351
|
Lau A, Kanaar R, Jackson SP, O'Connor MJ. Suppression of retroviral infection by the RAD52 DNA repair protein. EMBO J 2004; 23:3421-9. [PMID: 15297876 PMCID: PMC514521 DOI: 10.1038/sj.emboj.7600348] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Accepted: 07/07/2004] [Indexed: 01/30/2023] Open
Abstract
Reverse transcription of retroviral RNA into linear double-stranded DNA and its integration into the host cell genome are essential steps in the retroviral life cycle. The nonhomologous end-joining (NHEJ) DNA repair pathway has been implicated in protecting cells from retrovirus-induced apoptosis caused by strand breaks in host cell DNA or unintegrated linear viral DNA. In eukaryotes, both the NHEJ and homologous recombination (HR) pathways play important roles in repairing DNA double-strand breaks. Here we show that the HR repair protein RAD52 modulates the outcome of recombinant HIV-l vector infection by markedly reducing the efficiency of productive integration events. Increased retroviral integration is the first major phenotype described for a RAD52 deficiency in mammalian cells. Mutations in other HR proteins (XRCC2, XRCC3 and BRCA2) do not markedly affect retroviral transduction rates, suggesting that the HR repair pathway per se does not influence retroviral infection. Instead, the mechanism of attenuation of retroviral infection by RAD52 appears to be based upon competition between the RAD52 protein and active integration complexes for the retroviral cDNA genome.
Collapse
Affiliation(s)
- Alan Lau
- KuDOS Pharmaceuticals Limited, 327 Cambridge Science Park, Cambridge, UK
| | - Roland Kanaar
- Department of Cell Biology & Genetics, Erasmus MC and Department of Radiation Oncology, Erasmus MC-Daniel, DR Rotterdam, The Netherlands
| | - Stephen P Jackson
- The Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge, UK
| | - Mark J O'Connor
- KuDOS Pharmaceuticals Limited, 327 Cambridge Science Park, Cambridge, UK
- KuDOS Pharmaceuticals Limited, 327 Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK. Tel.: +44 1223 434733; Fax: +44 1223 719720; E-mail:
| |
Collapse
|
352
|
Kawabata M, Akiyama K, Kawabata T. Genomic structure and multiple alternative transcripts of the mouse TRAD/RAD51L3/RAD51D gene, a member of the recA/RAD51 gene family. ACTA ACUST UNITED AC 2004; 1679:107-16. [PMID: 15297144 DOI: 10.1016/j.bbaexp.2004.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2003] [Revised: 04/14/2004] [Accepted: 05/28/2004] [Indexed: 10/26/2022]
Abstract
The RecA/RAD51 family plays a central role in DNA recombinational repair. The targeted disruption of mouse RAD51L3/TRAD is lethal during embryogenesis, suggesting that this protein is essential for development. Recently, we reported multiple alternative splice variants of human RAD51L3/TRAD transcripts. In this study, we have identified multiple mouse transcript variants. Complete sequence analysis of the genomic and cDNA clones has confirmed that the exon-intron structures obey the GT/AG splicing rule, and that the multiplicity of the transcripts is due to alternative splicing. In addition, we have determined the transcription initiation site by rapid amplification of cDNA 5'-end (5'-RACE). These results show that the mouse gene structure is very similar to that of humans.
Collapse
Affiliation(s)
- Masahiro Kawabata
- Department of Neuroscience, Graduate School of Medicine and Dentistry, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan.
| | | | | |
Collapse
|
353
|
Richardson C, Horikoshi N, Pandita TK. The role of the DNA double-strand break response network in meiosis. DNA Repair (Amst) 2004; 3:1149-64. [PMID: 15279804 DOI: 10.1016/j.dnarep.2004.05.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Organisms with sexual reproduction have two homologous copies of each chromosome. Meiosis is characterized by two successive cell divisions that result in four haploid sperms or eggs, each carrying a single copy of homologous chromosome. This process requires a coordinated reorganization of chromatin and a complex network of meiotic-specific signaling cascades. At the beginning of meiosis, each chromosome must recognize its homolog, then the two become intimately aligned along their entire lengths which allows the exchange of DNA strands between homologous sequences to generate genetic diversity. DNA double-strand breaks (DSBs) initiate meiotic recombination in a variety of organisms. Numerous studies have identified both the genomic loci of the initiating DSBs and the proteins involved in their formation. This review will summarize the activation and signaling networks required for the DSB response in meiosis.
Collapse
Affiliation(s)
- Christine Richardson
- College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
354
|
Enomoto R, Kinebuchi T, Sato M, Yagi H, Shibata T, Kurumizaka H, Yokoyama S. Positive Role of the Mammalian TBPIP/HOP2 Protein in DMC1-mediated Homologous Pairing. J Biol Chem 2004; 279:35263-72. [PMID: 15192114 DOI: 10.1074/jbc.m402481200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In meiosis, homologous recombination preferentially occurs between homologous chromosomes rather than between sister chromatids, which is opposite to the bias of mitotic recombinational repair. The TBPIP/HOP2 protein is a factor that ensures the proper pairing of homologous chromosomes during meiosis. In the present study, we found that the purified mouse TBPIP/HOP2 protein stimulated homologous pairing catalyzed by the meiotic DMC1 recombinase in vitro. In contrast, TBPIP/HOP2 did not stimulate homologous pairing by RAD51, which is another homologous pairing protein acting in both meiotic and mitotic recombination. The positive effect of TBPIP/HOP2 in the DMC1-mediated homologous pairing was only observed when TBPIP/HOP2 first binds to double-stranded DNA, not to single-stranded DNA, before the initiation of the homologous pairing reaction. Deletion analyses revealed that the C-terminal basic region of TBPIP/HOP2 is required for efficient DNA binding and is also essential for its homologous pairing stimulation activity. Therefore, these results suggest that TBPIP/HOP2 directly binds to DNA and functions as an activator for DMC1 during the homologous pairing step in meiosis.
Collapse
Affiliation(s)
- Rima Enomoto
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
355
|
Abstract
Hereditary predisposition to breast and ovarian cancer is determined in large part by loss-of-function mutations in one of two genes, BRCA1 and BRCA2 . Early discoveries that the two genes function in the control of homologous recombination and the prevention of genomic instability have been strongly supported by subsequent work. Our aim here is to highlight new advances in the study of BRCA1 and BRCA2 , and to place these advances in the context of existing knowledge.
Collapse
Affiliation(s)
- Ralph Scully
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
356
|
Treuner K, Helton R, Barlow C. Loss of Rad52 partially rescues tumorigenesis and T-cell maturation in Atm-deficient mice. Oncogene 2004; 23:4655-61. [PMID: 15122331 DOI: 10.1038/sj.onc.1207604] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ataxia Telangiectasia (A-T) is an autosomal recessive disease caused by loss of function of the protein kinase ATM. Atm-deficient mice display several phenotypes consistent with the human disease, including predisposition to cancer, growth retardation, cell-proliferation defects and infertility. A-T patients have a several hundred fold increased risk of developing lymphomas and leukemias, which are typically highly invasive. By reducing homologous recombination through genetic deletion of the Rad52 protein, we were able to decrease substantially the development of T-cell lymphomas in Atm-/- mice, resulting in an increased life span of the double mutant mice. Additionally, we were able to partially rescue the T-cell development of Atm-/- mice. Other phenotypes, including growth defects, genomic instability, infertility and radiosensitivity, were not rescued. Our results suggest that excessive recombination is an important contributor to tumorigenesis in A-T.
Collapse
Affiliation(s)
- Kai Treuner
- The Salk Institute for Biological Studies, The Laboratory of Genetics, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
357
|
Wicky C, Alpi A, Passannante M, Rose A, Gartner A, Müller F. Multiple genetic pathways involving the Caenorhabditis elegans Bloom's syndrome genes him-6, rad-51, and top-3 are needed to maintain genome stability in the germ line. Mol Cell Biol 2004; 24:5016-27. [PMID: 15143192 PMCID: PMC416432 DOI: 10.1128/mcb.24.11.5016-5027.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bloom's syndrome (BS) is an autosomal-recessive human disorder caused by mutations in the BS RecQ helicase and is associated with loss of genomic integrity and an increased incidence of cancer. We analyzed the mitotic and the meiotic roles of Caenorhabditis elegans him-6, which we show to encode the ortholog of the human BS gene. Mutations in him-6 result in an enhanced irradiation sensitivity, a partially defective S-phase checkpoint, and in reduced levels of DNA-damage induced apoptosis. Furthermore, him-6 mutants exhibit a decreased frequency of meiotic recombination that is probably due to a defect in the progression of crossover recombination. In mitotically proliferating germ cells, our genetic interaction studies, as well as the assessment of the number of double-strand breaks via RAD-51 foci, reveal a complex regulatory network that is different from the situation in yeast. Although the number of double-strand breaks in him-6 and top-3 single mutants is elevated, the combined depletion of him-6 and top-3 leads to mitotic catastrophe concomitant with a massive increase in the level of double-strand breaks, a phenotype that is completely suppressed by rad-51. him-6 and top-3 are thus needed to maintain low levels of double-strand breaks in normally proliferating germ cells, and both act in partial redundant pathways downstream of rad-51 to prevent mitotic catastrophy. Finally, we show that topoisomerase IIIalpha acts independently during a late stage of meiotic recombination.
Collapse
Affiliation(s)
- Chantal Wicky
- Department of Biology, University of Fribourg, Pérolles, CH-1700 Fribourg, Switzerland
| | | | | | | | | | | |
Collapse
|
358
|
Griffin CS, Thacker J. The role of homologous recombination repair in the formation of chromosome aberrations. Cytogenet Genome Res 2004; 104:21-7. [PMID: 15162011 DOI: 10.1159/000077462] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Accepted: 12/11/2003] [Indexed: 11/19/2022] Open
Abstract
The repair of DNA double strand breaks by homologous recombination can occur by at least two pathways: a Rad51-dependent pathway that is predominantly error free, and a Rad51-independent pathway (single strand annealing, SSA) that is error prone. In theory, chromosome exchanges can result from (mis)repair by either pathway. Both repair pathways will involve a search for homologous sequence, leading to co-localization of chromatin. Genes involved in homologous recombination repair (HRR) have now been successfully knocked out in mice and the role of HRR in the formation of chromosome exchanges, particularly after ionising radiation, is discussed in the light of new evidence.
Collapse
Affiliation(s)
- C S Griffin
- Medical Research Council, Radiation and Genome Stability Unit, Harwell, Oxfordshire, UK.
| | | |
Collapse
|
359
|
Dudás A, Chovanec M. DNA double-strand break repair by homologous recombination. Mutat Res 2004; 566:131-67. [PMID: 15164978 DOI: 10.1016/j.mrrev.2003.07.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2003] [Revised: 07/29/2003] [Accepted: 07/30/2003] [Indexed: 01/06/2023]
Abstract
DNA double-strand breaks (DSB) are presumed to be the most deleterious DNA lesions as they disrupt both DNA strands. Homologous recombination (HR), single-strand annealing, and non-homologous end-joining are considered to be the pathways for repairing DSB. In this review, we focus on DSB repair by HR. The proteins involved in this process as well as the interactions among them are summarized and characterized. The main emphasis is on eukaryotic cells, particularly the budding yeast Saccharomyces cerevisiae and mammals. Only the RAD52 epistasis group proteins are included.
Collapse
Affiliation(s)
- Andrej Dudás
- Laboratory of Molecular Genetics, Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava 37, Slovak Republic
| | | |
Collapse
|
360
|
Aylon Y, Kupiec M. New insights into the mechanism of homologous recombination in yeast. Mutat Res 2004; 566:231-48. [PMID: 15082239 DOI: 10.1016/j.mrrev.2003.10.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2003] [Accepted: 10/02/2003] [Indexed: 01/09/2023]
Abstract
Genome stability is of primary importance for the survival and proper functioning of all organisms. Double-strand breaks (DSBs) arise spontaneously during growth, or can be created by external insults. Repair of DSBs by homologous recombination provides an efficient and fruitful pathway to restore chromosomal integrity. Exciting new work in yeast has lately provided insights into this complex process. Many of the proteins involved in recombination have been isolated and the details of the repair mechanism are now being unraveled at the molecular level. In this review, we focus on recent studies which dissect the recombinational repair of a single broken chromosome. After DSB formation, a decision is made regarding the mechanism of repair (recombination or non-homologous end-joining). This decision is under genetic control. Once committed to the recombination pathway, the broken chromosomal ends are resected by a still unclear mechanism in which the DNA damage checkpoint protein Rad24 participates. At this stage several proteins are recruited to the broken ends, including Rad51p, Rad52p, Rad55p, Rad57p, and possibly Rad54p. A genomic search for homology ensues, followed by strand invasion, promoted by the Rad51 filament with the participation of Rad55p, Rad57p and Rad54p. DNA synthesis then takes place, restoring the resected ends. Crossing-over formation depends on the length of the homologous recombining sequences, and is usually counteracted by the activity of the mismatch repair system. Given the conservation of the repair mechanisms and genes throughout evolution, these studies have profound implications for other eukaryotic organisms.
Collapse
Affiliation(s)
- Yael Aylon
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | | |
Collapse
|
361
|
Liu Y, Stasiak AZ, Masson JY, McIlwraith MJ, Stasiak A, West SC. Conformational changes modulate the activity of human RAD51 protein. J Mol Biol 2004; 337:817-27. [PMID: 15033353 DOI: 10.1016/j.jmb.2004.02.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 02/09/2004] [Accepted: 02/09/2004] [Indexed: 11/23/2022]
Abstract
Homologous recombination provides a major pathway for the repair of DNA double-strand breaks in mammalian cells. Defects in homologous recombination can lead to high levels of chromosomal translocations or deletions, which may promote cell transformation and cancer development. A key component of this process is RAD51. In comparison to RecA, the bacterial homologue, human RAD51 protein exhibits low-level strand-exchange activity in vitro. This activity can, however, be stimulated by the presence of high salt. Here, we have investigated the mechanistic basis for this stimulation. We show that high ionic strength favours the co-aggregation of RAD51-single-stranded DNA (ssDNA) nucleoprotein filaments with naked duplex DNA, to form a complex in which the search for homologous sequences takes place. High ionic strength allows differential binding of RAD51 to ssDNA and double-stranded DNA (dsDNA), such that ssDNA-RAD51 interactions are unaffected, whereas those between RAD51 and dsDNA are destabilized. Most importantly, high salt induces a conformational change in RAD51, leading to the formation of extended nucleoprotein filaments on ssDNA. These extended filaments mimic the active form of the Escherichia coli RecA-ssDNA filament that exhibits efficient strand-exchange activity.
Collapse
Affiliation(s)
- Yilun Liu
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK
| | | | | | | | | | | |
Collapse
|
362
|
Abstract
A chromosome fragmentation assay was used to measure the efficiency and genetic control of break-induced replication (BIR) in Saccharomyces cerevisiae. Formation of a chromosome fragment by de novo telomere generation at one end of the linear vector and recombination-dependent replication of 100 kb of chromosomal sequences at the other end of the vector occurred at high frequency in wild-type strains. RAD51 was required for more than 95% of BIR events involving a single-end invasion and was essential when two BIR events were required for generation of a chromosome fragment. The similar genetic requirements for BIR and gene conversion suggest a common strand invasion intermediate in these two recombinational repair processes. Mutation of RAD50 or RAD59 conferred no significant defect in BIR in either RAD51 or rad51 strains. RAD52 was shown to be essential for BIR at unique chromosomal sequences, although rare recombination events were detected between the subtelomeric Y' repeats.
Collapse
Affiliation(s)
- Allison P Davis
- Department of Microbiology and Institute of Cancer Research, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
363
|
Shibahara K, Uchiumi T, Fukuda T, Kura S, Tominaga Y, Maehara Y, Kohno K, Nakabeppu Y, Tsuzuki T, Kuwano M. Targeted disruption of one allele of the Y-box binding protein-1 (YB-1) gene in mouse embryonic stem cells and increased sensitivity to cisplatin and mitomycin C. Cancer Sci 2004; 95:348-53. [PMID: 15072594 PMCID: PMC11159763 DOI: 10.1111/j.1349-7006.2004.tb03214.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Accepted: 02/04/2004] [Indexed: 11/29/2022] Open
Abstract
The eukaryotic Y-box binding protein-1 (YB-1) functions in various biological processes, including transcriptional and translational control, DNA repair, drug resistance, and cell proliferation. To elucidate the physiological role of the YB-1 protein, we disrupted one allele of mouse YB-1 in embryonic stem (ES) cells. Northern blot analysis revealed that YB-1(+/-) ES cells with one intact allele contain approximately one-half the amount of mRNA detected in wild-type (YB-1(+/+)) cells. We further found that the protein level of YB-1(+/-) cells was reduced to approximately 50-60% compared with that of YB-1(+/+) cells. However, no apparent growth difference was found between YB-1(+/-) and YB-1(+/+) cells. YB-1(+/-) cells showed increased sensitivity to cisplatin and mitomycin C, but not to etoposide, X-ray or UV irradiation, as compared to YB-1(+/+) cells. YB-1 may have the capacity to exert a protective role against cytotoxic effects of DNA damaging agents, and may be involved in certain aspects of drug resistance.
Collapse
Affiliation(s)
- Kotaro Shibahara
- Department of Medical Biochemistry, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
364
|
Abstract
Werner syndrome (WS) is one of three heritable human genetic instability/cancer predisposition syndromes that result from mutations in a member of the gene family encoding human RecQ helicases. Cellular defects are a prominent part of the WS phenotype. Here we review recent work to identify in vivo functions of the WS protein and discuss how loss of function leads to cellular defects. These new results provide clues to the origin of cell lineage-specific defects in WS patients and suggest a broader role for Werner protein function in determining disease risk in the general population.
Collapse
Affiliation(s)
- Raymond J Monnat
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
365
|
Stauffer ME, Chazin WJ. Physical interaction between replication protein A and Rad51 promotes exchange on single-stranded DNA. J Biol Chem 2004; 279:25638-45. [PMID: 15056657 DOI: 10.1074/jbc.m400029200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Replication protein A (RPA) is displaced from single-stranded DNA (ssDNA) by Rad51 during the initiation of homologous recombination. Interactions between these proteins have been reported, but the functional significance of the direct RPA-Rad51 interaction has yet to be elucidated. We have identified and characterized the interaction between DNA-binding domain A of RPA (RPA70A) and the N-terminal domain of Rad51 (Rad51N). NMR chemical shift mapping showed that Rad51N binds to the ssDNA-binding site of RPA70A, suggesting a competitive mechanism for the displacement of RPA from ssDNA by Rad51. A structure of the RPA70A-Rad51N complex was generated by experimentally guided modeling and then used to design mutations that disrupt the binding interface. Functional ATP hydrolysis assays were performed for wild-type Rad51 and a mutant defective in binding RPA. Rates of RPA displacement for the mutant were significantly below those of wild-type Rad51, suggesting that a direct RPA-Rad51 interaction is involved in displacing RPA in the initiation stage of genetic recombination.
Collapse
Affiliation(s)
- Melissa E Stauffer
- Departments of Biochemistry and Physics and the Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232-8725, USA
| | | |
Collapse
|
366
|
Baarends WM, Grootegoed JA. Chromatin dynamics in the male meiotic prophase. Cytogenet Genome Res 2004; 103:225-34. [PMID: 15051943 DOI: 10.1159/000076808] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Accepted: 11/24/2003] [Indexed: 11/19/2022] Open
Abstract
During the male meiotic prophase in mouse and man, pairing and recombination of homologous chromosomes is accompanied by changes in chromatin structure. In this review, the dynamics of assembly and disassembly of the chromatin-associated complexes that mediate sister chromatid cohesion (cohesin) and maintain chromosome pairing (the synaptonemal complex) are described. Special features of the meiotic S phase are discussed, and also the dynamics of several key players that act together after the S phase at sites of meiotic double-strand break DNA repair. Current knowledge on histone modifications that occur during the male meiotic prophase is discussed, with special attention for the inactive chromatin of the X and Y chromosomes that constitutes the sex body. Finally, it is discussed that in the future, it will be possible to view the true chromatin dynamics during male meiosis in time, in living cells, through analysis of fluorescent-tagged proteins expressed in transgenic mice, using advanced fluorescent microscopy techniques.
Collapse
Affiliation(s)
- W M Baarends
- Department of Reproduction and Development, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| | | |
Collapse
|
367
|
Siaud N, Dray E, Gy I, Gérard E, Takvorian N, Doutriaux MP. Brca2 is involved in meiosis in Arabidopsis thaliana as suggested by its interaction with Dmc1. EMBO J 2004; 23:1392-401. [PMID: 15014444 PMCID: PMC381417 DOI: 10.1038/sj.emboj.7600146] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2003] [Accepted: 02/10/2004] [Indexed: 01/22/2023] Open
Abstract
Two BRCA2-like sequences are present in the Arabidopsis genome. Both genes are expressed in flower buds and encode nearly identical proteins, which contain four BRC motifs. In a yeast two-hybrid assay, the Arabidopsis Brca2 proteins interact with Rad51 and Dmc1. RNAi constructs aimed at silencing the BRCA2 genes at meiosis triggered a reproducible sterility phenotype, which was associated with dramatic meiosis alterations. We obtained the same phenotype upon introduction of RNAi constructs aimed at silencing the RAD51 gene at meiosis in dmc1 mutant plants. The meiotic figures we observed strongly suggest that homologous recombination is highly disturbed in these meiotic cells, leaving aberrant recombination events to repair the meiotic double-strand breaks. The 'brca2' meiotic phenotype was eliminated in spo11 mutant plants. Our experiments point to an essential role of Brca2 at meiosis in Arabidopsis. We also propose a role for Rad51 in the dmc1 context.
Collapse
Affiliation(s)
- Nicolas Siaud
- Institut de Biotechnologie des Plantes, CNRS UMR8618, Université Paris XI, Orsay, France
| | - Eloïse Dray
- Institut de Biotechnologie des Plantes, CNRS UMR8618, Université Paris XI, Orsay, France
| | - Isabelle Gy
- Institut de Biotechnologie des Plantes, CNRS UMR8618, Université Paris XI, Orsay, France
| | - Emmanuelle Gérard
- Institut de Biotechnologie des Plantes, CNRS UMR8618, Université Paris XI, Orsay, France
| | - Najat Takvorian
- Institut de Biotechnologie des Plantes, CNRS UMR8618, Université Paris XI, Orsay, France
| | | |
Collapse
|
368
|
Smith ED, Xu Y, Tomson BN, Leung CG, Fujiwara Y, Orkin SH, Crispino JD. More than blood, a novel gene required for mammalian postimplantation development. Mol Cell Biol 2004; 24:1168-73. [PMID: 14729962 PMCID: PMC321451 DOI: 10.1128/mcb.24.3.1168-1173.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
More than blood (Mtb) is a novel gene that is widely expressed in mouse embryos prior to gastrulation but is subsequently restricted to specific tissues, including the developing central nervous system and hematopoietic organs. Since MTB is highly expressed in the fetal liver and developing thymus, we predicted that MTB would be required for hematopoiesis and that embryos deficient in MTB would die of anemia. Surprisingly, embryos with a targeted disruption of Mtb died prior to the initiation of blood cell development, immediately following implantation. This lethality is due to a defect in expansion of the inner cell mass (ICM), as Mtb(-/-) blastocysts failed to exhibit outgrowth of the ICM, both in vitro and in vivo. Furthermore, Mtb(-/-) blastocysts exhibited a higher frequency of apoptotic cells than wild-type or heterozygous blastocysts. These findings demonstrate that Mtb is a novel gene that is essential for early embryonic development.
Collapse
Affiliation(s)
- Erica D Smith
- The Ben May Institute for Cancer Research, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
369
|
|
370
|
Song H, Xia SL, Liao C, Li YL, Wang YF, Li TP, Zhao MJ. Genes encoding Pir51, Beclin 1, RbAp48 and aldolase b are up or down-regulated in human primary hepatocellular carcinoma. World J Gastroenterol 2004; 10:509-13. [PMID: 14966907 PMCID: PMC4716970 DOI: 10.3748/wjg.v10.i4.509] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To reveal new tumor markers and target genes from differentially expressed genes of primary tumor samples using cDNA microarray.
METHODS: The 33P labeled cDNAs were synthesized by reverse transcription of message RNA from the liver cancerous tissue and adjacent non-cancerous liver tissue from the same patient and used to hybridize to LifeGrid 1.0 cDNA microarray blot containing 8400 known and unique human cDNA gene targets, and an expression profile of genes was produced in one paired human liver tumor tissue. After a global analysis of gene expression of 8400 genes, we selected some genes to confirm the differential expression using Northern blot and RT-PCR.
RESULTS: Parallel analysis of the hybridized signals enabled us to get an expression profile of genes in which about 500 genes were differentially expressed in the paired liver tumor tissues. We identified 4 genes, the expression of three (Beclin 1, RbAp48 and Pir51) were increased and one (aldolase b) was decreased in liver tumor tissues. In addition, the expression of these genes in 6 hepatoma cell lines was also showed by RT-PCR analysis.
CONCLUSION: cDNA microarray permits a high throughput identification of changes in gene expression. The genes encoding Beclin 1, RbAp48, Pir51 and aldolase b are first reported that may be related with hepatocarcinoma.
Collapse
Affiliation(s)
- Hai Song
- P.O. Box 35, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|
371
|
Richardson C, Stark JM, Ommundsen M, Jasin M. Rad51 overexpression promotes alternative double-strand break repair pathways and genome instability. Oncogene 2004; 23:546-53. [PMID: 14724582 DOI: 10.1038/sj.onc.1207098] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genomic instability is characteristic of tumor cells, and a strong correlation exists between abnormal karyotype and tumorigenicity. Increased expression of the homologous recombination and DNA repair protein Rad51 has been reported in immortalized and tumor cells, which could alter recombination pathways to contribute to the chromosomal rearrangements found in these cells. We used a genetic system to examine the potential for multiple double-strand breaks to lead to genome rearrangements in the presence of increased Rad51 expression. Analysis of repair revealed a novel class of products consistent with crossing over, involving gene conversion associated with an exchange of flanking markers leading to chromosomal translocations. Increased Rad51 also promoted aneuploidy and multiple chromosomal rearrangements. These data provide a link between elevated Rad51 protein levels, genome instability, and tumor progression.
Collapse
Affiliation(s)
- Christine Richardson
- Department of Pathology, Institute of Cancer Genetics, Columbia University College of Physicians and Surgeons, 1150 St Nicholas Avenue, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
372
|
Süsse S, Scholz CJ, Bürkle A, Wiesmüller L. Poly(ADP-ribose) polymerase (PARP-1) and p53 independently function in regulating double-strand break repair in primate cells. Nucleic Acids Res 2004; 32:669-80. [PMID: 14757832 PMCID: PMC373350 DOI: 10.1093/nar/gkh227] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PARP-1 is rapidly activated by DNA strand breaks, which finally leads to the modulation of multiple protein activities in DNA replication, DNA repair and checkpoint control. PARP-1 may be involved in homologous recombination, and poly(ADP-ribosyl)ation of p53 represents one possible mechanism that activates p53 as a recombination surveillance factor. Here, we examined the influence of PARP-1 on homology-directed double-strand break (DSB) repair by use of a fluorescence- and I-SceI- meganuclease-based assay with either episomal or chromosomally integrated DNA substrates. Surprisingly, the transient expression of both full-length PARP-1 and of a dominant negative mutant, retaining the DNA-binding but lacking the catalytic domain, down-regulated DSB repair in a dose-dependent manner. This effect was seen regardless of p53 status, however, with enhanced inhibition in the presence of wild-type p53. Taken together, our data reveal that PARP-1 overexpression counteracts DSB repair independently of its enzymatic activity and of poly(ADP-ribosyl)ation of p53 in particular, but synergizes with p53 in suppressing chromosomal rearrangements.
Collapse
Affiliation(s)
- Silke Süsse
- Universitätsfrauenklinik, Prittwitzstrasse 43, D-89075 Ulm, Germany
| | | | | | | |
Collapse
|
373
|
Yoshihara T, Ishida M, Kinomura A, Katsura M, Tsuruga T, Tashiro S, Asahara T, Miyagawa K. XRCC3 deficiency results in a defect in recombination and increased endoreduplication in human cells. EMBO J 2004; 23:670-80. [PMID: 14749735 PMCID: PMC1271813 DOI: 10.1038/sj.emboj.7600087] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Accepted: 12/22/2003] [Indexed: 12/24/2022] Open
Abstract
XRCC3 was inactivated in human cells by gene targeting. Consistent with its role in homologous recombination, XRCC3(-/-) cells showed a two-fold sensitivity to DNA cross-linking agents, a mild reduction in sister chromatid exchange, impaired Rad51 focus formation and elevated chromosome aberrations. Furthermore, endoreduplication was increased five- seven-fold in the mutants. The T241M variant of XRCC3 has been associated with an increased cancer risk. Expression of the wild-type cDNA restored this phenotype, while expression of the variant restored the defective recombinational repair, but not the increased endoreduplication. RPA, a protein essential for homologous recombination and DNA replication, is associated with XRCC3 and Rad52. Overexpression of RPA promoted endoreduplication, which was partially complemented by overexpression of the wild-type XRCC3 protein, but not by overexpression of the variant protein. Overexpression of Rad52 prevented endoreduplication in RPA-overexpressing cells, in XRCC3(-/-) cells and in the variant-expressing cells, suggesting that deregulated RPA was responsible for the increased endoreduplication. These observations offer the first genetic evidence for the association between homologous recombination and replication initiation having a role in cancer susceptibility.
Collapse
Affiliation(s)
- Takashi Yoshihara
- Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
- Department of Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Mari Ishida
- Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Aiko Kinomura
- Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Mari Katsura
- Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takanori Tsuruga
- Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Satoshi Tashiro
- Department of Biochemistry, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Toshimasa Asahara
- Department of Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Kiyoshi Miyagawa
- Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
- Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan. Tel.: +81 82 257 5828; Fax: +81 82 256 7102; E-mail:
| |
Collapse
|
374
|
Petukhova GV, Romanienko PJ, Camerini-Otero RD. The Hop2 protein has a direct role in promoting interhomolog interactions during mouse meiosis. Dev Cell 2004; 5:927-36. [PMID: 14667414 DOI: 10.1016/s1534-5807(03)00369-1] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The S. cerevisiae Hop2 protein and its fission yeast homolog Meu13 are required for proper homologous chromosome pairing and recombination during meiosis. The mechanism of this requirement is, however, not understood. The previous studies in Saccharomyces suggested that Hop2 is a guardian of meiotic chromosome synapsis with the ability to prevent or resolve deleterious associations between nonhomologous chromosomes. We have generated a Hop2 knockout mouse that shows profound meiotic defects with a distinct and novel phenotype. Hop2(-/-) spermatocytes arrest at the stage of pachytene-like chromosome condensation. Axial elements are fully developed, but synapsis of any kind is very limited. Immunofluorescence analysis of meiotic chromosome spreads indicates that while meiotic double-stranded breaks are formed and processed in the Hop2 knockout, they fail to be repaired. In aggregate, the Hop2 phenotype is consistent with a direct role for the mouse Hop2 protein in promoting homologous chromosome synapsis.
Collapse
Affiliation(s)
- Galina V Petukhova
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
375
|
Liu TX, Howlett NG, Deng M, Langenau DM, Hsu K, Rhodes J, Kanki JP, D'Andrea AD, Look AT. Knockdown of zebrafish Fancd2 causes developmental abnormalities via p53-dependent apoptosis. Dev Cell 2004; 5:903-14. [PMID: 14667412 DOI: 10.1016/s1534-5807(03)00339-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mechanisms underlying the multiple developmental defects observed in Fanconi anemia (FA) patients are not well defined. We have identified the zebrafish homolog of human FANCD2, which encodes a nuclear effector protein that is monoubiquitinated in response to DNA damage, targeting it to nuclear foci where it preserves chromosomal integrity. Fancd2-deficient zebrafish embryos develop defects similar to those found in children with FA, including shortened body length, microcephaly, and microophthalmia, which are due to extensive cellular apoptosis. Developmental defects and increased apoptosis in Fancd2-deficient zebrafish were corrected by injection of human FANCD2 or zebrafish bcl2 mRNA, or by knockdown of p53, indicating that in the absence of Fancd2, developing tissues spontaneously undergo p53-dependent apoptosis. Thus, Fancd2 is essential during embryogenesis to prevent inappropriate apoptosis in neural cells and other tissues undergoing high levels of proliferative expansion, implicating this mechanism in the congenital abnormalities observed in human infants with FA.
Collapse
Affiliation(s)
- Ting Xi Liu
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
376
|
Bleuyard JY, White CI. The Arabidopsis homologue of Xrcc3 plays an essential role in meiosis. EMBO J 2004; 23:439-49. [PMID: 14726957 PMCID: PMC1271761 DOI: 10.1038/sj.emboj.7600055] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2003] [Accepted: 12/03/2003] [Indexed: 12/28/2022] Open
Abstract
The eukaryotic RecA homologue Rad51 is a key factor in homologous recombination and recombinational repair. Rad51-like proteins have been identified from yeast (Rad55, Rad57 and Dmc1) to vertebrates (Rad51B, Rad51C, Rad51D, Xrcc2, Xrcc3 and Dmc1). These Rad51-like proteins are all members of the genetic recombination and DNA damage repair pathways. The sequenced genome of Arabidopsis thaliana encodes putative homologues of all six vertebrate Rad51-like proteins. We have identified and characterized an Arabidopsis mutant defective for one of these, AtXRCC3, the homologue of XRCC3. atxrcc3 plants are sterile, while they have normal vegetative development. Cytological observation shows that the atxrcc3 mutation does not affect homologous chromosome synapsis, but leads to chromosome fragmentation after pachytene, thus disrupting both male and female gametogenesis. This study shows an essential role for AtXrcc3 in meiosis in plants and possibly in other higher eukaryotes. Furthermore, atxrcc3 cells and plants are hypersensitive to DNA-damaging treatments, supporting the involvement of this Arabidopsis Rad51-like protein in recombinational repair.
Collapse
Affiliation(s)
| | - Charles I White
- CNRS UMR6547, Université Blaise Pascal, Aubière, France
- CNRS UMR6547, BIOMOVE, Université Blaise Pascal, 24 Avenue des Landais, F-63177 Aubière, France. Tel.: +33 4 73407978; Fax: +33 4 73407777; E-mail:
| |
Collapse
|
377
|
Sauvageau S, Ploquin M, Masson JY. Exploring the multiple facets of the meiotic recombinase Dmc1. Bioessays 2004; 26:1151-5. [PMID: 15499584 DOI: 10.1002/bies.20150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Meiotic recombination in eukaryotic cells requires two homologs of E. coli RecA protein, Rad51 and Dmc1. Until recently, the role of Dmc1 in meiotic recombination was mostly attributed to genetic studies as purified Dmc1 was found to be a much weaker recombinase than Rad51 in the test tube. Now, Sehorn and colleagues1 have reported that, like Rad51, human Dmc1 is an efficient recombinase in vitro. Dmc1 forms helical nucleoprotein filaments--the signature of classical recombinases such as Rad51. These observations reveal a high level of similitude between the Dmc1 and the Rad51 family of recombination enzymes in higher eukaryotes.
Collapse
Affiliation(s)
- Synthia Sauvageau
- Genome Stability Laboratory, Laval University Cancer Research Center, Québec, Canada
| | | | | |
Collapse
|
378
|
Grishchuk AL, Kraehenbuehl R, Molnar M, Fleck O, Kohli J. Genetic and cytological characterization of the RecA-homologous proteins Rad51 and Dmc1 of Schizosaccharomyces pombe. Curr Genet 2004; 44:317-28. [PMID: 12955454 DOI: 10.1007/s00294-003-0439-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Revised: 07/27/2003] [Accepted: 07/29/2003] [Indexed: 10/26/2022]
Abstract
The Schizosaccharomyces pombe rad51(+) and dmc1(+) genes code for homologues of the Escherichia coli recombination protein RecA. Deletion of rad51(+) causes slow growth, retardation of cell division and a decrease in viability. rad51Delta cells have a defect in mating-type switching. The DNA modification at the mating-type locus required for mating-type switching contributes to slow growth in the rad51 mutant. Cell mating is reduced in crosses homozygous for rad51Delta. Ectopic expression of the dmc1(+) gene allowed us to demonstrate that the reduction in meiotic recombination in dmc1 mutants is not caused by a disturbance of rad24 expression from the dmc1- rad24 bicistronic RNA. We describe the functional defects of terminally epitope-tagged Dmc1 and Rad51 and discuss it in terms of protein interaction. Presumptive Rad51 and Dmc1 foci were detected on spreads of meiotic chromatin.
Collapse
Affiliation(s)
- Alexandra L Grishchuk
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | | | | | | | | |
Collapse
|
379
|
Hochegger H, Sonoda E, Takeda S. Post-replication repair in DT40 cells: translesion polymerases versus recombinases. Bioessays 2004; 26:151-8. [PMID: 14745833 DOI: 10.1002/bies.10403] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Replication forks inevitably stall at damaged DNA in every cell cycle. The ability to overcome DNA lesions is an essential feature of the replication machinery. A variety of specialized polymerases have recently been discovered, which enable cells to replicate past various forms of damage by a process termed translesion synthesis. Alternatively, homologous recombination can be used to restart DNA replication across the lesion. Genetic and biochemical studies have shed light on the impact of these two post-replication repair pathways in bacteria and yeast. In vertebrates, however, a genetic approach to study post-replication repair has been compromised because many of the genes involved appear to be essential for embryonic development. We have taken advantage of the chicken cell line DT40 to perform a genetic analysis of translesion synthesis and homologous recombination and to characterize genetic interactions between these two pathways in vertebrates. In this article, we aim to summarize our current understanding of post-replication repair in DT40 in the perspective of bacterial, yeast and mammalian genetics.
Collapse
Affiliation(s)
- Helfrid Hochegger
- Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Sakyo-ku, 606-8501 Kyoto, Japan
| | | | | |
Collapse
|
380
|
Lomonosov M, Anand S, Sangrithi M, Davies R, Venkitaraman AR. Stabilization of stalled DNA replication forks by the BRCA2 breast cancer susceptibility protein. Genes Dev 2003; 17:3017-22. [PMID: 14681210 PMCID: PMC305253 DOI: 10.1101/gad.279003] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
How dividing mammalian cells overcome blocks to DNA replication by DNA damage, depleted nucleotide pools, or template-bound proteins is unclear. Here, we show that the response to blocked replication requires BRCA2, a suppressor of human breast cancer. By using two-dimensional gel electrophoresis, we demonstrate that Y-shaped DNA junctions at stalled replication forks disappear during genome-wide replication arrest in BRCA2-deficient cells, accompanied by double-strand DNA breakage. But activation of the replication checkpoint kinase Chk2 is unaffected, defining an unexpected function for BRCA2 in stabilizing DNA structures at stalled forks. We propose that in BRCA2 deficiency and related chromosomal instability diseases, the breakdown of replication forks, which arrest or pause during normal cell growth, triggers spontaneous DNA breakage, leading to mutability and cancer predisposition.
Collapse
Affiliation(s)
- Mikhail Lomonosov
- University of Cambridge, CR UK Department of Oncology, Hutchison/MRC Research Centre, Cambridge CB2 2XZ, UK
| | | | | | | | | |
Collapse
|
381
|
Staeva-Vieira E, Yoo S, Lehmann R. An essential role of DmRad51/SpnA in DNA repair and meiotic checkpoint control. EMBO J 2003; 22:5863-74. [PMID: 14592983 PMCID: PMC275421 DOI: 10.1093/emboj/cdg564] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Rad51 is a conserved protein essential for recombinational repair of double-stranded DNA breaks (DSBs) in somatic cells and during meiosis in germ cells. Yeast Rad51 mutants are viable but show meiosis defects. In the mouse, RAD51 deletions cause early embryonic death, suggesting that in higher eukaryotes Rad51 is required for viability. Here we report the identification of SpnA as the Drosophila Rad51 gene, whose sequence among the five known Drosophila Rad51-like genes is most closely related to the Rad51 homologs of human and yeast. DmRad51/spnA null mutants are viable but oogenesis is disrupted by the activation of a meiotic recombination checkpoint. We show that the meiotic phenotypes result from an inability to effectively repair DSBs. Our study further demonstrates that in Drosophila the Rad51-dependent homologous recombination pathway is not essential for DNA repair in the soma, unless exposed to DNA damaging agents. We therefore propose that under normal conditions a second, Rad51-independent, repair pathway prevents the lethal effects of DNA damage.
Collapse
Affiliation(s)
- Eric Staeva-Vieira
- Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, Sackler Institute for Graduate Biomedical Sciences, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
382
|
Wijnhoven SWP, van Steeg H. Transgenic and knockout mice for DNA repair functions in carcinogenesis and mutagenesis. Toxicology 2003; 193:171-87. [PMID: 14599776 DOI: 10.1016/s0300-483x(03)00295-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Genetically modified mouse models with defects in DNA repair pathways, especially in nucleotide excision repair (NER) and mismatch repair (MMR), are powerful tools to study processes like carcinogenesis and mutagenesis. The use of mutant mice in these studies has many advantages over using normal wild type mice with respect to costs, number of animals, predictive value towards carcinogenic compounds and the duration of study. Short-term carcinogenicity assays still require considerable number of animals and extensive pathological analyses. Therefore, alternatives demanding less animals and shorter exposure times would be desirable. In this respect, one approach could be the use of transgenic mice harbouring marker genes, that can easily detect mutagenic features of carcinogenic compounds, especially when such models are in a DNA repair deficient background. Here, we review the progress made in the development and use of DNA repair deficient mouse models as replacements for long-term cancer assays and discuss the applicability of enhanced gene mutant frequencies as early indicators of tumourigenesis. Although promising models exist, there is still a need for more universally responding and highly sensitive mouse models, since it is likely that non-genotoxic carcinogens will go undetected in a DNA repair deficient mouse. One attractive candidate mouse model, having a presumptive broad detective range, is the Xpa/p53 mutant mouse model, which will be discussed in more detail.
Collapse
Affiliation(s)
- Susan W P Wijnhoven
- National Institute of Public Health and Environment, RIVM/TOX pb12, P.O. Box 1, 3720 BA Bilthoven, The Netherlands.
| | | |
Collapse
|
383
|
Yu DS, Sonoda E, Takeda S, Huang CLH, Pellegrini L, Blundell TL, Venkitaraman AR. Dynamic control of Rad51 recombinase by self-association and interaction with BRCA2. Mol Cell 2003; 12:1029-41. [PMID: 14580352 DOI: 10.1016/s1097-2765(03)00394-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Here, we visualize GFP-Rad51 fusion proteins in the nucleus of living cells to demonstrate the dynamic compartmentalization of Rad51 by self-association or by binding to BRCA2. Mutants of Rad51 that fail to oligomerize and/or to bind BRCA2 distinguish three fractions of Rad51 within the nucleoplasm: a relatively mobile fraction, an immobile oligomerized fraction, and an immobile BRCA2-bound fraction. Strikingly, inhibition of replication by hydroxyurea reduces the immobile fraction of nucleoplasmic Rad51. This effect is specific to Rad51 mutants that retain the capacity to bind BRCA2, indicating that the BRCA2-bound fraction is selectively mobilized. We propose that arrested replication triggers a switch between dual functions of BRCA2 in sequestering or mobilizing a small fraction of nucleoplasmic Rad51 and suggest a mechanism for the dynamic control of protein complexes that participate in homologous recombination.
Collapse
Affiliation(s)
- David S Yu
- CR UK Department of Oncology and The Medical Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 2XZ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
384
|
Akamatsu Y, Dziadkowiec D, Ikeguchi M, Shinagawa H, Iwasaki H. Two different Swi5-containing protein complexes are involved in mating-type switching and recombination repair in fission yeast. Proc Natl Acad Sci U S A 2003; 100:15770-5. [PMID: 14663140 PMCID: PMC307643 DOI: 10.1073/pnas.2632890100] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Homologous recombination is an important biological process that occurs in all organisms and facilitates genome rearrangements and repair of DNA double-strand breaks. Eukaryotic Rad51 proteins (Rad51sp or Rhp51 in fission yeast) are functional and structural homologs of bacterial RecA protein, an evolutionarily conserved protein that plays a key role in homologous pairing and strand exchange between homologous DNA molecules in vitro. Here we show that the fission yeast swi5+ gene, which was originally identified as a gene required for normal mating-type switching, encodes a protein conserved among eukaryotes and is involved in a previously uncharacterized Rhp51 (Rad51sp)-dependent recombination repair pathway that does not require the Rhp55/57 (Rad55/57sp) function. Protein interactions with both Swi5 and Rhp51 were found to be mediated by a domain common to Swi2 and Sfr1 (Swi five-dependent recombination repair protein 1, a previously uncharacterized protein with sequence similarity to the C-terminal part of Swi2). Genetic epistasis analyses suggest that the Swi5-Sfr1-Rhp51 interactions function specifically in DNA recombination repair, whereas the Swi5-Swi2-Rhp51 interactions may function, together with chromodomain protein Swi6 (HP1 homolog), in mating-type switching.
Collapse
Affiliation(s)
- Yufuko Akamatsu
- Graduate School of Integrated Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | |
Collapse
|
385
|
Sharan SK, Pyle A, Coppola V, Babus J, Swaminathan S, Benedict J, Swing D, Martin BK, Tessarollo L, Evans JP, Flaws JA, Handel MA. BRCA2 deficiency in mice leads to meiotic impairment and infertility. Development 2003; 131:131-42. [PMID: 14660434 DOI: 10.1242/dev.00888] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of Brca2 in gametogenesis has been obscure because of embryonic lethality of the knockout mice. We generated Brca2-null mice carrying a human BAC with the BRCA2 gene. This construct rescues embryonic lethality and the mice develop normally. However, there is poor expression of the transgene in the gonads and the mice are infertile, allowing examination of the function of BRCA2 in gametogenesis. BRCA2-deficient spermatocytes fail to progress beyond the early prophase I stage of meiosis. Observations on localization of recombination-related and spermatogenic-related proteins suggest that the spermatocytes undergo early steps of recombination (DNA double strand break formation), but fail to complete recombination or initiate spermiogenic development. In contrast to the early meiotic prophase arrest of spermatocytes, some mutant oocytes can progress through meiotic prophase I, albeit with a high frequency of nuclear abnormalities, and can be fertilized and produce embryos. Nonetheless, there is marked depletion of germ cells in adult females. These studies provide evidence for key roles of the BRCA2 protein in mammalian gametogenesis and meiotic success.
Collapse
Affiliation(s)
- Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute at Frederick, 1050 Boyles Street, Frederick, MD 21702, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
386
|
Abstract
An increased mutation rate in human cells is a critical contributing factor for the development of malignancy. Many autosomal recessive genetic disorders are known, in which an increased mutation rate and predisposition for cancer can be attributed to a deficiency in DNA repair or associated processes. Some of these DNA repair deficiencies are manifested at the level of the mitotic chromosome as increased breakage, particularly after treatment with specific mutagens. The examination of the response of cells from patients with these disorders to carcinogens offers the opportunity to elucidate the mechanisms operating in human cells to combat DNA damage and mutation. Over the last few years, the underlying genes in many of these syndromes have been identified, enabling a much more detailed definition of the processes disturbed. This review concentrates on two of the chromosomal breakage syndromes, Fanconi anaemia and Nijmegen breakage syndrome, which have both distinct and common cellular features.
Collapse
Affiliation(s)
- Martin Digweed
- Institut für Humangenetik, Charité-Campus Virchow Klinikum, Humboldt Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
387
|
Ward JO, Reinholdt LG, Hartford SA, Wilson LA, Munroe RJ, Schimenti KJ, Libby BJ, O'Brien M, Pendola JK, Eppig J, Schimenti JC. Toward the genetics of mammalian reproduction: induction and mapping of gametogenesis mutants in mice. Biol Reprod 2003; 69:1615-25. [PMID: 12855593 DOI: 10.1095/biolreprod.103.019877] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The genetic control of mammalian gametogenesis is inadequately characterized because of a lack of mutations causing infertility. To further the discovery of genes required for mammalian gametogenesis, phenotype-driven screens were performed in mice using random chemical mutagenesis of whole animals and embryonic stem cells. Eleven initial mutations are reported here that affect proliferation of germ cells, meiosis, spermiogenesis, and spermiation. Nine of the mutations have been mapped genetically. These preliminary studies provide baselines for estimating the number of genes required for gametogenesis and offer guidance in conducting new genetic screens that will accelerate and optimize mutant discovery. This report demonstrates the efficacy and expediency of mutagenesis to identify new genes required for mammalian gamete development.
Collapse
Affiliation(s)
- Jeremy O Ward
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
388
|
Baynton K, Otterlei M, Bjørås M, von Kobbe C, Bohr VA, Seeberg E. WRN interacts physically and functionally with the recombination mediator protein RAD52. J Biol Chem 2003; 278:36476-86. [PMID: 12750383 DOI: 10.1074/jbc.m303885200] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Werner syndrome (WS) is a premature aging disorder that predisposes affected individuals to cancer development. The affected gene, WRN, encodes an RecQ homologue whose precise biological function remains elusive. Altered DNA recombination is a hallmark of WS cells suggesting that WRN plays an important role in these pathways. Here we report a novel physical and functional interaction between WRN and the homologous recombination mediator protein RAD52. Fluorescence resonance energy transfer (FRET) analyses show that WRN and RAD52 form a complex in vivo that co-localizes in foci associated with arrested replication forks. Biochemical studies demonstrate that RAD52 both inhibits and enhances WRN helicase activity in a DNA structure-dependent manner, whereas WRN increases the efficiency of RAD52-mediated strand annealing between non-duplex DNA and homologous sequences contained within a double-stranded plasmid. These results suggest that coordinated WRN and RAD52 activities are involved in replication fork rescue after DNA damage.
Collapse
Affiliation(s)
- Kathy Baynton
- Centre for Molecular Biology and Neuroscience, and Institute of Medical Microbiology, University of Oslo, Rikshospitalet, 0027 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
389
|
Abstract
The double-strand break (DSB) is believed to be one of the most severe types of DNA damage, and if left unrepaired is lethal to the cell. Several different types of repair act on the DSB. The most important in mammalian cells are nonhomologous end-joining (NHEJ) and homologous recombination repair (HRR). NHEJ is the predominant type of DSB repair in mammalian cells, as opposed to lower eucaryotes, but HRR has recently been implicated in critical cell signaling and regulatory functions that are essential for cell viability. Whereas NHEJ repair appears constitutive, HRR is regulated by the cell cycle and inducible signal transduction pathways. More is known about the molecular details of NHEJ than HRR in mammalian cells. This review focuses on the mechanisms and regulation of DSB repair in mammalian cells, the signaling pathways that regulate these processes and the potential crosstalk between NHEJ and HRR, and between repair and other stress-induced pathways with emphasis on the regulatory circuitry associated with the ataxia telangiectasia mutated (ATM) protein.
Collapse
Affiliation(s)
- Kristoffer Valerie
- Department of Radiation Oncology, Medical College of Virginia Commonwealth University, Richmond, VA 23298-0058, USA.
| | | |
Collapse
|
390
|
Abstract
Homologous recombination mediates the transfer or exchange of genetic information between homologous DNA molecules. It plays important roles in central processes in the cell such as genome duplication and DNA damage repair. Recent experiments reveal the surprising versatility of one of its central actors, the Rad54 protein.
Collapse
Affiliation(s)
- T L Raoul Tan
- Department of Cell Biology and Genetics, Erasmus MC, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | |
Collapse
|
391
|
Nyberg KA, Michelson RJ, Putnam CW, Weinert TA. Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet 2003; 36:617-56. [PMID: 12429704 DOI: 10.1146/annurev.genet.36.060402.113540] [Citation(s) in RCA: 633] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA checkpoints play a significant role in cancer pathology, perhaps most notably in maintaining genome stability. This review summarizes the genetic and molecular mechanisms of checkpoint activation in response to DNA damage. The major checkpoint proteins common to all eukaryotes are identified and discussed, together with how the checkpoint proteins interact to induce arrest within each cell cycle phase. Also discussed are the molecular signals that activate checkpoint responses, including single-strand DNA, double-strand breaks, and aberrant replication forks. We address the connection between checkpoint proteins and damage repair mechanisms, how cells recover from an arrest response, and additional roles that checkpoint proteins play in DNA metabolism. Finally, the connection between checkpoint gene mutation and genomic instability is considered.
Collapse
Affiliation(s)
- Kara A Nyberg
- Molecular and Cellular Biology Department, University of Arizona, Tucson, Arizona, 85721, USA.
| | | | | | | |
Collapse
|
392
|
Alpi A, Pasierbek P, Gartner A, Loidl J. Genetic and cytological characterization of the recombination protein RAD-51 in Caenorhabditis elegans. Chromosoma 2003; 112:6-16. [PMID: 12684824 DOI: 10.1007/s00412-003-0237-5] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2002] [Revised: 01/22/2003] [Accepted: 01/22/2003] [Indexed: 11/24/2022]
Abstract
We investigated the role of Caenorhabditis elegans rad-51 during meiotic prophase. We showed that rad-51 mutant worms are viable, have no defects in meiotic homology recognition and synapsis but exhibit abnormal chromosomal morphology and univalent formation at diakinesis. During meiosis RAD-51 becomes localized to distinct foci in nuclei of the transition zone of the gonad and is most abundant in nuclei at late zygotene/early pachytene. Foci then gradually disappear from chromosomes and no foci are observed in late pachytene. RAD-51 localization requires the recombination genes spo-11 and mre-11 as well as chk-2, which is necessary for homology recognition and presynaptic alignment. Mutational analysis with synapsis- and recombination-defective strains, as well as the analysis of strains bearing heterozygous translocation chromosomes, suggests that presynaptic alignment may be required for RAD-51 focus formation, whereas homologous synaptonemal complex formation is required to remove RAD-51 foci.
Collapse
Affiliation(s)
- Arno Alpi
- Max Planck Institute for Biochemistry, Am Klopferspitz 18a, 82152 Martinsried, Germany
| | | | | | | |
Collapse
|
393
|
Wolner B, van Komen S, Sung P, Peterson CL. Recruitment of the recombinational repair machinery to a DNA double-strand break in yeast. Mol Cell 2003; 12:221-32. [PMID: 12887907 DOI: 10.1016/s1097-2765(03)00242-9] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Repair of DNA double-strand breaks (DSBs) by homologous recombination requires members of the RAD52 epistasis group. Here we use chromatin immunoprecipitation (ChIP) to examine the temporal order of recruitment of Rad51p, Rad52p, Rad54p, Rad55p, and RPA to a single, induced DSB in yeast. Our results suggest a sequential, interdependent assembly of Rad proteins adjacent to the DSB initiated by binding of Rad51p. ChIP time courses from various mutant strains and additional biochemical studies suggest that Rad52p, Rad55p, and Rad54p each help promote the formation and/or stabilization of the Rad51p nucleoprotein filament. We also find that all four Rad proteins associate with homologous donor sequences during strand invasion. These studies provide a near comprehensive view of the molecular events required for the in vivo assembly of a functional Rad51p presynaptic filament.
Collapse
Affiliation(s)
- Branden Wolner
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
394
|
Venkitaraman AR. Chromosomal instability and cancer predisposition: insights from studies on the breast cancer susceptibility gene, BRCA2. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:567-72. [PMID: 12760075 DOI: 10.1101/sqb.2000.65.567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- A R Venkitaraman
- University of Cambridge, CRC Department of Oncology, Wellcome Trust Centre for Molecular Mechanisms in Disease, Cambridge Institute for Medical Research, Cambridge CB2 2XY, United Kingdom
| |
Collapse
|
395
|
Ferguson DO, Sekiguchi JM, Frank KM, Gao Y, Sharpless NE, Gu Y, Manis J, DePinho RA, Alt FW. The interplay between nonhomologous end-joining and cell cycle checkpoint factors in development, genomic stability, and tumorigenesis. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:395-403. [PMID: 12760055 DOI: 10.1101/sqb.2000.65.395] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- D O Ferguson
- Center for Blood Research, Harvard Medical School, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
396
|
Richardson C, Jasin M. Recombination between two chromosomes: implications for genomic integrity in mammalian cells. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:553-60. [PMID: 12760073 DOI: 10.1101/sqb.2000.65.553] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- C Richardson
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, Cornell University Graduate School of Medical Sciences, New York, New York, USA
| | | |
Collapse
|
397
|
West SC, Chappell C, Hanakahi LA, Masson JY, McIlwraith MJ, Van Dyck E. Double-strand break repair in human cells. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:315-21. [PMID: 12760045 DOI: 10.1101/sqb.2000.65.315] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- S C West
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Herts, EN6 3LD, United Kingdom
| | | | | | | | | | | |
Collapse
|
398
|
Domínguez-Bendala J, Priddle H, Clarke A, McWhir J. Elevated expression of exogenous Rad51 leads to identical increases in gene-targeting frequency in murine embryonic stem (ES) cells with both functional and dysfunctional p53 genes. Exp Cell Res 2003; 286:298-307. [PMID: 12749858 DOI: 10.1016/s0014-4827(03)00111-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Rad51 gene is the mammalian homologue of the bacterial RecA gene and catalyses homologous recombination in mammalian cells. In some cell types Rad51 has been shown to interact with p53, leading to inhibition of Rad51 activity. Here, we show a two- to four-fold increase in gene-targeting frequency at the HPRT locus using murine ES clones preengineered to overexpress Rad51, and a twofold increase in targeting frequency when a Rad51 expression cassette was cointroduced to wild-type ES cells with the targeting construct. In addition to its effect on homologous recombination, we show that Rad51 may down-regulate illegitimate recombination. We investigated the dependence of these phenomena upon p53 and found no evidence that the Rad 51-mediated increase is affected by the functional status of p53, a conclusion supported by the observed cytoplasmic localisation of p53 in ES cells following electroporation. Furthermore, in the absence of additional Rad51, p53-deficient ES cells do not have elevated rates of homologous recombination with extrachromosomal DNA. These findings demonstrate that Rad51 levels modify both homologous and illegitimate recombination, but that these phenomena are independent of p53 status.
Collapse
|
399
|
Affiliation(s)
- Randy J Legerski
- Department of Molecular Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
400
|
Hendricks CA, Almeida KH, Stitt MS, Jonnalagadda VS, Rugo RE, Kerrison GF, Engelward BP. Spontaneous mitotic homologous recombination at an enhanced yellow fluorescent protein (EYFP) cDNA direct repeat in transgenic mice. Proc Natl Acad Sci U S A 2003; 100:6325-30. [PMID: 12750464 PMCID: PMC164445 DOI: 10.1073/pnas.1232231100] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A transgenic mouse has been created that provides a powerful tool for revealing genetic and environmental factors that modulate mitotic homologous recombination. The fluorescent yellow direct-repeat (FYDR) mice described here carry two different copies of expression cassettes for truncated coding sequences of the enhanced yellow fluorescent protein (EYFP), arranged in tandem. Homologous recombination between these repeated elements can restore full-length EYFP coding sequence to yield a fluorescent phenotype, and the resulting fluorescent recombinant cells are rapidly quantifiable by flow cytometry. Analysis of genomic DNA from recombined FYDR cells shows that this mouse model detects gene conversions, and based on the arrangement of the integrated recombination substrate, unequal sister-chromatid exchanges and repair of collapsed replication forks are also expected to reconstitute EYFP coding sequence. The rate of spontaneous recombination in primary fibroblasts derived from adult ear tissue is 1.3 +/- 0.1 per 106 cell divisions. Interestingly, the rate is approximately 10-fold greater in fibroblasts derived from embryonic tissue. We observe an approximately 15-fold increase in the frequency of recombinant cells in cultures of ear fibroblasts when exposed to mitomycin C, which is consistent with the ability of interstrand crosslinks to induce homologous recombination. In addition to studies of recombination in cultured primary cells, the frequency of recombinant cells present in skin was also measured by direct analysis of disaggregated cells. Thus, the FYDR mouse model can be used for studies of mitotic homologous recombination both in vitro and in vivo.
Collapse
Affiliation(s)
- Carrie A Hendricks
- Biological Engineering Division, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | | | | | | | |
Collapse
|