351
|
Paz-Ares L, Blanco-Aparicio C, García-Carbonero R, Carnero A. Inhibiting PI3K as a therapeutic strategy against cancer. Clin Transl Oncol 2009; 11:572-9. [PMID: 19775996 DOI: 10.1007/s12094-009-0407-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Class I PI3K is composed of heterodimeric lipid kinases regulating essential cellular functions including proliferation, apoptosis and metabolism. Class I PI3K isoforms are commonly amplified in different cancer types and the PI3Kalpha catalytic subunit, PIK3CA, has been found mutated in a variable proportion of tumours of different origin. Furthermore, PI3K has been shown to mediate oncogenic signalling induced by several oncogenes such as HER2 or Ras. These facts suggest that PI3K might be a good target for anticancer drug discovery. Today, the rise of PI3K inhibitors and their first in vivo results have cleared much of the path for the development of PI3K inhibitors for anticancer therapy. Here we will review the PI3K pathway and the pharmacological results of PI3K inhibition.
Collapse
Affiliation(s)
- Luis Paz-Ares
- Medical Oncology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | | | | | | |
Collapse
|
352
|
Bhavsar SK, Föller M, Gu S, Vir S, Shah MB, Bhutani KK, Santani DD, Lang F. Involvement of the PI3K/AKT pathway in the hypoglycemic effects of saponins from Helicteres isora. JOURNAL OF ETHNOPHARMACOLOGY 2009; 126:386-396. [PMID: 19781620 DOI: 10.1016/j.jep.2009.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 09/07/2009] [Accepted: 09/10/2009] [Indexed: 05/28/2023]
Abstract
AIM OF THE STUDY Saponins from Helicteres isora have previously been shown to exert antidiabetic effects. The present study explored the underlying mechanisms in C2C12 skeletal muscle cells. MATERIALS AND METHODS C2C12 cells were incubated with saponins and sapogenin followed by Western blotting and immunofluorescence analysis. RESULTS Western blotting revealed that incubation with saponins (100 microg/ml) and sapogenin (100 microg/ml) induced the phosphorylation of the phosphatidylinositol-3-kinase (PI3K) as well as of the downstream targets protein kinase B/Akt (at Ser473) and glycogen synthase kinase GSK-3 alpha/beta (at Ser21/9) in a time-dependent manner. In contrast, no phosphorylation of the AMP-sensitive kinase AMPK (at Thr172) was observed. Within 48 h saponins/sapogenin treatment further increased the protein abundance of the insulin-sensitive glucose transporter Glut4. Confocal microscopy confirmed that saponins/sapogenin treatment stimulated Akt phosphorylation and revealed that the treatment was followed by translocation of Glut4 into the cell membrane of C2C12 muscle cells. CONCLUSIONS Saponins and sapogenin activate the PI3K/Akt pathway thus leading to phosphorylation and inactivation of GSK-3 alpha/beta with subsequent stimulation of glycogen synthesis as well as increase of Glut4-dependent glucose transport across the cell membrane.
Collapse
|
353
|
Wang F, Ogasawara MA, Huang P. Small mitochondria-targeting molecules as anti-cancer agents. Mol Aspects Med 2009; 31:75-92. [PMID: 19995573 DOI: 10.1016/j.mam.2009.12.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Revised: 09/03/2009] [Accepted: 12/02/2009] [Indexed: 12/17/2022]
Abstract
Alterations in mitochondrial structure and functions have long been observed in cancer cells. Targeting mitochondria as a cancer therapeutic strategy has gained momentum in the recent years. The signaling pathways that govern mitochondrial function, apoptosis and molecules that affect mitochondrial integrity and cell viability have been important topics of the recent review in the literature. In this article, we first briefly summarize the rationale and biological basis for developing mitochondrial-targeted compounds as potential anti-cancer agents, and then provide key examples of small molecules that either directly impact mitochondria or functionally affect the metabolic alterations in cancer cells with mitochondrial dysfunction. The main focus is on the small molecular weight compounds with potential applications in cancer treatment. We also summarize information on the drug developmental stages of the key mitochondria-targeted compounds and their clinical trial status. The advantages and potential shortcomings of targeting the mitochondria for cancer treatment are also discussed.
Collapse
Affiliation(s)
- Feng Wang
- Department of Molecular Pathology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | | | | |
Collapse
|
354
|
Abstract
Mitochondrial dysfunction plays a role in the pathogenesis of a wide range of diseases that involve disordered cellular fuel metabolism and survival/death pathways, including neurodegenerative diseases, cancer and diabetes. Cytokine, virus recognition and cellular stress pathways converging on mitochondria cause apoptotic and/or necrotic cell death of beta-cells in type-1 diabetes. Moreover, since mitochondria generate crucial metabolic signals for glucose stimulated insulin secretion (GSIS), mitochondrial dysfunction underlies both the functional derangement of GSIS and (over-nutrition) stress-induced apoptotic/necrotic beta-cell death, hallmarks of type-2 diabetes. The apparently distinct mechanisms governing beta-cell life/death decisions during the development of diabetes provide a remarkable example where remote metabolic, immune and stress signalling meet with mitochondria mediated apoptotic/necrotic death pathways to determine the fate of the beta-cell. We summarize the main findings supporting such a pivotal role of mitochondria in beta-cell death in the context of current trends in diabetes research.
Collapse
Affiliation(s)
- Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Mitochondrial Biology Group, University College London, Gower Street, WC1E 6BT London, UK.
| | | |
Collapse
|
355
|
Abstract
The BH3-only pro-apoptotic proteins are upstream sensors of cellular damage that selectively respond to specific, proximal death and survival signals. Genetic models and biochemical studies indicate that these molecules are latent killers until activated through transcriptional or post-translational mechanisms in a tissue-restricted and signal-specific manner. The large number of BH3-only proteins, their unique subcellular localization, protein-interaction network and diverse modes of activation suggest specialization of their damage-sensing function, ensuring that the core apoptotic machinery is poised to receive input from a wide range of cellular stress signals. The apoptotic response initiated by the activation of BH3-only proteins ultimately culminates in allosteric activation of pro-apoptotic BAX and BAK, the gateway proteins to the mitochondrial pathway of apoptosis. From activation of BH3-only proteins to oligomerization of BAX and BAK and mitochondrial outer membrane permeabilization, an intricate network of interactions between the pro- and anti-apoptotic members of the BCL-2 family orchestrates the decision to undergo apoptosis. Beyond regulation of apoptosis, multiple BCL-2 proteins have recently emerged as active components of select homeostatic pathways carrying other cellular functions. This review focuses on BAD, which was the first BH3-only protein linked to proximal survival signals through phosphorylation by survival kinases. In addition to findings that delineated the physiological role of BAD in apoptosis and its dynamic regulation by phosphorylation, studies pointing to new roles for this protein in other physiological pathways, such as glucose metabolism, are highlighted. By executing its 'day' and 'night' jobs in metabolism and apoptosis, respectively, BAD helps coordinate mitochondrial fuel metabolism and the apoptotic machinery.
Collapse
|
356
|
Abstract
Proper cell activity requires an efficient exchange of molecules between mitochondria and cytoplasm. Lying in the outer mitochondrial membrane, VDAC assumes a crucial position in the cell, forming the main interface between the mitochondrial and the cellular metabolisms. As such, it has been recognized that VDAC plays a crucial role in regulating the metabolic and energetic functions of mitochondria. Indeed, down-regulation of VDAC1 expression by shRNA leads to a decrease in energy production and cell growth. VDAC has also been recognized as a key protein in mitochondria-mediated apoptosis through its involvement in the release of apoptotic proteins located in the inter-membranal space and as the proposed target of pro- and anti-apoptotic members of the Bcl2-family and of hexokinase. Questions, however, remain as to if and how VDAC mediates the transfer of apoptotic proteins from the inter-membranal space to the cytosol. The diameter of the VDAC pore is only about 2.5-3 nm, insufficient for the passage of a folded protein like cytochrome c. New work, however, suggests that pore formation involves the assembly of homo-oligomers of VDAC or hetero-oligomers composed of VDAC and pro-apoptotic proteins, such as Bax. Thus, VDAC appears to represent a convergence point for a variety of cell survival and cell death signals. This review provides insight into the central role of VDAC in mammalian cell life and death, emphasizing VDAC function in the regulation of mitochondria-mediated apoptosis and, as such, its potential as a rational target for new therapeutics.
Collapse
|
357
|
Haegebarth A, Perekatt AO, Bie W, Gierut JJ, Tyner AL. Induction of protein tyrosine kinase 6 in mouse intestinal crypt epithelial cells promotes DNA damage-induced apoptosis. Gastroenterology 2009; 137:945-54. [PMID: 19501589 PMCID: PMC2767275 DOI: 10.1053/j.gastro.2009.05.054] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 05/20/2009] [Accepted: 05/27/2009] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Protein tyrosine kinase 6 (PTK6) is expressed in epithelial linings of the gastrointestinal tract. PTK6 sensitizes the nontransformed Rat1a fibroblast cell line to apoptotic stimuli. The aim of this study was to determine if PTK6 regulates apoptosis in vivo after DNA damage in the small intestine. METHODS Wild-type and Ptk6(-/-) mice were subjected to gamma-irradiation; intestinal tissues were collected, protein was isolated, and samples were fixed for immunohistochemical analyses at 0, 6, and 72 hours after the mice were irradiated. Expression of PTK6 was examined in the small intestine before and after irradiation. Apoptosis and proliferation were compared between wild-type and Ptk6(-/-) mice. Expression and activation of prosurvival signaling proteins were assessed. RESULTS Irradiation induced PTK6 in crypt epithelial cells of the small intestine in wild-type mice. Induction of PTK6 corresponded with DNA damage-induced apoptosis in the wild-type small intestine. Following irradiation, the apoptotic response was impaired in the intestinal crypts of Ptk6(-/-) mice. Increased activation of AKT and extracellular signal-regulated kinase (ERK)1/2 and increased inhibitory phosphorylation of the proapoptotic protein BAD were detected in Ptk6(-/-) mice after irradiation. In response to the induction of apoptosis, compensatory proliferation increased in the small intestines of wild-type mice but not in Ptk6(-/-) mice at 6 hours after irradiation. CONCLUSIONS PTK6 is a stress-induced kinase that promotes apoptosis by inhibiting prosurvival signaling. After DNA damage, induction of PTK6 is required for efficient apoptosis and inhibition of AKT and ERK1/2.
Collapse
Affiliation(s)
| | - Ansu O. Perekatt
- Departments of Biochemistry and Molecular Genetics, and Medicine, University of Illinois at Chicago
| | - Wenjun Bie
- Departments of Biochemistry and Molecular Genetics, and Medicine, University of Illinois at Chicago
| | - Jessica J. Gierut
- Departments of Biochemistry and Molecular Genetics, and Medicine, University of Illinois at Chicago
| | - Angela L. Tyner
- Departments of Biochemistry and Molecular Genetics, and Medicine, University of Illinois at Chicago
| |
Collapse
|
358
|
Palmieri D, Fitzgerald D, Shreeve SM, Hua E, Bronder JL, Weil RJ, Davis S, Stark AM, Merino MJ, Kurek R, Mehdorn HM, Davis G, Steinberg SM, Meltzer PS, Aldape K, Steeg PS. Analyses of resected human brain metastases of breast cancer reveal the association between up-regulation of hexokinase 2 and poor prognosis. Mol Cancer Res 2009; 7:1438-45. [PMID: 19723875 PMCID: PMC2746883 DOI: 10.1158/1541-7786.mcr-09-0234] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Brain metastases of breast cancer seem to be increasingin incidence as systemic therapy improves. Metastatic disease in the brain is associated with high morbidity and mortality. We present the first gene expression analysis of laser-captured epithelial cells from resected human brain metastases of breast cancer compared with unlinked primary breast tumors. The tumors were matched for histology, tumor-node-metastasis stage, and hormone receptor status. Most differentially expressed genes were down-regulated in the brain metastases, which included, surprisingly, many genes associated with metastasis. Quantitative real-time PCR analysis confirmed statistically significant differences or strong trends in the expression of six genes: BMP1, PEDF, LAMgamma3, SIAH, STHMN3, and TSPD2. Hexokinase 2 (HK2) was also of interest because of its increased expression in brain metastases. HK2 is important in glucose metabolism and apoptosis. In agreement with our microarray results, HK2 levels (both mRNA and protein) were elevated in a brain metastatic derivative (231-BR) of the human breast carcinoma cell line MDA-MB-231 relative to the parental cell line (231-P) in vitro. Knockdown of HK2 expression in 231-BR cells using short hairpin RNA reduced cell proliferation when cultures were maintained in glucose-limiting conditions. Finally, HK2 expression was analyzed in a cohort of 123 resected brain metastases of breast cancer. High HK2 expression was significantly associated with poor patient survival after craniotomy (P = 0.028). The data suggest that HK2 overexpression is associated with metastasis to the brain in breast cancer and it may be a therapeutic target.
Collapse
Affiliation(s)
- Diane Palmieri
- Women's Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-7322, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
359
|
Ahn KJ, Hwang HS, Park JH, Bang SH, Kang WJ, Yun M, Lee JD. Evaluation of the role of hexokinase type II in cellular proliferation and apoptosis using human hepatocellular carcinoma cell lines. J Nucl Med 2009; 50:1525-32. [PMID: 19690031 DOI: 10.2967/jnumed.108.060780] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED The (18)F-FDG uptake pattern on PET could be an indicator of the prognosis and aggressiveness of various tumors, including hepatocellular carcinoma (HCC). Hexokinase, especially hexokinase type II (HKII), plays a critical role in (18)F-FDG uptake in rapidly growing tumors. We established a stable cell line overexpressing HKII by the transfection of full DNA of HKII to HCC cells (SNU449) that express low levels of HKII and investigated how (18)F-FDG uptake mechanisms, especially overexpression of HKII, are linked to tumor proliferation mechanisms. METHODS The HKII gene was stably transfected to SNU449 cells with an expression vector. HKII expression in the cells was verified by reverse-transcriptase polymerase chain reaction, Western blot analysis, adenosine triphosphate (ATP) and lactate production, (18)F-FDG uptake measurement, and confocal microscopy. Cellular proliferation activity and response to the anticancer drug cisplatin were evaluated by cell counting using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. For the evaluation of molecular pathways involved in tumor proliferation, the phosphatidylinositol 3-kinase (PI3K)/Akt pathway was investigated. RESULTS The stable cell line produced HKII effectively, but expression of other enzymes or transporters for glycolysis, such as glucose-6-phosphatase (G6Pase), HKI and III, and glucose transporter type 1 and 2 (Glut-1 and Glut-2), did not show any changes. (18)F-FDG uptake was significantly increased after transfection. ATP and lactate production was also increased after transfection. Overexpressed HKII was associated with mitochondria on confocal microscopy. Cells with overexpression of HKII, compared with the nontransfected cell line, showed 1.5- to 2-fold higher cell survival and resistance to the anticancer agent cisplatin (2- to 8-fold). In the molecular study, the activated form of Akt was increased after transfection, and PI3K inhibitor dissociated the mitochondrial HKII to the cytoplasm. In addition, the adenosine monophosphate-activated protein kinase (AMPK) pathway is also involved in Akt signaling. CONCLUSION HKII plays an important role in (18)F-FDG uptake and tumor proliferation by both the PI3K-dependent and the PI3K-independent Akt signal pathways; therefore, the (18)F-FDG uptake pattern on a PET scan can be a surrogate marker of prognosis in HCC.
Collapse
Affiliation(s)
- Keun Jae Ahn
- Division of Nuclear Medicine, Department of Radiology, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
360
|
Broxterman HJ, Gotink KJ, Verheul HMW. Understanding the causes of multidrug resistance in cancer: a comparison of doxorubicin and sunitinib. Drug Resist Updat 2009; 12:114-26. [PMID: 19648052 DOI: 10.1016/j.drup.2009.07.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 07/07/2009] [Accepted: 07/08/2009] [Indexed: 12/22/2022]
Abstract
Multiple molecular, cellular, micro-environmental and systemic causes of anticancer drug resistance have been identified during the last 25 years. At the same time, genome-wide analysis of human tumor tissues has made it possible in principle to assess the expression of critical genes or mutations that determine the response of an individual patient's tumor to drug treatment. Why then do we, with a few exceptions, such as mutation analysis of the EGFR to guide the use of EGFR inhibitors, have no predictive tests to assess a patient's drug sensitivity profile. The problem urges the more with the expanding choice of drugs, which may be beneficial for a fraction of patients only. In this review we discuss recent studies and insights on mechanisms of anticancer drug resistance and try to answer the question: do we understand why a patient responds or fails to respond to therapy? We focus on doxorubicin as example of a classical cytotoxic, DNA damaging agent and on sunitinib, as example of the new generation of (receptor) tyrosine kinase-targeted agents. For both drugs, classical tumor cell autonomous resistance mechanisms, such as drug efflux transporters and mutations in the tumor cell's survival signaling pathways, as well as micro-environment-related resistance mechanisms, such as changes in tumor stromal cell composition, matrix proteins, vascularity, oxygenation and energy metabolism may play a role. Novel agents that target specific mutations in the tumor cell's damage repair (e.g. PARP inhibitors) or that target tumor survival pathways, such as Akt inhibitors, glycolysis inhibitors or mTOR inhibitors, are of high interest. In order to increase the therapeutic index of treatments, fine-tuned synergistic combinations of new and/or classical cytotoxic agents will be designed. More quantitative assessment of potential resistance mechanisms in real tumors and in real time, such as by kinase profiling methodology, will be developed to allow more precise prediction of the optimal drug combination to treat each patient.
Collapse
Affiliation(s)
- Henk J Broxterman
- Department of Medical Oncology, CCA 1-38, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | | | | |
Collapse
|
361
|
Abstract
The central role of mitochondria as mediators of cell survival is indisputable and gathering increasing attention as a focal point for interventional strategies to mitigate apoptotic cell death in the wake of cardiomyopathic injury. A legacy of signal transduction studies has proven that mitochondrial integrity can be enhanced by kinases involved in cell survival. Among the many survival signaling cascades under investigation, the wide-ranging impact of Akt upon mitochondrial biology is well known. However, despite years of investigation, emerging research continues to reveal new mechanisms governing the protective effects of Akt signaling in the context of cardiomyocyte mitochondria. This review focuses on two emerging pathways that mediate preservation of mitochondrial function downstream of Akt: hexokinase and Pim-1 kinase.
Collapse
Affiliation(s)
- Mark A Sussman
- San Diego State University, SDSU Heart Institute, Department of Biology, NLS 426, 5500 Campanile Drive, San Diego, CA 92182, USA.
| |
Collapse
|
362
|
mTORC1 hyperactivity inhibits serum deprivation-induced apoptosis via increased hexokinase II and GLUT1 expression, sustained Mcl-1 expression, and glycogen synthase kinase 3beta inhibition. Mol Cell Biol 2009; 29:5136-47. [PMID: 19620286 DOI: 10.1128/mcb.01946-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The current concept is that Tsc-deficient cells are sensitized to apoptosis due to the inhibition of Akt activity by the negative feedback mechanism induced by the hyperactive mTORC1. Unexpectedly, however, we found that Tsc1/2-deficient cells exhibit increased resistance to serum deprivation-induced apoptosis. mTORC1 hyperactivity contributes to the apoptotic resistance of serum-deprived Tsc1/2-deficient cells in part by increasing the growth factor-independent expression of hexokinase II (HKII) and GLUT1. mTORC1-mediated increase in hypoxia-inducible factor 1alpha (HIF1alpha) abundance, which occurs in the absence of serum in normoxic Tsc2-deficient cells, contributes to these changes. Increased HIF1alpha abundance in these cells is attributed to both an increased level and the sustained translation of HIF1alpha mRNA. Sustained glycogen synthase kinase 3beta inhibition and Mcl-1 expression also contribute to the apoptotic resistance of Tsc2-deficient cells to serum deprivation. The inhibition of mTORC1 activity by either rapamycin or Raptor knockdown cannot resensitize these cells to serum deprivation-induced apoptosis because of elevated Akt activity that is an indirect consequence of mTORC1 inhibition. However, the increased HIF1alpha abundance and the maintenance of Mcl-1 protein expression in serum-deprived Tsc2(-/)(-) cells are dependent largely on the hyperactive eIF4E in these cells. Consistently, the reduction of eIF4E levels abrogates the resistance of Tsc2(-/)(-) cells to serum deprivation-induced apoptosis.
Collapse
|
363
|
Hantke J, Chandler D, King R, Wanders RJA, Angelicheva D, Tournev I, McNamara E, Kwa M, Guergueltcheva V, Kaneva R, Baas F, Kalaydjieva L. A mutation in an alternative untranslated exon of hexokinase 1 associated with hereditary motor and sensory neuropathy -- Russe (HMSNR). Eur J Hum Genet 2009; 17:1606-14. [PMID: 19536174 DOI: 10.1038/ejhg.2009.99] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hereditary Motor and Sensory Neuropathy -- Russe (HMSNR) is a severe autosomal recessive disorder, identified in the Gypsy population. Our previous studies mapped the gene to 10q22-q23 and refined the gene region to approximately 70 kb. Here we report the comprehensive sequencing analysis and fine mapping of this region, reducing it to approximately 26 kb of fully characterised sequence spanning the upstream exons of Hexokinase 1 (HK1). We identified two sequence variants in complete linkage disequilibrium, a G>C in a novel alternative untranslated exon (AltT2) and a G>A in the adjacent intron, segregating with the disease in affected families and present in the heterozygote state in only 5/790 population controls. Sequence conservation of the AltT2 exon in 16 species with invariable preservation of the G allele at the mutated site, strongly favour the exonic change as the pathogenic mutation. Analysis of the Hk1 upstream region in mouse mRNA from testis and neural tissues showed an abundance of AltT2-containing transcripts generated by extensive, developmentally regulated alternative splicing. Expression is very low compared with ubiquitous Hk1 and all transcripts skip exon1, which encodes the protein domain responsible for binding to the outer mitochondrial membrane, and regulation of energy production and apoptosis. Hexokinase activity measurement and immunohistochemistry of the peripheral nerve showed no difference between patients and controls. The mutational mechanism and functional effects remain unknown and could involve disrupted translational regulation leading to increased anti-apoptotic activity (suggested by the profuse regenerative activity in affected nerves), or impairment of an unknown HK1 function in the peripheral nervous system (PNS).
Collapse
Affiliation(s)
- Janina Hantke
- Laboratory of Molecular Genetics, Western Australian Institute for Medical Research and Centre for Medical Research, University of Western Australia, Perth, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
364
|
Addabbo F, Montagnani M, Goligorsky MS. Mitochondria and reactive oxygen species. Hypertension 2009; 53:885-92. [PMID: 19398655 PMCID: PMC2716801 DOI: 10.1161/hypertensionaha.109.130054] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Accepted: 04/03/2009] [Indexed: 12/11/2022]
Affiliation(s)
- Francesco Addabbo
- Department of Medicine and Pharmacology, Renal Research Institute, New York Medical College, Valhalla 10595, USA
| | | | | |
Collapse
|
365
|
Cancer’s craving for sugar: an opportunity for clinical exploitation. J Cancer Res Clin Oncol 2009; 135:867-77. [DOI: 10.1007/s00432-009-0590-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 04/09/2009] [Indexed: 12/22/2022]
|
366
|
Miyamoto S, Rubio M, Sussman MA. Nuclear and mitochondrial signalling Akts in cardiomyocytes. Cardiovasc Res 2009; 82:272-85. [PMID: 19279164 PMCID: PMC2675933 DOI: 10.1093/cvr/cvp087] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 03/02/2009] [Accepted: 03/08/2009] [Indexed: 01/01/2023] Open
Abstract
Biological actions resulting from phosphoinositide synthesis trigger multiple downstream signalling cascades by recruiting proteins with pleckstrin homology domains, including phosphoinositide-dependent kinase-1 and protein kinase B (also known as Akt). Retrospectively, more attention has been focused on the plasma membrane-associated interactions of these molecules and resulting cytoplasmic target activation. The complex biological activities exerted by Akt activation suggest, however, that more subtle and complex subcellular control mechanisms are involved. This review examines the regulation of Akt activity from the perspective of subcellular compartmentalization and focuses specifically upon the actions of Akt activation downstream from phosphoinositide synthesis that influence cell biology by altering nuclear signalling leading to Pim-1 kinase induction as well as hexokinase phosphorylation that, together with Akt, serves to preserve mitochondrial integrity.
Collapse
Affiliation(s)
- Shigeki Miyamoto
- Department of Pharmacology, University of California, La Jolla, San Diego, CA 92093-0636, USA
| | - Marta Rubio
- Department of Biology, SDSU Heart Institute, San Diego State University, NLS 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Mark A. Sussman
- Department of Biology, SDSU Heart Institute, San Diego State University, NLS 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| |
Collapse
|
367
|
Targeting post-mitochondrial effectors of apoptosis for neuroprotection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:402-13. [DOI: 10.1016/j.bbabio.2008.09.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 09/12/2008] [Accepted: 09/16/2008] [Indexed: 01/10/2023]
|
368
|
Hoekstra AV, Sefton EC, Berry E, Lu Z, Hardt J, Marsh E, Yin P, Clardy J, Chakravarti D, Bulun S, Kim JJ. Progestins activate the AKT pathway in leiomyoma cells and promote survival. J Clin Endocrinol Metab 2009; 94:1768-74. [PMID: 19240153 PMCID: PMC2684476 DOI: 10.1210/jc.2008-2093] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 02/17/2009] [Indexed: 11/19/2022]
Abstract
CONTEXT Progesterone has been associated with promoting growth of uterine leiomyomas. The mechanisms involved remain unclear. OBJECTIVE In this study we investigated the activation of the AKT pathway and its downstream effectors, glycogen synthase kinase-3b and Forkhead box O (FOXO)-1 by progesterone as a mechanism of proliferation and survival of leiomyoma cells. Inhibitors of the AKT pathway were used to demonstrate the role of phosphatidylinositol 3-kinase, AKT, and FOXO1 in contributing to cell proliferation and apoptosis. RESULTS Treatment of leiomyoma cells with R5020 over a period of 72 h resulted in higher cell numbers compared with untreated cells. When cells were treated with 100 nm R5020 for 1 and 24 h, the levels of phospho(Ser 473)-AKT increased. This increase was inhibited when cells were cotreated with RU486. Treatment of leiomyoma cells with a phosphatidylinositol 3-kinase inhibitor, LY294 dramatically decreased levels of phospho(Ser 473)-AKT, despite R5020 treatment. In addition to increased phospho(Ser 473)-AKT levels, R5020 treatment resulted in an increase in phospho(Ser 256)-FOXO1 and phosphoglycogen synthase kinase-3b. Inhibition of AKT using API-59 decreased proliferation and cell viability even in the presence of R5020. Higher concentrations of API-59-induced apoptosis of leiomyoma cells, even in the presence of R5020. Psammaplysene A increased nuclear FOXO1 levels and did not affect cell proliferation but induced apoptosis of leiomyoma cells. CONCLUSIONS The progestin, R5020, can rapidly activate the AKT pathway. Inhibition of the AKT pathway inhibits cell proliferation and promotes apoptosis of leiomyoma cells.
Collapse
Affiliation(s)
- Anna V Hoekstra
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
369
|
Miyamoto S, Murphy AN, Brown JH. Akt mediated mitochondrial protection in the heart: metabolic and survival pathways to the rescue. J Bioenerg Biomembr 2009; 41:169-80. [PMID: 19377835 PMCID: PMC2732429 DOI: 10.1007/s10863-009-9205-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cardiomyocyte death is now recognized as a critical factor in the development of heart disease. Mitochondria are not only responsible for energy production to ensure that cardiac output meets the body's energy demands, but they serve as critical integrators of cell survival signals. Numerous stressors are known to induce cell death by necrosis and/or apoptosis mediated through mitochondrial dysregulation. Anti- and pro-apoptotic Bcl-2 family proteins regulate apoptosis by controlling mitochondrial outer membrane permeability, whereas opening of the mitochondrial permeability transition pore (PT-pore) induces large amplitude permeability of the inner membrane and consequent rupture of the outer membrane. Akt is one of the best described survival kinases activated by receptor ligands and its activation preserves mitochondrial integrity and protects cardiomyocytes against necrotic and apoptotic death. The mechanisms responsible for Akt-mediated mitochondrial protection have not been fully elucidated. There is, however, accumulating evidence that multiple Akt target molecules, recruited through both transcriptional and post-transcriptional mechanisms, directly impinge upon and protect mitochondria. In this review we discuss mechanisms by which Akt activation can effect changes at the mitochondria that protect cardiomyocytes and attenuate pathophysiological responses of the heart.
Collapse
Affiliation(s)
- Shigeki Miyamoto
- Department of Pharmacology, University of California, 9500 Gilman Dr., La Jolla, San Diego, CA 92093-0636, USA.
| | | | | |
Collapse
|
370
|
A hierarchical cascade activated by non-canonical Notch signaling and the mTOR-Rictor complex regulates neglect-induced death in mammalian cells. Cell Death Differ 2009; 16:879-89. [PMID: 19265851 DOI: 10.1038/cdd.2009.20] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The regulation of cellular metabolism and survival by trophic factors is not completely understood. Here, we describe a signaling cascade activated by the developmental regulator Notch, which inhibits apoptosis triggered by neglect in mammalian cells. In this pathway, the Notch intracellular domain (NIC), which is released after interaction with ligand, converges on the kinase mammalian target of rapamycin (mTOR) and the substrate-defining protein rapamycin independent companion of mTOR (Rictor), culminating in the activation of the kinase Akt/PKB. Biochemical and molecular approaches using site-directed mutants identified AktS473 as a key downstream target in the antiapoptotic pathway activated by NIC. Despite the demonstrated requirement for Notch processing and its predominant nuclear localization, NIC function was independent of CBF1/RBP-J, an essential DNA-binding component required for canonical signaling. In experiments that placed spatial constraints on NIC, enforced nuclear retention abrogated antiapoptotic activity and a membrane-anchored form of NIC-blocked apoptosis through mTOR, Rictor and Akt-dependent signaling. We show that the NIC-mTORC2-Akt cascade blocks the apoptotic response triggered by removal of medium or serum deprivation. Consistently, membrane-tethered NIC, and AktS473 inhibited apoptosis triggered by cytokine deprivation in activated T cells. Thus, this study identifies a non-canonical signaling cascade wherein NIC integrates with multiple pathways to regulate cell survival.
Collapse
|
371
|
Dreixler JC, Hemmert JW, Shenoy SK, Shen Y, Lee HT, Shaikh AR, Rosenbaum DM, Roth S. The role of Akt/protein kinase B subtypes in retinal ischemic preconditioning. Exp Eye Res 2009; 88:512-21. [PMID: 19084003 PMCID: PMC2709455 DOI: 10.1016/j.exer.2008.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/26/2008] [Accepted: 11/04/2008] [Indexed: 01/26/2023]
Abstract
Potent endogenous protection from ischemia can be induced in the retina by ischemic preconditioning (IPC). Protein kinase B/Akt is a cellular survival factor. We hypothesized that Akt was integral to IPC based upon differential effects of Akt subtypes. Rats were subjected to retinal ischemia after IPC or IPC-mimicking by the opening of mitochondrial KATP (mKATP) channels. The effects of blocking Akt using wortmannin, API-2, or small interfering RNA (siRNA) were examined. Electroretinography assessed functional recovery after ischemia, and TUNEL examined retinal ganglion cell apoptosis. We studied the relationship between Akt activation and known initiators of IPC, including adenosine receptor stimulation and the opening of mKATP channels. The PI-3 kinase inhibitor wortmannin 1 or 4 mg/kg (i.p.), the specific Akt inhibitor API-2, 5-500 microM in the vitreous, or intravitreal siRNA directed against Akt2 or -3, but not Akt1, significantly attenuated the neuroprotective effect of IPC. Interfering RNA against any of the three Akt subtypes significantly but time-dependently attenuated mKATP channel opening to mimic IPC. Adenosine A1 receptor blockade (DPCPX), A2a blockade (CSC), or the mKATP channel blocker 5-hydroxydecanoic acid significantly attenuated Akt activation after IPC. Interfering RNA directed against Akt subtypes prevented the ameliorative effect of IPC on post-ischemic apoptosis. All three Akt subtypes are involved in functional retinal neuroprotection by IPC or IPC-mimicking. Akt is downstream of adenosine A1 and A2a receptors and mKATP channel opening. The results indicate the presence in the retina of robust and redundant endogenous neuroprotection based upon subtypes of Akt.
Collapse
Affiliation(s)
- John C. Dreixler
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois 60637
| | - Jonathan W. Hemmert
- Pritzker School of Medicine of the University of Chicago, Chicago, Illinois 60637
| | - Shanti K. Shenoy
- Pritzker School of Medicine of the University of Chicago, Chicago, Illinois 60637
| | - Yang Shen
- Pritzker School of Medicine of the University of Chicago, Chicago, Illinois 60637
| | - H. Thomas Lee
- Department of Anesthesiology, Columbia University, NY, New York 10032
| | - Afzhal R. Shaikh
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois 60637
| | - Daniel M. Rosenbaum
- Department of Neurology, SUNY-Downstate Medical Center, Brooklyn, NY, New York 11230
| | - Steven Roth
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
372
|
Robey RB, Hay N. Is Akt the "Warburg kinase"?-Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol 2009; 19:25-31. [PMID: 19130886 PMCID: PMC2814453 DOI: 10.1016/j.semcancer.2008.11.010] [Citation(s) in RCA: 434] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 11/25/2008] [Indexed: 01/15/2023]
Abstract
The serine/threonine kinase Akt - also known as protein kinase B (PKB) - has emerged as one of the most frequently activated protein kinases in human cancer. In fact, most, if not all, tumors ultimately find a way to activate this important kinase. As such, Akt activation constitutes a hallmark of most cancer cells, and such ubiquity presumably connotes important roles in tumor genesis and/or progression. Likewise, the hypermetabolic nature of cancer cells and their increased reliance on "aerobic glycolysis", as originally described by Otto Warburg and colleagues, are considered metabolic hallmarks of cancer cells. In this review, we address the specific contributions of Akt activation to the signature metabolic features of cancer cells, including the so-called "Warburg effect".
Collapse
Affiliation(s)
- R. Brooks Robey
- Research and Development Service, White River Junction VA Medical Center, United States
- Department of Medicine, Dartmouth Medical School, United States
- Department of Physiology, Dartmouth Medical School, United States
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, United States
| |
Collapse
|
373
|
Olovnikov IA, Kravchenko JE, Chumakov PM. Homeostatic functions of the p53 tumor suppressor: regulation of energy metabolism and antioxidant defense. Semin Cancer Biol 2009; 19:32-41. [PMID: 19101635 PMCID: PMC2646792 DOI: 10.1016/j.semcancer.2008.11.005] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 11/25/2008] [Indexed: 12/19/2022]
Abstract
The p53 tumor suppressor plays pivotal role in the organism by supervising strict compliance of individual cells to needs of the whole organisms. It has been widely accepted that p53 acts in response to stresses and abnormalities in cell physiology by mobilizing the repair processes or by removing the diseased cells through initiating the cell death programs. Recent studies, however, indicate that even under normal physiological conditions certain activities of p53 participate in homeostatic regulation of metabolic processes and that these activities are important for prevention of cancer. These novel functions of p53 help to align metabolic processes with the proliferation and energy status, to maintain optimal mode of glucose metabolism and to boost the energy efficient mitochondrial respiration in response to ATP deficiency. Additional activities of p53 in non-stressed cells tune up the antioxidant defense mechanisms reducing the probability of mutations caused by DNA oxidation under conditions of daily stresses. The deficiency in the p53-mediated regulation of glycolysis and mitochondrial respiration greatly accounts for the deficient respiration of the predominance of aerobic glycolysis in cancer cells (the Warburg effect), while the deficiency in the p53-modulated antioxidant defense mechanisms contributes to mutagenesis and additionally boosts the carcinogenesis process.
Collapse
Affiliation(s)
| | - Julia E. Kravchenko
- Engelhardt Institute of Molecular Biology, 119991 Moscow, Russia
- Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, U.S.A
| | - Peter M. Chumakov
- Engelhardt Institute of Molecular Biology, 119991 Moscow, Russia
- Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, U.S.A
| |
Collapse
|
374
|
Mathupala SP, Ko YH, Pedersen PL. Hexokinase-2 bound to mitochondria: cancer's stygian link to the "Warburg Effect" and a pivotal target for effective therapy. Semin Cancer Biol 2009; 19:17-24. [PMID: 19101634 PMCID: PMC2714668 DOI: 10.1016/j.semcancer.2008.11.006] [Citation(s) in RCA: 449] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 11/25/2008] [Indexed: 12/19/2022]
Abstract
The most common metabolic hallmark of malignant tumors, i.e., the "Warburg effect" is their propensity to metabolize glucose to lactic acid at a high rate even in the presence of oxygen. The pivotal player in this frequent cancer phenotype is mitochondrial-bound hexokinase [Bustamante E, Pedersen PL. High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase. Proc Natl Acad Sci USA 1977;74(9):3735-9; Bustamante E, Morris HP, Pedersen PL. Energy metabolism of tumor cells. Requirement for a form of hexokinase with a propensity for mitochondrial binding. J Biol Chem 1981;256(16):8699-704]. Now, in clinics worldwide this prominent phenotype forms the basis of one of the most common detection systems for cancer, i.e., positron emission tomography (PET). Significantly, HK-2 is the major bound hexokinase isoform expressed in cancers that exhibit a "Warburg effect". This includes most cancers that metastasize and kill their human host. By stationing itself on the outer mitochondrial membrane, HK-2 also helps immortalize cancer cells, escapes product inhibition and gains preferential access to newly synthesized ATP for phosphorylating glucose. The latter event traps this essential nutrient inside the tumor cells as glucose-6-P, some of which is funneled off to serve as carbon precursors to help promote the production of new cancer cells while much is converted to lactic acid that exits the cells. The resultant acidity likely wards off an immune response while preparing surrounding tissues for invasion. With the re-emergence and acceptance of both the "Warburg effect" as a prominent phenotype of most clinical cancers, and "metabolic targeting" as a rational therapeutic strategy, a number of laboratories are focusing on metabolite entry or exit steps. One remarkable success story [Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS, et al. Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun 2004;324(1):269-75] is the use of the small molecule 3-bromopyruvate (3-BP) that selectively enters and destroys the cells of large tumors in animals by targeting both HK-2 and the mitochondrial ATP synthasome. This leads to very rapid ATP depletion and tumor destruction without harm to the animals. This review focuses on the multiple roles played by HK-2 in cancer and its potential as a metabolic target for complete cancer destruction.
Collapse
Affiliation(s)
- Saroj P. Mathupala
- Department of Neurological Surgery and Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Young H. Ko
- Cancer Cure Med, 300 Redland Court, Owings Mills, MD 21117, United States
| | - Peter L. Pedersen
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205−2185, United States
| |
Collapse
|
375
|
Cuezva JM, Ortega AD, Willers I, Sánchez-Cenizo L, Aldea M, Sánchez-Aragó M. The tumor suppressor function of mitochondria: translation into the clinics. Biochim Biophys Acta Mol Basis Dis 2009; 1792:1145-58. [PMID: 19419707 DOI: 10.1016/j.bbadis.2009.01.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 12/15/2008] [Accepted: 01/16/2009] [Indexed: 01/30/2023]
Abstract
Recently, the inevitable metabolic reprogramming experienced by cancer cells as a result of the onset of cellular proliferation has been added to the list of hallmarks of the cancer cell phenotype. Proliferation is bound to the synchronous fluctuation of cycles of an increased glycolysis concurrent with a restrained oxidative phosphorylation. Mitochondria are key players in the metabolic cycling experienced during proliferation because of their essential roles in the transduction of biological energy and in defining the life-death fate of the cell. These two activities are molecularly and functionally integrated and are both targets of commonly altered cancer genes. Moreover, energetic metabolism of the cancer cell also affords a target to develop new therapies because the activity of mitochondria has an unquestionable tumor suppressor function. In this review, we summarize most of these findings paying special attention to the opportunity that translation of energetic metabolism into the clinics could afford for the management of cancer patients. More specifically, we emphasize the role that mitochondrial beta-F1-ATPase has as a marker for the prognosis of different cancer patients as well as in predicting the tumor response to therapy.
Collapse
Affiliation(s)
- José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, CSIC-UAM and CIBER de Enfermedades Raras (CIBERER), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
376
|
|
377
|
PI3K/Akt pathway activation attenuates the cytotoxic effect of methyl jasmonate toward sarcoma cells. Neoplasia 2008; 10:1303-13. [PMID: 18953440 DOI: 10.1593/neo.08636] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 09/01/2008] [Accepted: 09/02/2008] [Indexed: 11/18/2022]
Abstract
Methyl jasmonate (MJ) acts both in vitro and in vivo against various cancer cell lines. Activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway results in decreased susceptibility to cytotoxic agents in many types of cancer cells. We found a strong inverse correlation between the basal level of phospho-Akt (pAkt) and the sensitivity to MJ among sarcoma cell lines. Nevertheless, levels of pAkt increased in two sarcoma cell lines, MCA-105 and SaOS-2, after MJ treatment. Treatment of both cell lines with PI3K/Akt pathway inhibitors in combination with MJ resulted in a synergistic cytotoxic effect. Moreover, cells transfected with a constitutively active Akt were less susceptible to MJ-induced cytotoxicity in comparison with cells transfected with an inactive form of Akt. Taken together, these data suggest that the increase in pAkt after treatment with MJ played a protective role. Because it has been shown that the antiapoptotic effects of Akt are dependent on glycolysis, we examined the role of glucose metabolism in activation of Akt and the subsequent resistance of the cell lines to MJ. 2-Deoxy-d-glucose, a glycolysis inhibitor, decreased the levels of pAkt and was able to attenuate the MJ-induced elevation in pAkt. Accordingly, the presence of glucose attenuated MJ-induced cytotoxicity. Moreover, treatment with 2-deoxy-d-glucose in combination with MJ resulted in a synergistic cytotoxic effect. In conclusion, the PI3K/Akt pathway plays a critical role in the resistance of MCA-105 and SaOS-2 sarcoma cell lines toward MJ-induced cytotoxicity.
Collapse
|
378
|
Nogueira V, Park Y, Chen CC, Xu PZ, Chen ML, Tonic I, Unterman T, Hay N. Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell 2008; 14:458-70. [PMID: 19061837 PMCID: PMC3038665 DOI: 10.1016/j.ccr.2008.11.003] [Citation(s) in RCA: 631] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2008] [Revised: 10/31/2008] [Accepted: 11/05/2008] [Indexed: 02/08/2023]
Abstract
Akt deficiency causes resistance to replicative senescence, to oxidative stress- and oncogenic Ras-induced premature senescence, and to reactive oxygen species (ROS)-mediated apoptosis. Akt activation induces premature senescence and sensitizes cells to ROS-mediated apoptosis by increasing intracellular ROS through increased oxygen consumption and by inhibiting the expression of ROS scavengers downstream of FoxO, particularly sestrin 3. This uncovers an Achilles' heel of Akt, since in contrast to its ability to inhibit apoptosis induced by multiple apoptotic stimuli, Akt could not inhibit ROS-mediated apoptosis. Furthermore, treatment with rapamycin that led to further Akt activation and resistance to etoposide hypersensitized cancer cells to ROS-mediated apoptosis. Given that rapamycin alone is mainly cytostatic, this constitutes a strategy for cancer therapy that selectively eradicates cancer cells via Akt activation.
Collapse
Affiliation(s)
- Veronique Nogueira
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607 USA
| | - Youngkyu Park
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607 USA
| | - Chia-Chen Chen
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607 USA
| | - Pei-Zhang Xu
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607 USA
| | - Mei-Ling Chen
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607 USA
| | - Ivana Tonic
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607 USA
| | - Terry Unterman
- Department of Medicine University of Illinois at Chicago, Chicago, Illinois 60607 USA
- Jesse Brown VA Medical Center, Chicago, Illinois, 60612 USA
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607 USA
| |
Collapse
|
379
|
Scatena R, Bottoni P, Pontoglio A, Mastrototaro L, Giardina B. Glycolytic enzyme inhibitors in cancer treatment. Expert Opin Investig Drugs 2008; 17:1533-45. [PMID: 18808312 DOI: 10.1517/13543784.17.10.1533] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The radio- and chemotherapeutics currently used for the treatment of cancer are widely known to be characterized by a low therapeutic index. An interesting approach to overcoming some of the limits of these techniques is the exploitation of the so-called Warburg effect, which typically characterizes neoplastic cells. Interestingly, this feature has already been utilized with good results, but only for diagnostic purposes (PET and SPECT). From a pharmacological point of view, drugs able to perturb cancer cell metabolism, specifically at the level of glycolysis, may display interesting therapeutic activities in cancer. OBJECTIVE The pharmacological actions of these glycolytic enzyme inhibitors, based primarily on ATP depletion, could include: i) amelioration of drug selectivity by exploiting the particular glycolysis addiction of cancer cell; ii) inhibition of energetic and anabolic processes; iii) reduction of hypoxia-linked cancer-cell resistance; iv) reduction of ATP-dependent multi-drug resistance; and v) cytotoxic synergism with conventional cancer treatments. CONCLUSION Several glycolytic inhibitors are currently in preclinical and clinical development. Their clinical value as anticancer agents, above all in terms of therapeutic index, strictly depends on a careful reevaluation of the pathophyiological role of the unique metabolism of cancer cells in general and of Warburg effect in particular.
Collapse
Affiliation(s)
- Roberto Scatena
- Catholic University, Department of Laboratory Medicine, Largo A. Gemelli 8, 00168 Rome, Italy.
| | | | | | | | | |
Collapse
|
380
|
Cell death and autophagy: Cytokines, drugs, and nutritional factors. Toxicology 2008; 254:147-57. [DOI: 10.1016/j.tox.2008.07.048] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Revised: 07/02/2008] [Accepted: 07/05/2008] [Indexed: 12/19/2022]
|
381
|
Shoshan-Barmatz V, Zakar M, Rosenthal K, Abu-Hamad S. Key regions of VDAC1 functioning in apoptosis induction and regulation by hexokinase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1787:421-30. [PMID: 19094960 DOI: 10.1016/j.bbabio.2008.11.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 11/14/2008] [Accepted: 11/17/2008] [Indexed: 12/11/2022]
Abstract
The voltage-dependent anion channel (VDAC), located in the mitochondrial outer membrane, functions as gatekeeper for the entry and exit of mitochondrial metabolites, and thus controls cross-talk between mitochondria and the cytosol. VDAC also serves as a site for the docking of cytosolic proteins, such as hexokinase, and is recognized as a key protein in mitochondria-mediated apoptosis. The role of VDAC in apoptosis has emerged from various studies showing its involvement in cytochrome c release and apoptotic cell death as well as its interaction with proteins regulating apoptosis, including the mitochondria-bound isoforms of hexokinase (HK-I, HK-II). Recently, the functional HK-VDAC association has shifted from being considered in a predominantly metabolic light to the recognition of its major impact on the regulation of apoptotic responsiveness of the cell. Here, we demonstrate that the HK-VDAC1 interaction can be disrupted by mutating VDAC1 and by VDAC1-based peptides, consequently leading to diminished HK anti-apoptotic activity, suggesting that disruption of HK binding to VDAC1 can decrease tumor cell survival. Indeed, understanding structure-function relationships of VDAC is critical for deciphering how this channel can perform such a variety of differing functions, all important for cell life and death. By expressing VDAC1 mutants and VDAC1-based peptides, we have identified VDAC1 amino acid residues and domains important for interaction with HK and protection against apoptosis. These include negatively- and positively-charged residues, some of which are located within beta-strands of the protein. The N-terminal region of VDAC1 binds HK-I and prevents HK-mediated protection against apoptosis induced by STS, while expression of a VDAC N-terminal peptide detaches HK-I-GFP from mitochondria. These findings indicate that the interaction of HK with VDAC1 involves charged residues in several beta-strands and in the N-terminal domain. Displacing HK, serving as the 'guardian of the mitochondrion', from its binding site on VDAC1 may thus be exploited as an approach to cancer therapy.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| | | | | | | |
Collapse
|
382
|
Tubulin binding blocks mitochondrial voltage-dependent anion channel and regulates respiration. Proc Natl Acad Sci U S A 2008; 105:18746-51. [PMID: 19033201 DOI: 10.1073/pnas.0806303105] [Citation(s) in RCA: 301] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of mitochondrial outer membrane (MOM) permeability has dual importance: in normal metabolite and energy exchange between mitochondria and cytoplasm and thus in control of respiration, and in apoptosis by release of apoptogenic factors into the cytosol. However, the mechanism of this regulation, dependent on the voltage-dependent anion channel (VDAC), the major channel of MOM, remains controversial. A long-standing puzzle is that in permeabilized cells, adenine nucleotide translocase (ANT) is less accessible to cytosolic ADP than in isolated mitochondria. We solve this puzzle by finding a missing player in the regulation of MOM permeability: the cytoskeletal protein tubulin. We show that nanomolar concentrations of dimeric tubulin induce voltage-sensitive reversible closure of VDAC reconstituted into planar phospholipid membranes. Tubulin strikingly increases VDAC voltage sensitivity and at physiological salt conditions could induce VDAC closure at <10 mV transmembrane potentials. Experiments with isolated mitochondria confirm these findings. Tubulin added to isolated mitochondria decreases ADP availability to ANT, partially restoring the low MOM permeability (high apparent K(m) for ADP) found in permeabilized cells. Our findings suggest a previously unknown mechanism of regulation of mitochondrial energetics, governed by VDAC and tubulin at the mitochondria-cytosol interface. This tubulin-VDAC interaction requires tubulin anionic C-terminal tail (CTT) peptides. The significance of this interaction may be reflected in the evolutionary conservation of length and anionic charge in CTT throughout eukaryotes, despite wide changes in the exact sequence. Additionally, tubulins that have lost significant length or anionic character are only found in cells that do not have mitochondria.
Collapse
|
383
|
Inhibition of glycolysis modulates prednisolone resistance in acute lymphoblastic leukemia cells. Blood 2008; 113:2014-21. [PMID: 18978206 DOI: 10.1182/blood-2008-05-157842] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Treatment failure in pediatric acute lymphoblastic leukemia (ALL) is related to cellular resistance to glucocorticoids (eg, prednisolone). Recently, we demonstrated that genes associated with glucose metabolism are differentially expressed between prednisolone-sensitive and prednisolone-resistant precursor B-lineage leukemic patients. Here, we show that prednisolone resistance is associated with increased glucose consumption and that inhibition of glycolysis sensitizes prednisolone-resistant ALL cell lines to glucocorticoids. Treatment of prednisolone-resistant Jurkat and Molt4 cells with 2-deoxy-D-glucose (2-DG), lonidamine (LND), or 3-bromopyruvate (3-BrPA) increased the in vitro sensitivity to glucocorticoids, while treatment of the prednisolone-sensitive cell lines Tom-1 and RS4; 11 did not influence drug cytotoxicity. This sensitizing effect of the glycolysis inhibitors in glucocorticoid-resistant ALL cells was not found for other classes of antileukemic drugs (ie, vincristine and daunorubicin). Moreover, down-regulation of the expression of GAPDH by RNA interference also sensitized to prednisolone, comparable with treatment with glycolytic inhibitors. Importantly, the ability of 2-DG to reverse glucocorticoid resistance was not limited to cell lines, but was also observed in isolated primary ALL cells from patients. Together, these findings indicate the importance of the glycolytic pathway in glucocorticoid resistance in ALL and suggest that targeting glycolysis is a viable strategy for modulating prednisolone resistance in ALL.
Collapse
|
384
|
Porstmann T, Santos CR, Griffiths B, Cully M, Wu M, Leevers S, Griffiths JR, Chung YL, Schulze A. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab 2008; 8:224-36. [PMID: 18762023 PMCID: PMC2593919 DOI: 10.1016/j.cmet.2008.07.007] [Citation(s) in RCA: 1088] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 05/12/2008] [Accepted: 07/25/2008] [Indexed: 11/19/2022]
Abstract
Cell growth (accumulation of mass) needs to be coordinated with metabolic processes that are required for the synthesis of macromolecules. The PI3-kinase/Akt signaling pathway induces cell growth via activation of complex 1 of the target of rapamycin (TORC1). Here we show that Akt-dependent lipogenesis requires mTORC1 activity. Furthermore, nuclear accumulation of the mature form of the sterol responsive element binding protein (SREBP1) and expression of SREBP target genes was blocked by the mTORC1 inhibitor rapamycin. We also show that silencing of SREBP blocks Akt-dependent lipogenesis and attenuates the increase in cell size in response to Akt activation in vitro. Silencing of dSREBP in flies caused a reduction in cell and organ size and blocked the induction of cell growth by dPI3K. Our results suggest that the PI3K/Akt/TOR pathway regulates protein and lipid biosynthesis in an orchestrated manner and that both processes are required for cell growth.
Collapse
Affiliation(s)
- Thomas Porstmann
- Gene Expression Analysis Laboratory, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
385
|
Kotliarova S, Pastorino S, Kovell LC, Kotliarov Y, Song H, Zhang W, Bailey R, Maric D, Zenklusen JC, Lee J, Fine HA. Glycogen synthase kinase-3 inhibition induces glioma cell death through c-MYC, nuclear factor-kappaB, and glucose regulation. Cancer Res 2008; 68:6643-51. [PMID: 18701488 PMCID: PMC2585745 DOI: 10.1158/0008-5472.can-08-0850] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glycogen synthase kinase 3 (GSK3), a serine/threonine kinase, is involved in diverse cellular processes ranging from nutrient and energy homeostasis to proliferation and apoptosis. Its role in glioblastoma multiforme has yet to be elucidated. We identified GSK3 as a regulator of glioblastoma multiforme cell survival using microarray analysis and small-molecule and genetic inhibitors of GSK3 activity. Various molecular and genetic approaches were then used to dissect out the molecular mechanisms responsible for GSK3 inhibition-induced cytotoxicity. We show that multiple small molecular inhibitors of GSK3 activity and genetic down-regulation of GSK3alpha/beta significantly inhibit glioma cell survival and clonogenicity. The potency of the cytotoxic effects is directly correlated with decreased enzyme activity-activating phosphorylation of GSK3alpha/beta Y276/Y216 and with increased enzyme activity inhibitory phosphorylation of GSK3alpha S21. Inhibition of GSK3 activity results in c-MYC activation, leading to the induction of Bax, Bim, DR4/DR5, and tumor necrosis factor-related apoptosis-inducing ligand expression and subsequent cytotoxicity. Additionally, down-regulation of GSK3 activity results in alteration of intracellular glucose metabolism resulting in dissociation of hexokinase II from the outer mitochondrial membrane with subsequent mitochondrial destabilization. Finally, inhibition of GSK3 activity causes a dramatic decrease in intracellular nuclear factor-kappaB activity. Inhibition of GSK3 activity results in c-MYC-dependent glioma cell death through multiple mechanisms, all of which converge on the apoptotic pathways. GSK3 may therefore be an important therapeutic target for gliomas. Future studies will further define the optimal combinations of GSK3 inhibitors and cytotoxic agents for use in gliomas and other cancers.
Collapse
Affiliation(s)
- Svetlana Kotliarova
- Neuro-Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
386
|
Affiliation(s)
- Yongjun Fan
- Department of Molecular Genetics and Microbiology; Stony Brook University; Stony Brook, New York USA
| | - Wei-Xing Zong
- Department of Molecular Genetics and Microbiology; Stony Brook University; Stony Brook, New York USA
| |
Collapse
|
387
|
Abstract
It was recently asserted that the voltage-dependent anion channel (VDAC) serves as a global regulator, or governor, of mitochondrial function (Lemasters and Holmuhamedov, Biochim Biophys Acta 1762:181-190, 2006). Indeed, VDAC, positioned on the interface between mitochondria and the cytosol (Colombini, Mol Cell Biochem 256:107-115, 2004), is at the control point of mitochondria life and death. This large channel plays the role of a "switch" that defines in which direction mitochondria will go: to normal respiration or to suppression of mitochondria metabolism that leads to apoptosis and cell death. As the most abundant protein in the mitochondrial outer membrane (MOM), VDAC is known to be responsible for ATP/ADP exchange and for the fluxes of other metabolites across MOM. It controls them by switching between the open and "closed" states that are virtually impermeable to ATP and ADP. This control has dual importance: in maintaining normal mitochondria respiration and in triggering apoptosis when cytochrome c and other apoptogenic factors are released from the intermembrane space into the cytosol. Emerging evidence indicates that VDAC closure promotes apoptotic signals without direct involvement of VDAC in the permeability transition pore or hypothetical Bax-containing cytochrome c permeable pores. VDAC gating has been studied extensively for the last 30 years on reconstituted VDAC channels. In this review we focus exclusively on physiologically relevant regulators of VDAC gating such as endogenous cytosolic proteins and mitochondrial lipids. Closure of VDAC induced by such dissimilar cytosolic proteins as pro-apoptotic tBid and dimeric tubulin is compared to show that the involved mechanisms are rather distinct. While tBid mostly modulates VDAC voltage gating, tubulin blocks the channel with the efficiency of blockage controlled by voltage. We also discuss how characteristic mitochondrial lipids, phospatidylethanolamine and cardiolipin, could regulate VDAC gating. Overall, we demonstrate that VDAC gating is not just an observation made under artificial conditions of channel reconstitution but is a major mechanism of MOM permeability control.
Collapse
Affiliation(s)
- Tatiana K. Rostovtseva
- Laboratory of Physical and Structural Biology, Program in Physical Biology, NICHD, National Institutes of Health, Bldg. 9, Rm. 1E-106, 9000 Rockville Pike, Bethesda, MD 20892, USA, e-mail:
| | - Sergey M. Bezrukov
- Laboratory of Physical and Structural Biology, Program in Physical Biology, NICHD, National Institutes of Health, Bldg. 9, Rm. 1E-106, 9000 Rockville Pike, Bethesda, MD 20892, USA, e-mail:
| |
Collapse
|
388
|
Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 2008; 13:472-82. [PMID: 18538731 DOI: 10.1016/j.ccr.2008.05.005] [Citation(s) in RCA: 1690] [Impact Index Per Article: 99.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 05/16/2008] [Accepted: 05/16/2008] [Indexed: 02/06/2023]
Abstract
The essential hallmarks of cancer are intertwined with an altered cancer cell-intrinsic metabolism, either as a consequence or as a cause. As an example, the resistance of cancer mitochondria against apoptosis-associated permeabilization and the altered contribution of these organelles to metabolism are closely related. Similarly, the constitutive activation of signaling cascades that stimulate cell growth has a profound impact on anabolic metabolism. Here, we review the peculiarities of tumor cell metabolism that might be taken advantage of for cancer treatment. Specifically, we discuss the alterations in signal transduction pathways and/or enzymatic machineries that account for metabolic reprogramming of transformed cells.
Collapse
|
389
|
Schelling JR, Abu Jawdeh BG. Regulation of cell survival by Na+/H+ exchanger-1. Am J Physiol Renal Physiol 2008; 295:F625-32. [PMID: 18480176 DOI: 10.1152/ajprenal.90212.2008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Na(+)/H(+) exchanger-1 (NHE1) is a ubiquitous plasma membrane Na(+)/H(+) exchanger typically associated with maintenance of intracellular volume and pH. In addition to the NHE1 role in electroneutral Na(+)/H(+) transport, in renal tubular epithelial cells in vitro the polybasic, juxtamembrane NHE1 cytosolic tail domain acts as a scaffold, by binding with ezrin/radixin/moesin (ERM) proteins and phosphatidylinositol 4,5-bisphosphate, which initiates formation of a signaling complex that culminates in Akt activation and opposition to initial apoptotic stress. With robust apoptotic stimuli renal tubular epithelial cell NHE1 is a caspase substrate, and proteolytic cleavage may permit progression to apoptotic cell death. In vivo, genetic or pharmacological NHE1 loss of function causes renal tubule epithelial cell apoptosis and renal dysfunction following streptozotocin-induced diabetes, ureteral obstruction, and adriamycin-induced podocyte toxicity. Taken together, substantial in vivo and in vitro data demonstrate that NHE1 regulates tubular epithelial cell survival. In contrast to connotations of NHE1 as an unimportant "housekeeping" protein, this review highlights that NHE1 activity is critical for countering tubular atrophy and chronic renal disease progression.
Collapse
Affiliation(s)
- Jeffrey R Schelling
- Rammelkamp Center for Education and Research, 2500 MetroHealth Drive, Cleveland, OH 44109-1998, USA.
| | | |
Collapse
|
390
|
Galluzzi L, Kepp O, Tajeddine N, Kroemer G. Disruption of the hexokinase-VDAC complex for tumor therapy. Oncogene 2008; 27:4633-5. [PMID: 18469866 DOI: 10.1038/onc.2008.114] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Unlike mitochondria from most normal tissues, cancer cell mitochondria demonstrate an association between the glycolytic enzyme hexokinase (HK) and the voltage-dependent anion channel (VDAC). This provides a therapeutic opportunity, as the association appears to protect tumor cells from mitochondrial outer membrane permeabilization (MOMP), an event that marks the point of no return in multiple pathways leading to cell death. In this issue of Oncogene, the plant hormone methyl jasmonate (MJ) is shown to disrupt the interaction between human HK and VDAC, causing the inhibition of glycolysis and the induction of MOMP. MJ has already been shown to have selective anticancer activity in preclinical studies, and this finding may stimulate the development of a novel class of small anticancer compounds that inhibit the HK-VDAC interaction.
Collapse
Affiliation(s)
- L Galluzzi
- INSERM, U848, 39 rue C. Desmoulins, Villejuif, France
| | | | | | | |
Collapse
|
391
|
Goldin N, Arzoine L, Heyfets A, Israelson A, Zaslavsky Z, Bravman T, Bronner V, Notcovich A, Shoshan-Barmatz V, Flescher E. Methyl jasmonate binds to and detaches mitochondria-bound hexokinase. Oncogene 2008; 27:4636-43. [PMID: 18408762 DOI: 10.1038/onc.2008.108] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cellular bio-energetic metabolism and mitochondria are recognized as potential targets for anticancer agents, due to the numerous relevant peculiarities cancer cells exhibit. Jasmonates are anticancer agents that interact directly with mitochondria. The aim of this study was to identify mitochondrial molecular targets of jasmonates. We report that jasmonates bind to hexokinase and detach it from the mitochondria and its mitochondrial anchor-the voltage-dependent anion channel (VDAC), as judged by hexokinase immunochemical and activity determinations, surface plasmon resonance analysis and planar lipid bilayer VDAC-activity analysis. Furthermore, the susceptibility of cancer cells and mitochondria to jasmonates is dependent on the expression of hexokinase, evaluated using hexokinase-overexpressing transfectants and its mitochondrial association. Many types of cancer cells exhibit overexpression of the key glycolytic enzyme, hexokinase, and its excessive binding to mitochondria. These characteristics are considered to play a pivotal role in cancer cell growth rate and survival. Thus, our findings provide an explanation for the selective effects of jasmonates on cancer cells. Most importantly, this is the first demonstration of a cytotoxic mechanism based on direct interaction between an anticancer agent and hexokinase. The proposed mechanism can serve to guide development of a new selective approach for cancer therapy.
Collapse
Affiliation(s)
- N Goldin
- Department of Human Microbiology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
392
|
Abstract
F-18-FDG PET and PET/CT are useful for staging, predicting the prognosis, and evaluating recurrence and treatment response in hepatocellular carcinomas (HCCs) and cholangiocarcinomas. Increased F-18-FDG uptake within tumors could be a surrogate marker of aggressive behavior and poor clinical outcome, despite high false-negative rates in detecting primary intrahepatic low-grade HCCs and periductal-infiltrating cholangiocarcinomas. Dualtracer PET or PET/CT using carbon-11-acetate and F-18-FDG will increase diagnostic performance in HCC.
Collapse
Affiliation(s)
- Jong Doo Lee
- Division of Nuclear Medicine, Department of Diagnostic Radiology, Yonsei University College of Medicine, 250 Seongsan-ro, Seodaemun-gu, Seoul 120-752, South Korea.
| | - Won Jun Kang
- Division of Nuclear Medicine, Department of Diagnostic Radiology, Yonsei University College of Medicine, 250 Seongsan-ro, Seodaemun-gu, Seoul 120-752, South Korea
| | - Mijin Yun
- Division of Nuclear Medicine, Department of Diagnostic Radiology, Yonsei University College of Medicine, 250 Seongsan-ro, Seodaemun-gu, Seoul 120-752, South Korea
| |
Collapse
|
393
|
Pedersen PL. Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers' most common phenotypes, the "Warburg Effect", i.e., elevated glycolysis in the presence of oxygen. J Bioenerg Biomembr 2008; 39:211-22. [PMID: 17879147 DOI: 10.1007/s10863-007-9094-x] [Citation(s) in RCA: 325] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As a new faculty member at The Johns Hopkins University, School of Medicine, the author began research on cancer in 1969 because this frequently fatal disease touched many whom he knew. He was intrigued with its viscous nature, the failure of all who studied it to find a cure, and also fascinated by the pioneering work of Otto Warburg, a biochemical legend and Nobel laureate. Warburg who died 1 year later in 1970 had shown in the 1920s that the most striking biochemical phenotype of cancers is their aberrant energy metabolism. Unlike normal tissues that derive most of their energy (ATP) by metabolizing the sugar glucose to carbon dioxide and water, a process that involves oxygen-dependent organelles called "mitochondria", Warburg showed that cancers frequently rely less on mitochondria and obtain as much as 50% of their ATP by metabolizing glucose directly to lactic acid, even in the presence of oxygen. This frequent phenotype of cancers became known as the "Warburg effect", and the author of this review strongly believed its understanding would facilitate the discovery of a cure. Following in the final footsteps of Warburg and caught in the midst of an unpleasant anti-Warburg, anti-metabolic era, the author and his students/collaborators began quietly to identify the key molecular events involved in the "Warburg effect". Here, the author describes via a series of sequential discoveries touching five decades how despite some impairment in the respiratory capacity of malignant tumors, that hexokinase 2 (HK-2), its mitochondrial receptor (VDAC), and the gene that encodes HK-2 (HK-2 gene) play the most pivotal and direct roles in the "Warburg effect". They discovered also that like a "Trojan horse" the simple lactic acid analog 3-bromopyruvate selectively enters the cells of cancerous animal tumors that exhibit the "Warburg effect" and quickly dissipates their energy (ATP) production factories (i.e., glycolysis and mitochondria) resulting in tumor destruction without harm to the animals.
Collapse
Affiliation(s)
- Peter L Pedersen
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205-2185, USA,
| |
Collapse
|
394
|
Chiara F, Castellaro D, Marin O, Petronilli V, Brusilow WS, Juhaszova M, Sollott SJ, Forte M, Bernardi P, Rasola A. Hexokinase II detachment from mitochondria triggers apoptosis through the permeability transition pore independent of voltage-dependent anion channels. PLoS One 2008; 3:e1852. [PMID: 18350175 PMCID: PMC2267038 DOI: 10.1371/journal.pone.0001852] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 02/21/2008] [Indexed: 11/17/2022] Open
Abstract
Type II hexokinase is overexpressed in most neoplastic cells, and it mainly localizes on the outer mitochondrial membrane. Hexokinase II dissociation from mitochondria triggers apoptosis. The prevailing model postulates that hexokinase II release from its mitochondrial interactor, the voltage-dependent anion channel, prompts outer mitochondrial membrane permeabilization and the ensuing release of apoptogenic proteins, and that these events are inhibited by growth factor signalling. Here we show that a hexokinase II N-terminal peptide selectively detaches hexokinase II from mitochondria and activates apoptosis. These events are abrogated by inhibiting two established permeability transition pore modulators, the adenine nucleotide translocator or cyclophilin D, or in cyclophilin D knock-out cells. Conversely, insulin stimulation or genetic ablation of the voltage-dependent anion channel do not affect cell death induction by the hexokinase II peptide. Therefore, hexokinase II detachment from mitochondria transduces a permeability transition pore opening signal that results in cell death and does not require the voltage-dependent anion channel. These findings have profound implications for our understanding of the pathways of outer mitochondrial membrane permeabilization and their inactivation in tumors.
Collapse
Affiliation(s)
- Federica Chiara
- CNR Institute of Neuroscience and Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
395
|
Young CD, Anderson SM. Sugar and fat - that's where it's at: metabolic changes in tumors. Breast Cancer Res 2008; 10:202. [PMID: 18304378 PMCID: PMC2374962 DOI: 10.1186/bcr1852] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Tumor cells exhibit an altered metabolism, characterized by increased glucose uptake and elevated glycolysis, which was first recognized by Otto Warburg 70 years ago. Warburg originally hypothesized that these metabolic changes reflected damage to mitochondrial oxidative phosphorylation. Although hypoxia and hypoxia inducible factor can induce transcriptional changes that stimulate glucose transport and glycolysis, it is clear that these changes can occur in cultured tumor or transformed cells cultured under normoxic conditions, and thus there must be genetic alterations independent of hypoxia that can stimulate aerobic glycolysis. In recent years it has become clear that loss of p53 and activation of Akt can induce all or part of the metabolic changes reflected in the Warburg effect. Likewise, changes in expression of lactate dehydrogenase and other glycolytic control enzymes can contribute to increased or altered glycolysis. It is also clear that changes in lipid biosynthesis occur in tumor cells to support increased membrane biosynthesis and perhaps the altered energy needs of the cells. Changes in fatty acid synthase, Spot 14, Akt, and DecR1 (2,4-dienoylcoenzyme A reductase) may underlie altered lipid metabolism in tumor cells and contribute to the ability of tumor cells to proliferate or metastasize. Although these advances provide new therapeutic targets that merit exploration, there remain critical questions to be explored at the mechanistic level; this work may yield insights into tumor cell biology and identify additional therapeutic targets.
Collapse
Affiliation(s)
- Christian D Young
- Department of Pathology and Program in Cancer Biology, University of Colorado Denver, Anschutz Medical Campus, East 17th Avenue, Aurora, Colorado 80045, USA
| | | |
Collapse
|
396
|
Shaik ZP, Fifer EK, Nowak G. Akt activation improves oxidative phosphorylation in renal proximal tubular cells following nephrotoxicant injury. Am J Physiol Renal Physiol 2008; 294:F423-32. [PMID: 18077599 PMCID: PMC2556301 DOI: 10.1152/ajprenal.00463.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously, we showed that protein kinase B (Akt) activation increases intracellular ATP levels and decreases necrosis in renal proximal tubular cells (RPTC) injured by the nephrotoxicant S-(1, 2-dichlorovinyl)-l-cysteine (DCVC) (Shaik ZP, Fifer EK, Nowak G. Am J Physiol Renal Physiol 292: F292-F303, 2007). This study examined the role of Akt in improving mitochondrial function in DCVC-injured RPTC. Our data show a novel observation that phosphorylated (active) Akt is localized in mitochondria of noninjured RPTC, both in mitoplasts and the mitochondrial outer membrane. Mitochondrial levels of active Akt decreased in nephrotoxicant-injured RPTC, and this decrease was associated with mitochondrial dysfunction. DCVC decreased basal, uncoupled, and state 3 respirations; ATP production; activities of complexes I, II, and III; the mitochondrial membrane potential (DeltaPsi(m)); and F(0)F(1)-ATPase activity. Expressing constitutively active Akt in DCVC-injured RPTC increased the levels of phosphorylated Akt in mitochondria, reduced the decreases in basal and uncoupled respirations, increased complex I-coupled state 3 respiration and ATP production, enhanced activities of complex I, complex III, and F(0)F(1)-ATPase, and improved DeltaPsi(m). In contrast, inhibiting Akt activation by expressing dominant negative (inactive) Akt or using 20 microM LY294002 exacerbated decreases in electron transport rate, state 3 respiration, ATP production, DeltaPsi(m), and activities of complex I, complex III, and F(0)F(1)-ATPase. In conclusion, our data show that Akt activation promotes mitochondrial respiration and ATP production in toxicant-injured RPTC by 1) improving integrity of the respiratory chain and maintaining activities of complex I and complex III, 2) reducing decreases in DeltaPsi(m), and 3) restoring F(0)F(1)-ATPase activity.
Collapse
Affiliation(s)
- Zabeena P Shaik
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | |
Collapse
|
397
|
Wang Z, Gardiner NJ, Fernyhough P. Blockade of hexokinase activity and binding to mitochondria inhibits neurite outgrowth in cultured adult rat sensory neurons. Neurosci Lett 2008; 434:6-11. [PMID: 18308470 DOI: 10.1016/j.neulet.2008.01.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 12/19/2007] [Accepted: 01/10/2008] [Indexed: 01/03/2023]
Abstract
Hexokinase is known as the first enzyme and rate-limiting step in glycolysis. The role of hexokinase activity and localization in regulating the rate of axonal regeneration was studied in cultured adult sensory neurons of dorsal root ganglia (DRG). Immunofluorescent staining of DRG demonstrated that small-medium neurons and satellite cells exhibited high levels of expression of hexokinase I. Large neurons had negative staining for hexokinase I. Intracellular localization and biochemical studies in cultured adult rat sensory neurons revealed that hexokinase I was almost exclusively found in the mitochondrial compartment. The hypothesis that neurotrophic factor dependent activation of Akt would regulate hexokinase association with the mitochondria was tested and quantitative Western blotting showed no effect of blockade of the phosphoinositide 3-kinase (PI 3-kinase)/Akt pathway using the inhibitor LY294002, indicating this interaction of hexokinase with mitochondria was not neurotrophic factor or Akt-dependent. Finally, pharmacological blockade of hexokinase activity and inhibition of localization to the mitochondrial compartment with hexokinase II VDAC binding domain (Hxk2VBD) peptide caused a significant inhibition of neurotrophic factor-directed axon outgrowth. The results support a key role for hexokinase activity and/or localization to the mitochondria in the regulation of neurite outgrowth in cultured adult sensory neurons.
Collapse
Affiliation(s)
- Zuocheng Wang
- Division of Neurodegenerative Disorders, St Boniface Research Centre, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
398
|
Rasola A, Bernardi P. The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis 2008; 12:815-33. [PMID: 17294078 DOI: 10.1007/s10495-007-0723-y] [Citation(s) in RCA: 393] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Current research on the mitochondrial permeability transition pore (PTP) and its role in cell death faces a paradox. Initially considered as an in vitro artifact of little pathophysiological relevance, in recent years the PTP has received considerable attention as a potential mechanism for the execution of cell death. The recent successful use of PTP desensitizers in several disease paradigms leaves little doubt about its relevance in pathophysiology; and emerging findings that link the PTP to key cellular signalling pathways are increasing the interest on the pore as a pharmacological target. Yet, recent genetic data have challenged popular views on the molecular nature of the PTP, and called into question many early conclusions about its structure. Here we review basic concepts about PTP structure, function and regulation within the framework of intracellular death signalling, and its role in disease pathogenesis.
Collapse
Affiliation(s)
- Andrea Rasola
- CNR Institute of Neuroscience and Department of Biomedical Sciences, University of Padova, Viale Giuseppe Colombo 3, I-35121 Padua, Italy.
| | | |
Collapse
|
399
|
Zorov DB, Isaev NK, Plotnikov EY, Zorova LD, Stelmashook EV, Vasileva AK, Arkhangelskaya AA, Khrjapenkova TG. The mitochondrion as janus bifrons. BIOCHEMISTRY (MOSCOW) 2008; 72:1115-26. [PMID: 18021069 DOI: 10.1134/s0006297907100094] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The signaling function of mitochondria is considered with a special emphasis on their role in the regulation of redox status of the cell, possibly determining a number of pathologies including cancer and aging. The review summarizes the transport role of mitochondria in energy supply to all cellular compartments (mitochondria as an electric cable in the cell), the role of mitochondria in plastic metabolism of the cell including synthesis of heme, steroids, iron-sulfur clusters, and reactive oxygen and nitrogen species. Mitochondria also play an important role in the Ca(2+)-signaling and the regulation of apoptotic cell death. Knowledge of mechanisms responsible for apoptotic cell death is important for the strategy for prevention of unwanted degradation of postmitotic cells such as cardiomyocytes and neurons.
Collapse
Affiliation(s)
- D B Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
400
|
Sarioglu H, Brandner S, Haberger M, Jacobsen C, Lichtmannegger J, Wormke M, Andrae U. Analysis of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced proteome changes in 5L rat hepatoma cells reveals novel targets of dioxin action including the mitochondrial apoptosis regulator VDAC2. Mol Cell Proteomics 2007; 7:394-410. [PMID: 17998243 DOI: 10.1074/mcp.m700258-mcp200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
As part of a comprehensive survey of the impact of the environmental pollutant and hepatocarcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the proteome of hepatic cells, we have performed a high resolution two-dimensional gel electrophoresis study on the rat hepatoma cell line 5L. 78 protein species corresponding to 73 different proteins were identified as up- or down-regulated following exposure of the cells to 1 nm TCDD for 8 h. There was an overlap of only nine proteins with those detected as altered by TCDD in our recent study using the non-gel-based isotope-coded protein label method (Sarioglu, H., Brandner, S., Jacobsen, C., Meindl, T., Schmidt, A., Kellermann, J., Lottspeich, F., and Andrae, U. (2006) Quantitative analysis of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced proteome alterations in 5L rat hepatoma cells using isotope-coded protein labels. Proteomics 6, 2407-2421) indicating a strong complementarity of the two approaches. For the majority of the altered proteins, an effect of TCDD on their abundance or posttranslational modifications had not been known before. Several observations suggest that a sizable fraction of the proteins with altered abundance was induced as an adaptive response to TCDD-induced oxidative stress that was demonstrated using the fluorescent probe dihydrorhodamine 123. A prominent group of these proteins comprised various enzymes for which there is evidence that their expression is regulated via the Keap1/Nrf2/antioxidant response element pathway. Other proteins included several involved in the maintenance of mitochondrial energy production and the regulation of the mitochondrial apoptotic pathway. A particularly intriguing finding was the up-regulation of the mitochondrial outer membrane pore protein, voltage-dependent anion channel-selective protein 2 (VDAC2), which was dependent on the presence of a functional aryl hydrocarbon receptor. The regulatability of VDAC2 protein abundance has not been described previously. In view of the recently discovered central role of VDAC2 as an inhibitor of the activation of the proapoptotic protein BAK and the mitochondrial apoptotic pathway, the present data point to a hitherto unrecognized mechanism by which TCDD may affect cellular homeostasis and survival.
Collapse
Affiliation(s)
- Hakan Sarioglu
- Institute of Toxicology, GSF-Research Center for Environment and Health, D-85764 Neuherberg, Germany
| | | | | | | | | | | | | |
Collapse
|