351
|
Andersen AD, Binzer M, Stenager E, Gramsbergen JB. Cerebrospinal fluid biomarkers for Parkinson's disease - a systematic review. Acta Neurol Scand 2017; 135:34-56. [PMID: 26991855 DOI: 10.1111/ane.12590] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2016] [Indexed: 12/14/2022]
Abstract
Diagnosis of Parkinson's disease (PD) relies on clinical history and physical examination, but misdiagnosis is common in early stages. Identification of biomarkers for PD may allow early and more precise diagnosis and monitoring of dopamine replacement strategies and disease modifying treatments. Developments in analytical chemistry allow the detection of large numbers of molecules in plasma or cerebrospinal fluid, associated with the pathophysiology or pathogenesis of PD. This systematic review includes cerebrospinal fluid biomarker studies focusing on different disease pathways: oxidative stress, neuroinflammation, lysosomal dysfunction and proteins involved in PD and other neurodegenerative disorders, focusing on four clinical domains: their ability to (1) distinguish PD from healthy subjects and other neurodegenerative disorders as well as their relation to (2) disease duration after initial diagnosis, (3) severity of disease (motor symptoms) and (4) cognitive dysfunction. Oligomeric alpha-synuclein might be helpful in the separation of PD from controls. Through metabolomics, changes in purine and tryptophan metabolism have been discovered in patients with PD. Neurofilament light chain (NfL) has a significant role in distinguishing PD from other neurodegenerative diseases. Several oxidative stress markers are related to disease severity, with the antioxidant urate also having a prognostic value in terms of disease severity. Increased levels of amyloid and tau-proteins correlate with cognitive decline and may have prognostic value for cognitive deficits in PD. In the future, larger longitudinal studies, corroborating previous research on viable biomarker candidates or using metabolomics identifying a vast amount of potential biomarkers, could be a good approach.
Collapse
Affiliation(s)
- A. D. Andersen
- Department of Neurology; Hospital of Southern Jutland; Sønderborg Denmark
- Institute of Regional Health Research; University of Southern Denmark; Odense Denmark
- Focused Research Group in Neurology; Hospital of Southern Jutland; Sønderborg Denmark
| | - M. Binzer
- Institute of Regional Health Research; University of Southern Denmark; Odense Denmark
- Focused Research Group in Neurology; Hospital of Southern Jutland; Sønderborg Denmark
| | - E. Stenager
- Institute of Regional Health Research; University of Southern Denmark; Odense Denmark
- Focused Research Group in Neurology; Hospital of Southern Jutland; Sønderborg Denmark
- The Multiple Sclerosis Clinic of Southern Jutland; (Vejle, Sonderborg, Esbjerg) Denmark
| | - J. B. Gramsbergen
- Institute of Molecular Medicine, Neurobiological Research; University of Southern Denmark; Odense Denmark
| |
Collapse
|
352
|
Lenka A, Hegde S, Arumugham SS, Pal PK. Pattern of cognitive impairment in patients with Parkinson's disease and psychosis: A critical review. Parkinsonism Relat Disord 2016; 37:11-18. [PMID: 28057432 DOI: 10.1016/j.parkreldis.2016.12.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/11/2016] [Accepted: 12/26/2016] [Indexed: 01/29/2023]
Abstract
Psychosis is one of the debilitating non-motor symptoms (NMS) of Parkinson's disease (PD). Cognitive impairment is considered to be a risk factor for emergence of psychosis in PD. Early detection of relevant cognitive impairment may serve as a predictor for development of psychosis, with implications for prevention and early intervention. However, the exact pattern of cognitive impairment associated with psychosis is not clear. In this article, we aim to critically review the literature on case-control studies in PD patients with and without psychosis in order to understand the pattern of cognitive impairment in those with psychosis. Majority of studies conducted till date have focused on executive and visuospatial functions. Despite some inconsistencies, most of the studies found significant impairment in these domains in PD patients with psychosis compared to those without psychosis. Studies assessing for other cognitive functions such as attention, language and memory in PD patients have also found worse performance in those with psychosis. Although there is enough evidence to suggest that PD patients with psychosis have poor cognitive functioning, it is unclear if these deficits are generalized or specific. The available evidence, which is primarily in the form of cross-sectional studies assessing for specific cognitive deficits, is not adequate to indicate a clear demarcating pattern of cognitive deficits, which differentiates PD patients with and without psychosis. Longitudinal studies with extensive cognitive assessment are warranted.
Collapse
Affiliation(s)
- Abhishek Lenka
- Department of Clinical Neurosciences, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India; Department of Neurology, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India
| | - Shantala Hegde
- Department of Clinical Psychology, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India.
| | - Shyam Sundar Arumugham
- Department of Psychiatry, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India
| |
Collapse
|
353
|
Dias AE, Limongi JCP, Barbosa ER, Hsing WT. Voice telerehabilitation in Parkinson's disease. Codas 2016; 28:176-81. [PMID: 27191882 DOI: 10.1590/2317-1782/20162015161] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 07/07/2015] [Indexed: 11/22/2022] Open
Abstract
UNLABELLED Parkinson's disease (PD) is a neurodegenerative condition associated with motor, neuropsychological, sensorial, and vocal symptoms. It has been suggested that eventual obstacles faced by many patients to reach speech therapy rehabilitation centers could be overcome with the use of synchronous telerehabilitation (real time) approach employing communication technologies. PURPOSE To investigate the efficacy of vocal telerehabilitation in PD patients. METHODS Twenty patients diagnosed with PD and with vocal complaints participated in this study. Patients were evaluated by videoconference (Adobe Connect 8) before and after treatment. Evaluation method consisted of perceptual analysis of vocal quality measured by the GRBASI scale. Treatment was conducted following the extended version of Lee Silverman method (LSVT-X). At the end of treatment all patients were requested to fill a questionnaire to assess their experience with telerehabilitation. RESULTS Analysis revealed decrease in magnitude of voice quality changes after the intervention, indicating improvement of vocal pattern. All patients reported satisfaction and preference for telerehabilitation compared to face-to-face rehabilitation, as well as positive perception of audio and video. Some technological adversities have been identified but did not prevent the approaches to assessment and treatment. CONCLUSION Present results suggest that telerehabilitation methods can be considered as an effective treatment for speech symptoms associated with PD and can be indicated to patients presenting limited access to speech therapy centers and technological readiness.
Collapse
Affiliation(s)
- Alice Estevo Dias
- Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | | | - Wu Tu Hsing
- Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
354
|
Babayeva M, Assefa H, Basu P, Chumki S, Loewy Z. Marijuana Compounds: A Nonconventional Approach to Parkinson's Disease Therapy. PARKINSON'S DISEASE 2016; 2016:1279042. [PMID: 28050308 PMCID: PMC5165161 DOI: 10.1155/2016/1279042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/29/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder, is the second most common neurological illness in United States. Neurologically, it is characterized by the selective degeneration of a unique population of cells, the nigrostriatal dopamine neurons. The current treatment is symptomatic and mainly involves replacement of dopamine deficiency. This therapy improves only motor symptoms of Parkinson's disease and is associated with a number of adverse effects including dyskinesia. Therefore, there is unmet need for more comprehensive approach in the management of PD. Cannabis and related compounds have created significant research interest as a promising therapy in neurodegenerative and movement disorders. In this review we examine the potential benefits of medical marijuana and related compounds in the treatment of both motor and nonmotor symptoms as well as in slowing the progression of the disease. The potential for cannabis to enhance the quality of life of Parkinson's patients is explored.
Collapse
Affiliation(s)
- Mariana Babayeva
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Haregewein Assefa
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Paramita Basu
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Sanjeda Chumki
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Zvi Loewy
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| |
Collapse
|
355
|
Liu Y, Wang Y, Huang C, Zeng D. Estimating personalized diagnostic rules depending on individualized characteristics. Stat Med 2016; 36:1099-1117. [PMID: 27917508 DOI: 10.1002/sim.7182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 07/25/2016] [Accepted: 10/27/2016] [Indexed: 11/10/2022]
Abstract
There is an increasing demand for personalization of disease screening based on assessment of patient risk and other characteristics. For example, in breast cancer screening, advanced imaging technologies have made it possible to move away from 'one-size-fits-all' screening guidelines to targeted risk-based screening for those who are in need. Because diagnostic performance of various imaging modalities may vary across subjects, applying the most accurate modality to the patients who would benefit the most requires personalized strategy. To address these needs, we propose novel machine learning methods to estimate personalized diagnostic rules for medical screening or diagnosis by maximizing a weighted combination of sensitivity and specificity across subgroups of subjects. We first develop methods that can be applied when competing modalities or screening strategies that are observed on the same subject (paired design). Next, we present methods for studies where not all subjects receive both modalities (unpaired design). We study theoretical properties including consistency and risk bound of the personalized diagnostic rules and conduct simulation studies to examine performance of the proposed methods. Lastly, we analyze data collected from a brain imaging study of Parkinson's disease using positron emission tomography and diffusion tensor imaging with paired and unpaired designs. Our results show that in some cases, a personalized modality assignment is estimated to improve empirical area under the receiver operating curve compared with a 'one-size-fits-all' assignment strategy. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ying Liu
- Division of Biostatistics, Institute for Health and Society, Medical College of Wisconsin, Milwaukee, 53226, WI, U.S.A
| | - Yuanjia Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, 10027, U.S.A
| | - Chaorui Huang
- Brain and Mind Research Institute, Weill Cornell Medical College, NY, 10065, U.S.A
| | - Donglin Zeng
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, 27514, NC, U.S.A
| |
Collapse
|
356
|
Ruitenberg MF, Duthoo W, Santens P, Seidler RD, Notebaert W, Abrahamse EL. Sequence learning in Parkinson's disease: Focusing on action dynamics and the role of dopaminergic medication. Neuropsychologia 2016; 93:30-39. [DOI: 10.1016/j.neuropsychologia.2016.09.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 09/21/2016] [Accepted: 09/30/2016] [Indexed: 11/29/2022]
|
357
|
Lange F, Seer C, Loens S, Wegner F, Schrader C, Dressler D, Dengler R, Kopp B. Neural mechanisms underlying cognitive inflexibility in Parkinson's disease. Neuropsychologia 2016; 93:142-150. [DOI: 10.1016/j.neuropsychologia.2016.09.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/02/2016] [Accepted: 09/26/2016] [Indexed: 01/14/2023]
|
358
|
Højlund A, Petersen MV, Sridharan KS, Østergaard K. Worsening of Verbal Fluency After Deep Brain Stimulation in Parkinson's Disease: A Focused Review. Comput Struct Biotechnol J 2016; 15:68-74. [PMID: 27994799 PMCID: PMC5155048 DOI: 10.1016/j.csbj.2016.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/16/2016] [Accepted: 11/24/2016] [Indexed: 11/28/2022] Open
Abstract
Worsening of verbal fluency after treatment with deep brain stimulation in Parkinson's disease patients is one of the most often reported cognitive adverse effect. The underlying mechanisms of this decline are not well understood. The present focused review assesses the evidence for the reliability of the often-reported decline of verbal fluency, as well as the evidence for the suggested mechanisms including disease progression, reduced medication levels, electrode positions, and stimulation effect vs. surgical effects. Finally, we highlight the need for more systematic investigations of the large degree of heterogeneity in the prevalence of verbal fluency worsening after DBS, as well as provide suggestions for future research.
Collapse
Affiliation(s)
- Andreas Højlund
- Center of Functionally Integrative Neuroscience (CFIN), Dept. of Clinical Medicine, Aarhus University, Denmark
| | - Mikkel V Petersen
- Center of Functionally Integrative Neuroscience (CFIN), Dept. of Clinical Medicine, Aarhus University, Denmark
| | - Kousik Sarathy Sridharan
- Center of Functionally Integrative Neuroscience (CFIN), Dept. of Clinical Medicine, Aarhus University, Denmark
| | - Karen Østergaard
- Center of Functionally Integrative Neuroscience (CFIN), Dept. of Clinical Medicine, Aarhus University, Denmark
| |
Collapse
|
359
|
Miyazaki I, Asanuma M. Serotonin 1A Receptors on Astrocytes as a Potential Target for the Treatment of Parkinson's Disease. Curr Med Chem 2016; 23:686-700. [PMID: 26795196 PMCID: PMC4997990 DOI: 10.2174/0929867323666160122115057] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/12/2015] [Accepted: 01/22/2016] [Indexed: 12/30/2022]
Abstract
Astrocytes are the most abundant neuron-supporting glial cells in the central nervous system. The neuroprotective role of astrocytes has been demonstrated in various neurological disorders such as amyotrophic lateral sclerosis, spinal cord injury, stroke and Parkinson’s disease (PD). Astrocyte dysfunction or loss-of-astrocytes increases the susceptibility of neurons to cell death, while astrocyte transplantation in animal studies has therapeutic advantage. We reported recently that stimulation of serotonin 1A (5-HT1A) receptors on astrocytes promoted astrocyte proliferation and upregulated antioxidative molecules to act as a neuroprotectant in parkinsonian mice. PD is a progressive neurodegenerative disease with motor symptoms such as tremor, bradykinesia, rigidity and postural instability, that are based on selective loss of nigrostriatal dopaminergic neurons, and with non-motor symptoms such as orthostatic hypotension and constipation based on peripheral neurodegeneration. Although dopaminergic therapy for managing the motor disability associated with PD is being assessed at present, the main challenge remains the development of neuroprotective or disease-modifying treatments. Therefore, it is desirable to find treatments that can reduce the progression of dopaminergic cell death. In this article, we summarize first the neuroprotective properties of astrocytes targeting certain molecules related to PD. Next, we review neuroprotective effects induced by stimulation of 5-HT1A receptors on astrocytes. The review discusses new promising therapeutic strategies based on neuroprotection against oxidative stress and prevention of dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- Ikuko Miyazaki
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | | |
Collapse
|
360
|
García AM, Carrillo F, Orozco-Arroyave JR, Trujillo N, Vargas Bonilla JF, Fittipaldi S, Adolfi F, Nöth E, Sigman M, Fernández Slezak D, Ibáñez A, Cecchi GA. How language flows when movements don't: An automated analysis of spontaneous discourse in Parkinson's disease. BRAIN AND LANGUAGE 2016; 162:19-28. [PMID: 27501386 DOI: 10.1016/j.bandl.2016.07.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/20/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
To assess the impact of Parkinson's disease (PD) on spontaneous discourse, we conducted computerized analyses of brief monologues produced by 51 patients and 50 controls. We explored differences in semantic fields (via latent semantic analysis), grammatical choices (using part-of-speech tagging), and word-level repetitions (with graph embedding tools). Although overall output was quantitatively similar between groups, patients relied less heavily on action-related concepts and used more subordinate structures. Also, a classification tool operating on grammatical patterns identified monologues as pertaining to patients or controls with 75% accuracy. Finally, while the incidence of dysfluent word repetitions was similar between groups, it allowed inferring the patients' level of motor impairment with 77% accuracy. Our results highlight the relevance of studying naturalistic discourse features to tap the integrity of neural (and, particularly, motor) networks, beyond the possibilities of standard token-level instruments.
Collapse
Affiliation(s)
- Adolfo M García
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Pacheco de Melo 1860, C1126AAB Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Av. Rivadavia 1917, C1033AAJ Buenos Aires, Argentina; Faculty of Elementary and Special Education (FEEyE), National University of Cuyo (UNCuyo), Sobremonte 74, C5500 Mendoza, Argentina.
| | - Facundo Carrillo
- National Scientific and Technical Research Council (CONICET), Av. Rivadavia 1917, C1033AAJ Buenos Aires, Argentina; Department of Computer Science, School of Sciences, University of Buenos Aires, Pabellón I, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Juan Rafael Orozco-Arroyave
- Faculty of Engineering, University of Antioquia, Calle 67 N° 53-108, C1226 Medellín, Colombia; Pattern Recognition Lab, Friedrich-Alexander-Universität, Martensstrasse 3, 91058 Erlangen-Nürnberg, Germany
| | - Natalia Trujillo
- Neuroscience Group, Faculty of Medicine, University of Antioquia, Calle 62 N° 52-59, C1226 Medellín, Colombia; School of Public Health, University of Antioquia, Calle 62 N° 52-59, C1226 Medellín, Colombia
| | - Jesús F Vargas Bonilla
- Faculty of Engineering, University of Antioquia, Calle 67 N° 53-108, C1226 Medellín, Colombia
| | - Sol Fittipaldi
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Pacheco de Melo 1860, C1126AAB Buenos Aires, Argentina
| | - Federico Adolfi
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Pacheco de Melo 1860, C1126AAB Buenos Aires, Argentina
| | - Elmar Nöth
- Pattern Recognition Lab, Friedrich-Alexander-Universität, Martensstrasse 3, 91058 Erlangen-Nürnberg, Germany
| | - Mariano Sigman
- Laboratory of Integrative Neuroscience, Torcuato Di Tella University, Av. Figueroa Alcorta 7350, C1428BCW Buenos Aires, Argentina
| | - Diego Fernández Slezak
- National Scientific and Technical Research Council (CONICET), Av. Rivadavia 1917, C1033AAJ Buenos Aires, Argentina; Department of Computer Science, School of Sciences, University of Buenos Aires, Pabellón I, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Agustín Ibáñez
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Pacheco de Melo 1860, C1126AAB Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Av. Rivadavia 1917, C1033AAJ Buenos Aires, Argentina; Universidad Autónoma del Caribe, Calle 90, N° 46-112, C2754 Barranquilla, Colombia; Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Diagonal Las Torres 2640, Santiago, Chile; Centre of Excellence in Cognition and its Disorders, Australian Research Council (ACR), 16 University Avenue, Macquarie University, Sydney, NSW 2109, Australia
| | - Guillermo A Cecchi
- Computational Biology Center, IBM, T.J. Watson Research Center, Yorktown Heights, 1101 Kitchawan Rd., Yorktwon Heights, New York, NY 10598, USA
| |
Collapse
|
361
|
Petschow C, Scheef L, Paus S, Zimmermann N, Schild HH, Klockgether T, Boecker H. Central Pain Processing in Early-Stage Parkinson's Disease: A Laser Pain fMRI Study. PLoS One 2016; 11:e0164607. [PMID: 27776130 PMCID: PMC5077078 DOI: 10.1371/journal.pone.0164607] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/28/2016] [Indexed: 01/08/2023] Open
Abstract
Background & Objective Pain is a common non-motor symptom in Parkinson’s disease. As dopaminergic dysfunction is suggested to affect intrinsic nociceptive processing, this study was designed to characterize laser-induced pain processing in early-stage Parkinson’s disease patients in the dopaminergic OFF state, using a multimodal experimental approach at behavioral, autonomic, imaging levels. Methods 13 right-handed early-stage Parkinson’s disease patients without cognitive or sensory impairment were investigated OFF medication, along with 13 age-matched healthy control subjects. Measurements included warmth perception thresholds, heat pain thresholds, and central pain processing with event-related functional magnetic resonance imaging (erfMRI) during laser-induced pain stimulation at lower (E = 440 mJ) and higher (E = 640 mJ) target energies. Additionally, electrodermal activity was characterized during delivery of 60 randomized pain stimuli ranging from 440 mJ to 640 mJ, along with evaluation of subjective pain ratings on a visual analogue scale. Results No significant differences in warmth perception thresholds, heat pain thresholds, electrodermal activity and subjective pain ratings were found between Parkinson’s disease patients and controls, and erfMRI revealed a generally comparable activation pattern induced by laser-pain stimuli in brain areas belonging to the central pain matrix. However, relatively reduced deactivation was found in Parkinson’s disease patients in posterior regions of the default mode network, notably the precuneus and the posterior cingulate cortex. Conclusion Our data during pain processing extend previous findings suggesting default mode network dysfunction in Parkinson’s disease. On the other hand, they argue against a genuine pain-specific processing abnormality in early-stage Parkinson’s disease. Future studies are now required using similar multimodal experimental designs to examine pain processing in more advanced stages of Parkinson’s disease.
Collapse
Affiliation(s)
- Christine Petschow
- Functional Neuroimaging Group, Department of Radiology, University of Bonn, Bonn, Germany
| | - Lukas Scheef
- Functional Neuroimaging Group, Department of Radiology, University of Bonn, Bonn, Germany
| | - Sebastian Paus
- Department of Neurology, University of Bonn, Bonn, Germany
| | | | - Hans H. Schild
- Department of Radiology, University of Bonn, Bonn, Germany
| | | | - Henning Boecker
- Functional Neuroimaging Group, Department of Radiology, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
362
|
Zhang T, Hong J, Di T, Chen L. MPTP Impairs Dopamine D1 Receptor-Mediated Survival of Newborn Neurons in Ventral Hippocampus to Cause Depressive-Like Behaviors in Adult Mice. Front Mol Neurosci 2016; 9:101. [PMID: 27790091 PMCID: PMC5062058 DOI: 10.3389/fnmol.2016.00101] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 09/28/2016] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by motor symptoms with depression. We evaluated the influence of dopaminergic depletion on hippocampal neurogenesis process to explore mechanisms of depression production. Five consecutive days of 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) injection in mice (MPTP-mice) reduced dopaminergic fibers in hippocampal dentate gyrus (DG). MPTP-mice exhibited depressive-like behaviors later for 2–3 weeks. BrdU was injected 4 h after last-injection of MPTP. BrdU-positive (BrdU+) cells in dorsal (d-DG) and ventral (v-DG) DG were examined on day 1 (D1), 7 (D7), 14 (D14) and 21 (D21) after BrdU injection. Fewer D7-, D14- and D21-BrdU+ cells or BrdU+/NeuN+ cells, but not D1-BrdU+ cells, were found in v-DG of MPTP-mice than in controls. However, the number of BrdU+ cells in d-DG did not differ between the both. Loss of doublecortin-positive (DCX+) cells was observed in v-DG of MPTP-mice. Protein kinase A (PKA) and Ca2+/cAMP-response element binding protein (CREB) phosphorylation were reduced in v-DG of MPTP-mice, which were reversed by D1-like receptor (D1R) agonist SKF38393, but not D2R agonist quinpirole. The treatment of MPTP-mice with SKF38393 on days 2–7 after BrdU-injection reduced the loss of D7- and D21-BrdU+ cells in v-DG and improved the depressive-like behaviors; these changes were sensitive to PKA inhibitor H89. Moreover, the v-DG injection of SKF38393 in MPTP-mice could reduce the loss of D21-BrdU+ cells and relieve the depressive-like behaviors. In control mice, the blockade of D1R by SCH23390 caused the reduction of D21-BrdU+ cells in v-DG and the depressive-like behaviors. Our results indicate that MPTP-reduced dopaminergic depletion impairs the D1R-mediated early survival of newborn neurons in v-DG, producing depressive-like behaviors.
Collapse
Affiliation(s)
- Tingting Zhang
- State Key Lab of Reproductive Medicine, Nanjing Medical UniversityNanjing, China; Department of Physiology, Nanjing Medical UniversityNanjing, China
| | - Juan Hong
- State Key Lab of Reproductive Medicine, Nanjing Medical UniversityNanjing, China; Department of Physiology, Nanjing Medical UniversityNanjing, China
| | - Tingting Di
- Department of Physiology, Nanjing Medical University Nanjing, China
| | - Ling Chen
- State Key Lab of Reproductive Medicine, Nanjing Medical UniversityNanjing, China; Department of Physiology, Nanjing Medical UniversityNanjing, China
| |
Collapse
|
363
|
Janků S, Komendová M, Urban J. Development of an online solid-phase extraction with liquid chromatography method based on polymer monoliths for the determination of dopamine. J Sep Sci 2016; 39:4107-4115. [DOI: 10.1002/jssc.201600818] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Simona Janků
- Department of Analytical Chemistry, Faculty of Chemical Technology; University of Pardubice; Studentstká 573 Pardubice Czech Republic
| | - Martina Komendová
- Department of Analytical Chemistry, Faculty of Chemical Technology; University of Pardubice; Studentstká 573 Pardubice Czech Republic
| | - Jiří Urban
- Department of Analytical Chemistry, Faculty of Chemical Technology; University of Pardubice; Studentstká 573 Pardubice Czech Republic
| |
Collapse
|
364
|
Campolo J, De Maria R, Cozzi L, Parolini M, Bernardi S, Proserpio P, Nobili L, Gelosa G, Piccolo I, Agostoni EC, Trivella MG, Marraccini P. Antioxidant and inflammatory biomarkers for the identification of prodromal Parkinson's disease. J Neurol Sci 2016; 370:167-172. [PMID: 27772753 DOI: 10.1016/j.jns.2016.09.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/09/2016] [Accepted: 09/25/2016] [Indexed: 11/18/2022]
Abstract
OBJECTIVES We explored the role of oxidative stress and inflammatory molecules as potential Parkinson (PD) biomarkers and correlated biological with non-motor abnormalities (olfactory impairment and dysautonomia), in patients with idiopathic REM behavior disorder (iRBD) (prodromal PD) and established PD. METHODS We recruited 11 iRBD and 15 patients with idiopathic PD (Hohen&Yahr 1-3, on L-DOPA and dopamine agonists combination therapy) and 12 age- and sex-matched controls (CTRL). We measured total olfactory score (TOS), autonomic function [deep breathing (DB), lying to standing (LS) and Valsalva manoeuvre (VM) ratios], blood reduced glutathione (Br-GSH), oxidative stress and inflammatory markers (neopterin). RESULTS Anosmia was similarly prevalent in iRBD (36%) and PD (33%) patients, but absent in CTRL. Orthostatic hypotension was more common among iRBD (73%) and PD (60%) than in CTRL (25%). By univariable ordinal logistic regression, TOS, Br-GSH, LS and VM ratio worsened from CTRL to iRBD and PD groups. Only reduced Br-GSH levels (p=0.037, OR=0.994; 95%CI 0.988-1.000) were independently associated to PD. TOS correlated with Br-GSH (R=0.34, p=0.037), VM ratio (R=0.43, p=0.015), and neopterin (rho=0.39, p=0.016). CONCLUSIONS Reduced systemic antioxidant capacity is found in prodromal and overt PD and may represent, in association with olfactory loss and cardiovascular dysautonomia, a useful biomarker for an integrative, early diagnosis of PD.
Collapse
Affiliation(s)
- Jonica Campolo
- CNR Institute of Clinical Physiology, ASST- Great Metropolitan Hospital Niguarda, Milan, Italy
| | - Renata De Maria
- CNR Institute of Clinical Physiology, ASST- Great Metropolitan Hospital Niguarda, Milan, Italy.
| | - Lorena Cozzi
- CNR Institute of Clinical Physiology, ASST- Great Metropolitan Hospital Niguarda, Milan, Italy
| | - Marina Parolini
- CNR Institute of Clinical Physiology, ASST- Great Metropolitan Hospital Niguarda, Milan, Italy
| | - Stefano Bernardi
- CNR Institute of Clinical Physiology, ASST- Great Metropolitan Hospital Niguarda, Milan, Italy
| | - Paola Proserpio
- Epilepsy Surgery Centre, Centre of Sleep Medicine, ASST- Great Metropolitan Hospital Niguarda, Milan, Italy
| | - Lino Nobili
- Epilepsy Surgery Centre, Centre of Sleep Medicine, ASST- Great Metropolitan Hospital Niguarda, Milan, Italy
| | - Giorgio Gelosa
- Neurology and Stoke Unit, Department of Neuroscience, ASST-Great Metropolitan Hospital Niguarda, Milan, Italy
| | | | - Elio C Agostoni
- Neurology and Stoke Unit, Department of Neuroscience, ASST-Great Metropolitan Hospital Niguarda, Milan, Italy
| | - Maria G Trivella
- CNR Institute of Clinical Physiology, ASST- Great Metropolitan Hospital Niguarda, Milan, Italy
| | - Paolo Marraccini
- CNR Institute of Clinical Physiology, ASST- Great Metropolitan Hospital Niguarda, Milan, Italy
| |
Collapse
|
365
|
Mirror Visual Feedback to Improve Bradykinesia in Parkinson's Disease. Neural Plast 2016; 2016:8764238. [PMID: 27563470 PMCID: PMC4983670 DOI: 10.1155/2016/8764238] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/19/2016] [Accepted: 06/12/2016] [Indexed: 11/17/2022] Open
Abstract
Mirror visual feedback (MVF) therapy has been applied to improve upper limb function in stroke. When combined with motor training, MVF improves the performance of the trained and untrained hand by enhancing the excitability of both primary motor cortices (M1s). Bradykinesia is a typical feature of Parkinson's disease (PD), characterized by slowness in the execution of movement. This condition is often asymmetrical and possibly supported by a volitional hypoactivation of M1. MVF therapy could tentatively treat bradykinesia since the untrained hand, which benefits from the exercise, is generally more severely impaired in undertaking sequential movements. Aim of the study was to evaluate whether MVF therapy may improve bradykinesia of the more affected hand in PD patients. Twelve PD patients and twelve healthy controls performed for 10 minutes a finger sequence, receiving MVF of the more affected/nondominant hand. Before and after MVF training, participants performed a finger sequence at their spontaneous pace with both hands. M1 excitability was assessed in the trained and untrained hemispheres by means of transcranial magnetic stimulation. Movement speed increased after MVF training in either hand of both groups. MVF therapy enhanced cortical excitability of M1s in both groups. Our preliminary data support the use of MVF therapy to improve bradykinesia in PD patients.
Collapse
|
366
|
Zacharopoulos G, Lancaster TM, Bracht T, Ihssen N, Maio GR, Linden DEJ. A Hedonism Hub in the Human Brain. Cereb Cortex 2016; 26:3921-3927. [PMID: 27473322 PMCID: PMC5028005 DOI: 10.1093/cercor/bhw197] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 05/23/2016] [Indexed: 11/14/2022] Open
Abstract
Human values are abstract ideals that motivate behavior. The motivational nature of human values raises the possibility that they might be underpinned by brain structures that are particularly involved in motivated behavior and reward processing. We hypothesized that variation in subcortical hubs of the reward system and their main connecting pathway, the superolateral medial forebrain bundle (slMFB) is associated with individual value orientation. We conducted Pearson's correlation between the scores of 10 human values and the volumes of 14 subcortical structures and microstructural properties of the medial forebrain bundle in a sample of 87 participants, correcting for multiple comparisons (i.e.,190). We found a positive association between the value that people attach to hedonism and the volume of the left globus pallidus (GP).We then tested whether microstructural parameters (i.e., fractional anisotropy and myelin volume fraction) of the slMFB, which connects with the GP, are also associated to hedonism and found a significant, albeit in an uncorrected level, positive association between the myelin volume fraction within the left slMFB and hedonism scores. This is the first study to elucidate the relationship between the importance people attach to the human value of hedonism and structural variation in reward-related subcortical brain regions.
Collapse
Affiliation(s)
- G Zacharopoulos
- CUBRIC, School of Psychology, Cardiff University, Cardiff, Wales, UK
| | - T M Lancaster
- CUBRIC, School of Psychology, Cardiff University, Cardiff, Wales, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff, UK
| | - T Bracht
- CUBRIC, School of Psychology, Cardiff University, Cardiff, Wales, UK
| | - N Ihssen
- CUBRIC, School of Psychology, Cardiff University, Cardiff, Wales, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff, UK
| | - G R Maio
- CUBRIC, School of Psychology, Cardiff University, Cardiff, Wales, UK
| | - D E J Linden
- CUBRIC, School of Psychology, Cardiff University, Cardiff, Wales, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff, UK.,National Centre for Mental Health, Cardiff, UK.,Neuroscience and Mental Health Research Institute, Cardiff, UK
| |
Collapse
|
367
|
Laurencin C, Danaila T, Broussolle E, Thobois S. Initial treatment of Parkinson's disease in 2016: The 2000 consensus conference revisited. Rev Neurol (Paris) 2016; 172:512-523. [PMID: 27476416 DOI: 10.1016/j.neurol.2016.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/08/2016] [Indexed: 10/21/2022]
Abstract
In 2000, a French consensus conference proposed guidelines for the treatment of Parkinson's disease (PD). Since then, new drugs have been concocted, new studies have been published and clinicians have become aware of some drug-induced adverse effects that were little known in the past. This has led us to reconsider the recommendations published 16 years ago. Thus, the aim of the present review is to present the recent data related to the different medications and non-pharmacological approaches available for PD, with a special focus on early-stage PD. Levodopa (LD), dopamine agonists (DAs), catechol-O-methyltransferase inhibitors (COMT-Is), anticholinergics, monoamine oxidase inhibitors (MAOB-Is) and amantadine have been considered, and their efficacy and safety for both motor as well as non-motor aspects are reported here. This has led to our proposal for a revised therapeutic strategy for the initiation of treatment in newly diagnosed PD patients, based on the available literature and the relative benefits/side effects balance.
Collapse
Affiliation(s)
- C Laurencin
- Service de neurologie C, hôpital neurologique Pierre-Wertheimer, hospices civils de Lyon, 59, boulevard Pinel, 69677 Lyon/Bron, France; Faculté de médecine et de maïeutique Lyon Sud Charles-Mérieux, université de Lyon, université Claude-Bernard Lyon I, Lyon, France.
| | - T Danaila
- Service de neurologie C, hôpital neurologique Pierre-Wertheimer, hospices civils de Lyon, 59, boulevard Pinel, 69677 Lyon/Bron, France
| | - E Broussolle
- Service de neurologie C, hôpital neurologique Pierre-Wertheimer, hospices civils de Lyon, 59, boulevard Pinel, 69677 Lyon/Bron, France; CNRS, UMR 5229, institut des sciences cognitives Marc-Jeannerod, 69500 Bron, France; Faculté de médecine et de maïeutique Lyon Sud Charles-Mérieux, université de Lyon, université Claude-Bernard Lyon I, Lyon, France
| | - S Thobois
- Service de neurologie C, hôpital neurologique Pierre-Wertheimer, hospices civils de Lyon, 59, boulevard Pinel, 69677 Lyon/Bron, France; CNRS, UMR 5229, institut des sciences cognitives Marc-Jeannerod, 69500 Bron, France; Faculté de médecine et de maïeutique Lyon Sud Charles-Mérieux, université de Lyon, université Claude-Bernard Lyon I, Lyon, France
| |
Collapse
|
368
|
Abstract
Neurodegenerative disorders such as Alzheimer disease (AD), frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), Parkinson disease (PD), Huntington's disease (HD), and multiple sclerosis (MS) affect different neuronal cells, and have a variable age of onset, clinical symptoms, and pathological features. Despite the great progress in understanding the etiology of these disorders, the underlying mechanisms remain largely unclear. Among the processes affected in neurodegenerative diseases, alteration in RNA metabolism is emerging as a crucial player. RNA-binding proteins (RBPs) are involved at all stages of RNA metabolism and display a broad range of functions, including modulation of mRNA transcription, splicing, editing, export, stability, translation and localization and miRNA biogenesis, thus enormously impacting regulation of gene expression. On the other hand, aberrant regulation of RBP expression or activity can contribute to disease onset and progression. Recent reports identified mutations causative of neurological disorders in the genes encoding a family of RBPs named FET (FUS/TLS, EWS and TAF15). This review summarizes recent works documenting the involvement of FET proteins in the pathology of ALS, FTLD, essential tremor (ET) and other neurodegenerative diseases. Moreover, clinical implications of recent advances in FET research are critically discussed.
Collapse
Affiliation(s)
- Francesca Svetoni
- a University of Rome "Foro Italico," , Rome , Italy.,b Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia , Rome , Italy
| | - Paola Frisone
- b Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia , Rome , Italy
| | - Maria Paola Paronetto
- a University of Rome "Foro Italico," , Rome , Italy.,b Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia , Rome , Italy
| |
Collapse
|
369
|
Ćwiękała-Lewis KJ, Gallek M, Taylor-Piliae RE. The effects of Tai Chi on physical function and well-being among persons with Parkinson's Disease: A systematic review. J Bodyw Mov Ther 2016; 21:414-421. [PMID: 28532886 DOI: 10.1016/j.jbmt.2016.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/31/2016] [Accepted: 06/02/2016] [Indexed: 11/17/2022]
Abstract
Current medical treatments for Parkinson's disease (PD) are mainly palliative, though research indicates Tai Chi exercise improves physical function and well-being. An electronic database search of PubMed, CINAHL, Web of Science, Cochrane Library, PsycINFO and Embase was conducted, to examine current scientific literature for potential benefits of Tai Chi on physical function and well-being among persons with PD. A total of 11 studies met the inclusion criteria: 7 randomized clinical trials and 4 quasi-experimental studies. PD participants (n = 548) were on average age 68 years old and 50% women. Overall, participants enrolled in Tai Chi had better balance and one or more aspect of well-being, though mixed results were reported. Further research is needed with more rigorous study designs, larger sample sizes, adequate Tai Chi exercise doses, and carefully chosen outcome measures that assess the mechanisms as well as the effects of Tai Chi, before widespread recommendations can be made.
Collapse
Affiliation(s)
| | - Matthew Gallek
- College of Nursing, The University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
370
|
Altered Activation in Cerebellum Contralateral to Unilateral Thalamotomy May Mediate Tremor Suppression in Parkinson's Disease: A Short-Term Regional Homogeneity fMRI Study. PLoS One 2016; 11:e0157562. [PMID: 27310133 PMCID: PMC4910974 DOI: 10.1371/journal.pone.0157562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/01/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Ventral intermediate nucleus thalamotomy is an effective treatment for Parkinson's disease tremor. However, its mechanism is still unclear. PURPOSE We used resting-state fMRI to investigate short-term ReHo changes after unilateral thalamotomy in tremor-dominant PD, and to speculate about its possible mechanism on tremor suppression. METHODS 26 patients and 31 healthy subjects (HS) were recruited. Patients were divided into two groups according to right- (rPD) and left-side (lPD) thalamotomy. Tremor was assessed using the 7-item scale from the Unified Parkinson's disease rating scale motor score (mUPDRS). Patients were scanned using resting state fMRI after 12h withdrawal of medication, both preoperatively (PDpre) and 7- day postoperatively (PDpost), whereas healthy subjects were scanned once. The regions associated with tremor and altered ReHo due to thalamic ablation were examined. RESULTS The impact of unilateral VIM thalamotomy was characterized in the frontal, parietal, temporal regions, basal ganglia, thalamus, and cerebellum. Compared with PDpre, significantly reduced ReHo was found in the left cerebellum in patients with rPDpost, and slightly decreased ReHo in the cerebellum vermis in patients with lPDpost, which was significantly higher than HS. We demonstrated a positive correlation between the ReHo values in the cerebellum (in rPD, peak coordinate [-12, -54, -21], R = 0.64, P = 0.0025, and peak coordinate [-9, -54, -18], R = 0.71, P = 0.0025; in lPD, peak coordinate [3, -45, -15], R = 0.71, P = 0.004) in the pre-surgical condition, changes of ReHo induced by thalamotomy (in rPD, R = 0.63, P = 0.021, R = 0.6, P = 0.009; in lPD, R = 0.58, P = 0.028) and tremor scores contralateral to the surgical side, respectively. CONCLUSION The specific area that may be associated with PD tremor and altered ReHo due to thalamic ablation is the cerebellum. The neural basis underlying thalamotomy is complex; cerebellum involvement is far beyond cerebello-thalamic tract breakage.
Collapse
|
371
|
Magrinelli F, Picelli A, Tocco P, Federico A, Roncari L, Smania N, Zanette G, Tamburin S. Pathophysiology of Motor Dysfunction in Parkinson's Disease as the Rationale for Drug Treatment and Rehabilitation. PARKINSON'S DISEASE 2016; 2016:9832839. [PMID: 27366343 PMCID: PMC4913065 DOI: 10.1155/2016/9832839] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 04/03/2016] [Accepted: 05/10/2016] [Indexed: 11/17/2022]
Abstract
Cardinal motor features of Parkinson's disease (PD) include bradykinesia, rest tremor, and rigidity, which appear in the early stages of the disease and largely depend on dopaminergic nigrostriatal denervation. Intermediate and advanced PD stages are characterized by motor fluctuations and dyskinesia, which depend on complex mechanisms secondary to severe nigrostriatal loss and to the problems related to oral levodopa absorption, and motor and nonmotor symptoms and signs that are secondary to marked dopaminergic loss and multisystem neurodegeneration with damage to nondopaminergic pathways. Nondopaminergic dysfunction results in motor problems, including posture, balance and gait disturbances, and fatigue, and nonmotor problems, encompassing depression, apathy, cognitive impairment, sleep disturbances, pain, and autonomic dysfunction. There are a number of symptomatic drugs for PD motor signs, but the pharmacological resources for nonmotor signs and symptoms are limited, and rehabilitation may contribute to their treatment. The present review will focus on classical notions and recent insights into the neuropathology, neuropharmacology, and neurophysiology of motor dysfunction of PD. These pieces of information represent the basis for the pharmacological, neurosurgical, and rehabilitative approaches to PD.
Collapse
Affiliation(s)
- Francesca Magrinelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Piazzale Scuro 10, 37134 Verona, Italy
| | - Alessandro Picelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Piazzale Scuro 10, 37134 Verona, Italy
- Neuromotor and Cognitive Rehabilitation Research Centre, University of Verona, Piazzale Scuro 10, 37134 Verona, Italy
| | - Pierluigi Tocco
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Piazzale Scuro 10, 37134 Verona, Italy
| | - Angela Federico
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Piazzale Scuro 10, 37134 Verona, Italy
| | - Laura Roncari
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Piazzale Scuro 10, 37134 Verona, Italy
- Rehabilitation Unit, Pederzoli Hospital, Via Monte Baldo 24, 37019 Peschiera del Garda, Italy
| | - Nicola Smania
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Piazzale Scuro 10, 37134 Verona, Italy
- Neuromotor and Cognitive Rehabilitation Research Centre, University of Verona, Piazzale Scuro 10, 37134 Verona, Italy
| | - Giampietro Zanette
- Neurology Unit, Pederzoli Hospital, Via Monte Baldo 24, 37019 Peschiera del Garda, Italy
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Piazzale Scuro 10, 37134 Verona, Italy
| |
Collapse
|
372
|
Parkinson's disease and colorectal cancer risk-A nested case control study. Cancer Epidemiol 2016; 43:9-14. [PMID: 27232063 DOI: 10.1016/j.canep.2016.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/05/2016] [Accepted: 05/07/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND A pro-inflammatory gut microbiota was described in both Parkinson's disease and colorectal cancer (CRC) and recently α-synuclein was demonstrated in the enteric nervous system. We sought to evaluate the association between Parkinson's disease and CRC. METHODS We conducted a nested case-control study using a large primary-care database. Cases were defined as all individuals with CRC. Up to 4 controls were matched with each case based on age, sex, practice-site and duration of follow-up. The primary exposure of interest was diagnosis of Parkinson's disease prior to CRC as well as disease duration, and Parkinson's specific therapies. The primary analysis was a conditional logistic-regression to estimate odds ratios (ORs) and 95% confidence interval (95%CI). RESULTS The study included 22,093 CRC cases and 85,833 matched controls. Past medical history of Parkinson's disease >1 year before index-date was associated with lower CRC risk (OR 0.74, 95%CI 0.59-0.94). The inverse association was more prominent among females compared to males (0.64, 95%CI 0.42-0.96 and 0.8, 95%CI 0.60-1.07, respectively). While patients who received no therapy or therapy with dopamine agonists had a non-significant decrease in cancer risk, patients who were treated with dopamine had a non-significant elevated cancer risk. CONCLUSION Parkinson's disease is inversely associated with CRC risk.
Collapse
|
373
|
de Azevedo AKEC, Claudino R, Conceição JS, Swarowsky A, dos Santos MJ. Anticipatory and Compensatory Postural Adjustments in Response to External Lateral Shoulder Perturbations in Subjects with Parkinson's Disease. PLoS One 2016; 11:e0155012. [PMID: 27152640 PMCID: PMC4859498 DOI: 10.1371/journal.pone.0155012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 03/31/2016] [Indexed: 11/18/2022] Open
Abstract
The purpose of this study was to investigate the anticipatory (APA) and compensatory (CPA) postural adjustments in individuals with Parkinson’s disease (PD) during lateral instability of posture. Twenty-six subjects (13 individuals with PD and 13 healthy matched controls) were exposed to predictable lateral postural perturbations. The electromyographic (EMG) activity of the lateral muscles and the displacement of the center of pressure (COP) were recorded during four time intervals that are typical for postural adjustments, i.e., immediately before (APA1, APA2) and after (CPA1 and CPA2) the postural disturbances. The magnitude of the activity of the lateral muscles in the group with PD was lower only during the CPA time intervals and not during the anticipatory adjustments (APAs). Despite this finding, subjects with PD exhibit smaller COP excursions before and after the disturbance, probably due to lack of flexibility and proprioceptive impairments. The results of this study suggest that postural instability in subjects with PD can be partially explained by decreased postural sway, before and after perturbations, and reduced muscular activity after body disturbances. Our findings can motivate new studies to investigate therapeutic interventions that optimize the use of postural adjustment strategies in subjects with PD.
Collapse
Affiliation(s)
- Alexandre Kretzer e Castro de Azevedo
- Department of Physical Education, Center of Health and Sport Sciences, Master in Human Movement Sciences program, Santa Catarina State University, Florianópolis, Santa Catarina, Brazil
| | - Renato Claudino
- Department of Physical Education, Center of Health and Sport Sciences, Master in Human Movement Sciences program, Santa Catarina State University, Florianópolis, Santa Catarina, Brazil
| | - Josilene Souza Conceição
- Department of Physical Therapy, Center of Health and Sport Sciences, Master in Physical Therapy program, Santa Catarina State University, Florianópolis, Santa Catarina, Brazil
| | - Alessandra Swarowsky
- Department of Physical Therapy, Center of Health and Sport Sciences, Master in Physical Therapy program, Santa Catarina State University, Florianópolis, Santa Catarina, Brazil
| | - Márcio José dos Santos
- Department of Physical Therapy, Center of Health and Sport Sciences, Master in Physical Therapy program, Santa Catarina State University, Florianópolis, Santa Catarina, Brazil
- Department of Physical Therapy and Rehabilitation Science, School of Health Professions, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
374
|
|
375
|
Sáez-Francàs N, Martí Andrés G, Ramírez N, de Fàbregues O, Álvarez-Sabín J, Casas M, Hernández-Vara J. Clinical and psychopathological factors associated with impulse control disorders in Parkinson's disease. NEUROLOGÍA (ENGLISH EDITION) 2016. [DOI: 10.1016/j.nrleng.2015.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
376
|
Time course study of microglial and behavioral alterations induced by 6-hydroxydopamine in rats. Neurosci Lett 2016; 622:83-7. [DOI: 10.1016/j.neulet.2016.04.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 12/15/2022]
|
377
|
Galaz Z, Mekyska J, Mzourek Z, Smekal Z, Rektorova I, Eliasova I, Kostalova M, Mrackova M, Berankova D. Prosodic analysis of neutral, stress-modified and rhymed speech in patients with Parkinson's disease. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 127:301-317. [PMID: 26826900 DOI: 10.1016/j.cmpb.2015.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 12/16/2015] [Accepted: 12/25/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Hypokinetic dysarthria (HD) is a frequent speech disorder associated with idiopathic Parkinson's disease (PD). It affects all dimensions of speech production. One of the most common features of HD is dysprosody that is characterized by alterations of rhythm and speech rate, flat speech melody, and impairment of speech intensity control. Dysprosody has a detrimental impact on speech naturalness and intelligibility. METHODS This paper deals with quantitative prosodic analysis of neutral, stress-modified and rhymed speech in patients with PD. The analysis of prosody is based on quantification of monopitch, monoloudness, and speech rate abnormalities. Experimental dataset consists of 98 patients with PD and 51 healthy speakers. For the purpose of HD identification, sequential floating feature selection algorithm and random forests classifier is used. In this paper, we also introduce a concept of permutation test applied in the field of acoustic analysis of dysarthric speech. RESULTS Prosodic features obtained from stress-modified reading task provided higher classification accuracies compared to the ones extracted from reading task with neutral emotion demonstrating the importance of stress in speech prosody. Features calculated from poem recitation task outperformed both reading tasks in the case of gender-undifferentiated analysis showing that rhythmical demands can in general lead to more precise identification of HD. Additionally, some gender-related patterns of dysprosody has been observed. CONCLUSIONS This paper confirms reduced variation of fundamental frequency in PD patients with HD. Interestingly, increased variability of speech intensity compared to healthy speakers has been detected. Regarding speech rate disturbances, our results does not report any particular pattern. We conclude further development of prosodic features quantifying the relationship between monopitch, monoloudness and speech rate disruptions in HD can have a great potential in future PD analysis.
Collapse
Affiliation(s)
- Zoltan Galaz
- Department of Telecommunications, Brno University of Technology, Technicka 10, 61600 Brno, Czech Republic
| | - Jiri Mekyska
- Department of Telecommunications, Brno University of Technology, Technicka 10, 61600 Brno, Czech Republic
| | - Zdenek Mzourek
- Department of Telecommunications, Brno University of Technology, Technicka 10, 61600 Brno, Czech Republic
| | - Zdenek Smekal
- Department of Telecommunications, Brno University of Technology, Technicka 10, 61600 Brno, Czech Republic
| | - Irena Rektorova
- First Department of Neurology, St. Anne's University Hospital, Pekarska 53, 65691 Brno, Czech Republic; Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Komenskeho nam. 2, 60200 Brno, Czech Republic.
| | - Ilona Eliasova
- First Department of Neurology, St. Anne's University Hospital, Pekarska 53, 65691 Brno, Czech Republic; Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Komenskeho nam. 2, 60200 Brno, Czech Republic
| | - Milena Kostalova
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Komenskeho nam. 2, 60200 Brno, Czech Republic; Department of Neurology, Faculty Hospital and Masaryk University, Jihlavska 20, 63900 Brno, Czech Republic
| | - Martina Mrackova
- First Department of Neurology, St. Anne's University Hospital, Pekarska 53, 65691 Brno, Czech Republic; Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Komenskeho nam. 2, 60200 Brno, Czech Republic
| | - Dagmar Berankova
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Komenskeho nam. 2, 60200 Brno, Czech Republic
| |
Collapse
|
378
|
Song J, Kim J. Degeneration of Dopaminergic Neurons Due to Metabolic Alterations and Parkinson's Disease. Front Aging Neurosci 2016; 8:65. [PMID: 27065205 PMCID: PMC4811934 DOI: 10.3389/fnagi.2016.00065] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/17/2016] [Indexed: 12/25/2022] Open
Abstract
The rates of metabolic diseases, such as type 2 diabetes mellitus (T2DM), obesity, and cardiovascular disease (CVD), markedly increase with age. In recent years, studies have reported an association between metabolic changes and various pathophysiological mechanisms in the central nervous system (CNS) in patients with metabolic diseases. Oxidative stress and hyperglycemia in metabolic diseases lead to adverse neurophysiological phenomena, including neuronal loss, synaptic dysfunction, and improper insulin signaling, resulting in Parkinson’s disease (PD). In addition, several lines of evidence suggest that alterations of CNS environments by metabolic changes influence the dopamine neuronal loss, eventually affecting the pathogenesis of PD. Thus, we reviewed recent findings relating to degeneration of dopaminergic neurons during metabolic diseases. We highlight the fact that using a metabolic approach to manipulate degeneration of dopaminergic neurons can serve as a therapeutic strategy to attenuate pathology of PD.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Biomedical Engineering, Dongguk University Seoul, South Korea
| | - Jongpil Kim
- Department of Biomedical Engineering, Dongguk University Seoul, South Korea
| |
Collapse
|
379
|
Changing pattern in the basal ganglia: motor switching under reduced dopaminergic drive. Sci Rep 2016; 6:23327. [PMID: 27004463 PMCID: PMC4804216 DOI: 10.1038/srep23327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 02/25/2016] [Indexed: 11/24/2022] Open
Abstract
Action selection in the basal ganglia is often described within the framework of a standard model, associating low dopaminergic drive with motor suppression. Whilst powerful, this model does not explain several clinical and experimental data, including varying therapeutic efficacy across movement disorders. We tested the predictions of this model in patients with Parkinson’s disease, on and off subthalamic deep brain stimulation (DBS), focussing on adaptive sensory-motor responses to a changing environment and maintenance of an action until it is no longer suitable. Surprisingly, we observed prolonged perseverance under on-stimulation, and high inter-individual variability in terms of the motor selections performed when comparing the two conditions. To account for these data, we revised the standard model exploring its space of parameters and associated motor functions and found that, depending on effective connectivity between external and internal parts of the globus pallidus and saliency of the sensory input, a low dopaminergic drive can result in increased, dysfunctional, motor switching, besides motor suppression. This new framework provides insight into the biophysical mechanisms underlying DBS, allowing a description in terms of alteration of the signal-to-baseline ratio in the indirect pathway, which better account of known electrophysiological data in comparison with the standard model.
Collapse
|
380
|
Nackaerts E, Heremans E, Vervoort G, Smits-Engelsman BCM, Swinnen SP, Vandenberghe W, Bergmans B, Nieuwboer A. Relearning of Writing Skills in Parkinson's Disease After Intensive Amplitude Training. Mov Disord 2016; 31:1209-16. [PMID: 26990651 DOI: 10.1002/mds.26565] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Micrographia occurs in approximately 60% of people with Parkinson's disease (PD). Although handwriting is an important task in daily life, it is not clear whether relearning and consolidation (ie the solid storage in motor memory) of this skill is possible in PD. The objective was to conduct for the first time a controlled study into the effects of intensive motor learning to improve micrographia in PD. METHODS In this placebo-controlled study, 38 right-handed people with PD were randomized into 2 groups, receiving 1 of 2 equally time-intensive training programs (30 min/day, 5 days/week for 6 weeks). The experimental group (n = 18) performed amplitude training focused at improving writing size. The placebo group (n = 20) received stretch and relaxation exercises. Participants' writing skills were assessed using a touch-sensitive writing tablet and a pen-and-paper test, pre- and posttraining, and after a 6-week retention period. The primary outcome was change in amplitude during several tests of consolidation: (1) transfer, using trained and untrained sequences performed with and without target zones; and (2) automatization, using single- and dual-task sequences. RESULTS The group receiving amplitude training significantly improved in amplitude and variability of amplitude on the transfer and automatization task. Effect sizes varied between 7% and 17%, and these benefits were maintained after the 6-week retention period. Moreover, there was transfer to daily life writing. CONCLUSIONS These results show automatization, transfer, and retention of increased writing size (diminished micrographia) after intensive amplitude training, indicating that consolidation of motor learning is possible in PD. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Evelien Nackaerts
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Heverlee, Belgium
| | - Elke Heremans
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Heverlee, Belgium
| | - Griet Vervoort
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Heverlee, Belgium
| | - Bouwien C M Smits-Engelsman
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Heverlee, Belgium
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Heverlee, Belgium
| | - Wim Vandenberghe
- Laboratory for Parkinson Research, Department of Neurosciences, KU Leuven, Heverlee, Belgium.,Department of Neurology, University Hospitals Leuven, Heverlee, Belgium
| | - Bruno Bergmans
- Department of Neurology, A.Z. Sint-Jan Brugge-Oostende AV, Bruges, Belgium
| | - Alice Nieuwboer
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Heverlee, Belgium
| |
Collapse
|
381
|
Yu G, Deng A, Tang W, Ma J, Yuan C, Ma J. Hydroxytyrosol induces phase II detoxifying enzyme expression and effectively protects dopaminergic cells against dopamine- and 6-hydroxydopamine induced cytotoxicity. Neurochem Int 2016; 96:113-20. [PMID: 26970393 DOI: 10.1016/j.neuint.2016.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/22/2016] [Accepted: 03/06/2016] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is the second most common late-age onset neurodegenerative disease. Except for the symptomatic alleviating treatment, no disease modifying therapy is currently available. In this study, we investigated the potential neuroprotective role of hydroxytyrosol (HT), a major phenolic compound present in olive oil, against dopaminergic cell death. We found that HT effectively protected dopaminergic SH-SY5Y cells against dopamine (DA) and 6-hydroxydopamine (6-OHDA) induced cell death, but had no apparent effect on 1-methyl-4-phenylpyridinium (MPP(+))-induced cytotoxicity. Furthermore, we have shown that HT efficiently induced the expression of phase II detoxifying enzymes, including NAD(P)H quinone oxidoreductase 1 (NQO1). Using an NQO1 inhibitor, we revealed that increased NQO1 expression contributed to the protective effect of HT against dopaminergic cell death. Together, our findings suggest that HT has a protective effect against DA- and 6-OHDA-induced dopaminergic cell death, supporting the beneficial effect of olive oil in preventing DA-metabolism related dopaminergic neuron dysfunction.
Collapse
Affiliation(s)
- Guohua Yu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, Shanghai, China.
| | - Ajun Deng
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, Shanghai, China
| | - Wanbin Tang
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, Shanghai, China
| | - Junzhi Ma
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, Shanghai, China
| | - Chonggang Yuan
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiyan Ma
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, Shanghai, China; Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| |
Collapse
|
382
|
Magnard R, Vachez Y, Carcenac C, Krack P, David O, Savasta M, Boulet S, Carnicella S. What can rodent models tell us about apathy and associated neuropsychiatric symptoms in Parkinson's disease? Transl Psychiatry 2016; 6:e753. [PMID: 26954980 PMCID: PMC4872443 DOI: 10.1038/tp.2016.17] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/11/2016] [Accepted: 01/19/2016] [Indexed: 12/19/2022] Open
Abstract
In addition to classical motor symptoms, Parkinson's disease (PD) patients display incapacitating neuropsychiatric manifestations, such as apathy, anhedonia, depression and anxiety. These hitherto generally neglected non-motor symptoms, have gained increasing interest in medical and scientific communities over the last decade because of the extent of their negative impact on PD patients' quality of life. Although recent clinical and functional imaging studies have provided useful information, the pathophysiology of apathy and associated affective impairments remains elusive. Our aim in this review is to summarize and discuss recent advances in the development of rodent models of PD-related neuropsychiatric symptoms using neurotoxin lesion-based approaches. The data collected suggest that bilateral and partial lesions of the nigrostriatal system aimed at inducing reliable neuropsychiatric-like deficits while avoiding severe motor impairments that may interfere with behavioral evaluation, is a more selective and efficient strategy than medial forebrain bundle lesions. Moreover, of all the different classes of pharmacological agents, D2/D3 receptor agonists such as pramipexole appear to be the most efficient treatment for the wide range of behavioral deficits induced by dopaminergic lesions. Lesion-based rodent models, therefore, appear to be relevant tools for studying the pathophysiology of the non-motor symptoms of PD. Data accumulated so far confirm the causative role of dopaminergic depletion, especially in the nigrostriatal system, in the development of behavioral impairments related to apathy, depression and anxiety. They also put forward D2/D3 receptors as potential targets for the treatment of such neuropsychiatric symptoms in PD.
Collapse
Affiliation(s)
- R Magnard
- Inserm U1216, Grenoble, France,Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
| | - Y Vachez
- Inserm U1216, Grenoble, France,Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
| | - C Carcenac
- Inserm U1216, Grenoble, France,Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
| | - P Krack
- Inserm U1216, Grenoble, France,Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France,Movement Disorder Unit, Department of Psychiatry and Neurology, CHU de Grenoble, Grenoble, France
| | - O David
- Inserm U1216, Grenoble, France,Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
| | - M Savasta
- Inserm U1216, Grenoble, France,Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
| | - S Boulet
- Inserm U1216, Grenoble, France,Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
| | - S Carnicella
- Inserm U1216, Grenoble, France,Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France,Inserm U1216, Grenoble Institute of Neuroscience, Site Santé La Tronche - BP 170, 38042 Grenoble, France. E-mail:
| |
Collapse
|
383
|
Finkelstein DI, Hare DJ, Billings JL, Sedjahtera A, Nurjono M, Arthofer E, George S, Culvenor JG, Bush AI, Adlard PA. Clioquinol Improves Cognitive, Motor Function, and Microanatomy of the Alpha-Synuclein hA53T Transgenic Mice. ACS Chem Neurosci 2016; 7:119-29. [PMID: 26481462 DOI: 10.1021/acschemneuro.5b00253] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The abnormal accumulation of alpha-synuclein (α-syn) has been linked to a number of neurodegenerative disorders, the most noteworthy of which is Parkinson's disease. Alpha-synuclein itself is not toxic and fulfills various physiological roles in the central nervous system. However, specific types of aggregates have been shown to be toxic, and metals have been linked to the assembly of these toxic aggregates. In this paper, we have characterized a transgenic mouse that overexpresses the A53T mutation of human α-syn, specifically assessing cognition, motor performance, and subtle anatomical markers that have all been observed in synucleinopathies in humans. We hypothesized that treatment with the moderate-affinity metal chelator, clioquinol (CQ), would reduce the interaction between metals and α-syn to subsequently improve the phenotype of the A53T animal model. We showed that CQ prevents an iron-synuclein interaction, the formation of urea-soluble α-syn aggregates, α-syn-related substantia nigra pars compacta cell loss, reduction in dendritic spine density of hippocampal and caudate putamen medium spiny neurons, and the decline in motor and cognitive function. In conclusion, our data suggests that CQ is capable of mitigating the pathological metal/α-syn interactions, suggesting that the modulation of metal ions warrants further study as a therapeutic approach for the synucleinopathies.
Collapse
Affiliation(s)
- David I. Finkelstein
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Dominic J. Hare
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
- Elemental
Bio-imaging Facility, University of Technology Sydney, Broadway, New South Wales 2007, Australia
- Senator
Frank R. Lautenberg Environmental Science Laboratory, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jessica L. Billings
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Amelia Sedjahtera
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Milawaty Nurjono
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Elisa Arthofer
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
- Department
of Physiology and Pharmacology, Karolinska Institut, Stockholm SE-171 77, Sweden
| | - Sonia George
- School
of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Janetta G. Culvenor
- School
of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Ashley I. Bush
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Paul A. Adlard
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
384
|
Jagmag SA, Tripathi N, Shukla SD, Maiti S, Khurana S. Evaluation of Models of Parkinson's Disease. Front Neurosci 2016; 9:503. [PMID: 26834536 PMCID: PMC4718050 DOI: 10.3389/fnins.2015.00503] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/21/2015] [Indexed: 12/01/2022] Open
Abstract
Parkinson's disease is one of the most common neurodegenerative diseases. Animal models have contributed a large part to our understanding and therapeutics developed for treatment of PD. There are several more exhaustive reviews of literature that provide the initiated insights into the specific models; however a novel synthesis of the basic advantages and disadvantages of different models is much needed. Here we compare both neurotoxin based and genetic models while suggesting some novel avenues in PD modeling. We also highlight the problems faced and promises of all the mammalian models with the hope of providing a framework for comparison of various systems.
Collapse
Affiliation(s)
- Shail A Jagmag
- Department of Biology, Indian Institute of Science Education and Research Kolkata, India
| | - Naveen Tripathi
- Department of Biology, Indian Institute of Science Education and Research Kolkata, India
| | - Sunil D Shukla
- Department of Zoology, Government Meera Girl's College Udaipur, India
| | - Sankar Maiti
- Department of Biology, Indian Institute of Science Education and Research Kolkata, India
| | - Sukant Khurana
- Department of Biology, Indian Institute of Science Education and Research Kolkata, India
| |
Collapse
|
385
|
Houeto JL, Magnard R, Dalley JW, Belin D, Carnicella S. Trait Impulsivity and Anhedonia: Two Gateways for the Development of Impulse Control Disorders in Parkinson's Disease? Front Psychiatry 2016; 7:91. [PMID: 27303314 PMCID: PMC4884740 DOI: 10.3389/fpsyt.2016.00091] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/17/2016] [Indexed: 12/03/2022] Open
Abstract
Apathy and impulsivity are two major comorbid syndromes of Parkinson's disease (PD) that may represent two extremes of a behavioral spectrum modulated by dopamine-dependent processes. PD is characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta to which are attributed the cardinal motor symptoms of the disorder. Dopamine replacement therapy (DRT), used widely to treat these motor symptoms, is often associated with deficits in hedonic processing and motivation, including apathy and depression, as well as impulse control disorders (ICDs). ICDs comprise pathological gambling, hypersexuality, compulsive shopping, binge eating, compulsive overuse of dopaminergic medication, and punding. More frequently observed in males with early onset PD, ICDs are associated not only with comorbid affective symptoms, such as depression and anxiety, but also with behavioral traits, such as novelty seeking and impulsivity, as well as with personal or familial history of alcohol use. This constellation of associated risk factors highlights the importance of inter-individual differences in the vulnerability to develop comorbid psychiatric disorders in PD patients. Additionally, withdrawal from DRT in patients with ICDs frequently unmasks a severe apathetic state, suggesting that apathy and ICDs may be caused by overlapping neurobiological mechanisms within the cortico-striato-thalamo-cortical networks. We suggest that altered hedonic and impulse control processes represent distinct prodromal substrates for the development of these psychiatric symptoms, the etiopathogenic mechanisms of which remain unknown. Specifically, we argue that deficits in hedonic and motivational states and impulse control are mediated by overlapping, yet dissociable, neural mechanisms that differentially interact with DRT to promote the emergence of ICDs in vulnerable individuals. Thus, we provide a novel heuristic framework for basic and clinical research to better define and treat comorbid ICDs in PD.
Collapse
Affiliation(s)
- Jean-Luc Houeto
- Service de Neurologie, CIC-INSERM 1402, CHU de Poitiers, Université de Poitiers , Poitiers , France
| | - Robin Magnard
- INSERM U1216, Grenoble Institut des Neurosciences (GIN), University Grenoble Alpes , Grenoble , France
| | - Jeffrey W Dalley
- Department of Psychology, University of Cambridge, Cambridge, UK; Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - David Belin
- Department of Pharmacology, University of Cambridge , Cambridge , UK
| | - Sebastien Carnicella
- INSERM U1216, Grenoble Institut des Neurosciences (GIN), University Grenoble Alpes , Grenoble , France
| |
Collapse
|
386
|
Lafo JA, Jones JD, Okun MS, Bauer RM, Price CC, Bowers D. Memory Similarities Between Essential Tremor and Parkinson's Disease: A Final Common Pathway? Clin Neuropsychol 2015; 29:985-1001. [PMID: 26689342 DOI: 10.1080/13854046.2015.1118553] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE A growing body of literature supports the view that essential tremor (ET) involves alteration of cerebellar-thalamo-cortical networks which can result in working memory and executive deficits. In this study, we tested the hypothesis that individuals with ET would exhibit worse performance on memory tasks requiring more intrinsic organization and structuring (i.e., word lists) relative to those with fewer 'executive' demands (i.e., stories), similar to that previously observed in individuals with Parkinson's disease (PD). METHOD Participants included a convenience sample of 68 ET patients and 68 idiopathic PD patients, retrospectively matched based on age, education, and sex. All patients underwent routine neuropsychological evaluation assessing recent memory, auditory attention/working memory, language, and executive function. Memory measures included the Hopkins Verbal Learning Test-R and WMS-III Logical Memory. RESULTS Both ET and PD patients performed significantly worse on word list than story memory recall tasks. The magnitude of the difference between these two memory tasks was similar for ET and PD patients. In both patient groups, performance on measures of executive function and auditory attention/working memory was not distinctly correlated with word list vs. story recall. CONCLUSIONS These findings suggest that frontal-executive dysfunction in both ET and PD may negatively influence performance on memory tests that are not inherently organized. Although the pathophysiology of these two 'movement disorders' are quite distinct, both have downstream effects on thalamo-frontal circuitry which may provide a common pathway for a similar memory phenotype. Findings are discussed in terms of neuroimaging evidence, conceptual models, and best practice.
Collapse
Affiliation(s)
- Jacob A Lafo
- a Department of Clinical and Health Psychology, College of Public Health & Health Professions , University of Florida , Gainesville , FL , USA.,c Center for Movement Disorders and Neurorestoration , University of Florida College of Medicine, University of Florida , Gainesville , FL , USA
| | - Jacob D Jones
- a Department of Clinical and Health Psychology, College of Public Health & Health Professions , University of Florida , Gainesville , FL , USA.,c Center for Movement Disorders and Neurorestoration , University of Florida College of Medicine, University of Florida , Gainesville , FL , USA
| | - Michael S Okun
- b Department of Neurology , University of Florida College of Medicine, University of Florida , Gainesville , FL , USA.,c Center for Movement Disorders and Neurorestoration , University of Florida College of Medicine, University of Florida , Gainesville , FL , USA
| | - Russell M Bauer
- a Department of Clinical and Health Psychology, College of Public Health & Health Professions , University of Florida , Gainesville , FL , USA.,c Center for Movement Disorders and Neurorestoration , University of Florida College of Medicine, University of Florida , Gainesville , FL , USA
| | - Catherine C Price
- a Department of Clinical and Health Psychology, College of Public Health & Health Professions , University of Florida , Gainesville , FL , USA.,c Center for Movement Disorders and Neurorestoration , University of Florida College of Medicine, University of Florida , Gainesville , FL , USA
| | - Dawn Bowers
- b Department of Neurology , University of Florida College of Medicine, University of Florida , Gainesville , FL , USA.,c Center for Movement Disorders and Neurorestoration , University of Florida College of Medicine, University of Florida , Gainesville , FL , USA
| |
Collapse
|
387
|
Vorovenci RJ, Antonini A. The efficacy of oral adenosine A2Aantagonist istradefylline for the treatment of moderate to severe Parkinson’s disease. Expert Rev Neurother 2015; 15:1383-90. [DOI: 10.1586/14737175.2015.1113131] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
388
|
Sterling NW, Cusumano JP, Shaham N, Piazza SJ, Liu G, Kong L, Du G, Lewis MM, Huang X. Dopaminergic modulation of arm swing during gait among Parkinson's disease patients. JOURNAL OF PARKINSONS DISEASE 2015; 5:141-50. [PMID: 25502948 DOI: 10.3233/jpd-140447] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Reduced arm swing amplitude, symmetry, and coordination during gait have been reported in Parkinson's disease (PD), but the relationship between dopaminergic depletion and these upper limb gait changes remains unclear. OBJECTIVE We aimed to investigate the effects of dopaminergic drugs on arm swing velocity, symmetry, and coordination in PD. METHODS Forearm angular velocity was recorded in 16 PD and 17 control subjects (Controls) during free walking trials. Angular velocity amplitude of each arm, arm swing asymmetry, and maximum cross-correlation were compared between control and PD groups, and between OFF- and ON-medication states among PD subjects. RESULTS Compared to Controls, PD subjects in the OFF-medication state exhibited lower angular velocity amplitude of the slower- (p = 0.0018), but not faster- (p = 0.2801) swinging arm. In addition, PD subjects demonstrated increased arm swing asymmetry (p = 0.0046) and lower maximum cross-correlation (p = 0.0026). Following dopaminergic treatment, angular velocity amplitude increased in the slower- (p = 0.0182), but not faster- (p = 0.2312) swinging arm among PD subjects. Furthermore, arm swing asymmetry decreased (p = 0.0386), whereas maximum cross-correlation showed no change (p = 0.7436). Pre-drug angular velocity amplitude of the slower-swinging arm was correlated inversely with the change in arm swing asymmetry (R = -0.73824, p = 0.0011). CONCLUSIONS This study provides quantitative evidence that reduced arm swing and symmetry in PD can be modulated by dopaminergic replacement. The lack of modulations of bilateral arm coordination suggests that additional neurotransmitters may also be involved in arm swing changes in PD. Further studies are warranted to investigate the longitudinal trajectory of arm swing dynamics throughout PD progression.
Collapse
Affiliation(s)
- Nicholas W Sterling
- Department of Neurology, The Pennsylvania State University - Milton S. Hershey Medical Center, Hershey, PA, USA Department of Public Health Sciences, The Pennsylvania State University - Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Joseph P Cusumano
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, USA
| | - Noam Shaham
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, USA
| | - Stephen J Piazza
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Guodong Liu
- Department of Public Health Sciences, The Pennsylvania State University - Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Lan Kong
- Department of Public Health Sciences, The Pennsylvania State University - Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Guangwei Du
- Department of Neurology, The Pennsylvania State University - Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Mechelle M Lewis
- Department of Neurology, The Pennsylvania State University - Milton S. Hershey Medical Center, Hershey, PA, USA Department of Pharmacology, The Pennsylvania State University - Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Xuemei Huang
- Department of Neurology, The Pennsylvania State University - Milton S. Hershey Medical Center, Hershey, PA, USA Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA Department of Pharmacology, The Pennsylvania State University - Milton S. Hershey Medical Center, Hershey, PA, USA Department of Radiology, The Pennsylvania State University - Milton S. Hershey Medical Center, Hershey, PA, USA Department of Neurosurgery, The Pennsylvania State University - Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
389
|
Robinson SJ, Petzer JP, Terre'Blanche G, Petzer A, van der Walt MM, Bergh JJ, Lourens ACU. 2-Aminopyrimidines as dual adenosine A1/A2A antagonists. Eur J Med Chem 2015; 104:177-88. [PMID: 26462195 DOI: 10.1016/j.ejmech.2015.09.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/25/2015] [Accepted: 09/29/2015] [Indexed: 11/26/2022]
Abstract
In this study thirteen 2-aminopyrimidine derivatives were synthesised and screened as potential antagonists of adenosine A1 and A2A receptors in order to further investigate the structure activity relationships of this class of compounds. 4-(5-Methylfuran-2-yl)-6-[3-(piperidine-1-carbonyl)phenyl]pyrimidin-2-amine (8m) was identified as a compound with high affinities for both receptors, with an A2AKi value of 6.34 nM and an A1Ki value of 9.54 nM. The effect of selected compounds on the viability of cultured cells was assessed and preliminary results indicate low cytotoxicity. In vivo efficacy at A2A receptors was illustrated for compounds 8k and 8m since these compounds attenuated haloperidol-induced catalepsy in rats. A molecular docking study revealed that the interactions between the synthesised compounds and the adenosine A2A binding site most likely involve Phe168 and Asn253, interactions which are similar for structurally related adenosine A2A receptor antagonists.
Collapse
Affiliation(s)
- Sarel J Robinson
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Jacobus P Petzer
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Gisella Terre'Blanche
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Anél Petzer
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Mietha M van der Walt
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Jacobus J Bergh
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Anna C U Lourens
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| |
Collapse
|
390
|
Chen N, Ma J, Zhao Y, Wu M, Yang H, Gong W, Chao J, Li X. Expression of functional recombinant human fibroblast growth factor 8b and its protective effects on MPP⁺-lesioned PC12 cells. Appl Microbiol Biotechnol 2015; 100:625-35. [PMID: 26411459 DOI: 10.1007/s00253-015-7004-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/01/2015] [Accepted: 09/10/2015] [Indexed: 12/29/2022]
Abstract
Human fibroblast growth factor 8b (FGF8b) was expressed based on a baculovirus expression vector system (BEVS) and identified as having a protective effect on Parkinson's disease. Immunoblotting demonstrated that rhFGF8b proteins were recognized by a human anti-FGF8b antibody. The multiplicity of infection and timing of harvest had a significant effect on protein yield and protein quality. Our results indicated that the rhFGF8b was first detectable at 36 h postinfection and reached a maximum at 60 h. A multiplicity of infection (MOI) of 8 pfu/mL was suitable for harvest. The target protein was purified by heparin-affinity chromatography. In vitro methylthiazol tetrazolium (MTT) assays demonstrated that the purified rhFGF8b could significantly stimulate proliferation of NIH3T3 cells. Furthermore, to elucidate the effect of rhFGF8b on Parkinson's disease, we used FGF8b pretreatment on a cell model of Parkinson's disease. The results indicated that rhFGF8b prevented necrosis and apoptosis of 1-METHYL-4-phenyl pyridine (MPP(+)) treated PC12 cells. Moreover, the effect of FGF8b on messenger RNA (mRNA) levels of apoptosis and ERS genes was investigated to clarify the molecular mechanisms of FGF8b. The results suggest that FGF8b exerts neuroprotective effects by alleviating endoplasmic reticulum (ER) stress during PD. These results suggest that FGF8b may be a promising candidate therapeutic drug for neurodegenerative diseases related to ER stress.
Collapse
Affiliation(s)
- Nazi Chen
- School of Pharmaceutical Sciences, Zhejiang Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jishen Ma
- School of Pharmaceutical Sciences, Zhejiang Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yang Zhao
- School of Pharmaceutical Sciences, Zhejiang Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Meiyu Wu
- School of Pharmaceutical Sciences, Zhejiang Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Huanhuan Yang
- School of Pharmaceutical Sciences, Zhejiang Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Weiyue Gong
- School of Pharmaceutical Sciences, Zhejiang Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jiang Chao
- School of Pharmaceutical Sciences, Zhejiang Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Zhejiang Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
391
|
Wang S, Yu Y, Feng Y, Zou F, Zhang X, Huang J, Zhang Y, Zheng X, Huang XF, Zhu Y, Liu Y. Protective effect of the orientin on noise-induced cognitive impairments in mice. Behav Brain Res 2015; 296:290-300. [PMID: 26392065 DOI: 10.1016/j.bbr.2015.09.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 01/10/2023]
Abstract
There is increasing evidence that chronic noise stress impairs cognition and induces oxidative stress in the brain. Recently, orientin, a phenolic compound abundant in some fruits, millet, and herbs, has been shown to have antioxidant properties. This study investigated the potential effects of orientin against chronic noise-induced cognitive decline and its underlying mechanisms. A moderate-intensity noise exposure model was used to investigate the effects of orientin on behavior and biochemical alterations in mice. After 3 weeks of the noise exposure, the mice were treated with orientin (20mg/kg and 40 mg/kg, oral gavage) for 3 weeks. The chronic noise exposure impaired the learning and memory in mice in the Morris water maze and step-through tests. The noise exposure also decreased exploration and interest in a novel environment in the open field test. The administration of orientin significantly reversed noise-induced alterations in these behavior tests. Moreover, the orientin treatment significantly improved the noise-induced alteration of serum corticosterone and catecholamine levels and oxidative stress in the hippocampus and prefrontal cortex. Furthermore, the orientin treatment ameliorated the noise-induced decrease in brain-derived neurotrophic factor and synapse-associated proteins (synaptophysin and postsynaptic density protein 95) in the hippocampus and prefrontal cortex. Thus, orientin exerts protective effects on noise-induced cognitive decline in mice, specifically by improving central oxidative stress, neurotransmission, and increases synapse-associated proteins. Therefore, supplementation with orientin-enriched food or fruit could be beneficial as a preventive strategy for chronic noise-induced cognitive decline.
Collapse
Affiliation(s)
- Shuting Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu Province, China
| | - Yinghua Yu
- Schizophrenia Research Institute (SRI), 405 Liverpool St., Sydney, NSW 2010, Australia; Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, NSW 2522, Australia
| | - Yan Feng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu Province, China
| | - Fang Zou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu Province, China
| | - Xiaofei Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu Province, China
| | - Jie Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu Province, China
| | - Yuyun Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu Province, China
| | - Xian Zheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu Province, China
| | - Xu-Feng Huang
- Schizophrenia Research Institute (SRI), 405 Liverpool St., Sydney, NSW 2010, Australia; Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, NSW 2522, Australia
| | - Yufu Zhu
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province, China.
| | - Yi Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu Province, China.
| |
Collapse
|
392
|
Juanes JA, Ruisoto P, Obeso JA, Prats A, San-Molina J. Computer-Based Visualization System for the Study of Deep Brain Structures Involved in Parkinson's Disease. J Med Syst 2015; 39:151. [PMID: 26370536 DOI: 10.1007/s10916-015-0348-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/15/2015] [Indexed: 10/23/2022]
Abstract
Parkinson's Disease is characterized by alterations in deep brain structures and pathways involved in movement control. However, the understanding of neuroanatomy and spatial relationships of deep brain structures remains a challenge for medical students. Recent developments in information technology may help provide new instructional material that addresses this problem. This paper aims to develop an interactive and digital tool to enhance the study of the anatomical and functional neurological basis involved in Parkinson's Disease. This tool allows the organization and exploration of complex neuroanatomical contents related with Parkinson's Disease in an attractive and interactive way. Educational implications of this tool are analyzed.
Collapse
Affiliation(s)
- Juan A Juanes
- VisualMed System Research Group, University of Salamanca, Salamanca, Spain.
| | - Pablo Ruisoto
- VisualMed System Research Group, University of Salamanca, Salamanca, Spain.
| | - José A Obeso
- Department of Neurology and Movement Disorders Unit, University Hospital of Navarra, Pamplona, Spain.
| | - Alberto Prats
- Laboratory of Surgical Neuroanatomy, University of Barcelona, Barcelona, Spain.
| | - Joan San-Molina
- Department of Human Anatomy, University of Girona, Girona, Spain.
| |
Collapse
|
393
|
Schönberger AR, Hagelweide K, Pelzer EA, Fink GR, Schubotz RI. Motor loop dysfunction causes impaired cognitive sequencing in patients suffering from Parkinson's disease. Neuropsychologia 2015; 77:409-20. [PMID: 26382750 DOI: 10.1016/j.neuropsychologia.2015.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/02/2015] [Accepted: 09/11/2015] [Indexed: 11/25/2022]
Abstract
Cognitive impairment in Parkinson's disease (PD) is often attributed to dopamine deficiency in the prefrontal-basal ganglia-thalamo-cortical loops. Although recent studies point to a close interplay between motor and cognitive abilities in PD, the so-called "motor loop" connecting supplementary motor area (SMA) and putamen has been considered solely with regard to the patients' motor impairment. Our study challenges this view by testing patients with the serial prediction task (SPT), a cognitive task that requires participants to predict stimulus sequences and particularly engages premotor sites of the motor loop. We hypothesised that affection of the motor loop causes impaired SPT performance, especially when the internal sequence representation is challenged by suspension of external stimuli. As shown for motor tasks, we further expected this impairment to be compensated by hyperactivity of the lateral premotor cortex (PM). We tested 16 male PD patients ON and OFF dopaminergic medication and 16 male age-matched healthy controls in an functional Magnetic Resonance Imaging study. All subjects performed two versions of the SPT: one with on-going sequences (SPT0), and one with sequences containing non-informative wildcards (SPT+) increasing the demands on mnemonic sequence representation. Patients ON (compared to controls) revealed an impaired performance coming along with hypoactivity of SMA and putamen. Patients OFF compared to ON medication, while showing poorer performance, exhibited a significantly increased PM activity for SPT+ vs. SPT0. Furthermore, patients' performance positively co-varied with PM activity, corroborating a compensatory account. Our data reveal a contribution of the motor loop to cognitive impairment in PD, and suggest a close interplay of SMA and PM beyond motor control.
Collapse
Affiliation(s)
- Anna R Schönberger
- Department of Neurology, University Hospital Cologne, Kerpener Str. 62 D-50937 Cologne, Germany; Max Planck Institute for Neurological Research, Gleueler Str. 50 D-50931 Cologne, Germany
| | - Klara Hagelweide
- Department of Neurology, University Hospital Cologne, Kerpener Str. 62 D-50937 Cologne, Germany; Department of Psychology, University of Muenster, Fliednerstr. 21 D-48149 Münster, Germany
| | - Esther A Pelzer
- Department of Neurology, University Hospital Cologne, Kerpener Str. 62 D-50937 Cologne, Germany; Max Planck Institute for Neurological Research, Gleueler Str. 50 D-50931 Cologne, Germany
| | - Gereon R Fink
- Department of Neurology, University Hospital Cologne, Kerpener Str. 62 D-50937 Cologne, Germany; Institute of Neuroscience and Medicine (INM3), Cognitive Neuroscience, Research Centre Jülich, Leo-Brandt-Straße D-52425 Jülich, Germany
| | - Ricarda I Schubotz
- Department of Neurology, University Hospital Cologne, Kerpener Str. 62 D-50937 Cologne, Germany; Department of Psychology, University of Muenster, Fliednerstr. 21 D-48149 Münster, Germany.
| |
Collapse
|
394
|
Müller-Oehring EM, Sullivan EV, Pfefferbaum A, Huang NC, Poston KL, Bronte-Stewart HM, Schulte T. Task-rest modulation of basal ganglia connectivity in mild to moderate Parkinson's disease. Brain Imaging Behav 2015; 9:619-38. [PMID: 25280970 PMCID: PMC4385510 DOI: 10.1007/s11682-014-9317-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Parkinson's disease (PD) is associated with abnormal synchronization in basal ganglia-thalamo-cortical loops. We tested whether early PD patients without demonstrable cognitive impairment exhibit abnormal modulation of functional connectivity at rest, while engaged in a task, or both. PD and healthy controls underwent two functional MRI scans: a resting-state scan and a Stroop Match-to-Sample task scan. Rest-task modulation of basal ganglia (BG) connectivity was tested using seed-to-voxel connectivity analysis with task and rest time series as conditions. Despite substantial overlap of BG-cortical connectivity patterns in both groups, connectivity differences between groups had clinical and behavioral correlates. During rest, stronger putamen-medial parietal and pallidum-occipital connectivity in PD than controls was associated with worse task performance and more severe PD symptoms suggesting that abnormalities in resting-state connectivity denote neural network dedifferentiation. During the executive task, PD patients showed weaker BG-cortical connectivity than controls, i.e., between caudate-supramarginal gyrus and pallidum-inferior prefrontal regions, that was related to more severe PD symptoms and worse task performance. Yet, task processing also evoked stronger striatal-cortical connectivity, specifically between caudate-prefrontal, caudate-precuneus, and putamen-motor/premotor regions in PD relative to controls, which was related to less severe PD symptoms and better performance on the Stroop task. Thus, stronger task-evoked striatal connectivity in PD demonstrated compensatory neural network enhancement to meet task demands and improve performance levels. fMRI-based network analysis revealed that despite resting-state BG network compromise in PD, BG connectivity to prefrontal, premotor, and precuneus regions can be adequately invoked during executive control demands enabling near normal task performance.
Collapse
Affiliation(s)
- Eva M Müller-Oehring
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA, 94305-5723, USA.
- Neuroscience Program, SRI International, Menlo Park, CA, 94025, USA.
| | - Edith V Sullivan
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA, 94305-5723, USA
| | - Adolf Pfefferbaum
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA, 94305-5723, USA
- Neuroscience Program, SRI International, Menlo Park, CA, 94025, USA
| | - Neng C Huang
- Valley Parkinson Clinic, Los Gatos, CA, 95032, USA
| | - Kathleen L Poston
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Helen M Bronte-Stewart
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Tilman Schulte
- Neuroscience Program, SRI International, Menlo Park, CA, 94025, USA
| |
Collapse
|
395
|
Huang Y, Chen J, Chen Y, Zhuang Y, Sun M, Behnisch T. The neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) alters hippocampal excitatory synaptic transmission by modulation of the GABAergic system. Front Cell Neurosci 2015; 9:299. [PMID: 26300734 PMCID: PMC4523793 DOI: 10.3389/fncel.2015.00299] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/20/2015] [Indexed: 11/13/2022] Open
Abstract
The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces Parkinson's disease-like symptoms following administration to mice, monkeys, and humans. A common view is that MPTP is metabolized to 1-methyl-4-phenylpyridinium ion (MPP(+)) to induce its neurodegenerative effects on dopaminergic neurons in the substantia nigra (SN). Moreover, the hippocampus contains dopaminergic fibers, which are projecting from the ventral tegmental area, SN and pars compacta and contain the whole machinery required for dopamine synthesis making them sensitive to MPTP and MPP(+). Here, we present data showing that acute bath-application of MPP(+) elicited a dose-dependent facilitation followed by a depression of synaptic transmission of hippocampal Schaffer collaterals-CA1 synapses in mice. The effects of MPP(+) were not mediated by D1/D5- and D2-like receptor activation. Inhibition of the dopamine transporters did not prevent but increased the depression of excitatory post-synaptic field potentials. In the search for a possible mechanism, we observed that MPP(+) reduced the appearance of polyspikes in population spikes recorded in str. pyramidale and increased the frequency of miniature inhibitory post-synaptic currents. The acute effect of MPP(+) on synaptic transmission was attenuated by co-application of a GABAA receptor antagonist. Taking these data together, we suggest that MPP(+) affects hippocampal synaptic transmission by enhancing some aspects of the hippocampal GABAergic system.
Collapse
Affiliation(s)
- YuYing Huang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University Shanghai, China
| | - JunFang Chen
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University Shanghai, China
| | - Ying Chen
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University Shanghai, China
| | - YingHan Zhuang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University Shanghai, China
| | - Mu Sun
- Neurodegeneration Discovery Performance Unit, GSK R&D Shanghai, China
| | - Thomas Behnisch
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University Shanghai, China
| |
Collapse
|
396
|
Syntax, action verbs, action semantics, and object semantics in Parkinson's disease: Dissociability, progression, and executive influences. Cortex 2015; 69:237-54. [DOI: 10.1016/j.cortex.2015.05.022] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 03/25/2015] [Accepted: 05/18/2015] [Indexed: 12/14/2022]
|
397
|
Jiménez-Urbieta H, Gago B, de la Riva P, Delgado-Alvarado M, Marin C, Rodriguez-Oroz MC. Dyskinesias and impulse control disorders in Parkinson's disease: From pathogenesis to potential therapeutic approaches. Neurosci Biobehav Rev 2015. [PMID: 26216865 DOI: 10.1016/j.neubiorev.2015.07.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dopaminergic treatment in Parkinson's disease (PD) reduces the severity of motor symptoms of the disease. However, its chronic use is associated with disabling motor and behavioral side effects, among which levodopa-induced dyskinesias (LID) and impulse control disorders (ICD) are the most common. The underlying mechanisms and pathological substrate of these dopaminergic complications are not fully understood. Recently, the refinement of imaging techniques and the study of the genetics and molecular bases of LID and ICD indicate that, although different, they could share some features. In addition, animal models of parkinsonism with LID have provided important knowledge about mechanisms underlying such complications. In contrast, animal models of parkinsonism and abnormal impulsivity, although useful regarding some aspects of human ICD, do not fully resemble the clinical phenotype of ICD in patients with PD, and until now have provided limited information. Studies on animal models of addiction could complement the previous models and provide some insights into the background of these behavioral complications given that ICD are regarded as behavioral addictions. Here we review the most relevant advances in relation to imaging, genetics, biochemistry and pharmacological interventions to treat LID and ICD in patients with PD and in animal models with a view to better understand the overlapping and unique maladaptations to dopaminergic therapy that are associated with LID and ICD.
Collapse
Affiliation(s)
- Haritz Jiménez-Urbieta
- Biodonostia Research Institute, 20014 San Sebastián, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.
| | - Belén Gago
- Biodonostia Research Institute, 20014 San Sebastián, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.
| | | | - Manuel Delgado-Alvarado
- Biodonostia Research Institute, 20014 San Sebastián, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.
| | - Concepció Marin
- INGENIO, IRCE, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , 08036 Barcelona, Spain.
| | - María C Rodriguez-Oroz
- Biodonostia Research Institute, 20014 San Sebastián, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain; University Hospital Donostia, 20014 San Sebastián, Spain; Ikerbasque (Basque Foundation for Science), 48011 Bilbao, Spain.
| |
Collapse
|
398
|
Hong J, Sha S, Zhou L, Wang C, Yin J, Chen L. Sigma-1 receptor deficiency reduces MPTP-induced parkinsonism and death of dopaminergic neurons. Cell Death Dis 2015; 6:e1832. [PMID: 26203861 PMCID: PMC4650739 DOI: 10.1038/cddis.2015.194] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/19/2015] [Accepted: 06/15/2015] [Indexed: 11/21/2022]
Abstract
Sigma-1 receptor (σ1R) has been reported to be decreased in nigrostriatal motor system of Parkinson's disease patients. Using heterozygous and homozygous σ1R knockout (σ1R+/- and σ1R-/-) mice, we investigated the influence of σ1R deficiency on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-impaired nigrostriatal motor system. The injection of MPTP for 5 weeks in wild-type mice (MPTP-WT mice), but not in σ1R+/- or σ1R-/- mice (MPTP-σ1R+/- or MPTP-σ1R-/- mice), caused motor deficits and ~40% death of dopaminergic neurons in substantia nigra pars compacta with an elevation of N-methyl-d-aspartate receptor (NMDAr) NR2B phosphorylation. The σ1R antagonist NE100 or the NR2B inhibitor Ro25-6981 could alleviate the motor deficits and the death of dopaminergic neurons in MPTP-WT mice. By contrast, MPTP-σ1R+/- mice treated with the σ1R agonist PRE084 or MPTP-σ1R-/- mice treated with the NMDAr agonist NMDA appeared to have similar motor deficits and loss of dopaminergic neurons as MPTP-WT mice. The pharmacological or genetic inactivation of σ1R suppressed the expression of dopamine transporter (DAT) in substantia nigra, which was corrected by NMDA. The activation of σ1R by PRE084 enhanced the DAT expression in WT mice or σ1R+/- mice. By contrast, the level of vesicular monoamine transporter 2 (VMAT2) in σ1R+/- mice or σ1R-/- mice had no difference from WT mice. Interestingly, MPTP-WT mice showed the reduction in the levels of DAT and VMAT2, but MPTP-σ1R-/- mice did not. The inactivation of σ1R by NE100 could prevent the reduction of VMAT2 in MPTP-WT mice. In addition, the activation of microglia cells in substantia nigra was equally enhanced in MPTP-WT mice and MPTP-σ1R-/- mice. The number of activated astrocytes in MPTP-σ1R-/- mice was less than that in MPTP-WT mice. The findings indicate that the σ1R deficiency through suppressing NMDAr function and DAT expression can reduce MPTP-induced death of dopaminergic neurons and parkinsonism.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- Animals
- Anisoles/pharmacology
- Astrocytes/metabolism
- Astrocytes/pathology
- Cell Death/genetics
- Disease Models, Animal
- Dopamine/metabolism
- Dopamine Plasma Membrane Transport Proteins/genetics
- Dopamine Plasma Membrane Transport Proteins/metabolism
- Dopaminergic Neurons/metabolism
- Dopaminergic Neurons/pathology
- Gene Expression Regulation
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microglia/metabolism
- Microglia/pathology
- Morpholines/pharmacology
- Neuroprotective Agents/pharmacology
- Parkinson Disease, Secondary/chemically induced
- Parkinson Disease, Secondary/drug therapy
- Parkinson Disease, Secondary/genetics
- Parkinson Disease, Secondary/metabolism
- Pars Compacta/metabolism
- Pars Compacta/pathology
- Phenols/pharmacology
- Phosphorylation
- Piperidines/pharmacology
- Propylamines/pharmacology
- Psychomotor Performance
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, sigma/agonists
- Receptors, sigma/antagonists & inhibitors
- Receptors, sigma/genetics
- Receptors, sigma/metabolism
- Signal Transduction
- Vesicular Monoamine Transport Proteins/genetics
- Vesicular Monoamine Transport Proteins/metabolism
- Sigma-1 Receptor
Collapse
Affiliation(s)
- J Hong
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - S Sha
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - L Zhou
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - C Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - J Yin
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - L Chen
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Physiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
399
|
Kinoshita KI, Tada Y, Muroi Y, Unno T, Ishii T. Selective loss of dopaminergic neurons in the substantia nigra pars compacta after systemic administration of MPTP facilitates extinction learning. Life Sci 2015. [PMID: 26209139 DOI: 10.1016/j.lfs.2015.07.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNpc). In PD, thinking and retrieval deficits often arise from cognitive impairments. However, the mechanism of cognitive disorders in PD remains unknown. Therefore, we investigated cognitive function in PD model mice produced by intraperitoneal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which specifically destroys the DAergic neurons in the SNpc. MAIN METHODS We evaluated the cognitive function of MPTP-treated mice (PD mice) using the contextual fear conditioning test. In the test, each experiment consists of three phases: training, re-exposure, and testing. Mice were trained with a foot shock (a weak unconditioned stimulus: 1mA/2s duration, once, or an intense unconditioned stimulus: 2mA/2s duration, twice), and 24h later, mice were re-exposed to the training context for 3min to determine reconsolidation or 30min to determine extinction. The percentage of time spent freezing was measured during the test session as indexes of memory consolidation, reconsolidation, and extinction. KEY FINDINGS Reconsolidation of PD mice occurred normally but memory extinction was facilitated in PD mice compared to control mice. Moreover, memory retention in PD mice was attenuated earlier than in controls following repeated conditioned stimuli every day. SIGNIFICANCE PD mice with selective loss of DAergic neurons in the SNpc showed attenuated memory retention, probably via facilitated extinction learning.
Collapse
Affiliation(s)
- Ken-ichi Kinoshita
- Department of Pathogenetic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yayoi Tada
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Yoshikage Muroi
- Department of Pathogenetic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Toshihiro Unno
- Department of Pathogenetic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; The Laboratory of Pharmacology, Faculty of Applied Biological Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Toshiaki Ishii
- Department of Pathogenetic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
400
|
Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR. Oxidative stress and Parkinson's disease. Front Neuroanat 2015. [PMID: 26217195 PMCID: PMC4495335 DOI: 10.3389/fnana.2015.00091] [Citation(s) in RCA: 555] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Parkinson disease (PD) is a chronic, progressive neurological disease that is associated with a loss of dopaminergic neurons in the substantia nigra pars compacta of the brain. The molecular mechanisms underlying the loss of these neurons still remain elusive. Oxidative stress is thought to play an important role in dopaminergic neurotoxicity. Complex I deficiencies of the respiratory chain account for the majority of unfavorable neuronal degeneration in PD. Environmental factors, such as neurotoxins, pesticides, insecticides, dopamine (DA) itself, and genetic mutations in PD-associated proteins contribute to mitochondrial dysfunction which precedes reactive oxygen species formation. In this mini review, we give an update of the classical pathways involving these mechanisms of neurodegeneration, the biochemical and molecular events that mediate or regulate DA neuronal vulnerability, and the role of PD-related gene products in modulating cellular responses to oxidative stress in the course of the neurodegenerative process.
Collapse
Affiliation(s)
- Javier Blesa
- Centro Integral de Neurociencias A.C., HM Puerta del Sur, Hospitales de Madrid, Móstoles and Medical School, CEU San Pablo University, Madrid Spain
| | - Ines Trigo-Damas
- Centro Integral de Neurociencias A.C., HM Puerta del Sur, Hospitales de Madrid, Móstoles and Medical School, CEU San Pablo University, Madrid Spain
| | - Anna Quiroga-Varela
- Department of Medicine, Clinica Neurologica, Ospedale Santa Maria della Misericordia - Università di Perugia, Perugia Italy
| | | |
Collapse
|