:5501-5509. [PMID: 31339875 PMCID: PMC6671556 DOI: 10.12659/msm.915591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Glucocorticoids (GCs)-induced glaucoma is a common adverse effect of prolonged GCs use. To better understand the effects of GCs on aqueous humor (AH) outflow, we analyzed the dataset GSE37474 using bioinformatics analysis to identify gene changes and pathways in the anterior segment of the human eye induced by dexamethasone (DEX). MATERIAL AND METHODS The GSE37474 dataset downloaded from the Gene Expression Omnibus (GEO) database was examined in this study. GEO2R was utilized to analyze data and identify differentially expressed genes (DEGs). Gene Ontology (GO) enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were constructed using the DAVID database followed by construction of a protein-protein interaction (PPI) network performed using Cytoscape software. Finally, modules and hub genes were screened out using MCODE and cytoHubba plugin, respectively. RESULTS A set of 252 DEGs were screened. Among the DEGs, 143 genes were upregulated and 109 were downregulated. GO analysis indicated that some of the DEGs participated in extracellular matrix (ECM) organization and cholesterol homeostasis. Additionally, KEGG pathways were predominantly enriched in tyrosine metabolism and ECM-receptor interaction. From the PPI network, 2 modules were identified, and 10 hub genes were screened out, including CCL2, FOS, IGF1, PTGS2, CCL5, EDN1, IL11, F3, PMCH, and BDKRB1. The 2 module genes primarily participate in the TNF signaling pathway, cytokine-cytokine receptor interaction, and the Jak-STAT signaling pathway. CONCLUSIONS The present study identified some significant DEGs, hub genes, pathways, and modules in the human anterior segment induced by DEX. These results demonstrate that DEX changes the expression of certain genes and pathways to resist aqueous humor outflow, which could be new targets for developing novel and more effective approaches of diagnosis and therapy for GCs-induced glaucoma.
Collapse
Affiliation(s)
- Yuan Zhang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Anhuai Yang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Jizhen Huang
- West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, China (mainland)
| |
Collapse
|
378
|
Matera MG, Rinaldi B, Calzetta L, Rogliani P, Cazzola M. Pharmacokinetics and pharmacodynamics of inhaled corticosteroids for asthma treatment. Pulm Pharmacol Ther 2019; 58:101828. [PMID: 31349002 DOI: 10.1016/j.pupt.2019.101828] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/07/2019] [Accepted: 07/22/2019] [Indexed: 11/27/2022]
Abstract
The differences in the pharmacokinetic (PK) characteristics of inhaled corticosteroids (ICSs) critically influence the profile of each of them, but also the significant differences in glucocorticoid receptor selectivity, potency, and physicochemical properties are critical in defining the pharmacodynamic (PD) profile of an ICS. The PK and PD properties of ICSs used in asthma and the importance of their interrelationship have been reviewed. The differences among the ICSs in PK and PD must be considered when an ICS should be prescribed to an asthmatic patient because a better understanding of the PK/PD interrelationship of ICSs could be important to better fit with the between-patient variability and within-patient repeatability in the response to ICSs that often complicate the therapeutic approach to the asthmatic patient. The role of the device in influencing the PK profile of an ICS must be always considered because it is crucial. Also patient-related factors and disease severity affect pulmonary deposition of ICS.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- University of Campania "Luigi Vanvitelli", Department of Experimental Medicine, Naples, Italy
| | - Barbara Rinaldi
- University of Campania "Luigi Vanvitelli", Department of Experimental Medicine, Naples, Italy
| | - Luigino Calzetta
- University of Rome "Tor Vergata", Department of Experimental Medicine, Rome, Italy
| | - Paola Rogliani
- University of Rome "Tor Vergata", Department of Experimental Medicine, Rome, Italy
| | - Mario Cazzola
- University of Rome "Tor Vergata", Department of Experimental Medicine, Rome, Italy.
| |
Collapse
|
379
|
Hos D, Matthaei M, Bock F, Maruyama K, Notara M, Clahsen T, Hou Y, Le VNH, Salabarria AC, Horstmann J, Bachmann BO, Cursiefen C. Immune reactions after modern lamellar (DALK, DSAEK, DMEK) versus conventional penetrating corneal transplantation. Prog Retin Eye Res 2019; 73:100768. [PMID: 31279005 DOI: 10.1016/j.preteyeres.2019.07.001] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Abstract
In the past decade, novel lamellar keratoplasty techniques such as Deep Anterior Lamellar Keratoplasty (DALK) for anterior keratoplasty and Descemet stripping automated endothelial keratoplasty (DSAEK)/Descemet membrane endothelial keratoplasty (DMEK) for posterior keratoplasty have been developed. DALK eliminates the possibility of endothelial allograft rejection, which is the main reason for graft failure after penetrating keratoplasty (PK). Compared to PK, the risk of endothelial graft rejection is significantly reduced after DSAEK/DMEK. Thus, with modern lamellar techniques, the clinical problem of endothelial graft rejection seems to be nearly solved in the low-risk situation. However, even with lamellar grafts there are epithelial, subepithelial and stromal immune reactions in DALK and endothelial immune reactions in DSAEK/DMEK, and not all keratoplasties can be performed in a lamellar fashion. Therefore, endothelial graft rejection in PK is still highly relevant, especially in the "high-risk" setting, where the cornea's (lymph)angiogenic and immune privilege is lost due to severe inflammation and pathological neovascularization. For these eyes, currently available treatment options are still unsatisfactory. In this review, we will describe currently used keratoplasty techniques, namely PK, DALK, DSAEK, and DMEK. We will summarize their indications, provide surgical descriptions, and comment on their complications and outcomes. Furthermore, we will give an overview on corneal transplant immunology. A specific focus will be placed on endothelial graft rejection and we will report on its incidence, clinical presentation, and current/future treatment and prevention options. Finally, we will speculate how the field of keratoplasty and prevention of corneal allograft rejection will develop in the future.
Collapse
Affiliation(s)
- Deniz Hos
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Mario Matthaei
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Kazuichi Maruyama
- Department of Innovative Visual Science, Graduate School of Medicine, Osaka University, Japan
| | - Maria Notara
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Clahsen
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Yanhong Hou
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Viet Nhat Hung Le
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Department of Ophthalmology, Hue College of Medicine and Pharmacy, Hue University, Viet Nam
| | | | - Jens Horstmann
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Bjoern O Bachmann
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
380
|
Chen RL, Wang QX, Ma X. Precision medicine for autoimmune hepatitis. J Dig Dis 2019; 20:331-337. [PMID: 31099976 DOI: 10.1111/1751-2980.12786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/07/2019] [Indexed: 01/10/2023]
Abstract
Autoimmune hepatitis (AIH) is an autoimmune liver disease induced by environmental factors in genetically susceptible individuals. AIH is characterized by hypergammaglobulinemia, elevation of serum autoantibodies and transaminases, and interface hepatitis. Personalized therapy is necessary in AIH because of its heterogeneity in clinical manifestations. Precision medicine is a recent and novel therapeutic pattern which ultimately aims to achieve personalized therapy. In this review we summarize the research progress of precision medicine to treat AIH by an exploration of the susceptible genes, precision diagnosis and prognosis of AIH, pharmacogenomics and precision medication, and the precision treatment for special types of AIH.
Collapse
Affiliation(s)
- Rui Ling Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Xia Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
381
|
de Almeida AR, Dantas AT, Pereira MC, Cordeiro MF, Gonçalves RSG, de Melo Rêgo MJB, da Rocha Pitta I, Duarte ALBP, da Rocha Pitta MG. Dexamethasone inhibits cytokine production in PBMC from systemic sclerosis patients. Inflammopharmacology 2019; 27:723-730. [PMID: 31069604 DOI: 10.1007/s10787-019-00600-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 04/27/2019] [Indexed: 01/19/2023]
Abstract
Glucocorticoids (GC) are widely used in the treatment of SSc, although there is not much evidence to prove the benefits offered by these drugs in this disease. In this study, we evaluated the effects of a GC on cytokine production in peripheral blood mononuclear cells (PBMC) of SSc patients. The effect of dexamethasone (DEX) was evaluated in PBMC of 21 SSc patients and 10 healthy volunteers after stimulation of cells with anti-CD3 and anti-CD28. Cytokines IL-2, IL-4, IL-6, IL-10, IL-17A, IL-17F, IFN-γ, TNF, and IL-1β were quantified in the culture supernatant by CBA or ELISA. Of the patients evaluated in this study, 8 (38%) were taking corticosteroids, and esophageal dysfunction was more frequent in these patients when compared to those who did not take corticosteroids. DEX (1.000 nM) treatment in PBMC of SSc patients stimulated with anti-CD3 and anti-CD28 promoted a significant reduction in IL-2, IL-4, IL-6, IL-10, IL-17A, IFN-γ, TNF, IL-1β (p < 0.001 for all), and IL-17F (p = 0.023) cytokines levels. We did not observe differences in response to in vitro treatment with DEX between groups of patients taking or not taking corticosteroids. In PBMC from healthy volunteers, we observed that DEX treatment significantly reduced IL-4, IFN-γ (p = 0.003 for both), IL-6, IL-10, IL-17A, and TNF (p = 0.002 for all) cytokines. These results show that DEX treatment in PBMC of SSc patients reduced the production of important cytokines involved in the pathogenesis of the disease, suggesting a possible mechanism of action of the CG in the treatment of SSc.
Collapse
Affiliation(s)
- Anderson Rodrigues de Almeida
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Avenida Professor Moraes Rêgo, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Andréa Tavares Dantas
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Avenida Professor Moraes Rêgo, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil.,Serviço de Reumatologia, Hospital das Clínicas da Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Michelly Cristiny Pereira
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Avenida Professor Moraes Rêgo, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Marina Ferraz Cordeiro
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Avenida Professor Moraes Rêgo, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Rafaela Silva Guimarães Gonçalves
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Avenida Professor Moraes Rêgo, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil.,Serviço de Reumatologia, Hospital das Clínicas da Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Moacyr Jesus Barreto de Melo Rêgo
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Avenida Professor Moraes Rêgo, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Ivan da Rocha Pitta
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Avenida Professor Moraes Rêgo, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Angela Luzia Branco Pinto Duarte
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Avenida Professor Moraes Rêgo, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil.,Serviço de Reumatologia, Hospital das Clínicas da Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Maira Galdino da Rocha Pitta
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Avenida Professor Moraes Rêgo, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil.
| |
Collapse
|
382
|
High dose of dexamethasone protects against EAE-induced motor deficits but impairs learning/memory in C57BL/6 mice. Sci Rep 2019; 9:6673. [PMID: 31040362 PMCID: PMC6491620 DOI: 10.1038/s41598-019-43217-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/17/2019] [Indexed: 12/24/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune and neuroinflammatory disease characterized by demyelination of the Central Nervous System. Immune cells activation and release of pro-inflammatory cytokines play a crucial role in the disease modulation, decisively contributing to the neurodegeneration observed in MS and the experimental autoimmune encephalomyelitis (EAE), the widely used MS animal model. Synthetic glucocorticoids, commonly used to treat the MS attacks, have controversial effects on neuroinflammation and cognition. We sought to verify the influence of dexamethasone (DEX) on the EAE progression and on EAE-induced cognitive deficits. In myelin oligodendrocyte glycoprotein peptide (MOG35-55)-induced EAE female mice, treated once with DEX (50 mg/kg) or not, on the day of immunization, DEX decreased EAE-induced motor clinical scores, infiltrating cells in the spinal cord and delayed serum corticosterone peak. At the asymptomatic phase (8-day post-immunization), DEX did not protected from the EAE-induced memory consolidation deficits, which were accompanied by increased glucocorticoid receptor (GR) activity and decreased EGR-1 expression in the hippocampus. Blunting hippocampal GR genomic activation with DnGR vectors prevented DEX effects on EAE-induced memory impairment. These data suggest that, although DEX improves clinical signs, it decreases cognitive and memory capacity by diminishing neuronal activity and potentiating some aspects of neuroinflammation in EAE.
Collapse
|
383
|
Pourmand A, Whiteside T, Yamane D, Rashed A, Mazer-Amirshahi M. The controversial role of corticosteroids in septic shock. Am J Emerg Med 2019; 37:1353-1361. [PMID: 31056383 DOI: 10.1016/j.ajem.2019.04.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/13/2019] [Accepted: 04/25/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Several clinical trials and literature reviews have been conducted to evaluate the impact of corticosteroids on the physiological markers and clinical outcomes of patients in septic shock. While the findings have been somewhat contradictory, there is evidence of moderate benefit from the administration of low-dose corticosteroids to patients in septic shock. In this review, we discuss recent studies evaluating the impact of corticosteroids on morbidity and mortality in septic shock and explore future directions to fully elucidate when and how the administration of corticosteroid therapies can be beneficial. METHODS A literature review was performed using the Mesh database of PubMed with the term "septic shock" and subheadings "therapeutic use", "drug therapy", "pharmacology", and "therapy" followed by the addition of "steroid". Filters were added to restrict the search to 18+ age, English and human studies, and articles published within the last 10 years. One hundred sixty-five articles were examined and twenty-five were deemed relevant to this review. RESULTS The twenty-five articles reviewed here provide conflicting evidence as to the usefulness of corticosteroid treatments during septic shock. Several showed improved physiological outcomes, including rates of organ failure, need for life supporting interventions, adverse effects, inflammatory markers, and perfusion during the course of septic shock, as well as decreased mortality for a statistically significant number of patients. CONCLUSIONS There remains a need for improved therapy for patients in septic shock. Corticosteroids have shown some potential in improving mortality rates and clinical markers. Additional studies are needed to determine the optimal role of corticosteroids in septic shock.
Collapse
Affiliation(s)
- Ali Pourmand
- Department of Emergency Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.
| | - Tess Whiteside
- Department of Emergency Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - David Yamane
- Department of Emergency Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Amir Rashed
- Department of Emergency Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Maryann Mazer-Amirshahi
- Department of Emergency Medicine, MedStar Washington Hospital Center, Washington, DC, United States; Georgetown University School of Medicine, Washington, DC, United States
| |
Collapse
|
384
|
Lv J, Ma Q, Dasgupta C, Xu Z, Zhang L. Antenatal Hypoxia and Programming of Glucocorticoid Receptor Expression in the Adult Rat Heart. Front Physiol 2019; 10:323. [PMID: 31001129 PMCID: PMC6454194 DOI: 10.3389/fphys.2019.00323] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/11/2019] [Indexed: 12/26/2022] Open
Abstract
Glucocorticoid receptor (GR) signaling is critical for development and function of the heart. Our previous study demonstrated that gestational hypoxia induced epigenetic repression of the GR gene in the developing heart. The present study aims to determine that the alterations of promoter methylation level and epigenetic repression of the GR gene in the developing heart in response to maternal hypoxia is sustained in adult offspring and potential gender differences in the programming of GR gene. Pregnant rats were treated with 10.5% O2 from gestational day 15 (E15) to 21 (E21). Hearts were isolated from 5-month-old male and female offspring with the developing stage being equivalent to 18-year-old human. GR mRNA and protein abundance was determined with real time qRT-PCR and Western blot. GR gene promoter methylation and binding of transcription factors were measured with methylated DNA immunoprecipitation (MeDIP) and Chromatin immunoprecipitation (ChIP). The results showed that antenatal hypoxia significantly decreased the expression of GR mRNA and protein in the hearts of adult male offspring, but not in females, which is ascribed to the differential changes of alternative exon1 mRNA variants of GR gene in male and female hearts in response to prenatal hypoxia. In addition, the downregulation of GR expression in the male heart was correlated with increased methylation levels of CpG dinucleotides in promoters of exon 14, 15, 16, 17, and 110, which resulted in a decrease in the binding of their transcription factors. Thus, the study reveals that antenatal hypoxia results in a reprogramming and long-term change in GR gene expression in the heart by hypermethylation of GR promoter in a sex-differential pattern, which provides a novel mechanism regarding the increased vulnerability of heart later in life with exposure of prenatal hypoxia.
Collapse
Affiliation(s)
- Juanxiu Lv
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingyi Ma
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Chiranjib Dasgupta
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Zhice Xu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Lubo Zhang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| |
Collapse
|
385
|
do Nascimento JCF, de Oliveira Vasconcelos A, Seabra MABL, Beltrão EIC, Rocha CRC. The challenge of determining the impact of FUT3 tumor-associated polymorphism rs2306969 (-6951 C> T) in invasive breast cancer cells. Mol Biol Rep 2019; 46:3531-3536. [PMID: 30929162 DOI: 10.1007/s11033-019-04780-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/21/2019] [Indexed: 12/20/2022]
Abstract
FUT3 gene is responsible for encode an homonymous α1,3/4-fucosyltransferase involved in the synthesis of sialyl-Lewis antigens. FUT3-fucosylated glycoconjugates play key roles in pathways involved in tumor biology and metastasis, such as cellular ligation to E-selectins, TGF-β-induced epithelial-mesenchymal transition, NK cell-mediated tumor cytotoxicity and apoptosis. Tumor-associated FUT3 promoter polymorphism rs2306969 (-6951 C> T, position related to the gene's translation start site) has been linked to breast, ovarian and intestinal gastric cancer. Although non-coding polymorphisms accounts for the majority of variations founded in breast cancer, their functional roles are still poorly understood. This study aimed to investigate the impact of different alleles for this variation in FUT3 expression of invasive breast tumors. A luciferase reporter assay was performed using two breast tumor cell lines to evaluate respectively the impact of FUT3 rs2306969 (-6951 CC) and (-6951 TT) on protein expression. Gene and protein expressions were also measured in twenty-nine fresh biopsies of invasive breast tumors. Rs2306969 did not significantly influence FUT3 expression in both used systems. However, this study is defiant since the biological role of this polymorphism in breast cancer and other tumor types could be linked to cis/trans modulation of other genes, respond to different environmental stimuli or impact gene expression only in association with other variations. Rs2306969 did not modulate FUT3 expression in breast tumors under non-stimulated conditions. Nevertheless, our study contributes to the notably challenging task that is to understand how non-coding polymorphisms can drive the overall risk in cancer development.
Collapse
Affiliation(s)
| | | | | | - Eduardo Isidoro Carneiro Beltrão
- Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, S/N, Recife, 50670-901, Brazil.,Departamento de Bioquímica, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, S/N, Recife, 50670-901, Brazil
| | - Cíntia Renata Costa Rocha
- Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, S/N, Recife, 50670-901, Brazil. .,Departamento de Bioquímica, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, S/N, Recife, 50670-901, Brazil.
| |
Collapse
|
386
|
Sachar M, Kelly EJ, Unadkat JD. Mechanisms of CYP3A Induction During Pregnancy: Studies in HepaRG Cells. AAPS JOURNAL 2019; 21:45. [PMID: 30919109 DOI: 10.1208/s12248-019-0316-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/01/2019] [Indexed: 01/06/2023]
Abstract
Activity of CYP3A, an enzyme responsible for metabolism of many marketed drugs, is induced by ~ 2-fold in pregnant women. Through studies in sandwich-cultured human hepatocytes (SCHH) and HepaRG cells, our laboratory has shown that this induction is likely mediated by the increase in cortisol plasma concentrations during pregnancy. Cortisol, at plasma concentrations observed during the third trimester (~ 800 nM), either alone or in combination with other pregnancy-related hormones, induces CYP3A activity in SCHH and HepaRG cells when cultured in dexamethasone-free media. To determine the mechanism(s) by which cortisol induces CYP3A activity, HepaRG cells were pre-incubated in dexamethasone-free medium and then incubated for 72 h with cortisol (798 nM). Glucocorticoid receptor (GR), pregnane X receptor (PXR), and CYP3A4 or CYP3A5 were knocked down using siRNA, and mRNA expression of these genes was measured. CYP3A4, and not CYP3A5, was found to be the dominant contributor to total CYP3A activity in control- and cortisol-treated HepaRG cells. Constitutive mRNA expression of CYP3A4 in HepaRG cells was regulated by both PXR and GR whereas constitutive expression of CYP3A5 in HepaRG cells was regulated by GR alone. Cortisol-mediated CYP3A4 induction in HepaRG cells was primarily mediated by GR-dependent PXR induction pathway and to a smaller extent via a PXR-independent pathway. Cortisol-mediated CYP3A5 induction was regulated by GR-dependent PXR-independent pathway. These data indicate that PXR plays a central role in cortisol-mediated induction of CYP3A activity during pregnancy and suggests that other enzymes and transporters, such as CYP2B6 and P-glycoprotein, may also be induced during pregnancy via the same mechanism(s).
Collapse
Affiliation(s)
- Madhav Sachar
- Department of Pharmaceutics, University of Washington, P.O. Box 357610, Seattle, WA, 98195, USA
| | - Edward J Kelly
- Department of Pharmaceutics, University of Washington, P.O. Box 357610, Seattle, WA, 98195, USA
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, P.O. Box 357610, Seattle, WA, 98195, USA.
| |
Collapse
|
387
|
Esposito MC, Santos ALA, Bonfilio R, de Araújo MB. A Critical Review of Analytical Methods in Pharmaceutical Matrices for Determination of Corticosteroids. Crit Rev Anal Chem 2019; 50:111-124. [PMID: 30869528 DOI: 10.1080/10408347.2019.1581050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Corticosteroids are a class of hormones released by the adrenal cortex, which includes glucocorticoids and mineralocorticoids. Glucocorticoids have an important role in the metabolism of carbohydrates, proteins and calcium and effective anti-inflammatory and immunosuppressive activity. Due to their intense immunomodulatory and anti-inflammatory activity, glucocorticoids are used in the treatment of various inflammatory, malignant, allergic conditions such as rhinitis, asthma, dermatological, rheumatic, ophthalmic and neurological diseases, as well as after organ transplants. They are the most widely prescribed drugs in the world. The objective of this review is to provide an overview of the analytical methods in pharmaceutical matrices for determination of corticosteroids. In this study, the predominance of liquid chromatography methods for the analysis of corticosteroids from pharmaceutical products is evident for both liquid and semisolid dosage forms as well as for solids. The same can be said for topical, oral and parenteral formulations. Methods such as spectrophotometry are also used, but given the advantages of chromatographic methods such as better selectivity and sensitivity, they have become the choice for analysis of these drugs, however, most methods still do not meet the credentials of "green chemistry."
Collapse
Affiliation(s)
- Milena Carla Esposito
- Department of Food and Drug Administration, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | - Rudy Bonfilio
- Department of Food and Drug Administration, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Magali Benjamim de Araújo
- Department of Food and Drug Administration, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| |
Collapse
|
388
|
Abstract
BACKGROUND Crohn's disease (CD) is a chronic immune-mediated disorder of the gastrointestinal tract. The pathophysiological understanding of this disease is limited and no curative therapy is available so far. Therefore, most patients require long-lasting or even life-long immunosuppressive therapies for the suppression of symptoms to improve quality of life and reduction of long-term risks. However, in a relevant subgroup of patients, these therapeutic goals cannot be sufficiently attained. SUMMARY Clinically established therapies in active CD comprise corticosteroids and immunosuppressants such as azathioprine. After the introduction of anti-TNFα (Tumor necrosis factor alpha) antibodies, other biologicals (e.g., vedolizumab and ustekinumab) have also been approved. New drugs in the pipeline like filgotinib, upadacitinib, risankizumab or rifaximin could improve the therapy of CD in the near future. Thus, an individualized therapy management, based on optimal selection of therapeutic agents will become more important. Additionally, the local application of mesenchymal stem cells might be helpful in the management of fistulas. Key Messages: The targeted biological therapeutic agents (anti-TNFα antibodies, vedolizumab, ustekinumab) are well established for therapy in CD. There are several new substances in the pipeline with promising results in phase II trials (filgotinib, rifaximin, risankizumab, upadacitinib). The upcoming extension of the therapeutic arsenal will require methods for an optimized selection of substances, thus enabling a more individualized therapy.
Collapse
|
389
|
Martínez T, Garcia-Robledo JE, Plata I, Urbano MA, Posso-Osorio I, Rios-Serna LJ, Barrera MC, Tobón GJ. Mechanisms of action and historical facts on the use of intravenous immunoglobulins in systemic lupus erythematosus. Autoimmun Rev 2019; 18:279-286. [PMID: 30639648 DOI: 10.1016/j.autrev.2018.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/14/2018] [Indexed: 12/29/2022]
Abstract
The current existing therapies for severe cases of systemic lupus erythematosus (SLE) patients are still limited. Intravenous immunoglobulin (IVIGs), which are purified from the plasma of thousands of healthy human donors, have been profiled as efficacious and life-saving options for SLE patients refractory to conventional therapy. The specific mechanism of action by which IVIGs generate immunomodulation in SLE is not currently understood. In this manuscript, we reviewed some of the hypothesis that have been postulated to explain the IVIG effects, including those on T and B cell intracellular signalling and activation, as well as the interferon signalling pathways involved in the detection of nucleic acids and the defective removal of immune complexes and debris.
Collapse
Affiliation(s)
- Tatiana Martínez
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina traslacional. Fundación Valle del Lili, Univesidad Icesi, Colombia
| | | | - Ilich Plata
- Medical School, Universidad Icesi, Cali, Colombia
| | | | - Ivan Posso-Osorio
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina traslacional. Fundación Valle del Lili, Univesidad Icesi, Colombia
| | - Lady J Rios-Serna
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina traslacional. Fundación Valle del Lili, Univesidad Icesi, Colombia
| | - María Claudia Barrera
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina traslacional. Fundación Valle del Lili, Univesidad Icesi, Colombia
| | - Gabriel J Tobón
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina traslacional. Fundación Valle del Lili, Univesidad Icesi, Colombia; Laboratory of immunology, Fundación Valle del Lili, Cali, Colombia.
| |
Collapse
|
390
|
Abstract
Primary generalized glucocorticoid resistance or Chrousos syndrome is a rare disorder, which affects all tissues expressing the human glucocorticoid receptor. It is characterized by generalized, partial tissue insensitivity to glucocorticoids caused by genetic defects in the NR3C1 gene. We and others have applied standard methods of molecular and structural biology to investigate the molecular mechanisms and conformational alterations through which the mutant glucocorticoid receptors lead to the broad spectrum of clinical manifestations of Chrousos syndrome. The ever-increasing application of novel technologies, including the next-generation sequencing, will enhance our knowledge in factors that influence the glucocorticoid signal transduction in a positive or negative fashion.
Collapse
Affiliation(s)
- Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece.
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
391
|
Rainville JR, Hodes GE. Inflaming sex differences in mood disorders. Neuropsychopharmacology 2019; 44:184-199. [PMID: 29955150 PMCID: PMC6235877 DOI: 10.1038/s41386-018-0124-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023]
Abstract
Men and women often experience different symptoms or rates of occurrence for a variety of mood disorders. Many of the symptoms of mood disorders overlap with autoimmune disorders, which also have a higher prevalence in women. There is a growing interest in exploring the immune system to provide biomarkers for diagnosis of mood disorders, along with new targets for developing treatments. This review examines known sex differences in the immune system and their relationship to mood disorders. We focus on immune alterations associated with unipolar depression, bipolar depression, and anxiety disorders. We describe work from both basic and clinical research examining potential immune mechanisms thought to contribute to stress susceptibility and associated mood disorders. We propose that sex and age are important, intertwined factors that need to be included in future experimental designs if we are going to harness the power of the immune system to develop a new wave of treatments for mood disorders.
Collapse
Affiliation(s)
- Jennifer R Rainville
- Department of Neuroscience, Virginia Polytechnic Institute and State University, 1981 Kraft Drive, Blacksburg, VA, 24060, USA
| | - Georgia E Hodes
- Department of Neuroscience, Virginia Polytechnic Institute and State University, 1981 Kraft Drive, Blacksburg, VA, 24060, USA.
| |
Collapse
|
392
|
Kaffman A, White JD, Wei L, Johnson FK, Krystal JH. Enhancing the Utility of Preclinical Research in Neuropsychiatry Drug Development. Methods Mol Biol 2019; 2011:3-22. [PMID: 31273690 DOI: 10.1007/978-1-4939-9554-7_1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Most large pharmaceutical companies have downscaled or closed their clinical neuroscience research programs in response to the low clinical success rate for drugs that showed tremendous promise in animal experiments intended to model psychiatric pathophysiology. These failures have raised serious concerns about the role of preclinical research in the identification and evaluation of new pharmacotherapies for psychiatry. In the absence of a comprehensive understanding of the neurobiology of psychiatric disorders, the task of developing "animal models" seems elusive. The purpose of this review is to highlight emerging strategies to enhance the utility of preclinical research in the drug development process. We address this issue by reviewing how advances in neuroscience, coupled with new conceptual approaches, have recently revolutionized the way we can diagnose and treat common psychiatric conditions. We discuss the implications of these new tools for modeling psychiatric conditions in animals and advocate for the use of systematic reviews of preclinical work as a prerequisite for conducting psychiatric clinical trials. We believe that work in animals is essential for elucidating human psychopathology and that improving the predictive validity of animal models is necessary for developing more effective interventions for mental illness.
Collapse
Affiliation(s)
- Arie Kaffman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| | - Jordon D White
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Lan Wei
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Frances K Johnson
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
393
|
Wilkinson L, Verhoog NJD, Louw A. Disease- and treatment-associated acquired glucocorticoid resistance. Endocr Connect 2018; 7:R328-R349. [PMID: 30352419 PMCID: PMC6280593 DOI: 10.1530/ec-18-0421] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/11/2018] [Indexed: 12/16/2022]
Abstract
The development of resistance to glucocorticoids (GCs) in therapeutic regimens poses a major threat. Generally, GC resistance is congenital or acquired over time as a result of disease progression, prolonged GC treatment or, in some cases, both. Essentially, disruptions in the function and/or pool of the glucocorticoid receptor α (GRα) underlie this resistance. Many studies have detailed how alterations in GRα function lead to diminished GC sensitivity; however, the current review highlights the wealth of data concerning reductions in the GRα pool, mediated by disease-associated and treatment-associated effects, which contribute to a significant decrease in GC sensitivity. Additionally, the current understanding of the molecular mechanisms involved in driving reductions in the GRα pool is discussed. After highlighting the importance of maintaining the level of the GRα pool to combat GC resistance, we present current strategies and argue that future strategies to prevent GC resistance should involve biased ligands with a predisposition for reduced GR dimerization, a strategy originally proposed as the SEMOGRAM-SEDIGRAM concept to reduce the side-effect profile of GCs.
Collapse
Affiliation(s)
- Legh Wilkinson
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Ann Louw
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
- Correspondence should be addressed to A Louw:
| |
Collapse
|
394
|
Morsi A, DeFranco D, Witchel SF. The Hypothalamic-Pituitary-Adrenal Axis and the Fetus. Horm Res Paediatr 2018; 89:380-387. [PMID: 29874660 DOI: 10.1159/000488106] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/28/2018] [Indexed: 11/19/2022] Open
Abstract
Glucocorticoids (GCs), cortisol in humans, influence multiple essential maturational events during gestation. In the human fetus, fetal hypothalamic-pituitary-adrenal (HPA) axis function, fetal adrenal steroidogenesis, placental 11β- hydroxysteroid dehydrogenase type 2 activity, maternal cortisol concentrations, and environmental factors impact fetal cortisol exposure. The beneficial effects of synthetic glucocorticoids (sGCs), such as dexamethasone and betamethasone, on fetal lung maturation have significantly shifted the management of preterm labor and threatened preterm birth. Accumulating evidence suggests that exposure to sGCs in utero at critical developmental stages can alter the function of organ systems and that these effects may have sequelae that extend into adult life. Maternal stress and environmental influences may also impact fetal GC exposure. This article explores the vulnerability of the fetal HPA axis to endogenous GCs and exogenous sGCs.
Collapse
Affiliation(s)
- Amr Morsi
- Division of Pediatric Endocrinology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Donald DeFranco
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Selma F Witchel
- Division of Pediatric Endocrinology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
395
|
Damato V, Balint B, Kienzler AK, Irani SR. The clinical features, underlying immunology, and treatment of autoantibody-mediated movement disorders. Mov Disord 2018; 33:1376-1389. [PMID: 30218501 PMCID: PMC6221172 DOI: 10.1002/mds.27446] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/28/2018] [Accepted: 05/02/2018] [Indexed: 12/30/2022] Open
Abstract
An increasing number of movement disorders are associated with autoantibodies. Many of these autoantibodies target the extracellular domain of neuronal surface proteins and associate with highly specific phenotypes, suggesting they have pathogenic potential. Below, we describe the phenotypes associated with some of these commoner autoantibody‐mediated movement disorders, and outline increasingly well‐established mechanisms of autoantibody pathogenicity which include antigen downregulation and complement fixation. Despite these advances, and the increasingly robust evidence for improved clinical outcomes with early escalation of immunotherapies, the underlying cellular immunology of these conditions has received little attention. Therefore, here, we outline the likely roles of T cells and B cells in the generation of autoantibodies, and reflect on how these may guide both current immunotherapy regimes and our future understanding of precision medicine in the field. In addition, we summarise potential mechanisms by which these peripherally‐driven immune responses may reach the central nervous system. We integrate this with the immunologically‐relevant clinical observations of preceding infections, tumours and human leucocyte antigen‐associations to provide an overview of the therapeutically‐relevant underlying adaptive immunology in the autoantibody‐mediated movement disorders. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Valentina Damato
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Institute of Neurology, Department of Neuroscience, Catholic University, Rome, Italy
| | - Bettina Balint
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Department of Neurology, University Hospital, Heidelberg, Germany.,Oxford University Hospitals, John Radcliffe Hospital, Oxford, UK
| | - Anne-Kathrin Kienzler
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford University Hospitals, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
396
|
Do Preoperative Corticosteroid Injections Increase the Risk for Infections or Wound Healing Problems After Spine Surgery?: A Swiss Prospective Multicenter Cohort Study. Spine (Phila Pa 1976) 2018; 43:1089-1094. [PMID: 29300251 DOI: 10.1097/brs.0000000000002542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A prospective multicenter cohort study. OBJECTIVES This study evaluates the risk for surgical site infections (SSIs) or wound healing problems (WHPs) in patients who underwent corticosteroid injection before lumbar decompression surgery. SUMMARY OF BACKGROUND DATA Corticosteroid injections are often used for the treatment of the degenerated spine. However, their well-known immunosuppressive effects could increase the risk for local infections, particularly if a surgical intervention follows the injection rapidly. METHODS The Swiss Lumbar Stenosis Outcome Study (LSOS), which is a prospective multicenter cohort study of patients with symptomatic lumbar spinal stenosis, was used as database. Of 743 patients, 422 patients underwent surgery and were eligible for the study. Ten patients (2.4%) were revised for either SSIs (n = 6) or WHPs (n = 4). A control group (n = 19) was constructed matched according to age, sex, diabetes, and body mass index (BMI). Odds ratios (ORs) were calculated by using a conditional logistic regression model to quantify the risk of SSI or WHP after preoperative corticosteroid injection. Subgroup analysis was performed for patients with injection within 0 to 3 months before surgery, 0 to 6 months before surgery, or any injection at all before surgery. RESULTS Within this cohort, no significant association could be found between preoperative corticosteroid injection and postoperative SSI or WHP in patients with corticosteroid injections within 0 to 3 months before surgery [OR = 0.36, 95% confidence interval (95% CI) 0.04-3.22], 0 to 6 months before surgery (OR = 0.69 95% CI 0.14-3.49), or any time before surgery (OR = 0.43, 95% CI 0.04-3.22). CONCLUSION Within the here investigated cohort, the risk of SSIs or WHPs following lumbar spinal decompression surgery seems not highly associated with preoperative corticosteroid injections. However, the safe time interval between corticosteroid infiltrations and surgery remains unknown, should not be decreased incautiously, and is the subject of further research. LEVEL OF EVIDENCE 2.
Collapse
|
397
|
Bruscoli S, Sorcini D, Flamini S, Gagliardi A, Adamo F, Ronchetti S, Migliorati G, Bereshchenko O, Riccardi C. Glucocorticoid-Induced Leucine Zipper Inhibits Interferon-Gamma Production in B Cells and Suppresses Colitis in Mice. Front Immunol 2018; 9:1720. [PMID: 30083167 PMCID: PMC6064738 DOI: 10.3389/fimmu.2018.01720] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/12/2018] [Indexed: 12/21/2022] Open
Abstract
Glucocorticoid-induced leucine zipper (GILZ) is transcriptionally upregulated by glucocorticoids (GCs) and mediates many of the anti-inflammatory effects of GCs. Since B cell activity has been linked to cytokine production and modulation of inflammatory responses, we herein investigated the role of GILZ in B cells during colitis development. B cell-specific gilz knock-out (gilz B cKO) mice exhibited increased production of the pro-inflammatory cytokine IFN-γ in B cells, and consequently CD4+ T cell activation. Increased IFN-γ production in B cells was associated with enhanced transcriptional activity of the transcription factor activator protein-1 (AP-1) on the IFN-γ promoter. Moreover, GILZ deficiency in B cells was linked to enhanced susceptibility to experimental colitis in mice, and this was reversed by administering GILZ protein. Interestingly, we observed increased production of IFN-γ in both B and T cells infiltrating the lamina propria (LP) of gilz B cKO mice. Together, these findings indicate that GILZ controls IFN-γ production in B cells, which also affects T cell activity, and increased production of IFN-γ by B and T cells in LP is associated with predisposition to inflammatory colitis in mice.
Collapse
Affiliation(s)
- Stefano Bruscoli
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Daniele Sorcini
- Section of Hematology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Sara Flamini
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Andrea Gagliardi
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Francesco Adamo
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Simona Ronchetti
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Graziella Migliorati
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Oxana Bereshchenko
- Department of Surgery and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
398
|
The role of glucocorticoids as adjunctive treatment for sepsis in the modern era. THE LANCET RESPIRATORY MEDICINE 2018; 6:793-800. [PMID: 30006071 DOI: 10.1016/s2213-2600(18)30265-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/06/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022]
Abstract
Glucocorticoids have been used as adjunctive therapy in patients with sepsis and septic shock for more than four decades. The rationale for the use of glucocorticoids is that this class of drugs downregulates the proinflammatory response and limits the anti-inflammatory response while preserving innate immunity. Between 1976 and 2017, 22 randomised placebo-controlled trials have been published evaluating the benefit of glucocorticoids in patients with community-acquired pneumonia, sepsis, and septic shock. These studies produced conflicting results. In 2018, two large randomised controlled trials (RCTs) were published evaluating the role of hydrocortisone in patients with septic shock. The Activated Protein C and Corticosteroids for Human Septic Shock (APROCCHSS) trial reported a reduction in 90-day mortality whereas the Adjunctive Corticosteroid Treatment in Critically Ill Patients with Septic Shock (ADRENAL) trial reported no mortality benefit. This Viewpoint critically appraises these two RCTs and evaluates the use of glucocorticoids in the treatment of sepsis and septic shock in the modern era.
Collapse
|
399
|
Rainville JR, Tsyglakova M, Hodes GE. Deciphering sex differences in the immune system and depression. Front Neuroendocrinol 2018; 50:67-90. [PMID: 29288680 DOI: 10.1016/j.yfrne.2017.12.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023]
Abstract
Certain mood disorders and autoimmune diseases are predominately female diseases but we do not know why. Here, we explore the relationship between depression and the immune system from a sex-based perspective. This review characterizes sex differences in the immune system in health and disease. We explore the contribution of gonadal and stress hormones to immune function at the cellular and molecular level in the brain and body. We propose hormonal and genetic sex specific immune mechanisms that may contribute to the etiology of mood disorders.
Collapse
Affiliation(s)
- Jennifer R Rainville
- Department of Neuroscience, Virginia Polytechnic Institute and State University, 1981 Kraft Drive, Blacksburg, VA 24060, USA
| | - Mariya Tsyglakova
- Department of Neuroscience, Virginia Polytechnic Institute and State University, 1981 Kraft Drive, Blacksburg, VA 24060, USA; Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, 1 Riverside Circle, Roanoke, VA 24016, USA
| | - Georgia E Hodes
- Department of Neuroscience, Virginia Polytechnic Institute and State University, 1981 Kraft Drive, Blacksburg, VA 24060, USA.
| |
Collapse
|
400
|
Clarisse D, Van Wesemael K, Tavernier J, Offner F, Beck IM, De Bosscher K. Effect of combining glucocorticoids with Compound A on glucocorticoid receptor responsiveness in lymphoid malignancies. PLoS One 2018; 13:e0197000. [PMID: 29738549 PMCID: PMC5940183 DOI: 10.1371/journal.pone.0197000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/24/2018] [Indexed: 11/18/2022] Open
Abstract
Glucocorticoids (GCs) are a cornerstone in the treatment of lymphoid malignancies such as multiple myeloma (MM) and acute lymphoblastic leukemia (ALL). Yet, prolonged GC use is hampered by deleterious GC-related side effects and the emergence of GC resistance. To tackle and overcome these GC-related problems, the applicability of selective glucocorticoid receptor agonists and modulators was studied, in search of fewer side-effects and at least equal therapeutic efficacy as classic GCs. Compound A (CpdA) is a prototypical example of such a selective glucocorticoid receptor modulator and does not support GR-mediated transactivation. Here, we examined whether the combination of CpdA with the classic GC dexamethasone (Dex) may improve GC responsiveness of MM and ALL cell lines. We find that the combination of Dex and CpdA does not substantially enhance GC-mediated cell killing. In line, several apoptosis hallmarks, such as caspase 3/7 activity, PARP cleavage and the levels of cleaved-caspase 3 remain unchanged upon combining Dex with CpdA. Moreover, we monitor no additional inhibition of cell proliferation and the homologous downregulation of GR is not counteracted by the combination of Dex and CpdA. In addition, CpdA is unable to modulate Dex-liganded GR transactivation and transrepression, yet, Dex-mediated transrepression is also aberrant in these lymphoid cell lines. Together, transrepression-favoring compounds, alone or combined with GCs, do not seem a valid strategy in the treatment of lymphoid malignancies.
Collapse
Affiliation(s)
- Dorien Clarisse
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), Department for Biomolecular Medicine, VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Hematology, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Karlien Van Wesemael
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium
- Hematology, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jan Tavernier
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), Department for Biomolecular Medicine, VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Fritz Offner
- Hematology, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ilse M. Beck
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium
- Department of Health Sciences, Odisee University College, Ghent, Belgium
| | - Karolien De Bosscher
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), Department for Biomolecular Medicine, VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- * E-mail:
| |
Collapse
|