351
|
Ababou M, Dumaire V, Lécluse Y, Amor-Guéret M. Bloom's syndrome protein response to ultraviolet-C radiation and hydroxyurea-mediated DNA synthesis inhibition. Oncogene 2002; 21:2079-88. [PMID: 11960380 DOI: 10.1038/sj.onc.1205246] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2001] [Revised: 11/29/2001] [Accepted: 12/11/2001] [Indexed: 11/09/2022]
Abstract
Bloom's syndrome (BS) arises through mutations in both copies of the BLM gene that encodes a RecQ 3'-5' DNA helicase. BS patients are predisposed to developing all the cancers that affect the general population, and BS cells exhibit marked genetic instability. We showed recently that BLM protein contributes to the cellular response to ionizing radiation by acting as downstream ATM kinase effector. We now show that following UVC treatment, BLM-deficient cells exhibit a reduction in the number of replicative cells, a partial escape from the G2/M cell cycle checkpoint, and have an altered p21 response. Surprisingly, we found that hydroxyurea-treated BLM-deficient cells exhibit an intact S phase arrest, proper recovery from the S phase arrest, and intact p53 and p21 responses. We also show that the level of BLM falls sharply in response to UVC radiation. This UVC-induced reduction in BLM does not require a functional ATM gene and does not result from a subcellular compartment change. Finally, we demonstrate that exposure to UVC and hydroxyurea treatment both induce BLM phosphorylation via an ATM-independent pathway. These results are discussed in the light of their potential physiological significance with regard to the role of BLM in the cellular pathways activated by UVC radiation or HU-mediated inhibition of DNA synthesis.
Collapse
Affiliation(s)
- Mouna Ababou
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 1598, Institut Gustave Roussy, 39 Rue Camille Desmoulins, 94 805 Villejuif Cedex, France
| | | | | | | |
Collapse
|
352
|
Prabhu VP, Simons AM, Iwasaki H, Gai D, Simmons DT, Chen J. p53 blocks RuvAB promoted branch migration and modulates resolution of Holliday junctions by RuvC. J Mol Biol 2002; 316:1023-32. [PMID: 11884140 DOI: 10.1006/jmbi.2001.5408] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Holliday junction is the central intermediate in homologous recombination. Branch migration of this four-stranded DNA structure is a key step in genetic recombination that affects the extent of genetic information exchanged between two parental DNA molecules. Here, we have constructed synthetic Holliday junctions to test the effects of p53 on both spontaneous and RuvAB promoted branch migration as well as the effect on resolution of the junction by RuvC. We demonstrate that p53 blocks branch migration, and that cleavage of the Holliday junction by RuvC is modulated by p53. These findings suggest that p53 can block branch migration promoted by proteins such as RuvAB and modulate the cleavage by Holliday junction resolution proteins such as RuvC. These results suggest that p53 could have similar effects on eukaryotic homologues of RuvABC and thus have a direct role in recombinational DNA repair.
Collapse
Affiliation(s)
- Vidya P Prabhu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | | | |
Collapse
|
353
|
Dutertre S, Sekhri R, Tintignac LA, Onclercq-Delic R, Chatton B, Jaulin C, Amor-Guéret M. Dephosphorylation and subcellular compartment change of the mitotic Bloom's syndrome DNA helicase in response to ionizing radiation. J Biol Chem 2002; 277:6280-6. [PMID: 11741924 DOI: 10.1074/jbc.m105735200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bloom's syndrome is a rare human autosomal recessive disorder that combines a marked genetic instability and an increased risk of developing all types of cancers and which results from mutations in both copies of the BLM gene encoding a RecQ 3'-5' DNA helicase. We recently showed that BLM is phosphorylated and excluded from the nuclear matrix during mitosis. We now show that the phosphorylated mitotic BLM protein is associated with a 3'-5' DNA helicase activity and interacts with topoisomerase III alpha. We demonstrate that in mitosis-arrested cells, ionizing radiation and roscovitine treatment both result in the reversion of BLM phosphorylation, suggesting that BLM could be dephosphorylated through the inhibition of cdc2 kinase. This was supported further by our data showing that cdc2 kinase activity is inhibited in gamma-irradiated mitotic cells. Finally we show that after ionizing radiation, BLM is not involved in the establishment of the mitotic DNA damage checkpoint but is subjected to a subcellular compartment change. These findings lead us to propose that BLM may be phosphorylated during mitosis, probably through the cdc2 pathway, to form a pool of rapidly available active protein. Inhibition of cdc2 kinase after ionizing radiation would lead to BLM dephosphorylation and possibly to BLM recruitment to some specific sites for repair.
Collapse
Affiliation(s)
- Stéphanie Dutertre
- CNRS, Unité Mixte de Recherche 1598, Institut Gustave Roussy, 39 Rue Camille Desmoulins, Villejuif Cedex 94 805, France
| | | | | | | | | | | | | |
Collapse
|
354
|
Gregg AV, McGlynn P, Jaktaji RP, Lloyd RG. Direct rescue of stalled DNA replication forks via the combined action of PriA and RecG helicase activities. Mol Cell 2002; 9:241-51. [PMID: 11864599 DOI: 10.1016/s1097-2765(02)00455-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The PriA protein of Escherichia coli plays a key role in the rescue of replication forks stalled on the template DNA. One attractive model of rescue relies on homologous recombination to establish a new fork via PriA-mediated loading of the DnaB replicative helicase at D loop intermediates. We provide genetic and biochemical evidence that PriA helicase activity can also rescue a stalled fork by an alternative mechanism that requires manipulation of the fork before loading of DnaB on the lagging strand template. This direct rescue depends on RecG, which unwinds forks and Holliday junctions and interconverts these structures. The combined action of PriA and RecG helicase activities may thus avoid the potential dangers of rescue pathways involving fork breakage and recombination.
Collapse
Affiliation(s)
- Amanda V Gregg
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, United Kingdom
| | | | | | | |
Collapse
|
355
|
Imamura O, Fujita K, Itoh C, Takeda S, Furuichi Y, Matsumoto T. Werner and Bloom helicases are involved in DNA repair in a complementary fashion. Oncogene 2002; 21:954-63. [PMID: 11840341 DOI: 10.1038/sj.onc.1205143] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2001] [Revised: 10/23/2001] [Accepted: 10/31/2001] [Indexed: 11/08/2022]
Abstract
Werner syndrome (WS) is a recessive disorder characterized by premature senescence. Bloom syndrome (BS) is a recessive disorder characterized by short stature and immunodeficiency. A common characteristic of both syndromes is genomic instability leading to tumorigenesis. WRN and BLM genes causing WS and BS, encode proteins that are closely related to the RecQ helicase. We produced WRN-/-, BLM-/- and WRN(-/-)/BLM(-/-) mutants in the chicken B-cell line DT40. WRN-/- cells showed hypersensitivities to genotoxic agents, such as 4-nitroquinoline 1-oxide, camptothecin and methyl methanesulfonate. They also showed a threefold increase in targeted integration rate of exogenous DNAs, but not in sister chromatid exchange (SCE) frequency. BLM-/- cells showed hypersensitivities to the genotoxic agents as well as ultraviolet (UV) light, in addition to a 10-fold increase in targeted integration rate and an 11-fold increase in SCE frequency. In WRN(-/-)/BLM(-/-) cells, synergistically increased hypersensitivities to the genotoxic agents were observed whereas both SCE frequencies and targeted integration rates were partially diminished compared to the single mutants. Chromosomal aberrations were also synergistically increased in WRN(-/-)/BLM(-/-) cells when irradiated with UV light in late S to G(2) phases. These results suggest that both WRN and BLM may be involved in DNA repair in a complementary fashion.
Collapse
Affiliation(s)
- Osamu Imamura
- AGENE Research Institute, 200 Kajiwara, Kamakura, Kanagawa 247-0063, Japan
| | | | | | | | | | | |
Collapse
|
356
|
Limoli CL, Giedzinski E, Bonner WM, Cleaver JE. UV-induced replication arrest in the xeroderma pigmentosum variant leads to DNA double-strand breaks, gamma -H2AX formation, and Mre11 relocalization. Proc Natl Acad Sci U S A 2002; 99:233-8. [PMID: 11756691 PMCID: PMC117544 DOI: 10.1073/pnas.231611798] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2001] [Indexed: 01/08/2023] Open
Abstract
UV-induced replication arrest in the xeroderma pigmentosum variant (XPV) but not in normal cells leads to an accumulation of the Mre11/Rad50/Nbs1 complex and phosphorylated histone H2AX (gamma-H2AX) in large nuclear foci at sites of stalled replication forks. These complexes have been shown to signal the presence of DNA damage, in particular, double-strand breaks (DSBs). This finding suggests that UV damage leads to the formation of DSBs during the course of replication arrest. After UV irradiation, XPV cells showed a fluence-dependent increase in the yield of gamma-H2AX foci that paralleled the production of Mre11 foci. The percentage of foci-positive cells increased rapidly (10-15%) up to fluences of 10 J.(-2) before saturating at higher fluences. Frequencies of gamma-H2AX and Mre11 foci both reached maxima at 4 h after UV irradiation. This pattern contrasts sharply to the situation observed after x-irradiation, where peak levels of gamma-H2AX foci were found to precede the formation of Mre11 foci by several hours. The nuclear distributions of gamma-H2AX and Mre11 were found to colocalize spatially after UV- but not x-irradiation. UV-irradiated XPV cells showed a one-to-one correspondence between Mre11 and gamma-H2AX foci-positive cells. These results show that XPV cells develop DNA DSBs during the course of UV-induced replication arrest. These UV-induced foci occur in cells that are unable to carry out efficient bypass replication of UV damage and may contribute to further genetic variation.
Collapse
Affiliation(s)
- Charles L Limoli
- Department of Radiation Oncology, University of California, San Francisco, CA 94103-0806,USA.
| | | | | | | |
Collapse
|
357
|
Abstract
Inherited defects in DNA repair or the processing of DNA damage can lead to disease. Both autosomal recessive and autosomal dominant modes of inheritance are represented. The diseases as a group are characterized by genomic instability, with eventual appearance of cancer. The inherited defects frequently have a specific DNA damage sensitivity, with cells from affected individuals showing normal resistance to other genotoxic agents. The known defects are subtle alterations in transcription, replication, or recombination, with alternate pathways of processing permitting cellular viability. Distinct diseases may arise from different mutations in one gene; thus, clinical phenotypes may reflect the loss of different partial functions of a gene. The findings indicate that partial defects in transcription or recombination lead to genomic instability, cancer, and characteristic disease phenotypes.
Collapse
Affiliation(s)
- R E Moses
- Department of Molecular and Medical Genetics, Oregon Health Sciences University, Portland, Oregon 97201, USA.
| |
Collapse
|
358
|
Hofmann AF, Harris SD. The Aspergillus nidulans musN gene encodes a RecQ helicase that interacts with the PI-3K-related kinase UVSB. Genetics 2001; 159:1595-604. [PMID: 11779799 PMCID: PMC1461902 DOI: 10.1093/genetics/159.4.1595] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Aspergillus nidulans, the uvsB gene encodes a member of the PI-3K-related kinase family of proteins. We have recently shown that UVSB is required for multiple aspects of the DNA damage response. Since the musN227 mutation is capable of partially suppressing defects caused by uvsB mutations, we sought to understand the mechanism underlying the suppression by cloning the musN gene. Here, we report that musN encodes a RecQ helicase with homology to S. pombe rqh1, S. cerevisiae sgs1, and human BLM and WRN. Phenotypic characterization of musN mutant alleles reveals that MUSN participates in the response to a variety of genotoxic agents. The slow growth and genotoxin sensitivity of a musN null mutant can be partially suppressed by a defect in homologous recombination caused by the uvsC114 mutation. In addition, we present evidence suggesting that MUSN may promote recovery from the DNA damage response. We suggest that a block to recovery caused by the musN227 mutation, coupled with the modest accumulation of recombination intermediates, can suppress defects caused by uvsB mutations. Finally, we report that another RecQ helicase, ORQA, performs a function that partially overlaps that of MUSN.
Collapse
Affiliation(s)
- A F Hofmann
- Department of Microbiology, University of Connecticut Health Center, Farmington, Connecticut 06030-3205, USA
| | | |
Collapse
|
359
|
Boddy MN, Gaillard PHL, McDonald WH, Shanahan P, Yates JR, Russell P. Mus81-Eme1 are essential components of a Holliday junction resolvase. Cell 2001; 107:537-48. [PMID: 11719193 DOI: 10.1016/s0092-8674(01)00536-0] [Citation(s) in RCA: 425] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mus81, a fission yeast protein related to the XPF subunit of ERCC1-XPF nucleotide excision repair endonuclease, is essential for meiosis and important for coping with stalled replication forks. These processes require resolution of X-shaped DNA structures known as Holliday junctions. We report that Mus81 and an associated protein Eme1 are components of an endonuclease that resolves Holliday junctions into linear duplex products. Mus81 and Eme1 are required during meiosis at a late step of meiotic recombination. The mus81 meiotic defect is rescued by expression of a bacterial Holliday junction resolvase. These findings constitute strong evidence that Mus81 and Eme1 are subunits of a nuclear Holliday junction resolvase.
Collapse
Affiliation(s)
- M N Boddy
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
360
|
Chen XB, Melchionna R, Denis CM, Gaillard PHL, Blasina A, Van de Weyer I, Boddy MN, Russell P, Vialard J, McGowan CH. Human Mus81-associated endonuclease cleaves Holliday junctions in vitro. Mol Cell 2001; 8:1117-27. [PMID: 11741546 DOI: 10.1016/s1097-2765(01)00375-6] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mus81, a protein with homology to the XPF subunit of the ERCC1-XPF endonuclease, is important for replicational stress tolerance in both budding and fission yeast. Human Mus81 has associated endonuclease activity against structure-specific oligonucleotide substrates, including synthetic Holliday junctions. Mus81-associated endonuclease resolves Holliday junctions into linear duplexes by cutting across the junction exclusively on strands of like polarity. In addition, Mus81 protein abundance increases in cells following exposure to agents that block DNA replication. Taken together, these findings suggest a role for Mus81 in resolving Holliday junctions that arise when DNA replication is blocked by damage or by nucleotide depletion. Mus81 is not related by sequence to previously characterized Holliday junction resolving enzymes, and it has distinct enzymatic properties that suggest it uses a novel enzymatic strategy to cleave Holliday junctions.
Collapse
Affiliation(s)
- X B Chen
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
361
|
Pedrazzi G, Perrera C, Blaser H, Kuster P, Marra G, Davies SL, Ryu GH, Freire R, Hickson ID, Jiricny J, Stagljar I. Direct association of Bloom's syndrome gene product with the human mismatch repair protein MLH1. Nucleic Acids Res 2001; 29:4378-86. [PMID: 11691925 PMCID: PMC60193 DOI: 10.1093/nar/29.21.4378] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bloom's syndrome (BS) is a rare genetic disorder characterised by genomic instability and cancer susceptibility. BLM, the gene mutated in BS, encodes a member of the RecQ family of DNA helicases. Here, we identify hMLH1, which is involved in mismatch repair (MMR) and recombination, as a protein that directly interacts with BLM both in vivo and in vitro, and that the two proteins co-localise to discrete nuclear foci. The interaction between BLM and hMLH1 appears to have been evolutionarily conserved, as Sgs1p, the Saccharomyces cerevisiae homologue of BLM, interacts with yeast Mlh1p. However, cell extracts derived from BS patients show no obvious defects in MMR compared to wild-type- and BLM-complemented BS cell extracts. We conclude that the hMLH1-BLM interaction is not essential for post-replicative MMR, but, more likely, is required for some aspect of genetic recombination.
Collapse
Affiliation(s)
- G Pedrazzi
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
362
|
Kaliraman V, Mullen JR, Fricke WM, Bastin-Shanower SA, Brill SJ. Functional overlap between Sgs1-Top3 and the Mms4-Mus81 endonuclease. Genes Dev 2001; 15:2730-40. [PMID: 11641278 PMCID: PMC312806 DOI: 10.1101/gad.932201] [Citation(s) in RCA: 266] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The RecQ DNA helicases, human BLM and yeast Sgs1, form a complex with topoisomerase III (Top3) and are thought to act during DNA replication to restart forks that have paused due to DNA damage or topological stress. We have shown previously that yeast cells lacking SGS1 or TOP3 require MMS4 and MUS81 for viability. Here we show that Mms4 and Mus81 form a heterodimeric structure-specific endonuclease that cleaves branched DNA. Both subunits are required for optimal expression, substrate binding, and nuclease activity. Mms4 and Mus81 are conserved proteins related to the Rad1-Rad10 (XPF/ERCC1) endonuclease required for nucleotide excision repair (NER). However, the Mms4-Mus81 endonuclease is 25 times more active on branched duplex DNA and replication fork substrates than simple Y-forms, the preferred substrate for the NER complexes. We also present genetic data that indicate a novel role for Mms4-Mus81 in meiotic recombination. Our results suggest that stalled replication forks are substrates for Mms4-Mus81 cleavage-particularly in the absence of Sgs1 or BLM. Repair of this double-strand break (DSB) by homologous recombination may be responsible for the elevated levels of sister chromatid exchange (SCE) found in BLM(-/-) cells.
Collapse
Affiliation(s)
- V Kaliraman
- Department of Molecular Biology and Biochemistry Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
363
|
Abstract
The chromosome instability syndromes, ataxia telangiectasia (A-T), Fanconi anaemia (FA) and Bloom syndrome (BS) have been known for many years. More recently Nijmegen breakage syndrome (NBS) and ataxia telangiectasia-like disorder (ATLD) have been identified. A-T, ATLD and NBS form a group of disorders all of which show very similar cellular features that result from the consequences of increased sensitivity to ionizing radiation (IR). They also share some clinical features, particularly A-T and ATLD, and all show an immunodeficiency. A-T and NBS both show a predisposition to lymphoid tumours. Fanconi anaemia can be caused by mutations in eight different genes, although the majority of mutations are accounted for by FANCA and FANCC. The very rare Bloom syndrome is caused by mutation in a single gene, BLM. An important feature which all of these disorders have in common is that the genes identified are involved in aspects of recombination repair of DNA damage.
Collapse
Affiliation(s)
- A M Taylor
- CRC Institute for Cancer studies, University of Birmingham, Vincent Drive, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
364
|
Langland G, Kordich J, Creaney J, Goss KH, Lillard-Wetherell K, Bebenek K, Kunkel TA, Groden J. The Bloom's syndrome protein (BLM) interacts with MLH1 but is not required for DNA mismatch repair. J Biol Chem 2001; 276:30031-5. [PMID: 11325959 DOI: 10.1074/jbc.m009664200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bloom's syndrome (BS) is a rare autosomal recessive disorder characterized by pre- and postnatal growth deficiency, immunodeficiency, and a tremendous predisposition to a wide variety of cancers. Cells from BS individuals are characterized by a high incidence of chromosomal gaps and breaks, elevated sister chromatid exchange, quadriradial formations, and locus-specific mutations. BS is the consequence of mutations that lead to loss of function of BLM, a gene encoding a helicase with homology to the RecQ helicase family. To delineate the role of BLM in DNA replication, recombination, and repair we used a yeast two-hybrid screen to identify potential protein partners of the BLM helicase. The C terminus of BLM interacts directly with MLH1 in the yeast-two hybrid assay; far Western analysis and co-immunoprecipitations confirmed the interaction. Cell extracts deficient in BLM were competent for DNA mismatch repair. These data suggest that the BLM helicase and MLH1 function together in replication, recombination, or DNA repair events independent of single base mismatch repair.
Collapse
Affiliation(s)
- G Langland
- Department of Molecular Genetics, Biochemistry, and Microbiology and the Howard Hughes Medical Institute, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | | | | | |
Collapse
|
365
|
Solinger JA, Heyer WD. Rad54 protein stimulates the postsynaptic phase of Rad51 protein-mediated DNA strand exchange. Proc Natl Acad Sci U S A 2001; 98:8447-53. [PMID: 11459988 PMCID: PMC37456 DOI: 10.1073/pnas.121009898] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rad54 and Rad51 are important proteins for the repair of double-stranded DNA breaks by homologous recombination in eukaryotes. As previously shown, Rad51 protein forms nucleoprotein filaments on single-stranded DNA, and Rad54 protein directly interacts with such filaments to enhance synapsis, the homologous pairing with a double-stranded DNA partner. Here we demonstrate that Saccharomyces cerevisiae Rad54 protein has an additional role in the postsynaptic phase of DNA strand exchange by stimulating heteroduplex DNA extension of established joint molecules in Rad51/Rpa-mediated DNA strand exchange. This function depended on the ATPase activity of Rad54 protein and on specific protein:protein interactions between the yeast Rad54 and Rad51 proteins.
Collapse
Affiliation(s)
- J A Solinger
- Division of Biological Sciences, Section of Microbiology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
366
|
Vasquez KM, Marburger K, Intody Z, Wilson JH. Manipulating the mammalian genome by homologous recombination. Proc Natl Acad Sci U S A 2001; 98:8403-10. [PMID: 11459982 PMCID: PMC37450 DOI: 10.1073/pnas.111009698] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Gene targeting in mammalian cells has proven invaluable in biotechnology, in studies of gene structure and function, and in understanding chromosome dynamics. It also offers a potential tool for gene-therapeutic applications. Two limitations constrain the current technology: the low rate of homologous recombination in mammalian cells and the high rate of random (nontargeted) integration of the vector DNA. Here we consider possible ways to overcome these limitations within the framework of our present understanding of recombination mechanisms and machinery. Several studies suggest that transient alteration of the levels of recombination proteins, by overexpression or interference with expression, may be able to increase homologous recombination or decrease random integration, and we present a list of candidate genes. We consider potentially beneficial modifications to the vector DNA and discuss the effects of methods of DNA delivery on targeting efficiency. Finally, we present work showing that gene-specific DNA damage can stimulate local homologous recombination, and we discuss recent results with two general methodologies--chimeric nucleases and triplex-forming oligonucleotides--for stimulating recombination in cells.
Collapse
Affiliation(s)
- K M Vasquez
- Science Park Research Division, M. D. Anderson Cancer Center, Smithville, TX 78957, USA
| | | | | | | |
Collapse
|
367
|
Michel B, Flores MJ, Viguera E, Grompone G, Seigneur M, Bidnenko V. Rescue of arrested replication forks by homologous recombination. Proc Natl Acad Sci U S A 2001; 98:8181-8. [PMID: 11459951 PMCID: PMC37419 DOI: 10.1073/pnas.111008798] [Citation(s) in RCA: 230] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
DNA synthesis is an accurate and very processive phenomenon; nevertheless, replication fork progression on chromosomes can be impeded by DNA lesions, DNA secondary structures, or DNA-bound proteins. Elements interfering with the progression of replication forks have been reported to induce rearrangements and/or render homologous recombination essential for viability, in all organisms from bacteria to human. Arrested replication forks may be the target of nucleases, thereby providing a substrate for double-strand break repair enzyme. For example in bacteria, direct fork breakage was proposed to occur at replication forks blocked by a bona fide replication terminator sequence, a specific site that arrests bacterial chromosome replication. Alternatively, an arrested replication fork may be transformed into a recombination substrate by reversal of the forked structures. In reversed forks, the last duplicated portions of the template strands reanneal, allowing the newly synthesized strands to pair. In bacteria, this reaction was proposed to occur in replication mutants, in which fork arrest is caused by a defect in a replication protein, and in UV irradiated cells. Recent studies suggest that it may also occur in eukaryote organisms. We will review here observations that link replication hindrance with DNA rearrangements and the possible underlying molecular processes.
Collapse
Affiliation(s)
- B Michel
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy en Josas Cedex, France.
| | | | | | | | | | | |
Collapse
|
368
|
Yankiwski V, Noonan JP, Neff NF. The C-terminal domain of the Bloom syndrome DNA helicase is essential for genomic stability. BMC Cell Biol 2001; 2:11. [PMID: 11472631 PMCID: PMC35277 DOI: 10.1186/1471-2121-2-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2001] [Accepted: 07/02/2001] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bloom syndrome is a rare cancer-prone disorder in which the cells of affected persons have a high frequency of somatic mutation and genomic instability. Bloom syndrome cells have a distinctive high frequency of sister chromatid exchange and quadriradial formation. BLM, the protein altered in BS, is a member of the RecQ DNA helicase family, whose members share an average of 40% identity in the helicase domain and have divergent N-terminal and C-terminal flanking regions of variable lengths. The BLM DNA helicase has been shown to localize to the ND10 (nuclear domain 10) or PML (promyelocytic leukemia) nuclear bodies, where it associates with TOPIIIalpha, and to the nucleolus. RESULTS This report demonstrates that the N-terminal domain of BLM is responsible for localization of the protein to the nuclear bodies, while the C-terminal domain directs the protein to the nucleolus. Deletions of the N-terminal domain of BLM have little effect on sister chromatid exchange frequency and chromosome stability as compared to helicase and C-terminal mutations which can increase SCE frequency and chromosome abnormalities. CONCLUSION The helicase activity and the C-terminal domain of BLM are critical for maintaining genomic stability as measured by the sister chromatid exchange assay. The localization of BLM into the nucleolus by the C-terminal domain appears to be more important to genomic stability than localization in the nuclear bodies.
Collapse
Affiliation(s)
- Victor Yankiwski
- Laboratory of Molecular Genetics, New York Blood Center, 310 East 67th Street, New York, NY 10021, USA
- Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark, NJ 07107, USA
| | - James P Noonan
- Laboratory of Molecular Genetics, New York Blood Center, 310 East 67th Street, New York, NY 10021, USA
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Norma F Neff
- Laboratory of Molecular Genetics, New York Blood Center, 310 East 67th Street, New York, NY 10021, USA
| |
Collapse
|
369
|
Turley H, Wu L, Canamero M, Gatter KC, Hickson ID. The distribution and expression of the Bloom's syndrome gene product in normal and neoplastic human cells. Br J Cancer 2001; 85:261-5. [PMID: 11461087 PMCID: PMC2364038 DOI: 10.1054/bjoc.2001.1874] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bloom's syndrome (BS) is an autosomal recessive disorder associated with a predisposition to cancers of all types. Cells from BS sufferers display extreme genomic instability. The BS gene product, BLM, is a 159 kDa DNA helicase enzyme belonging to the RecQ family. Here, we have analysed the distribution of BLM in normal and tumour tissues from humans using a recently characterized, specific monoclonal antibody. BLM was found to be localized to nuclei in normal lymphoid tissues, but was largely absent from other normal tissues analysed with the exception of the proliferating compartment of certain tissues. In contrast, expression of BLM was observed in a variety of tumours of both lymphoid and epithelial origin. A strong correlation was observed between expression of BLM and the proliferative status of cells, as determined by staining for markers of cell proliferation (PCNA and Ki67). We conclude that BLM is a proliferation marker in normal and neoplastic cells in vivo, and, as a consequence, is expressed at a higher level in tumours than in normal quiescent tissues.
Collapse
Affiliation(s)
- H Turley
- Department of Cellular Science, University of Oxford, John Radcliffe Hospital, UK
| | | | | | | | | |
Collapse
|
370
|
Mohaghegh P, Karow JK, Brosh RM, Bohr VA, Hickson ID. The Bloom's and Werner's syndrome proteins are DNA structure-specific helicases. Nucleic Acids Res 2001; 29:2843-9. [PMID: 11433031 PMCID: PMC55766 DOI: 10.1093/nar/29.13.2843] [Citation(s) in RCA: 467] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BLM and WRN, the products of the Bloom's and Werner's syndrome genes, are members of the RecQ family of DNA helicases. Although both have been shown previously to unwind simple, partial duplex DNA substrates with 3'-->5' polarity, little is known about the structural features of DNA that determine the substrate specificities of these enzymes. We have compared the substrate specificities of the BLM and WRN proteins using a variety of partial duplex DNA molecules, which are based upon a common core nucleotide sequence. We show that neither BLM nor WRN is capable of unwinding duplex DNA from a blunt-ended terminus or from an internal nick. However, both enzymes efficiently unwind the same blunt-ended duplex containing a centrally located 12 nt single-stranded 'bubble', as well as a synthetic X-structure (a model for the Holliday junction recombination intermediate) in which each 'arm' of the 4-way junction is blunt-ended. Surprisingly, a 3'-tailed duplex, a standard substrate for 3'-->5' helicases, is unwound much less efficiently by BLM and WRN than are the bubble and X-structure substrates. These data show conclusively that a single-stranded 3'-tail is not a structural requirement for unwinding of standard B-form DNA by these helicases. BLM and WRN also both unwind a variety of different forms of G-quadruplex DNA, a structure that can form at guanine-rich sequences present at several genomic loci. Our data indicate that BLM and WRN are atypical helicases that are highly DNA structure specific and have similar substrate specificities. We interpret these data in the light of the genomic instability and hyper-recombination characteristics of cells from individuals with Bloom's or Werner's syndrome.
Collapse
Affiliation(s)
- P Mohaghegh
- Imperial Cancer Research Fund Laboratories, University of Oxford, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | | | | | | | |
Collapse
|
371
|
Wu L, Davies SL, Levitt NC, Hickson ID. Potential role for the BLM helicase in recombinational repair via a conserved interaction with RAD51. J Biol Chem 2001; 276:19375-81. [PMID: 11278509 DOI: 10.1074/jbc.m009471200] [Citation(s) in RCA: 233] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bloom's syndrome (BS) is an autosomal recessive disorder that predisposes individuals to a wide range of cancers. The gene mutated in BS, BLM, encodes a member of the RecQ family of DNA helicases. The precise role played by these enzymes in the cell remains to be determined. However, genome-wide hyper-recombination is a feature of many RecQ helicase-deficient cells. In eukaryotes, a central step in homologous recombination is catalyzed by the RAD51 protein. In response to agents that induce DNA double-strand breaks, RAD51 accumulates in nuclear foci that are thought to correspond to sites of recombinational repair. Here, we report that purified BLM and human RAD51 interact in vitro and in vivo, and that residues in the N- and C-terminal domains of BLM can independently mediate this interaction. Consistent with these observations, BLM localizes to a subset of RAD51 nuclear foci in normal human cells. Moreover, the number of BLM foci and the extent to which BLM and RAD51 foci co-localize increase in response to ionizing radiation. Nevertheless, the formation of RAD51 foci does not require functional BLM. Indeed, in untreated BS cells, an abnormally high proportion of the cells contain RAD51 nuclear foci. Exogenous expression of BLM markedly reduces the fraction of cells containing RAD51 foci. The interaction between BLM and RAD51 appears to have been evolutionarily conserved since the C-terminal domain of Sgs1, the Saccharomyces cerevisiae homologue of BLM, interacts with yeast Rad51. Furthermore, genetic analysis reveals that the SGS1 and RAD51 genes are epistatic indicating that they operate in a common pathway. Potential roles for BLM in the RAD51 recombinational repair pathway are discussed.
Collapse
Affiliation(s)
- L Wu
- Imperial Cancer Research Fund Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | | | | | | |
Collapse
|
372
|
Nakagawa T, Flores-Rozas H, Kolodner RD. The MER3 helicase involved in meiotic crossing over is stimulated by single-stranded DNA-binding proteins and unwinds DNA in the 3' to 5' direction. J Biol Chem 2001; 276:31487-93. [PMID: 11376001 PMCID: PMC3635102 DOI: 10.1074/jbc.m104003200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The meiosis-specific MER3 protein of Saccharomyces cerevisiae is required for crossing over, which ensures faithful segregation of homologous chromosomes at the first meiotic division. The predicted sequence of the MER3 protein contains the seven motifs characteristic of the DExH-box type of DNA/RNA helicases. The purified MER3 protein is a DNA helicase, which can displace a 50-nucleotide fragment annealed to a single-stranded circular DNA. MER3 was found to have ATPase activity, which was stimulated either by single- or double-stranded DNA. The turnover rate, k(cat), of ATP hydrolysis was approximately 500/min in the presence of either DNA. MER3 was able to efficiently displace relatively long 631-nucleotide fragments from single-stranded circular DNA only in the presence of the S. cerevisiae single-stranded DNA-binding protein, RPA (replication protein A). It appears that RPA inhibits re-annealing of the single-stranded products of the MER3 helicase. The MER3 helicase was found to unwind DNA in the 3' to 5' direction relative to single-stranded regions in the DNA substrates. Possible roles for the MER3 helicase in meiotic crossing over are discussed.
Collapse
Affiliation(s)
| | | | - Richard D. Kolodner
- To whom correspondence should be addressed: Ludwig Institute for Cancer Research, University of California San Diego School of Medicine, CMME 3080, 9500 Gilman Dr., La Jolla, CA 92093-0660. Tel.: 858-534-7804; Fax: 858-534-7750;
| |
Collapse
|
373
|
Bénard M, Maric C, Pierron G. DNA replication-dependent formation of joint DNA molecules in Physarum polycephalum. Mol Cell 2001; 7:971-80. [PMID: 11389844 DOI: 10.1016/s1097-2765(01)00237-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two-dimensional neutral/neutral agarose gel electrophoresis is used extensively to localize replication origins. This method resolves DNA structures containing replication forks. It also detects X-shaped recombination intermediates in meiotic cells, in the form of a typical vertical spike. Intriguingly, such a spike of joint DNA molecules is often detectable in replicating DNA from mitotic cells. Here, we used naturally synchronous DNA samples from Physarum polycephalum to demonstrate that postreplicative, DNA replication-dependent X-shaped DNA molecules are formed between sister chromatids. These molecules have physical properties reminiscent of Holliday junctions. Our results demonstrate frequent interactions between sister chromatids during a normal cell cycle and suggest a novel phase during DNA replication consisting of transient, joint DNA molecules formed on newly replicated DNA.
Collapse
Affiliation(s)
- M Bénard
- Institut André Lwoff, UPR-1983, Laboratoire Organisation Fonctionnelle du Noyau, 94801 Villejuif, France
| | | | | |
Collapse
|
374
|
Affiliation(s)
- L Wu
- Imperial Cancer Research Fund Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | |
Collapse
|
375
|
Arnaudeau C, Lundin C, Helleday T. DNA double-strand breaks associated with replication forks are predominantly repaired by homologous recombination involving an exchange mechanism in mammalian cells. J Mol Biol 2001; 307:1235-45. [PMID: 11292338 DOI: 10.1006/jmbi.2001.4564] [Citation(s) in RCA: 315] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DNA double-strand breaks (DSB) represent a major disruption in the integrity of the genome. DSB can be generated when a replication fork encounters a DNA lesion. Recombinational repair is known to resolve such replication fork-associated DSB, but the molecular mechanism of this repair process is poorly understood in mammalian cells. In the present study, we investigated the molecular mechanism by which recombination resolves camptothecin (CPT)-induced DSB at DNA replication forks. The frequency of homologous recombination (HR) was measured using V79/SPD8 cells which contain a duplication in the endogenous hprt gene that is resolved by HR. We demonstrate that DSB associated with replication forks induce HR at the hprt gene in early S phase. Further analysis revealed that these HR events involve an exchange mechanism. Both the irs1SF and V3-3 cell lines, which are deficient in HR and non-homologous end joining (NHEJ), respectively, were found to be more sensitive than wild-type cells to DSB associated with replication forks. The irs1SF cell line was more sensitive in this respect than V3-3 cells, an observation consistent with the hypothesis that DSB associated with replication forks are repaired primarily by HR. The frequency of formation of DSB associated with replication forks was not affected in HR and NHEJ deficient cells, indicating that the loss of repair, rather than the formation of DSB associated with replication forks is responsible for the increased sensitivity of the mutant strains. We propose that the presence of DSB associated with replication forks rapidly induces HR via an exchange mechanism and that HR plays a more prominent role in the repair of such DSB than does NHEJ.
Collapse
Affiliation(s)
- C Arnaudeau
- Department of Genetic and Cellular Toxicology, Wallenberg Laboratory, Stockholm University, Stockholm, S-106 91, Sweden
| | | | | |
Collapse
|
376
|
Kusano K, Johnson-Schlitz DM, Engels WR. Sterility of Drosophila with mutations in the Bloom syndrome gene--complementation by Ku70. Science 2001; 291:2600-2. [PMID: 11283371 DOI: 10.1126/science.291.5513.2600] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Drosophila Dmblm locus is a homolog of the human Bloom syndrome gene, which encodes a helicase of the RECQ family. We show that Dmblm is identical to mus309, a locus originally identified in a mutagen-sensitivity screen. One mus309 allele, which carries a stop codon between two of the helicase motifs, causes partial male sterility and complete female sterility. Mutant males produce an excess of XY sperm and nullo sperm, consistent with a high frequency of nondisjunction and/or chromosome loss. These phenotypes of mus309 suggest that Dmblm functions in DNA double-strand break repair. The mutant Dmblm phenotypes were partially rescued by an extra copy of the DNA repair gene Ku70, indicating that the two genes functionally interact in vivo.
Collapse
Affiliation(s)
- K Kusano
- Laboratory of Genetics, University of Wisconsin- Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
377
|
Fricke WM, Kaliraman V, Brill SJ. Mapping the DNA topoisomerase III binding domain of the Sgs1 DNA helicase. J Biol Chem 2001; 276:8848-55. [PMID: 11124263 PMCID: PMC2818744 DOI: 10.1074/jbc.m009719200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Several members of the RecQ family of DNA helicases are known to interact with DNA topoisomerase III (Top3). Here we show that the Saccharomyces cerevisiae Sgs1 and Top3 proteins physically interact in cell extracts and bind directly in vitro. Sgs1 and Top3 proteins coimmunoprecipitate from cell extracts under stringent conditions, indicating that Sgs1 and Top3 are present in a stable complex. The domain of Sgs1 which interacts with Top3 was identified by expressing Sgs1 truncations in yeast. The results indicate that the NH(2)-terminal 158 amino acids of Sgs1 are sufficient for the high affinity interaction between Sgs1 and Top3. In vitro assays using purified Top3 and NH(2)-terminal Sgs1 fragments demonstrate that at least part of the interaction is through direct protein-protein interactions with these 158 amino acids. Consistent with these physical data, we find that mutant phenotypes caused by a point mutation or small deletions in the Sgs1 NH(2) terminus can be suppressed by Top3 overexpression. We conclude that Sgs1 and Top3 form a tight complex in vivo and that the first 158 amino acids of Sgs1 are necessary and sufficient for this interaction. Thus, a primary role of the Sgs1 amino terminus is to mediate the Top3 interaction.
Collapse
Affiliation(s)
- W M Fricke
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08855, USA.
| | | | | |
Collapse
|
378
|
Cohen H, Sinclair DA. Recombination-mediated lengthening of terminal telomeric repeats requires the Sgs1 DNA helicase. Proc Natl Acad Sci U S A 2001; 98:3174-9. [PMID: 11248051 PMCID: PMC30626 DOI: 10.1073/pnas.061579598] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2000] [Indexed: 11/18/2022] Open
Abstract
The Saccharomyces cerevisiae SGS1 gene encodes a RecQ-like DNA helicase, human homologues of which are implicated in the genetic instability disorders, Bloom syndrome (BS), Rothmund-Thomson syndrome (RTS), and Werner syndrome (WS). Telomerase-negative yeast cells can recover from senescence via two recombinational telomere elongation pathways. The "type I" pathway generates telomeres with large blocks of telomeric and subtelomeric sequences and short terminal repeat tracts. The "type II" pathway generates telomeres with extremely long heterogeneous terminal repeat tracts, reminiscent of the long telomeres observed in telomerase-deficient human tumors and tumor-derived cell lines. Here, we report that telomerase-negative (est2) yeast cells lacking SGS1 senesced more rapidly, experienced a higher rate of telomere erosion, and were delayed in the generation of survivors. The est2 sgs1 survivors that were generated grew poorly, arrested in G(2)/M and possessed exclusively type I telomeres, implying that SGS1 is critical for the type II pathway. The mouse WS gene suppressed the slow growth and G(2)/M arrest phenotype of est2 sgs1 survivors, arguing that the telomeric function of SGS1 is conserved. Reintroduction of SGS1 into est2 sgs1 survivors restored growth rate and extended terminal tracts by approximately 300 bp. Both phenotypes were absolutely dependent on Sgs1 helicase activity. Introduction of an sgs1 carboxyl-terminal truncation allele with helicase activity restored growth rate without extending telomeres in most cases, demonstrating that type II telomeres are not necessary for normal growth in the absence of telomerase.
Collapse
Affiliation(s)
- H Cohen
- Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
379
|
Imamura O, Fujita K, Shimamoto A, Tanabe H, Takeda S, Furuichi Y, Matsumoto T. Bloom helicase is involved in DNA surveillance in early S phase in vertebrate cells. Oncogene 2001; 20:1143-51. [PMID: 11313858 DOI: 10.1038/sj.onc.1204195] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2000] [Revised: 12/12/2000] [Accepted: 12/19/2000] [Indexed: 11/09/2022]
Abstract
Bloom syndrome (BS) is a recessive human genetic disorder characterized by short stature, immunodeficiency and an elevated risk of malignancy. The gene mutated in BS, BLM, encodes a RecQ-type DNA helicase. BS cells have mutator phenotypes such as hyper-recombination, chromosome instability and an increased frequency of sister chromatid exchange (SCE). To define the primary role of BLM, we generated BLM(-/-) mutants of the chicken B-cell line DT40. In addition to characteristics of BLM(-/-) cells reported previously by the other group, they are hypersensitive to genotoxic agents such as etoposide, bleomycin and 4-nitroquinoline-1-oxide and irradiation with the short wave length of UV (UVC) light, whereas they exhibit normal sensitivity to X-ray irradiation and hydroxyurea. UVC irradiation to BLM(-/-) cells during G(1) to early S phase caused chromosomal instability such as chromatid breaks and chromosomal quadriradials, leading to eventual cell death. These results suggest that BLM is involved in surveillance of base abnormalities in genomic DNA that may be encountered by replication forks in early S phase. Such surveillance would maintain genomic stability in vertebrate cells, resulting in the prevention of cellular tumorigenesis.
Collapse
Affiliation(s)
- O Imamura
- AGENE Research Institute, 200 Kajiwara, Kamakura, Kanagawa 247-0063, Japan
| | | | | | | | | | | | | |
Collapse
|
380
|
Brosh RM, Majumdar A, Desai S, Hickson ID, Bohr VA, Seidman MM. Unwinding of a DNA triple helix by the Werner and Bloom syndrome helicases. J Biol Chem 2001; 276:3024-30. [PMID: 11110789 DOI: 10.1074/jbc.m006784200] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bloom syndrome and Werner syndrome are genome instability disorders, which result from mutations in two different genes encoding helicases. Both enzymes are members of the RecQ family of helicases, have a 3' --> 5' polarity, and require a 3' single strand tail. In addition to their activity in unwinding duplex substrates, recent studies show that the two enzymes are able to unwind G2 and G4 tetraplexes, prompting speculation that failure to resolve these structures in Bloom syndrome and Werner syndrome cells may contribute to genome instability. The triple helix is another alternate DNA structure that can be formed by sequences that are widely distributed throughout the human genome. Here we show that purified Bloom and Werner helicases can unwind a DNA triple helix. The reactions are dependent on nucleoside triphosphate hydrolysis and require a free 3' tail attached to the third strand. The two enzymes unwound triplexes without requirement for a duplex extension that would form a fork at the junction of the tail and the triplex. In contrast, a duplex formed by the third strand and a complement to the triplex region was a poor substrate for both enzymes. However, the same duplex was readily unwound when a noncomplementary 5' tail was added to form a forked structure. It seems likely that structural features of the triplex mimic those of a fork and thus support efficient unwinding by the two helicases.
Collapse
Affiliation(s)
- R M Brosh
- Laboratory of Molecular Genetics, NIA, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | |
Collapse
|
381
|
Flores MJ, Bierne H, Ehrlich S, Michel B. Impairment of lagging strand synthesis triggers the formation of a RuvABC substrate at replication forks. EMBO J 2001; 20:619-29. [PMID: 11157768 PMCID: PMC133471 DOI: 10.1093/emboj/20.3.619] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The holD gene codes for the psi subunit of the Escherichia coli DNA polymerase III holoenzyme, a component of the gamma complex clamp loader. A holD mutant was isolated for the first time in a screen for mutations that increase the frequency of tandem repeat deletions. In contrast to tandem repeat deletions in wild-type strains, deletion events stimulated by the holD mutation require RecA. They do not require RecF, and hence do not result from the recombinational repair of gaps, arguing against uncoupling of the leading and lagging strand polymerases in the holD mutant. The holD recBC combination of mutations is lethal and holD recBts recCts strains suffer DNA double-strand breaks (DSBs) at restrictive temperature. DSBs require the presence of the Holliday junction-specific enzymes RuvABC and are prevented in the presence of RecBCD. We propose that impairment of replication due to the holD mutation causes the arrest of the entire replisome; consequently, Holliday junctions are formed by replication fork reversal, and unequal crossing over during RecA- and RecBCD-mediated re-incorporation of reversed forks causes the hyper-recombination phenotype.
Collapse
Affiliation(s)
| | - Hélène Bierne
- Génétique Microbienne, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy en Josas Cedex, France
Present address: Unité des Interaction Bactéries Cellules, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France Corresponding author e-mail:
| | | | - Bénédicte Michel
- Génétique Microbienne, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy en Josas Cedex, France
Present address: Unité des Interaction Bactéries Cellules, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France Corresponding author e-mail:
| |
Collapse
|
382
|
Abstract
The MCM2-7 complex is essential for both the initiation and elongation phases of eukaryotic chromosome replication. There is some evidence that MCM2-7 proteins may act as a DNA helicase; at the same time, a variety of other DNA helicases have also been implicated in the replication of eukaryotic chromosomes.
Collapse
Affiliation(s)
- K Labib
- Chromosome Replication Laboratory, ICRF Clare Hall Laboratories, Blanche Lane, South Mimms, EN6 3LD, Hertfordshire,
| | | |
Collapse
|
383
|
Constantinou A, Davies AA, West SC. Branch migration and Holliday junction resolution catalyzed by activities from mammalian cells. Cell 2001; 104:259-68. [PMID: 11207366 DOI: 10.1016/s0092-8674(01)00210-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
During homologous recombination, DNA strand exchange leads to Holliday junction formation. The movement, or branch migration, of this junction along DNA extends the length of the heteroduplex joint. In prokaryotes, branch migration and Holliday junction resolution are catalyzed by the RuvA and RuvB proteins, which form a complex with RuvC resolvase to form a "resolvasome". Mammalian cell-free extracts have now been fractionated to reveal analogous activities. An ATP-dependent branch migration activity, which migrates junctions through >2700 bp, cofractionates with the Holliday junction resolvase during several chromatographic steps. Together, the two activities promote concerted branch migration/resolution reactions similar to those catalyzed by E. coli RuvABC, highlighting the preservation of this essential pathway in recombination and DNA repair from prokaryotes to mammals.
Collapse
Affiliation(s)
- A Constantinou
- Imperial Cancer Research Fund, Clare Hall Laboratories, Blanche Lane, South Mimms, EN6 3LD, Hertfordshire, United Kingdom
| | | | | |
Collapse
|
384
|
Huang P, Pryde FE, Lester D, Maddison RL, Borts RH, Hickson ID, Louis EJ. SGS1 is required for telomere elongation in the absence of telomerase. Curr Biol 2001; 11:125-9. [PMID: 11231130 DOI: 10.1016/s0960-9822(01)00021-5] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In S. cerevisiae, mutations in genes that encode telomerase components, such as the genes EST1, EST2, EST3, and TLC1, result in the loss of telomerase activity in vivo. Two telomerase-independent mechanisms can overcome the resulting senescence. Type I survival is characterized by amplification of the subtelomeric Y' elements with a short telomere repeat tract at the terminus. Type II survivors arise through the abrupt addition of long tracts of telomere repeats. Both mechanisms are dependent on RAD52 and on either RAD50 or RAD51. We show here that the telomere elongation pathway in yeast (type II) is dependent on SGS1, the yeast homolog of the gene products of Werner's (WRN) and Bloom's (BLM) syndromes. Survival in the absence of SGS1 and EST2 is dependent upon RAD52 and RAD51 but not RAD50. We propose that the RecQ family helicases are required for processing a DNA structure specific to eroding telomeres.
Collapse
Affiliation(s)
- P Huang
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
385
|
Mullen JR, Kaliraman V, Ibrahim SS, Brill SJ. Requirement for three novel protein complexes in the absence of the Sgs1 DNA helicase in Saccharomyces cerevisiae. Genetics 2001; 157:103-18. [PMID: 11139495 PMCID: PMC1461486 DOI: 10.1093/genetics/157.1.103] [Citation(s) in RCA: 336] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Saccharomyces cerevisiae Sgs1 protein is a member of the RecQ family of DNA helicases and is required for genome stability, but not cell viability. To identify proteins that function in the absence of Sgs1, a synthetic-lethal screen was performed. We obtained mutations in six complementation groups that we refer to as SLX genes. Most of the SLX genes encode uncharacterized open reading frames that are conserved in other species. None of these genes is required for viability and all SLX null mutations are synthetically lethal with mutations in TOP3, encoding the SGS1-interacting DNA topoisomerase. Analysis of the null mutants identified a pair of genes in each of three phenotypic classes. Mutations in MMS4 (SLX2) and SLX3 generate identical phenotypes, including weak UV and strong MMS hypersensitivity, complete loss of sporulation, and synthetic growth defects with mutations in TOP1. Mms4 and Slx3 proteins coimmunoprecipitate from cell extracts, suggesting that they function in a complex. Mutations in SLX5 and SLX8 generate hydroxyurea sensitivity, reduced sporulation efficiency, and a slow-growth phenotype characterized by heterogeneous colony morphology. The Slx5 and Slx8 proteins contain RING finger domains and coimmunoprecipitate from cell extracts. The SLX1 and SLX4 genes are required for viability in the presence of an sgs1 temperature-sensitive allele at the restrictive temperature and Slx1 and Slx4 proteins are similarly associated in cell extracts. We propose that the MMS4/SLX3, SLX5/8, and SLX1/4 gene pairs encode heterodimeric complexes and speculate that these complexes are required to resolve recombination intermediates that arise in response to DNA damage, during meiosis, and in the absence of SGS1/TOP3.
Collapse
Affiliation(s)
- J R Mullen
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08855, USA
| | | | | | | |
Collapse
|
386
|
Abstract
The S-phase DNA damage checkpoint seems to provide a twist on the checkpoint theme. Instead of delaying replication and allowing repair as a consequence, it may activate repair and delay replication as a consequence.
Collapse
Affiliation(s)
- N Rhind
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
387
|
Scully R, Puget N, Vlasakova K. DNA polymerase stalling, sister chromatid recombination and the BRCA genes. Oncogene 2000; 19:6176-83. [PMID: 11156531 DOI: 10.1038/sj.onc.1203971] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Heritable predisposition to breast and/or ovarian cancer is determined, in part, by germline mutation affecting one of two tumor suppressor genes, BRCA1 and BRCA2 (Miki et al., 1994; Wooster et al., 1995). These genes are required for the maintenance of genomic integrity and for control of homologous recombination in somatic and meiotic cells. Here, we explore the hypothesis that a major role of the BRCA gene products in the somatic DNA damage response centers upon the control of recombination between sister chromatids during S phase. By analogy with model organisms, we suggest that stalling of a mammalian DNA polymerase complex by its encounter with abnormal DNA structure calls forth a series of responses that collaborate to enforce appropriate recombinational outcomes, and to suppress inappropriate or 'illegitimate' recombination.
Collapse
Affiliation(s)
- R Scully
- Dana Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
388
|
Ababou M, Dutertre S, Lécluse Y, Onclercq R, Chatton B, Amor-Guéret M. ATM-dependent phosphorylation and accumulation of endogenous BLM protein in response to ionizing radiation. Oncogene 2000; 19:5955-63. [PMID: 11146546 DOI: 10.1038/sj.onc.1204003] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bloom's syndrome (BS), a rare genetic disease, arises through mutations in both alleles of the BLM gene which encodes a 3'-5' DNA helicase identified as a member of the RecQ family. BS patients exhibit a high predisposition to development of all types of cancer affecting the general population and BLM-deficient cells display a strong genetic instability. We recently showed that BLM protein expression is regulated during the cell cycle, accumulating to high levels in S phase, persisting in G2/M and sharply declining in G1, suggesting a possible implication of BLM in a replication (S phase) and/or post-replication (G2 phase) process. Here we show that, in response to ionizing radiation, BLM-deficient cells exhibit a normal p53 response as well as an intact G1/S cell cycle checkpoint, which indicates that ATM and p53 pathways are functional in BS cells. We also show that the BLM defect is associated with a partial escape of cells from the gamma-irradiation-induced G2/M cell cycle checkpoint. Finally, we present data demonstrating that, in response to ionizing radiation, BLM protein is phosphorylated and accumulates through an ATM-dependent pathway. Altogether, our data indicate that BLM participates in the cellular response to ionizing radiation by acting as an ATM kinase downstream effector.
Collapse
Affiliation(s)
- M Ababou
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 1598, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | |
Collapse
|
389
|
Hartung F, Plchová H, Puchta H. Molecular characterisation of RecQ homologues in Arabidopsis thaliana. Nucleic Acids Res 2000; 28:4275-82. [PMID: 11058127 PMCID: PMC113147 DOI: 10.1093/nar/28.21.4275] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Members of the RecQ family of DNA helicases are involved in processes linked to DNA replication, DNA recombination and gene silencing. RecQ homologues of various animals have been described recently. Here, for the first time for plants, we characterised cDNAs of all in all six different RecQ-like proteins that are expressed to different extents in Arabidopsis thaliana. Surprisingly, three of these proteins are small in size [AtRecQl1, AtRecQl2, AtRecQl3-606, 705 and 713 amino acids (aa), respectively], whereas the two bigger proteins result from a duplication event during plant evolution [AtRecQl4A and AtRecQl4B-1150 and 1182 aa, respectively]. Another homologue (AtRecQsim, 858 aa) most probably arose by insertion of an unrelated sequence within its helicase domain. The presence of these homologues demonstrates the conservation of RecQ family functions in higher eukaryotes. We also detected a small gene (AtWRNexo) encoding 285 aa which, being devoid of any RecQ-like helicase domain, reveals a striking homology to the exonuclease domain of human Werner protein, a prominent RecQ helicase of larger size. By means of the two-hybrid assay we were able to detect an interaction between AtWRNexo and AtRecQl2, indicating that activities that reside in a single protein chain in mammals might in plants be complemented in trans.
Collapse
Affiliation(s)
- F Hartung
- Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrabetae 3, D-06466 Gatersleben, Germany.
| | | | | |
Collapse
|
390
|
Constantinou A, Tarsounas M, Karow JK, Brosh RM, Bohr VA, Hickson ID, West SC. Werner's syndrome protein (WRN) migrates Holliday junctions and co-localizes with RPA upon replication arrest. EMBO Rep 2000; 1:80-4. [PMID: 11256630 PMCID: PMC1083680 DOI: 10.1093/embo-reports/kvd004] [Citation(s) in RCA: 302] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2000] [Revised: 04/26/2000] [Accepted: 04/27/2000] [Indexed: 11/12/2022] Open
Abstract
Individuals affected by the autosomal recessive disorder Werner's syndrome (WS) develop many of the symptoms characteristic of premature ageing. Primary fibroblasts cultured from WS patients exhibit karyotypic abnormalities and a reduced replicative life span. The WRN gene encodes a 3'-5' DNA helicase, and is a member of the RecQ family, which also includes the product of the Bloom's syndrome gene (BLM). In this work, we show that WRN promotes the ATP-dependent translocation of Holliday junctions, an activity that is also exhibited by BLM. In cells arrested in S-phase with hydroxyurea, WRN localizes to discrete nuclear foci that coincide with those formed by the single-stranded DNA binding protein replication protein A. These results are consistent with a model in which WRN prevents aberrant recombination events at sites of stalled replication forks by dissociating recombination intermediates.
Collapse
|
391
|
Doe CL, Dixon J, Osman F, Whitby MC. Partial suppression of the fission yeast rqh1(-) phenotype by expression of a bacterial Holliday junction resolvase. EMBO J 2000; 19:2751-62. [PMID: 10835372 PMCID: PMC212752 DOI: 10.1093/emboj/19.11.2751] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A key stage during homologous recombination is the processing of the Holliday junction, which determines the outcome of the recombination reaction. To dissect the pathways of Holliday junction processing in a eukaryote, we have targeted an Escherichia coli Holliday junction resolvase to the nuclei of fission yeast recombination-deficient mutants and analysed their phenotypes. The resolvase partially complements the UV and hydroxyurea hypersensitivity and associated aberrant mitoses of an rqh1(-) mutant. Rqh1 is a member of the RecQ subfamily of DNA helicases that control recombination particularly during S-phase. Significantly, overexpression of the resolvase in wild-type cells partly mimics the loss of viability, hyper-recombination and 'cut' phenotype of an rqh1(-) mutant. These results indicate that Holliday junctions form in wild-type cells that are normally removed in a non-recombinogenic way, possibly by Rqh1 catalysing their reverse branch migration. We propose that in the absence of Rqh1, replication fork arrest results in the accumulation of Holliday junctions, which can either impede sister chromatid segregation or lead to the formation of recombinants through Holliday junction resolution.
Collapse
Affiliation(s)
- C L Doe
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | |
Collapse
|