351
|
Iron economy in Naegleria gruberi reflects its metabolic flexibility. Int J Parasitol 2018; 48:719-727. [PMID: 29738737 DOI: 10.1016/j.ijpara.2018.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 11/24/2022]
Abstract
Naegleria gruberi is a free-living amoeba, closely related to the human pathogen Naegleria fowleri, the causative agent of the deadly human disease primary amoebic meningoencephalitis. Herein, we investigated the effect of iron limitation on different aspects of N. gruberi metabolism. Iron metabolism is among the most conserved pathways found in all eukaryotes. It includes the delivery, storage and utilisation of iron in many cell processes. Nevertheless, most of the iron metabolism pathways of N. gruberi are still not characterised, even though iron balance within the cell is crucial. We found a single homolog of ferritin in the N. gruberi genome and showed its localisation in the mitochondrion. Using comparative mass spectrometry, we identified 229 upregulated and 184 down-regulated proteins under iron-limited conditions. The most down-regulated protein under iron-limited conditions was hemerythrin, and a similar effect on the expression of hemerythrin was found in N. fowleri. Among the other down-regulated proteins were [FeFe]-hydrogenase and its maturase HydG and several heme-containing proteins. The activities of [FeFe]-hydrogenase, as well as alcohol dehydrogenase, were also decreased by iron deficiency. Our results indicate that N. gruberi is able to rearrange its metabolism according to iron availability, prioritising mitochondrial pathways. We hypothesise that the mitochondrion is the center for iron homeostasis in N. gruberi, with mitochondrially localised ferritin as a potential key component of this process.
Collapse
|
352
|
Stairs CW, Eme L, Muñoz-Gómez SA, Cohen A, Dellaire G, Shepherd JN, Fawcett JP, Roger AJ. Microbial eukaryotes have adapted to hypoxia by horizontal acquisitions of a gene involved in rhodoquinone biosynthesis. eLife 2018; 7:34292. [PMID: 29697049 PMCID: PMC5953543 DOI: 10.7554/elife.34292] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/25/2018] [Indexed: 01/01/2023] Open
Abstract
Under hypoxic conditions, some organisms use an electron transport chain consisting of only complex I and II (CII) to generate the proton gradient essential for ATP production. In these cases, CII functions as a fumarate reductase that accepts electrons from a low electron potential quinol, rhodoquinol (RQ). To clarify the origins of RQ-mediated fumarate reduction in eukaryotes, we investigated the origin and function of rquA, a gene encoding an RQ biosynthetic enzyme. RquA is very patchily distributed across eukaryotes and bacteria adapted to hypoxia. Phylogenetic analyses suggest lateral gene transfer (LGT) of rquA from bacteria to eukaryotes occurred at least twice and the gene was transferred multiple times amongst protists. We demonstrate that RquA functions in the mitochondrion-related organelles of the anaerobic protist Pygsuia and is correlated with the presence of RQ. These analyses reveal the role of gene transfer in the evolutionary remodeling of mitochondria in adaptation to hypoxia.
Collapse
Affiliation(s)
- Courtney W Stairs
- Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Laura Eme
- Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Sergio A Muñoz-Gómez
- Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Alejandro Cohen
- Proteomics Core Facility, Life Sciences Research Institute, Dalhousie University, Halifax, Canada
| | - Graham Dellaire
- Department of Pathology, Dalhousie University, Halifax, Canada.,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Jennifer N Shepherd
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, United States
| | - James P Fawcett
- Proteomics Core Facility, Life Sciences Research Institute, Dalhousie University, Halifax, Canada.,Department of Pharmacology, Dalhousie University, Halifax, Canada.,Department of Surgery, Dalhousie University, Halifax, Canada
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| |
Collapse
|
353
|
MCU Interacts with Miro1 to Modulate Mitochondrial Functions in Neurons. J Neurosci 2018; 38:4666-4677. [PMID: 29686046 DOI: 10.1523/jneurosci.0504-18.2018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/11/2018] [Accepted: 04/17/2018] [Indexed: 11/21/2022] Open
Abstract
Mitochondrial Ca2+ uptake is gated by the mitochondrial calcium uniplex, which is comprised of mitochondrial calcium uniporter (MCU), the Ca2+ pore-forming subunit of the complex, and its regulators. Ca2+ influx through MCU affects both mitochondrial function and movement in neurons, but its direct role in mitochondrial movement has not been explored. In this report, we show a link between MCU and Miro1, a membrane protein known to regulate mitochondrial movement. We find that MCU interacts with Miro1 through MCU's N-terminal domain, previously thought to be the mitochondrial targeting sequence. Our results show that the N-terminus of MCU has a transmembrane domain that traverses the outer mitochondrial membrane, which is dispensable for MCU localization into mitochondria. However, this domain is required for Miro1 interaction and is critical for Miro1 directed movement. Together, our findings reveal Miro1 as a new component of the MCU complex, and that MCU is an important regulator of mitochondrial transport.SIGNIFICANCE STATEMENT Mitochondrial calcium level is critical for mitochondrial metabolic activity and mitochondrial transport in neurons. While it has been established that calcium influx into mitochondria is modulated by mitochondrial calcium uniporter (MCU) complex, how MCU regulates mitochondrial movement still remains unclear. Here, we discover that the N-terminus of MCU plays a different role than previously thought; it is not required for mitochondrial targeting but is essential for interaction with Miro1, an outer mitochondrial membrane protein important for mitochondrial movement. Furthermore, we show that MCU-Miro1 interaction is required to maintain mitochondrial transport. Our data identify that Miro1 is a novel component of the mitochondrial calcium uniplex and demonstrate that coupling between MCU and Miro1 as a novel mechanism modulating both mitochondrial Ca2+ uptake and mitochondrial transport.
Collapse
|
354
|
The draft genome of Kipferlia bialata reveals reductive genome evolution in fornicate parasites. PLoS One 2018; 13:e0194487. [PMID: 29590215 PMCID: PMC5874029 DOI: 10.1371/journal.pone.0194487] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/05/2018] [Indexed: 11/30/2022] Open
Abstract
The fornicata (fornicates) is a eukaryotic group known to consist of free-living and parasitic organisms. Genome datasets of two model fornicate parasites Giardia intestinalis and Spironucleus salmonicida are well annotated, so far. The nuclear genomes of G. intestinalis assemblages and S. salmonicida are small in terms of the genome size and simple in genome structure. However, an ancestral genomic structure and gene contents, from which genomes of the fornicate parasites have evolved, remains to be clarified. In order to understand genome evolution in fornicates, here, we present the draft genome sequence of a free-living fornicate, Kipferlia bialata, the divergence of which is earlier than those of the fornicate parasites, and compare it to the genomes of G. intestinalis and S. salmonicida. Our data show that the number of protein genes and introns in K. bialata genome are the most abundant in the genomes of three fornicates, reflecting an ancestral state of fornicate genome evolution. Evasion mechanisms of host immunity found in G. intestinalis and S. salmonicida are absent in the K. bialata genome, suggesting that the two parasites acquired the complex membrane surface proteins on the line leading to the common ancestor of G. intestinalis and S. salmonicida after the divergence from K. bialata. Furthermore, the mitochondrion related organelles (MROs) of K. bialata possess more complex suites of metabolic pathways than those in Giardia and in Spironucleus. In sum, our results unveil the process of reductive evolution which shaped the current genomes in two model fornicate parasites G. intestinalis and S. salmonicida.
Collapse
|
355
|
Gahoi S, Singh S, Gautam B. Genome-wide identification and comprehensive analysis of Excretory/Secretory proteins in nematodes provide potential drug targets for parasite control. Genomics 2018. [PMID: 29522800 DOI: 10.1016/j.ygeno.2018.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nematodes are responsible for causing severe diseases in plants, humans and other animals. Infection is associated with the release of Excretory/Secretory (ES) proteins into host cytoplasm and interference with the host immune system which make them attractive targets for therapeutic use. The identification of ES proteins through bioinformatics approaches is cost- and time-effective and could be used for screening of potential targets for parasitic diseases for further experimental studies. Here, we identified and functionally annotated 93,949 ES proteins, in the genome of 73 nematodes using integration of various bioinformatics tools. 30.6% of ES proteins were found to be supported at RNA level. The predicted ES proteins, annotated by Gene Ontology terms, domains, metabolic pathways, proteases and enzyme class analysis were enriched in molecular functions of proteases, protease inhibitors, c-type lectin and hydrolases which are strongly associated with typical functions of ES proteins. We identified a total of 452 ES proteins from human and plant parasitic nematodes, homologues to DrugBank-approved targets and C. elegans RNA interference phenotype genes which could represent potential targets for parasite control and provide valuable resource for further experimental studies to understand host-pathogen interactions.
Collapse
Affiliation(s)
- Shachi Gahoi
- Department of Computational Biology and Bioinformatics, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad 211007, India.
| | - Satendra Singh
- Department of Computational Biology and Bioinformatics, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad 211007, India.
| | - Budhayash Gautam
- Department of Computational Biology and Bioinformatics, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad 211007, India.
| |
Collapse
|
356
|
Melber A, Haynes CM. UPR mt regulation and output: a stress response mediated by mitochondrial-nuclear communication. Cell Res 2018; 28:281-295. [PMID: 29424373 PMCID: PMC5835775 DOI: 10.1038/cr.2018.16] [Citation(s) in RCA: 354] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mitochondrial network is not only required for the production of energy, essential cofactors and amino acids, but also serves as a signaling hub for innate immune and apoptotic pathways. Multiple mechanisms have evolved to identify and combat mitochondrial dysfunction to maintain the health of the organism. One such pathway is the mitochondrial unfolded protein response (UPRmt), which is regulated by the mitochondrial import efficiency of the transcription factor ATFS-1 in C. elegans and potentially orthologous transcription factors in mammals (ATF4, ATF5, CHOP). Upon mitochondrial dysfunction, import of ATFS-1 into mitochondria is reduced, allowing it to be trafficked to the nucleus where it promotes the expression of genes that promote survival and recovery of the mitochondrial network. Here, we discuss recent findings underlying UPRmt signal transduction and how this adaptive transcriptional response may interact with other mitochondrial stress response pathways.
Collapse
Affiliation(s)
- Andrew Melber
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Cole M Haynes
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
357
|
Abstract
Predicting mitochondrial localization of proteins remains challenging for two main reasons: (1) Not only one but several mitochondrial localization signals exist, which primarily dictate the final destination of a protein in this organelle. However, most localization prediction algorithms rely on the presence of a so-called presequence (or N-terminal mitochondrial targeting peptide, mTP), which occurs in only ~70% of mitochondrial proteins. (2) The presequence is highly divergent on sequence level and therefore difficult to identify on the computer.In this chapter, we review a number of protein localization prediction programs and propose a strategy to predict mitochondrial localization. Finally, we give some helpful suggestions for bench scientists when working with mitochondrial protein candidates in silico.
Collapse
|
358
|
Jayaraman V, Suryavanshi A, Kalale P, Kunala J, Balaram H. Biochemical characterization and essentiality of Plasmodium fumarate hydratase. J Biol Chem 2018; 293:5878-5894. [PMID: 29449371 DOI: 10.1074/jbc.m117.816298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 02/07/2018] [Indexed: 12/30/2022] Open
Abstract
Plasmodium falciparum (Pf), the causative agent of malaria, has an iron-sulfur cluster-containing class I fumarate hydratase (FH) that catalyzes the interconversion of fumarate to malate, a well-known reaction in the tricarboxylic acid cycle. In humans, the same reaction is catalyzed by class II FH that has no sequence or structural homology with the class I enzyme from Plasmodium Fumarate is generated in large quantities in the parasite as a by-product of AMP synthesis and is converted to malate by FH and then used in the generation of the key metabolites oxaloacetate, aspartate, and pyruvate. Previous studies have identified the FH reaction as being essential to P. falciparum, but biochemical characterization of PfFH that may provide leads for the development of specific inhibitors is lacking. Here, we report on the kinetic characterization of purified recombinant PfFH, functional complementation of fh deficiency in Escherichia coli, and mitochondrial localization in the parasite. We found that the substrate analog mercaptosuccinic acid is a potent PfFH inhibitor, with a Ki value in the nanomolar range. The fh gene could not be knocked out in Plasmodium berghei when transfectants were introduced into BALB/c mice; however, fh knockout was successful when C57BL/6 mice were used as host, suggesting that the essentiality of the fh gene to the parasite was mouse strain-dependent.
Collapse
Affiliation(s)
- Vijay Jayaraman
- From the Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, Karnataka 560064, India
| | - Arpitha Suryavanshi
- From the Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, Karnataka 560064, India
| | - Pavithra Kalale
- From the Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, Karnataka 560064, India
| | - Jyothirmai Kunala
- From the Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, Karnataka 560064, India
| | - Hemalatha Balaram
- From the Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, Karnataka 560064, India
| |
Collapse
|
359
|
Agnew T, Munnur D, Crawford K, Palazzo L, Mikoč A, Ahel I. MacroD1 Is a Promiscuous ADP-Ribosyl Hydrolase Localized to Mitochondria. Front Microbiol 2018; 9:20. [PMID: 29410655 PMCID: PMC5787345 DOI: 10.3389/fmicb.2018.00020] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/05/2018] [Indexed: 12/23/2022] Open
Abstract
MacroD1 is a macrodomain containing protein that has mono-ADP-ribose hydrolase enzymatic activity toward several ADP-ribose adducts. Dysregulation of MacroD1 expression has been shown to be associated with the pathogenesis of several forms of cancer. To date, the physiological functions and sub-cellular localization of MacroD1 are unclear. Previous studies have described nuclear and cytosolic functions of MacroD1. However, in this study we show that endogenous MacroD1 protein is highly enriched within mitochondria. We also show that MacroD1 is highly expressed in human and mouse skeletal muscle. Furthermore, we show that MacroD1 can efficiently remove ADP-ribose from 5' and 3'-phosphorylated double stranded DNA adducts in vitro. Overall, we have shown that MacroD1 is a mitochondrial protein with promiscuous enzymatic activity that can target the ester bonds of ADP-ribosylated phosphorylated double-stranded DNA ends. These findings have exciting implications for MacroD1 and ADP-ribosylation within the regulation of mitochondrial function and DNA-damage in vivo.
Collapse
Affiliation(s)
- Thomas Agnew
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Deeksha Munnur
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Kerryanne Crawford
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Luca Palazzo
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Andreja Mikoč
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
360
|
De Lepeleire J, Strobbe S, Verstraete J, Blancquaert D, Ambach L, Visser RGF, Stove C, Van Der Straeten D. Folate Biofortification of Potato by Tuber-Specific Expression of Four Folate Biosynthesis Genes. MOLECULAR PLANT 2018; 11:175-188. [PMID: 29277427 DOI: 10.1016/j.molp.2017.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 05/24/2023]
Abstract
Insufficient dietary intake of micronutrients, known as "hidden hunger", is a devastating global burden, affecting two billion people. Deficiency of folates (vitamin B9), which are known to play a central role in C1 metabolism, causes birth defects in at least a quarter million people annually. Biofortification to enhance the level of naturally occurring folates in crop plants, proves to be an efficient and cost-effective tool in fighting folate deficiency. Previously, introduction of folate biosynthesis genes GTPCHI and ADCS, proven to be a successful biofortification strategy in rice and tomato, turned out to be insufficient to adequately increase folate levels in potato tubers. Here, we provide a proof of concept that additional introduction of HPPK/DHPS and/or FPGS, downstream genes in mitochondrial folate biosynthesis, enables augmentation of folates to satisfactory levels (12-fold) and ensures folate stability upon long-term storage of tubers. In conclusion, this engineering strategy can serve as a model in the creation of folate-accumulating potato cultivars, readily applicable in potato-consuming populations suffering from folate deficiency.
Collapse
Affiliation(s)
- Jolien De Lepeleire
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Simon Strobbe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Jana Verstraete
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Dieter Blancquaert
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Lars Ambach
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6700 Wageningen, the Netherlands
| | - Christophe Stove
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6700 Wageningen, the Netherlands
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium.
| |
Collapse
|
361
|
Abstract
Polymerase δ-interacting protein 2 (Poldip2) is a multifunctional protein originally described as a binding partner of the p50 subunit of DNA polymerase δ and proliferating cell nuclear antigen. In addition to its role in DNA replication and damage repair, Poldip2 has been implicated in mitochondrial function, extracellular matrix regulation, cell cycle progression, focal adhesion turnover, and cell migration. However, Poldip2 functions are incompletely understood. In this review, we discuss recent literature on Poldip2 tissue distribution, subcellular localization, and function. We also address the putative function of Poldip2 in cardiovascular disease, neurodegenerative conditions and in renal pathophysiology.
Collapse
|
362
|
Zhang N, Rao RSP, Salvato F, Havelund JF, Møller IM, Thelen JJ, Xu D. MU-LOC: A Machine-Learning Method for Predicting Mitochondrially Localized Proteins in Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:634. [PMID: 29875778 PMCID: PMC5974146 DOI: 10.3389/fpls.2018.00634] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/23/2018] [Indexed: 05/19/2023]
Abstract
Targeting and translocation of proteins to the appropriate subcellular compartments are crucial for cell organization and function. Newly synthesized proteins are transported to mitochondria with the assistance of complex targeting sequences containing either an N-terminal pre-sequence or a multitude of internal signals. Compared with experimental approaches, computational predictions provide an efficient way to infer subcellular localization of a protein. However, it is still challenging to predict plant mitochondrially localized proteins accurately due to various limitations. Consequently, the performance of current tools can be improved with new data and new machine-learning methods. We present MU-LOC, a novel computational approach for large-scale prediction of plant mitochondrial proteins. We collected a comprehensive dataset of plant subcellular localization, extracted features including amino acid composition, protein position weight matrix, and gene co-expression information, and trained predictors using deep neural network and support vector machine. Benchmarked on two independent datasets, MU-LOC achieved substantial improvements over six state-of-the-art tools for plant mitochondrial targeting prediction. In addition, MU-LOC has the advantage of predicting plant mitochondrial proteins either possessing or lacking N-terminal pre-sequences. We applied MU-LOC to predict candidate mitochondrial proteins for the whole proteome of Arabidopsis and potato. MU-LOC is publicly available at http://mu-loc.org.
Collapse
Affiliation(s)
- Ning Zhang
- Informatics Institute, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - R. S. P. Rao
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Fernanda Salvato
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Jesper F. Havelund
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Ian M. Møller
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jay J. Thelen
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Dong Xu
- Informatics Institute, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, United States
- *Correspondence: Dong Xu,
| |
Collapse
|
363
|
Veling MT, Reidenbach AG, Freiberger EC, Kwiecien NW, Hutchins PD, Drahnak MJ, Jochem A, Ulbrich A, Rush MJP, Russell JD, Coon JJ, Pagliarini DJ. Multi-omic Mitoprotease Profiling Defines a Role for Oct1p in Coenzyme Q Production. Mol Cell 2017; 68:970-977.e11. [PMID: 29220658 DOI: 10.1016/j.molcel.2017.11.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/29/2017] [Accepted: 11/16/2017] [Indexed: 01/08/2023]
Abstract
Mitoproteases are becoming recognized as key regulators of diverse mitochondrial functions, although their direct substrates are often difficult to discern. Through multi-omic profiling of diverse Saccharomyces cerevisiae mitoprotease deletion strains, we predicted numerous associations between mitoproteases and distinct mitochondrial processes. These include a strong association between the mitochondrial matrix octapeptidase Oct1p and coenzyme Q (CoQ) biosynthesis-a pathway essential for mitochondrial respiration. Through Edman sequencing and in vitro and in vivo biochemistry, we demonstrated that Oct1p directly processes the N terminus of the CoQ-related methyltransferase, Coq5p, which markedly improves its stability. A single mutation to the Oct1p recognition motif in Coq5p disrupted its processing in vivo, leading to CoQ deficiency and respiratory incompetence. This work defines the Oct1p processing of Coq5p as an essential post-translational event for proper CoQ production. Additionally, our data visualization tool enables efficient exploration of mitoprotease profiles that can serve as the basis for future mechanistic investigations.
Collapse
Affiliation(s)
- Mike T Veling
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Andrew G Reidenbach
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Elyse C Freiberger
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Paul D Hutchins
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Adam Jochem
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Arne Ulbrich
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Matthew J P Rush
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jason D Russell
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua J Coon
- Morgridge Institute for Research, Madison, WI 53715, USA; Genome Center of Wisconsin, Madison, WI 53706, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David J Pagliarini
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
364
|
Abrahamian M, Kagda M, Ah-Fong AMV, Judelson HS. Rethinking the evolution of eukaryotic metabolism: novel cellular partitioning of enzymes in stramenopiles links serine biosynthesis to glycolysis in mitochondria. BMC Evol Biol 2017; 17:241. [PMID: 29202688 PMCID: PMC5715807 DOI: 10.1186/s12862-017-1087-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/21/2017] [Indexed: 12/17/2022] Open
Abstract
Background An important feature of eukaryotic evolution is metabolic compartmentalization, in which certain pathways are restricted to the cytosol or specific organelles. Glycolysis in eukaryotes is described as a cytosolic process. The universality of this canon has been challenged by recent genome data that suggest that some glycolytic enzymes made by stramenopiles bear mitochondrial targeting peptides. Results Mining of oomycete, diatom, and brown algal genomes indicates that stramenopiles encode two forms of enzymes for the second half of glycolysis, one with and the other without mitochondrial targeting peptides. The predicted mitochondrial targeting was confirmed by using fluorescent tags to localize phosphoglycerate kinase, phosphoglycerate mutase, and pyruvate kinase in Phytophthora infestans, the oomycete that causes potato blight. A genome-wide search for other enzymes with atypical mitochondrial locations identified phosphoglycerate dehydrogenase, phosphoserine aminotransferase, and phosphoserine phosphatase, which form a pathway for generating serine from the glycolytic intermediate 3-phosphoglycerate. Fluorescent tags confirmed the delivery of these serine biosynthetic enzymes to P. infestans mitochondria. A cytosolic form of this serine biosynthetic pathway, which occurs in most eukaryotes, is missing from oomycetes and most other stramenopiles. The glycolysis and serine metabolism pathways of oomycetes appear to be mosaics of enzymes with different ancestries. While some of the noncanonical oomycete mitochondrial enzymes have the closest affinity in phylogenetic analyses with proteins from other stramenopiles, others cluster with bacterial, plant, or animal proteins. The genes encoding the mitochondrial phosphoglycerate kinase and serine-forming enzymes are physically linked on oomycete chromosomes, which suggests a shared origin. Conclusions Stramenopile metabolism appears to have been shaped through the acquisition of genes by descent and lateral or endosymbiotic gene transfer, along with the targeting of the proteins to locations that are novel compared to other eukaryotes. Colocalization of the glycolytic and serine biosynthesis enzymes in mitochondria is apparently necessary since they share a common intermediate. The results indicate that descriptions of metabolism in textbooks do not cover the full diversity of eukaryotic biology. Electronic supplementary material The online version of this article (10.1186/s12862-017-1087-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melania Abrahamian
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Meenakshi Kagda
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Audrey M V Ah-Fong
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
365
|
Dewe JM, Fuller BL, Lentini JM, Kellner SM, Fu D. TRMT1-Catalyzed tRNA Modifications Are Required for Redox Homeostasis To Ensure Proper Cellular Proliferation and Oxidative Stress Survival. Mol Cell Biol 2017; 37:e00214-17. [PMID: 28784718 PMCID: PMC5640816 DOI: 10.1128/mcb.00214-17] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/17/2017] [Accepted: 07/29/2017] [Indexed: 02/07/2023] Open
Abstract
Mutations in the tRNA methyltransferase 1 (TRMT1) gene have been identified as the cause of certain forms of autosomal-recessive intellectual disability (ID). However, the molecular pathology underlying ID-associated TRMT1 mutations is unknown, since the biological role of the encoded TRMT1 protein remains to be determined. Here, we have elucidated the molecular targets and function of TRMT1 to uncover the cellular effects of ID-causing TRMT1 mutations. Using human cells that have been rendered deficient in TRMT1, we show that TRMT1 is responsible for catalyzing the dimethylguanosine (m2,2G) base modification in both nucleus- and mitochondrion-encoded tRNAs. TRMT1-deficient cells exhibit decreased proliferation rates, alterations in global protein synthesis, and perturbations in redox homeostasis, including increased endogenous ROS levels and hypersensitivity to oxidizing agents. Notably, ID-causing TRMT1 variants are unable to catalyze the formation of m2,2G due to defects in RNA binding and cannot rescue oxidative stress sensitivity. Our results uncover a biological role for TRMT1-catalyzed tRNA modification in redox metabolism and show that individuals with TRMT1-associated ID are likely to have major perturbations in cellular homeostasis due to the lack of m2,2G modifications.
Collapse
Affiliation(s)
- Joshua M Dewe
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York, USA
| | - Benjamin L Fuller
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York, USA
| | - Jenna M Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York, USA
| | | | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
366
|
Matsushita-Morita M, Tada S, Suzuki S, Hattori R, Kusumoto KI. Enzymatic characterization of a novel Xaa-Pro aminopeptidase XpmA from Aspergillus oryzae expressed in Escherichia coli. J Biosci Bioeng 2017; 124:534-541. [DOI: 10.1016/j.jbiosc.2017.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/08/2017] [Accepted: 06/18/2017] [Indexed: 01/08/2023]
|
367
|
Fukasawa Y, Oda T, Tomii K, Imai K. Origin and Evolutionary Alteration of the Mitochondrial Import System in Eukaryotic Lineages. Mol Biol Evol 2017; 34:1574-1586. [PMID: 28369657 PMCID: PMC5455965 DOI: 10.1093/molbev/msx096] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein transport systems are fundamentally important for maintaining mitochondrial function. Nevertheless, mitochondrial protein translocases such as the kinetoplastid ATOM complex have recently been shown to vary in eukaryotic lineages. Various evolutionary hypotheses have been formulated to explain this diversity. To resolve any contradiction, estimating the primitive state and clarifying changes from that state are necessary. Here, we present more likely primitive models of mitochondrial translocases, specifically the translocase of the outer membrane (TOM) and translocase of the inner membrane (TIM) complexes, using scrutinized phylogenetic profiles. We then analyzed the translocases’ evolution in eukaryotic lineages. Based on those results, we propose a novel evolutionary scenario for diversification of the mitochondrial transport system. Our results indicate that presequence transport machinery was mostly established in the last eukaryotic common ancestor, and that primitive translocases already had a pathway for transporting presequence-containing proteins. Moreover, secondary changes including convergent and migrational gains of a presequence receptor in TOM and TIM complexes, respectively, likely resulted from constrained evolution. The nature of a targeting signal can constrain alteration to the protein transport complex.
Collapse
Affiliation(s)
- Yoshinori Fukasawa
- Artificial Intelligence Research Center, National Institute of Advanced Science and Technology (AIST), Tokyo, Japan
| | - Toshiyuki Oda
- Artificial Intelligence Research Center, National Institute of Advanced Science and Technology (AIST), Tokyo, Japan
| | - Kentaro Tomii
- Artificial Intelligence Research Center, National Institute of Advanced Science and Technology (AIST), Tokyo, Japan.,Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Science and Technology (AIST), Tokyo, Japan
| | - Kenichiro Imai
- Artificial Intelligence Research Center, National Institute of Advanced Science and Technology (AIST), Tokyo, Japan.,Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Science and Technology (AIST), Tokyo, Japan
| |
Collapse
|
368
|
A single Danio rerio hars gene encodes both cytoplasmic and mitochondrial histidyl-tRNA synthetases. PLoS One 2017; 12:e0185317. [PMID: 28934368 PMCID: PMC5608375 DOI: 10.1371/journal.pone.0185317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/11/2017] [Indexed: 12/16/2022] Open
Abstract
Histidyl tRNA Synthetase (HARS) is a member of the aminoacyl tRNA synthetase (ARS) family of enzymes. This family of 20 enzymes is responsible for attaching specific amino acids to their cognate tRNA molecules, a critical step in protein synthesis. However, recent work highlighting a growing number of associations between ARS genes and diverse human diseases raises the possibility of new and unexpected functions in this ancient enzyme family. For example, mutations in HARS have been linked to two different neurological disorders, Usher Syndrome Type IIIB and Charcot Marie Tooth peripheral neuropathy. These connections raise the possibility of previously undiscovered roles for HARS in metazoan development, with alterations in these functions leading to complex diseases. In an attempt to establish Danio rerio as a model for studying HARS functions in human disease, we characterized the Danio rerio hars gene and compared it to that of human HARS. Using a combination of bioinformatics, molecular biology, and cellular approaches, we found that while the human genome encodes separate genes for cytoplasmic and mitochondrial HARS protein, the Danio rerio genome encodes a single hars gene which undergoes alternative splicing to produce the respective cytoplasmic and mitochondrial versions of Hars. Nevertheless, while the HARS genes of humans and Danio differ significantly at the genomic level, we found that they are still highly conserved at the amino acid level, underscoring the potential utility of Danio rerio as a model organism for investigating HARS function and its link to human diseases in vivo.
Collapse
|
369
|
Schertl P, Danne L, Braun HP. 3-Hydroxyisobutyrate Dehydrogenase Is Involved in Both, Valine and Isoleucine Degradation in Arabidopsis thaliana. PLANT PHYSIOLOGY 2017; 175:51-61. [PMID: 28705827 PMCID: PMC5580760 DOI: 10.1104/pp.17.00649] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/11/2017] [Indexed: 05/29/2023]
Abstract
In plants, amino acid catabolism is especially relevant in metabolic stress situations (e.g. limited carbohydrate availability during extended darkness). Under these conditions, amino acids are used as alternative substrates for respiration. Complete oxidation of the branched-chain amino acids (BCAAs) leucine, isoleucine (Ile), and valine (Val) in the mitochondria efficiently allows the formation of ATP by oxidative phosphorylation. However, the metabolic pathways for BCAA breakdown are largely unknown so far in plants. A systematic search for Arabidopsis (Arabidopsis thaliana) genes encoding proteins resembling enzymes involved in BCAA catabolism in animals, fungi, and bacteria as well as proteomic analyses of mitochondrial fractions from Arabidopsis allowed the identification of a putative 3-hydroxyisobutyrate dehydrogenase, AtHDH1 (At4g20930), involved in Val degradation. Systematic substrate screening analyses revealed that the protein uses 3-hydroxyisobutyrate but additionally 3-hydroxypropionate as substrates. This points to a role of the enzyme not only in Val but possibly also in Ile metabolism. At4g20930 knockdown plants were characterized to test this conclusion. Root toxicity assays revealed increased root growth inhibition of the mutants if cultivated in the presence of Val or Ile but not in the presence of leucine. We conclude that AtHDH1 has a dual role in BCAA metabolism in plants.
Collapse
Affiliation(s)
- Peter Schertl
- Institut für Pflanzengenetik, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Lennart Danne
- Institut für Pflanzengenetik, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Hans-Peter Braun
- Institut für Pflanzengenetik, Leibniz Universität Hannover, 30419 Hannover, Germany
| |
Collapse
|
370
|
Wu Z, Sloan DB, Brown CW, Rosenblueth M, Palmer JD, Ong HC. Mitochondrial Retroprocessing Promoted Functional Transfers of rpl5 to the Nucleus in Grasses. Mol Biol Evol 2017; 34:2340-2354. [PMID: 28541477 PMCID: PMC5850859 DOI: 10.1093/molbev/msx170] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Functional gene transfers from the mitochondrion to the nucleus are ongoing in angiosperms and have occurred repeatedly for all 15 ribosomal protein genes, but it is not clear why some of these genes are transferred more often than others nor what the balance is between DNA- and RNA-mediated transfers. Although direct insertion of mitochondrial DNA into the nucleus occurs frequently in angiosperms, case studies of functional mitochondrial gene transfer have implicated an RNA-mediated mechanism that eliminates introns and RNA editing sites, which would otherwise impede proper expression of mitochondrial genes in the nucleus. To elucidate the mechanisms that facilitate functional gene transfers and the evolutionary dynamics of the coexisting nuclear and mitochondrial gene copies that are established during these transfers, we have analyzed rpl5 genes from 90 grasses (Poaceae) and related monocots. Multiple lines of evidence indicate that rpl5 has been functionally transferred to the nucleus at least three separate times in the grass family and that at least seven species have intact and transcribed (but not necessarily functional) copies in both the mitochondrion and nucleus. In two grasses, likely functional nuclear copies of rpl5 have been subject to recent gene conversion events via secondarily transferred mitochondrial copies in what we believe are the first described cases of mitochondrial-to-nuclear gene conversion. We show that rpl5 underwent a retroprocessing event within the mitochondrial genome early in the evolution of the grass family, which we argue predisposed the gene towards successful, DNA-mediated functional transfer by generating a "pre-edited" sequence.
Collapse
Affiliation(s)
- Zhiqiang Wu
- Department of Biology, Colorado State University, Fort Collins, CO
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO
| | - Colin W. Brown
- Institute for Cellular and Molecular Biology, University of Texas, Austin, TX
| | | | | | | |
Collapse
|
371
|
Neal SE, Dabir DV, Wijaya J, Boon C, Koehler CM. Osm1 facilitates the transfer of electrons from Erv1 to fumarate in the redox-regulated import pathway in the mitochondrial intermembrane space. Mol Biol Cell 2017; 28:2773-2785. [PMID: 28814504 PMCID: PMC5638582 DOI: 10.1091/mbc.e16-10-0712] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 11/18/2022] Open
Abstract
Osm1 transfers electrons from fumarate to succinate and functions with Mia40 and Erv1 in the redox-regulated import pathway for proteins that form disulfide bonds in the mitochondrial intermembrane space. Expression of Osm1 and cytochrome c is reciprocally regulated, indicating that the cell has strategies to coordinate expression of terminal electron acceptors. Prokaryotes have aerobic and anaerobic electron acceptors for oxidative folding of periplasmic proteins. The mitochondrial intermembrane space has an analogous pathway with the oxidoreductase Mia40 and sulfhydryl oxidase Erv1, termed the mitochondrial intermembrane space assembly (MIA) pathway. The aerobic electron acceptors include oxygen and cytochrome c, but an acceptor that can function under anaerobic conditions has not been identified. Here we show that the fumarate reductase Osm1, which facilitates electron transfer from fumarate to succinate, fills this gap as a new electron acceptor. In addition to microsomes, Osm1 localizes to the mitochondrial intermembrane space and assembles with Erv1 in a complex. In reconstitution studies with reduced Tim13, Mia40, and Erv1, the addition of Osm1 and fumarate completes the disulfide exchange pathway that results in Tim13 oxidation. From in vitro import assays, mitochondria lacking Osm1 display decreased import of MIA substrates, Cmc1 and Tim10. Comparative reconstitution assays support that the Osm1/fumarate couple accepts electrons with similar efficiency to cytochrome c and that the cell has strategies to coordinate expression of the terminal electron acceptors. Thus Osm1/fumarate is a new electron acceptor couple in the mitochondrial intermembrane space that seems to function in both aerobic and anaerobic conditions.
Collapse
Affiliation(s)
- Sonya E Neal
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Deepa V Dabir
- Department of Biology, Loyola Marymount University, Los Angeles, CA 90045
| | - Juwina Wijaya
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Cennyana Boon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Carla M Koehler
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095 .,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
372
|
Johnson KM, Phan TTN, Albertolle ME, Guengerich FP. Human mitochondrial cytochrome P450 27C1 is localized in skin and preferentially desaturates trans-retinol to 3,4-dehydroretinol. J Biol Chem 2017; 292:13672-13687. [PMID: 28701464 DOI: 10.1074/jbc.m116.773937] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 06/29/2017] [Indexed: 11/06/2022] Open
Abstract
Recently, zebrafish and human cytochrome P450 (P450) 27C1 enzymes have been shown to be retinoid 3,4-desaturases. The enzyme is unusual among mammalian P450s in that the predominant oxidation is a desaturation and in that hydroxylation represents only a minor pathway. We show by proteomic analysis that P450 27C1 is localized to human skin, with two proteins of different sizes present, one being a cleavage product of the full-length form. P450 27C1 oxidized all-trans-retinol to 3,4-dehydroretinol, 4-hydroxy (OH) retinol, and 3-OH retinol in a 100:3:2 ratio. Neither 3-OH nor 4-OH retinol was an intermediate in desaturation. No kinetic burst was observed in the steady state; neither the rate of substrate binding nor product release was rate-limiting. Ferric P450 27C1 reduction by adrenodoxin was 3-fold faster in the presence of the substrate and was ∼5-fold faster than the overall turnover. Kinetic isotope effects of 1.5-2.3 (on kcat/Km ) were observed with 3,3-, 4,4-, and 3,3,4,4-deuterated retinol. Deuteration at C-4 produced a 4-fold increase in 3-hydroxylation due to metabolic switching, with no observable effect on 4-hydroxylation. Deuteration at C-3 produced a strong kinetic isotope effect for 3-hydroxylation but not 4-hydroxylation. Analysis of the products of deuterated retinol showed a lack of scrambling of a putative allylic radical at C-3 and C-4. We conclude that the most likely catalytic mechanism begins with abstraction of a hydrogen atom from C-4 (or possibly C-3) initiating the desaturation pathway, followed by a sequential abstraction of a hydrogen atom or proton-coupled electron transfer. Adrenodoxin reduction and hydrogen abstraction both contribute to rate limitation.
Collapse
Affiliation(s)
- Kevin M Johnson
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Thanh T N Phan
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Matthew E Albertolle
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - F Peter Guengerich
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|
373
|
Abstract
The human mitochondrial glutamate dehydrogenase isoenzymes (hGDH1 and hGDH2) are abundant matrix-localized proteins encoded by nuclear genes. The proteins are synthesized in the cytoplasm, with an atypically long N-terminal mitochondrial targeting sequence (MTS). The results of secondary structure predictions suggest the presence of two α-helices within the N-terminal region of the MTS. Results from deletion analyses indicate that individual helices have limited ability to direct protein import and matrix localization, but that there is a synergistic interaction when both helices are present [Biochem. J. (2016) 473: , 2813-2829]. Mutagenesis of the MTS cleavage sites blocked post-import removal of the presequences, but did not impede import. The authors propose that the high matrix levels of hGDH can be attributed to the unusual length and secondary structure of the MTS.
Collapse
|
374
|
Sanchez AC, Li C, Andrews B, Asenjo JA, Samulski RJ. AAV Gene Therapy for Alcoholism: Inhibition of Mitochondrial Aldehyde Dehydrogenase Enzyme Expression in Hepatoma Cells. Hum Gene Ther 2017; 28:717-725. [PMID: 28578603 DOI: 10.1089/hum.2017.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Most ethanol is broken down in the liver in two steps by alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH2) enzymes, which metabolize down ethanol into acetaldehyde and then acetate. Some individuals from the Asian population who carry a mutation in the aldehyde dehydrogenase gene (ALDH2*2) cannot metabolize acetaldehyde as efficiently, producing strong effects, including facial flushing, dizziness, hypotension, and palpitations. This results in an aversion to alcohol intake and protection against alcoholism. The large prevalence of this mutation in the human population strongly suggests that modulation of ALDH2 expression by genetic technologies could result in a similar phenotype. scAAV2 vectors encoding ALDH2 small hairpin RNA (shRNA) were utilized to validate this hypothesis by silencing ALDH2 gene expression in human cell lines. Human cell lines HEK-293 and HepG2 were transduced with scAAV2/shRNA, showing a reduction in ALDH2 RNA and protein expression with the two viral concentration assayed (1 × 104 and 1 × 105 vg/cell) at two different time points. In both cell lines, ALDH2 RNA levels were reduced by 90% and protein expression was inhibited by 90% and 52%, respectively, 5 days post infection. Transduced HepG2 VL17A cells (ADH+) exposed to ethanol resulted in a 50% increase in acetaldehyde levels. These results suggest that gene therapy could be a useful tool for the treatment of alcoholism by knocking down ALDH2 expression using shRNA technology delivered by AAV vectors.
Collapse
Affiliation(s)
- Anamaria C Sanchez
- 1 Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering and Biotechnology, University of Chile , Santiago, Chile
| | - Chengwen Li
- 2 Gene Therapy Center, University of North Carolina , Chapel Hill, North Carolina
| | - Barbara Andrews
- 1 Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering and Biotechnology, University of Chile , Santiago, Chile
| | - Juan A Asenjo
- 1 Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering and Biotechnology, University of Chile , Santiago, Chile
| | - R Jude Samulski
- 2 Gene Therapy Center, University of North Carolina , Chapel Hill, North Carolina
| |
Collapse
|
375
|
Saki M, Prakash A. DNA damage related crosstalk between the nucleus and mitochondria. Free Radic Biol Med 2017; 107:216-227. [PMID: 27915046 PMCID: PMC5449269 DOI: 10.1016/j.freeradbiomed.2016.11.050] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/25/2016] [Accepted: 11/29/2016] [Indexed: 12/18/2022]
Abstract
The electron transport chain is the primary pathway by which a cell generates energy in the form of ATP. Byproducts of this process produce reactive oxygen species that can cause damage to mitochondrial DNA. If not properly repaired, the accumulation of DNA damage can lead to mitochondrial dysfunction linked to several human disorders including neurodegenerative diseases and cancer. Mitochondria are able to combat oxidative DNA damage via repair mechanisms that are analogous to those found in the nucleus. Of the repair pathways currently reported in the mitochondria, the base excision repair pathway is the most comprehensively described. Proteins that are involved with the maintenance of mtDNA are encoded by nuclear genes and translocate to the mitochondria making signaling between the nucleus and mitochondria imperative. In this review, we discuss the current understanding of mitochondrial DNA repair mechanisms and also highlight the sensors and signaling pathways that mediate crosstalk between the nucleus and mitochondria in the event of mitochondrial stress.
Collapse
Affiliation(s)
- Mohammad Saki
- Mitchell Cancer Institute, The University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, United States
| | - Aishwarya Prakash
- Mitchell Cancer Institute, The University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, United States.
| |
Collapse
|
376
|
Rhein VF, Carroll J, Ding S, Fearnley IM, Walker JE. Human METTL12 is a mitochondrial methyltransferase that modifies citrate synthase. FEBS Lett 2017; 591:1641-1652. [PMID: 28391595 PMCID: PMC5518231 DOI: 10.1002/1873-3468.12649] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 01/13/2023]
Abstract
The protein methylome in mammalian mitochondria has been little studied until recently. Here, we describe that lysine-368 of human citrate synthase is methylated and that the modifying enzyme, localized in the mitochondrial matrix, is methyltransferase-like protein 12 (METTL12), a member of the family of 7β-strand methyltransferases. Lysine-368 is near the active site of citrate synthase, but removal of methylation has no effect on its activity. In mitochondria, it is possible that some or all of the enzymes of the citric acid cycle, including citrate synthase, are organized in metabolons to facilitate the channelling of substrates between participating enzymes. Thus, possible roles for the methylation of Lys-368 are in controlling substrate channelling itself, or in influencing protein-protein interactions in the metabolon.
Collapse
Affiliation(s)
- Virginie F. Rhein
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeUK
| | - Joe Carroll
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeUK
| | - Shujing Ding
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeUK
| | - Ian M. Fearnley
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeUK
| | - John E. Walker
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeUK
| |
Collapse
|
377
|
Dorrell RG, Gile G, McCallum G, Méheust R, Bapteste EP, Klinger CM, Brillet-Guéguen L, Freeman KD, Richter DJ, Bowler C. Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. eLife 2017; 6. [PMID: 28498102 PMCID: PMC5462543 DOI: 10.7554/elife.23717] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/08/2017] [Indexed: 12/18/2022] Open
Abstract
Plastids are supported by a wide range of proteins encoded within the nucleus and imported from the cytoplasm. These plastid-targeted proteins may originate from the endosymbiont, the host, or other sources entirely. Here, we identify and characterise 770 plastid-targeted proteins that are conserved across the ochrophytes, a major group of algae including diatoms, pelagophytes and kelps, that possess plastids derived from red algae. We show that the ancestral ochrophyte plastid proteome was an evolutionary chimera, with 25% of its phylogenetically tractable nucleus-encoded proteins deriving from green algae. We additionally show that functional mixing of host and plastid proteomes, such as through dual-targeting, is an ancestral feature of plastid evolution. Finally, we detect a clear phylogenetic signal from one ochrophyte subgroup, the lineage containing pelagophytes and dictyochophytes, in plastid-targeted proteins from another major algal lineage, the haptophytes. This may represent a possible serial endosymbiosis event deep in eukaryotic evolutionary history. DOI:http://dx.doi.org/10.7554/eLife.23717.001 The cells of most plants and algae contain compartments called chloroplasts that enable them to capture energy from sunlight in a process known as photosynthesis. Chloroplasts are the remnants of photosynthetic bacteria that used to live freely in the environment until they were consumed by a larger cell. “Complex” chloroplasts can form if a cell that already has a chloroplast is swallowed by another cell. The most abundant algae in the oceans are known as diatoms. These algae belong to a group called the stramenopiles, which also includes giant seaweeds such as kelp. The stramenopiles have a complex chloroplast that they acquired from a red alga (a relative of the seaweed used in sushi). However, some of the proteins in their chloroplasts are from other sources, such as the green algal relatives of plants, and it was not clear how these chloroplast proteins have contributed to the evolution of this group. Many of the proteins that chloroplasts need to work properly are produced by the host cell and are then transported into the chloroplasts. Dorrell et al. studied the genetic material of many stramenopile species and identified 770 chloroplast-targeted proteins that are predicted to underpin the origins of this group. Experiments in a diatom called Phaeodactylum confirmed these predictions and show that many of these chloroplast-targeted proteins have been recruited from green algae, bacteria, and other compartments within the host cell to support the chloroplast. Further experiments suggest that another major group of algae called the haptophytes once had a stramenopile chloroplast. The current haptophyte chloroplast does not come from the stramenopiles so the haptophytes appear to have replaced their chloroplasts at least once in their evolutionary history. The findings show that algal chloroplasts are mosaics, supported by proteins from many different species. This helps us understand why certain species succeed in the wild and how they may respond to environmental changes in the oceans. In the future, these findings may help researchers to engineer new species of algae and plants for food and fuel production. DOI:http://dx.doi.org/10.7554/eLife.23717.002
Collapse
Affiliation(s)
- Richard G Dorrell
- IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Gillian Gile
- School of Life Sciences, Arizona State University, Tempe, United States
| | - Giselle McCallum
- IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Raphaël Méheust
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Paris, France
| | - Eric P Bapteste
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Paris, France
| | | | | | | | - Daniel J Richter
- Sorbonne Universités, Université Pierre et Marie Curie, CNRS UMR 7144.,Adaptation et Diversité en Milieu Marin, Équipe EPEP, Station Biologique de Roscoff, Roscoff, France
| | - Chris Bowler
- IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| |
Collapse
|
378
|
Meireles DA, Domingos RM, Gaiarsa JW, Ragnoni EG, Bannitz-Fernandes R, da Silva Neto JF, de Souza RF, Netto LES. Functional and evolutionary characterization of Ohr proteins in eukaryotes reveals many active homologs among pathogenic fungi. Redox Biol 2017; 12:600-609. [PMID: 28391181 PMCID: PMC5384416 DOI: 10.1016/j.redox.2017.03.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/17/2017] [Accepted: 03/24/2017] [Indexed: 01/31/2023] Open
Abstract
Ohr and OsmC proteins comprise two subfamilies within a large group of proteins that display Cys-based, thiol dependent peroxidase activity. These proteins were previously thought to be restricted to prokaryotes, but we show here, using iterated sequence searches, that Ohr/OsmC homologs are also present in 217 species of eukaryotes with a massive presence in Fungi (186 species). Many of these eukaryotic Ohr proteins possess an N-terminal extension that is predicted to target them to mitochondria. We obtained recombinant proteins for four eukaryotic members of the Ohr/OsmC family and three of them displayed lipoyl peroxidase activity. Further functional and biochemical characterization of the Ohr homologs from the ascomycete fungus Mycosphaerella fijiensis Mf_1 (MfOhr), the causative agent of Black Sigatoka disease in banana plants, was pursued. Similarly to what has been observed for the bacterial proteins, we found that: (i) the peroxidase activity of MfOhr was supported by DTT or dihydrolipoamide (dithiols), but not by β-mercaptoethanol or GSH (monothiols), even in large excess; (ii) MfOhr displayed preference for organic hydroperoxides (CuOOH and tBOOH) over hydrogen peroxide; (iii) MfOhr presented extraordinary reactivity towards linoleic acid hydroperoxides (k=3.18 (±2.13)×108 M−1 s−1). Both Cys87 and Cys154 were essential to the peroxidase activity, since single mutants for each Cys residue presented no activity and no formation of intramolecular disulfide bond upon treatment with hydroperoxides. The pKa value of the Cysp residue was determined as 5.7±0.1 by a monobromobimane alkylation method. Therefore, eukaryotic Ohr peroxidases share several biochemical features with prokaryotic orthologues and are preferentially located in mitochondria. Ohr/OsmC proteins are also present in lower eukaryotic organisms. While Ohr proteins are massively present among Fungi, OsmC proteins are restricted to the cellular slime molds. Eukaryotic Ohr and OsmC present a thiol dependent peroxidase activity similar to the bacterial counterparts. Most of these eukaryotic enzymes are predominantly present in mitochondria.
Collapse
Affiliation(s)
- D A Meireles
- Departmento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - R M Domingos
- Departmento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - J W Gaiarsa
- Departmento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - E G Ragnoni
- Departmento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - R Bannitz-Fernandes
- Departmento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - J F da Silva Neto
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - R F de Souza
- Departmento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - L E S Netto
- Departmento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
379
|
Liu X, Yang L, Long Q, Weaver D, Hajnóczky G. Choosing proper fluorescent dyes, proteins, and imaging techniques to study mitochondrial dynamics in mammalian cells. BIOPHYSICS REPORTS 2017; 3:64-72. [PMID: 29238743 PMCID: PMC5719805 DOI: 10.1007/s41048-017-0037-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/05/2016] [Indexed: 11/30/2022] Open
Abstract
Mitochondrial dynamics refers to the processes maintaining mitochondrial homeostasis, including mitochondrial fission, fusion, transport, biogenesis, and mitophagy. Mitochondrial dynamics is essential for maintaining the metabolic function of mitochondria as well as their regulatory roles in cell signaling. In this review, we summarize the recently developed imaging techniques for studying mitochondrial dynamics including: mitochondrial-targeted fluorescent proteins and dyes, live-cell imaging using photoactivation, photoswitching and cell fusion, mitochondrial transcription and replication imaging by in situ hybridization, and imaging mitochondrial dynamics by super-resolution microscopy. Moreover, we discuss examples of how to choose and combine proper fluorescent dyes and/or proteins.
Collapse
Affiliation(s)
- Xingguo Liu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Liang Yang
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Qi Long
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - David Weaver
- Department of Pathology, MitoCare Center, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - György Hajnóczky
- Department of Pathology, MitoCare Center, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| |
Collapse
|
380
|
Bienvenut WV, Scarpelli JP, Dumestier J, Meinnel T, Giglione C. EnCOUNTer: a parsing tool to uncover the mature N-terminus of organelle-targeted proteins in complex samples. BMC Bioinformatics 2017; 18:182. [PMID: 28320318 PMCID: PMC5359831 DOI: 10.1186/s12859-017-1595-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 03/10/2017] [Indexed: 01/01/2023] Open
Abstract
Background Characterization of mature protein N-termini by large scale proteomics is challenging. This is especially true for proteins undergoing cleavage of transit peptides when they are targeted to specific organelles, such as mitochondria or chloroplast. Protein neo-N-termini can be located up to 100–150 amino acids downstream from the initiator methionine and are not easily predictable. Although some bioinformatics tools are available, they usually require extensive manual validation to identify the exact N-terminal position. The situation becomes even more complex when post-translational modifications take place at the neo-N-terminus. Although N-terminal acetylation occurs mostly in the cytosol, it is also observed in some organelles such as chloroplast. To date, no bioinformatics tool is available to define mature protein starting positions, the associated N-terminus acetylation status and/or yield for each proteoform. In this context, we have developed the EnCOUNTer tool (i) to score all characterized peptides using discriminating parameters to identify bona fide mature protein N-termini and (ii) to determine the N-terminus acetylation yield of the most reliable ones. Results Based on large scale proteomics analyses using the SILProNAQ methodology, tandem mass spectrometry favoured the characterization of thousands of peptides. Data processing using the EnCOUNTer tool provided an efficient and rapid way to extract the most reliable mature protein N-termini. Selected peptides were subjected to N-terminus acetylation yield determination. In an A. thaliana cell lysate, 1232 distinct proteotypic N-termini were characterized of which 648 were located at the predicted protein N-terminus (position 1/2) and 584 were located further downstream (starting at position > 2). A large number of these N-termini were associated with various well-defined maturation processes occurring on organelle-targeted proteins (mitochondria, chloroplast and peroxisome), secreted proteins or membrane-targeted proteins. It was also possible to highlight some protein alternative starts, splicing variants or erroneous protein sequence predictions. Conclusions The EnCOUNTer tool provides a unique way to extract accurately the most relevant mature proteins N-terminal peptides from large scale experimental datasets. Such data processing allows the identification of the exact N-terminus position and the associated acetylation yield. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1595-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Willy Vincent Bienvenut
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris Saclay, 91198, Gif-sur-Yvette Cedex, France.
| | - Jean-Pierre Scarpelli
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Johan Dumestier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Thierry Meinnel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris Saclay, 91198, Gif-sur-Yvette Cedex, France
| |
Collapse
|
381
|
Leger MM, Kolisko M, Kamikawa R, Stairs CW, Kume K, Čepička I, Silberman JD, Andersson JO, Xu F, Yabuki A, Eme L, Zhang Q, Takishita K, Inagaki Y, Simpson AGB, Hashimoto T, Roger AJ. Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat Ecol Evol 2017; 1:0092. [PMID: 28474007 PMCID: PMC5411260 DOI: 10.1038/s41559-017-0092] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Michelle M Leger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Martin Kolisko
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Ryoma Kamikawa
- Graduate School of Human and Environmental Studies, Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Courtney W Stairs
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Keitaro Kume
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jeffrey D Silberman
- Department of Biological Sciences, University of Arkansas, Fayetteville, USA
| | - Jan O Andersson
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Feifei Xu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Akinori Yabuki
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Laura Eme
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Qianqian Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, People's Republic of China
| | - Kiyotaka Takishita
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Yuji Inagaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | - Tetsuo Hashimoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| |
Collapse
|
382
|
Eme L, Gentekaki E, Curtis B, Archibald JM, Roger AJ. Lateral Gene Transfer in the Adaptation of the Anaerobic Parasite Blastocystis to the Gut. Curr Biol 2017; 27:807-820. [PMID: 28262486 DOI: 10.1016/j.cub.2017.02.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/26/2017] [Accepted: 02/01/2017] [Indexed: 12/22/2022]
Abstract
Blastocystis spp. are the most prevalent eukaryotic microbes found in the intestinal tract of humans. Here we present an in-depth investigation of lateral gene transfer (LGT) in the genome of Blastocystis sp. subtype 1. Using rigorous phylogeny-based methods and strict validation criteria, we show that ∼2.5% of the genes of this organism were recently acquired by LGT. We identify LGTs both from prokaryote and eukaryote donors. Several transfers occurred specifically in ancestors of a subset of Blastocystis subtypes, demonstrating that LGT is an ongoing process. Functional predictions reveal that these genes are involved in diverse metabolic pathways, many of which appear related to adaptation of Blastocystis to the gut environment. Specifically, we identify genes involved in carbohydrate scavenging and metabolism, anaerobic amino acid and nitrogen metabolism, oxygen-stress resistance, and pH homeostasis. A number of the transferred genes encoded secreted proteins that are potentially involved in infection, escaping host defense, or most likely affect the prokaryotic microbiome and the inflammation state of the gut. We also show that Blastocystis subtypes differ in the nature and copy number of LGTs that could relate to variation in their prevalence and virulence. Finally, we identified bacterial-derived genes encoding NH3-dependent nicotinamide adenine dinucleotide (NAD) synthase in Blastocystis and other protozoan parasites, which are promising targets for drug development. Collectively, our results suggest new avenues for research into the role of Blastocystis in intestinal disease and unequivocally demonstrate that LGT is an important mechanism by which eukaryotic microbes adapt to new environments.
Collapse
Affiliation(s)
- Laura Eme
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada
| | - Eleni Gentekaki
- School of Science and Human Gut Microbiome for Health Research Unit, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Bruce Curtis
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada
| | - John M Archibald
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada; Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, 180 Dundas Street W., Toronto, ON M5G 1Z8, Canada
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada; Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, 180 Dundas Street W., Toronto, ON M5G 1Z8, Canada.
| |
Collapse
|
383
|
TMEM175 deficiency impairs lysosomal and mitochondrial function and increases α-synuclein aggregation. Proc Natl Acad Sci U S A 2017; 114:2389-2394. [PMID: 28193887 DOI: 10.1073/pnas.1616332114] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Parkinson disease (PD) is a neurodegenerative disorder pathologically characterized by nigrostriatal dopamine neuron loss and the postmortem presence of Lewy bodies, depositions of insoluble α-synuclein, and other proteins that likely contribute to cellular toxicity and death during the disease. Genetic and biochemical studies have implicated impaired lysosomal and mitochondrial function in the pathogenesis of PD. Transmembrane protein 175 (TMEM175), the lysosomal K+ channel, is centered under a major genome-wide association studies peak for PD, making it a potential candidate risk factor for the disease. To address the possibility that variation in TMEM175 could play a role in PD pathogenesis, TMEM175 function was investigated in a neuronal model system. Studies confirmed that TMEM175 deficiency results in unstable lysosomal pH, which led to decreased lysosomal catalytic activity, decreased glucocerebrosidase activity, impaired autophagosome clearance by the lysosome, and decreased mitochondrial respiration. Moreover, TMEM175 deficiency in rat primary neurons resulted in increased susceptibility to exogenous α-synuclein fibrils. Following α-synuclein fibril treatment, neurons deficient in TMEM175 were found to have increased phosphorylated and detergent-insoluble α-synuclein deposits. Taken together, data from these studies suggest that TMEM175 plays a direct and critical role in lysosomal and mitochondrial function and PD pathogenesis and highlight this ion channel as a potential therapeutic target for treating PD.
Collapse
|
384
|
Calvo SE, Julien O, Clauser KR, Shen H, Kamer KJ, Wells JA, Mootha VK. Comparative Analysis of Mitochondrial N-Termini from Mouse, Human, and Yeast. Mol Cell Proteomics 2017; 16:512-523. [PMID: 28122942 DOI: 10.1074/mcp.m116.063818] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/06/2017] [Indexed: 01/08/2023] Open
Abstract
The majority of mitochondrial proteins are encoded in the nuclear genome, translated in the cytoplasm, and directed to the mitochondria by an N-terminal presequence that is cleaved upon import. Recently, N-proteome catalogs have been generated for mitochondria from yeast and from human U937 cells. Here, we applied the subtiligase method to determine N-termini for 327 proteins in mitochondria isolated from mouse liver and kidney. Comparative analysis between mitochondrial N-termini from mouse, human, and yeast proteins shows that whereas presequences are poorly conserved at the sequence level, other presequence properties are extremely conserved, including a length of ∼20-60 amino acids, a net charge between +3 to +6, and the presence of stabilizing amino acids at the N-terminus of mature proteins that follow the N-end rule from bacteria. As in yeast, ∼80% of mouse presequence cleavage sites match canonical motifs for three mitochondrial peptidases (MPP, Icp55, and Oct1), whereas the remainder do not match any known peptidase motifs. We show that mature mitochondrial proteins often exist with a spectrum of N-termini, consistent with a model of multiple cleavage events by MPP and Icp55. In addition to analysis of canonical targeting presequences, our N-terminal dataset allows the exploration of other cleavage events and provides support for polypeptide cleavage into two distinct enzymes (Hsd17b4), protein cleavages key for signaling (Oma1, Opa1, Htra2, Mavs, and Bcs2l13), and in several cases suggests novel protein isoforms (Scp2, Acadm, Adck3, Hsdl2, Dlst, and Ogdh). We present an integrated catalog of mammalian mitochondrial N-termini that can be used as a community resource to investigate individual proteins, to elucidate mechanisms of mammalian mitochondrial processing, and to allow researchers to engineer tags distally to the presequence cleavage.
Collapse
Affiliation(s)
- Sarah E Calvo
- From the ‡Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114; .,§Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115.,¶Broad Institute, Cambridge, Massachusetts 02141
| | | | | | - Hongying Shen
- From the ‡Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114.,§Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Kimberli J Kamer
- From the ‡Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114.,§Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - James A Wells
- **Departments of Pharmaceutical Chemistry and.,§§Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143
| | - Vamsi K Mootha
- From the ‡Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114.,§Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
385
|
Debard S, Bader G, De Craene JO, Enkler L, Bär S, Laporte D, Hammann P, Myslinski E, Senger B, Friant S, Becker HD. Nonconventional localizations of cytosolic aminoacyl-tRNA synthetases in yeast and human cells. Methods 2017; 113:91-104. [DOI: 10.1016/j.ymeth.2016.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/27/2016] [Accepted: 09/30/2016] [Indexed: 11/26/2022] Open
|
386
|
Two proteomic methodologies for defining N-termini of mature human mitochondrial aminoacyl-tRNA synthetases. Methods 2017; 113:111-119. [DOI: 10.1016/j.ymeth.2016.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 11/21/2022] Open
|
387
|
Brikis CJ, Zarei A, Trobacher CP, DeEll JR, Akama K, Mullen RT, Bozzo GG, Shelp BJ. Ancient Plant Glyoxylate/Succinic Semialdehyde Reductases: GLYR1s Are Cytosolic, Whereas GLYR2s Are Localized to Both Mitochondria and Plastids. FRONTIERS IN PLANT SCIENCE 2017; 8:601. [PMID: 28484477 PMCID: PMC5399074 DOI: 10.3389/fpls.2017.00601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/03/2017] [Indexed: 05/18/2023]
Abstract
Plant NADPH-dependent glyoxylate/succinic semialdehyde reductases 1 and 2 (GLYR1 and GLYR2) are considered to be involved in detoxifying harmful aldehydes, thereby preserving plant health during exposure to various abiotic stresses. Phylogenetic analysis revealed that the two GLYR isoforms appeared in the plant lineage prior to the divergence of the Chlorophyta and Streptophyta, which occurred approximately 750 million years ago. Green fluorescent protein fusions of apple (Malus x domestica Borkh.), rice (Oryza sativa L.) and Arabidopsis thaliana [L.] Heynh GLYRs were transiently expressed in tobacco (Nicotiana tabaccum L.) suspension cells or Arabidopsis protoplasts, as well in methoxyfenozide-induced, stably transformed Arabidopsis seedlings. The localization of apple GLYR1 confirmed that this isoform is cytosolic, whereas apple, rice and Arabidopsis GLYR2s were localized to both mitochondria and plastids. These findings highlight the potential involvement of GLYRs within distinct compartments of the plant cell.
Collapse
Affiliation(s)
| | - Adel Zarei
- Department of Plant Agriculture, University of Guelph, GuelphON, Canada
| | | | - Jennifer R. DeEll
- Ontario Ministry of Agriculture Food and Rural Affairs, SimcoeON, Canada
| | - Kazuhito Akama
- Department of Biological Science, Shimane UniversityMatsue, Japan
| | - Robert T. Mullen
- Department of Molecular and Cellular Biology, University of Guelph, GuelphON, Canada
| | - Gale G. Bozzo
- Department of Plant Agriculture, University of Guelph, GuelphON, Canada
| | - Barry J. Shelp
- Department of Plant Agriculture, University of Guelph, GuelphON, Canada
- *Correspondence: Barry J. Shelp,
| |
Collapse
|
388
|
Pokrzywinski KL, Biel TG, Kryndushkin D, Rao VA. Therapeutic Targeting of the Mitochondria Initiates Excessive Superoxide Production and Mitochondrial Depolarization Causing Decreased mtDNA Integrity. PLoS One 2016; 11:e0168283. [PMID: 28030582 PMCID: PMC5193408 DOI: 10.1371/journal.pone.0168283] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/29/2016] [Indexed: 01/01/2023] Open
Abstract
Mitochondrial dysregulation is closely associated with excessive reactive oxygen species (ROS) production. Altered redox homeostasis has been implicated in the onset of several diseases including cancer. Mitochondrial DNA (mtDNA) and proteins are particularly sensitive to ROS as they are in close proximity to the respiratory chain (RC). Mitoquinone (MitoQ), a mitochondria-targeted redox agent, selectively damages breast cancer cells possibly through damage induced via enhanced ROS production. However, the effects of MitoQ and other triphenylphosphonium (TPP+) conjugated agents on cancer mitochondrial homeostasis remain unknown. The primary objective of this study was to determine the impact of mitochondria-targeted agent [(MTAs) conjugated to TPP+: mitoTEMPOL, mitoquinone and mitochromanol-acetate] on mitochondrial physiology and mtDNA integrity in breast (MDA-MB-231) and lung (H23) cancer cells. The integrity of the mtDNA was assessed by quantifying the degree of mtDNA fragmentation and copy number, as well as by measuring mitochondrial proteins essential to mtDNA stability and maintenance (TFAM, SSBP1, TWINKLE, POLG and POLRMT). Mitochondrial status was evaluated by measuring superoxide production, mitochondrial membrane depolarization, oxygen consumption, extracellular acidification and mRNA or protein levels of the RC complexes along with TCA cycle activity. In this study, we demonstrated that all investigated MTAs impair mitochondrial health and decrease mtDNA integrity in MDA-MB-231 and H23 cells. However, differences in the degree of mitochondrial damage and mtDNA degradation suggest unique properties among each MTA that may be cell line, dose and time dependent. Collectively, our study indicates the potential for TPP+ conjugated molecules to impair breast and lung cancer cells by targeting mitochondrial homeostasis.
Collapse
Affiliation(s)
- Kaytee L. Pokrzywinski
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Thomas G. Biel
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Dmitry Kryndushkin
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - V. Ashutosh Rao
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
389
|
Marcus D, Lichtenstein M, Cohen N, Hadad R, Erlich-Hadad T, Greif H, Lorberboum-Galski H. Heterologous mitochondrial targeting sequences can deliver functional proteins into mitochondria. Int J Biochem Cell Biol 2016; 81:48-56. [PMID: 27771440 DOI: 10.1016/j.biocel.2016.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/13/2016] [Accepted: 10/18/2016] [Indexed: 01/23/2023]
Abstract
Mitochondrial Targeting Sequences (MTSs) are responsible for trafficking nuclear-encoded proteins into mitochondria. Once entering the mitochondria, the MTS is recognized and cleaved off. Some MTSs are long and undergo two-step processing, as in the case of the human frataxin (FXN) protein (80aa), implicated in Friedreich's ataxia (FA). Therefore, we chose the FXN protein to examine whether nuclear-encoded mitochondrial proteins can efficiently be targeted via a heterologous MTS (hMTS) and deliver a functional protein into mitochondria. We examined three hMTSs; that of citrate synthase (cs), lipoamide deydrogenase (LAD) and C6ORF66 (ORF), as classically MTS sequences, known to be removed by one-step processing, to deliver FXN into mitochondria, in the form of fusion proteins. We demonstrate that using hMTSs for delivering FXN results in the production of 4-5-fold larger amounts of the fusion proteins, and at 4-5-fold higher concentrations. Moreover, hMTSs delivered a functional FXN protein into the mitochondria even more efficiently than the native MTSfxn, as evidenced by the rescue of FA patients' cells from oxidative stress; demonstrating a 18%-54% increase in cell survival; and a 13%-33% increase in ATP levels, as compared to the fusion protein carrying the native MTS. One fusion protein with MTScs increased aconitase activity within patients' cells, by 400-fold. The implications form our studies are of vast importance for both basic and translational research of mitochondrial proteins as any mitochondrial protein can be delivered efficiently by an hMTS. Moreover, effective targeting of functional proteins is important for restoration of mitochondrial function and treatment of related disorders.
Collapse
Affiliation(s)
- Dana Marcus
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Michal Lichtenstein
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Natali Cohen
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Rita Hadad
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Tal Erlich-Hadad
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | | | - Haya Lorberboum-Galski
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| |
Collapse
|
390
|
Welchen E, Schmitz J, Fuchs P, García L, Wagner S, Wienstroer J, Schertl P, Braun HP, Schwarzländer M, Gonzalez DH, Maurino VG. d-Lactate Dehydrogenase Links Methylglyoxal Degradation and Electron Transport through Cytochrome c. PLANT PHYSIOLOGY 2016; 172:901-912. [PMID: 27506242 PMCID: PMC5047114 DOI: 10.1104/pp.16.01174] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/08/2016] [Indexed: 05/23/2023]
Abstract
Glycolysis generates methylglyoxal (MGO) as an unavoidable, cytotoxic by-product in plant cells. MGO scavenging is performed by the glyoxalase system, which produces d-lactate as an end product. d-Lactate dehydrogenase (d-LDH) is encoded by a single gene in Arabidopsis (Arabidopsis thaliana; At5g06580). It catalyzes in vitro the oxidation of d-lactate to pyruvate using flavin adenine dinucleotide as a cofactor; knowledge of its function in the context of the plant cell remains sketchy. Blue native-polyacrylamide gel electrophoresis of mitochondrial extracts combined with in gel activity assays using different substrates and tandem mass spectrometry allowed us to definitely show that d-LDH acts specifically on d-lactate, is active as a dimer, and does not associate with respiratory supercomplexes of the inner mitochondrial membrane. The combined use of cytochrome c (CYTc) loss-of-function mutants and respiratory complex III inhibitors showed that CYTc acts as the in vivo electron acceptor of d-LDH. CYTc loss-of-function mutants, as well as the d-LDH mutants, were more sensitive to d-lactate and MGO, indicating that they function in the same pathway. In addition, overexpression of d-LDH and CYTc increased tolerance to d-lactate and MGO Together with fine-localization of d-LDH, the functional interaction with CYTc in vivo strongly suggests that d-lactate oxidation takes place in the mitochondrial intermembrane space, delivering electrons to the respiratory chain through CYTc These results provide a comprehensive picture of the organization and function of d-LDH in the plant cell and exemplify how the plant mitochondrial respiratory chain can act as a multifunctional electron sink for reductant from cytosolic pathways.
Collapse
Affiliation(s)
- Elina Welchen
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina (E.W., L.G., D.H.G.);Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, and Cluster of Excellence on Plant Sciences, 40225 Duesseldorf, Germany (J.S., J.W., V.G.M.);Plant Energy Biology Laboratory, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53113 Bonn, Germany (P.F., S.W., M.S.); andPflanzengenetik, Abteilung Pflanzenproteomik, Leibniz Universität Hannover, 30419 Hannover, Germany (P.S., H.-P.B.)
| | - Jessica Schmitz
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina (E.W., L.G., D.H.G.);Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, and Cluster of Excellence on Plant Sciences, 40225 Duesseldorf, Germany (J.S., J.W., V.G.M.);Plant Energy Biology Laboratory, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53113 Bonn, Germany (P.F., S.W., M.S.); andPflanzengenetik, Abteilung Pflanzenproteomik, Leibniz Universität Hannover, 30419 Hannover, Germany (P.S., H.-P.B.)
| | - Philippe Fuchs
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina (E.W., L.G., D.H.G.);Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, and Cluster of Excellence on Plant Sciences, 40225 Duesseldorf, Germany (J.S., J.W., V.G.M.);Plant Energy Biology Laboratory, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53113 Bonn, Germany (P.F., S.W., M.S.); andPflanzengenetik, Abteilung Pflanzenproteomik, Leibniz Universität Hannover, 30419 Hannover, Germany (P.S., H.-P.B.)
| | - Lucila García
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina (E.W., L.G., D.H.G.);Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, and Cluster of Excellence on Plant Sciences, 40225 Duesseldorf, Germany (J.S., J.W., V.G.M.);Plant Energy Biology Laboratory, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53113 Bonn, Germany (P.F., S.W., M.S.); andPflanzengenetik, Abteilung Pflanzenproteomik, Leibniz Universität Hannover, 30419 Hannover, Germany (P.S., H.-P.B.)
| | - Stephan Wagner
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina (E.W., L.G., D.H.G.);Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, and Cluster of Excellence on Plant Sciences, 40225 Duesseldorf, Germany (J.S., J.W., V.G.M.);Plant Energy Biology Laboratory, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53113 Bonn, Germany (P.F., S.W., M.S.); andPflanzengenetik, Abteilung Pflanzenproteomik, Leibniz Universität Hannover, 30419 Hannover, Germany (P.S., H.-P.B.)
| | - Judith Wienstroer
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina (E.W., L.G., D.H.G.);Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, and Cluster of Excellence on Plant Sciences, 40225 Duesseldorf, Germany (J.S., J.W., V.G.M.);Plant Energy Biology Laboratory, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53113 Bonn, Germany (P.F., S.W., M.S.); andPflanzengenetik, Abteilung Pflanzenproteomik, Leibniz Universität Hannover, 30419 Hannover, Germany (P.S., H.-P.B.)
| | - Peter Schertl
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina (E.W., L.G., D.H.G.);Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, and Cluster of Excellence on Plant Sciences, 40225 Duesseldorf, Germany (J.S., J.W., V.G.M.);Plant Energy Biology Laboratory, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53113 Bonn, Germany (P.F., S.W., M.S.); andPflanzengenetik, Abteilung Pflanzenproteomik, Leibniz Universität Hannover, 30419 Hannover, Germany (P.S., H.-P.B.)
| | - Hans-Peter Braun
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina (E.W., L.G., D.H.G.);Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, and Cluster of Excellence on Plant Sciences, 40225 Duesseldorf, Germany (J.S., J.W., V.G.M.);Plant Energy Biology Laboratory, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53113 Bonn, Germany (P.F., S.W., M.S.); andPflanzengenetik, Abteilung Pflanzenproteomik, Leibniz Universität Hannover, 30419 Hannover, Germany (P.S., H.-P.B.)
| | - Markus Schwarzländer
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina (E.W., L.G., D.H.G.);Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, and Cluster of Excellence on Plant Sciences, 40225 Duesseldorf, Germany (J.S., J.W., V.G.M.);Plant Energy Biology Laboratory, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53113 Bonn, Germany (P.F., S.W., M.S.); andPflanzengenetik, Abteilung Pflanzenproteomik, Leibniz Universität Hannover, 30419 Hannover, Germany (P.S., H.-P.B.)
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina (E.W., L.G., D.H.G.);Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, and Cluster of Excellence on Plant Sciences, 40225 Duesseldorf, Germany (J.S., J.W., V.G.M.);Plant Energy Biology Laboratory, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53113 Bonn, Germany (P.F., S.W., M.S.); andPflanzengenetik, Abteilung Pflanzenproteomik, Leibniz Universität Hannover, 30419 Hannover, Germany (P.S., H.-P.B.)
| | - Veronica G Maurino
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina (E.W., L.G., D.H.G.);Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, and Cluster of Excellence on Plant Sciences, 40225 Duesseldorf, Germany (J.S., J.W., V.G.M.);Plant Energy Biology Laboratory, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53113 Bonn, Germany (P.F., S.W., M.S.); andPflanzengenetik, Abteilung Pflanzenproteomik, Leibniz Universität Hannover, 30419 Hannover, Germany (P.S., H.-P.B.)
| |
Collapse
|
391
|
Biotin Auxotrophy and Biotin Enhanced Germ Tube Formation in Candida albicans. Microorganisms 2016; 4:microorganisms4030037. [PMID: 27681931 PMCID: PMC5039597 DOI: 10.3390/microorganisms4030037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/07/2016] [Accepted: 09/14/2016] [Indexed: 11/17/2022] Open
Abstract
Due to the increased number of immunocompromised patients, infections with the pathogen Candida albicans have significantly increased in recent years. C. albicans transition from yeast to germ tubes is one of the essential factors for virulence. In this study we noted that Lee's medium, commonly used to induce filamentation, contained 500-fold more biotin than needed for growth and 40-fold more biotin than is typically added to growth media. Thus, we investigated the effects of excess biotin on growth rate and filamentation by C. albicans in different media. At 37 °C, excess biotin (4 µM) enhanced germ tube formation (GTF) ca. 10-fold in both Lee's medium and a defined glucose-proline medium, and ca. 4-fold in 1% serum. Two biotin precursors, desthiobiotin and 7-keto-8-aminopelargonic acid (KAPA), also stimulated GTF. During these studies we also noted an inverse correlation between the number of times the inoculum had been washed and the concentration of serum needed to stimulate GTF. C. albicans cells that had been washed eight times achieved 80% GTF with only 0.1% sheep serum. The mechanism by which 1-4 µM biotin enhances GTF is still unknown except to note that equivalent levels of biotin are needed to create an internal supply of stored biotin and biotinylated histones. Biotin did not restore filamentation for any of the four known filamentation defective mutants tested. C. albicans is auxotrophic for biotin and this biotin auxotrophy was fulfilled by biotin, desthiobiotin, or KAPA. However, biotin auxotrophy is not temperature dependent or influenced by the presence of 5% CO₂. Biotin starvation upregulated the biotin biosynthetic genes BIO2, BIO3, and BIO4 by 11-, 1500-, and 150-fold, respectively, and BIO2p is predicted to be mitochondrion-localized. Based on our findings, we suggest that biotin has two roles in the physiology of C. albicans, one as an enzymatic cofactor and another as a morphological regulator. Finally, we found no evidence supporting prior claims that C. albicans only forms hyphae at very low biotin (0.1 nM) growth conditions.
Collapse
|
392
|
The versatility of the mitochondrial presequence processing machinery: cleavage, quality control and turnover. Cell Tissue Res 2016; 367:73-81. [DOI: 10.1007/s00441-016-2492-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/06/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022]
|
393
|
Kintaka R, Makanae K, Moriya H. Cellular growth defects triggered by an overload of protein localization processes. Sci Rep 2016; 6:31774. [PMID: 27538565 PMCID: PMC4990933 DOI: 10.1038/srep31774] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/27/2016] [Indexed: 12/21/2022] Open
Abstract
High-level expression of a protein localized to an intracellular compartment is expected to cause cellular defects because it overloads localization processes. However, overloads of localization processes have never been studied systematically. Here, we show that the expression levels of green fluorescent proteins (GFPs) with localization signals were limited to the same degree as a toxic misfolded GFP in budding yeast cells, and that their high-level expression caused cellular defects associated with localization processes. We further show that limitation of the exportin Crm1 determined the expression limit of GFP with a nuclear export signal. Although misfolding of GFP with a vesicle-mediated transport signal triggered endoplasmic reticulum stress, it was not the primary determinant of its expression limit. The precursor of GFP with a mitochondrial targeting signal caused a cellular defect. Finally, we estimated the residual capacities of localization processes. High-level expression of a localized protein thus causes cellular defects by overloading the capacities of localization processes.
Collapse
Affiliation(s)
- Reiko Kintaka
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Koji Makanae
- Research Core for Interdisciplinary Sciences, Okayama University, Okayama, Japan
| | - Hisao Moriya
- Research Core for Interdisciplinary Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
394
|
Rao RSP, Salvato F, Thal B, Eubel H, Thelen JJ, Møller IM. The proteome of higher plant mitochondria. Mitochondrion 2016; 33:22-37. [PMID: 27405097 DOI: 10.1016/j.mito.2016.07.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 11/26/2022]
Abstract
Plant mitochondria perform a wide range of functions in the plant cell ranging from providing energy and metabolic intermediates, via coenzyme biosynthesis and their own biogenesis to retrograde signaling and programmed cell death. To perform these functions, they contain a proteome of >2000 different proteins expressed in some cells under some conditions. The vast majority of these proteins are imported, in many cases by a dedicated protein import machinery. Recent proteomic studies have identified about 1000 different proteins in both Arabidopsis and potato mitochondria, but even for energy-related proteins, the most well-studied functional protein group in mitochondria, <75% of the proteins are recognized as mitochondrial by even one of six of the most widely used prediction algorithms. The mitochondrial proteomes contain proteins representing a wide range of different functions. Some protein groups, like energy-related proteins, membrane transporters, and de novo fatty acid synthesis, appear to be well covered by the proteome, while others like RNA metabolism appear to be poorly covered possibly because of low abundance. The proteomic studies have improved our understanding of basic mitochondrial functions, have led to the discovery of new mitochondrial metabolic pathways and are helping us towards appreciating the dynamic role of the mitochondria in the responses of the plant cell to biotic and abiotic stress.
Collapse
Affiliation(s)
- R S P Rao
- Biostatistics and Bioinformatics Division, Yenepoya Research Center, Yenepoya University, Mangalore 575018, India
| | - F Salvato
- Institute of Biology, Department of Plant Biology, University of Campinas, Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas CEP: 13083-970, São Paulo, Brazil
| | - B Thal
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, DE-30419 Hannover, Germany
| | - H Eubel
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, DE-30419 Hannover, Germany
| | - J J Thelen
- Department of Biochemistry, University of Missouri-Columbia, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, USA
| | - I M Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200 Slagelse, Denmark.
| |
Collapse
|
395
|
Kayal E, Bentlage B, Collins AG. Insights into the transcriptional and translational mechanisms of linear organellar chromosomes in the box jellyfish Alatina alata (Cnidaria: Medusozoa: Cubozoa). RNA Biol 2016; 13:799-809. [PMID: 27267414 DOI: 10.1080/15476286.2016.1194161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In most animals, the mitochondrial genome is characterized by its small size, organization into a single circular molecule, and a relative conservation of the number of encoded genes. In box jellyfish (Cubozoa, Cnidaria), the mitochondrial genome is organized into 8 linear mito-chromosomes harboring between one and 4 genes each, including 2 extra protein-coding genes: mt-polB and orf314. Such an organization challenges the traditional view of mitochondrial DNA (mtDNA) expression in animals. In this study, we investigate the pattern of mitochondrial gene expression in the box jellyfish Alatina alata, as well as several key nuclear-encoded molecular pathways involved in the processing of mitochondrial gene transcription. RESULTS Read coverage of DNA-seq data is relatively uniform for all 8 mito-chromosomes, suggesting that each mito-chromosome is present in equimolar proportion in the mitochondrion. Comparison of DNA and RNA-seq based assemblies indicates that mito-chromosomes are transcribed into individual transcripts in which the beginning and ending are highly conserved. Expression levels for mt-polB and orf314 are similar to those of other mitochondrial-encoded genes, which provides further evidence for them having functional roles in the mitochondrion. Survey of the transcriptome suggests recognition of the mitochondrial tRNA-Met by the cytoplasmic aminoacyl-tRNA synthetase counterpart and C-to-U editing of the cytoplasmic tRNA-Trp after import into the mitochondrion. Moreover, several mitochondrial ribosomal proteins appear to be lost. CONCLUSIONS This study represents the first survey of mitochondrial gene expression of the linear multi-chromosomal mtDNA in box jellyfish (Cubozoa). Future exploration of small RNAs and the proteome of the mitochondrion will test the hypotheses presented herein.
Collapse
Affiliation(s)
- Ehsan Kayal
- a Department of Invertebrate Zoology , National Museum of Natural History, Smithsonian Institution , Washington DC , USA
| | - Bastian Bentlage
- a Department of Invertebrate Zoology , National Museum of Natural History, Smithsonian Institution , Washington DC , USA
| | - Allen G Collins
- a Department of Invertebrate Zoology , National Museum of Natural History, Smithsonian Institution , Washington DC , USA.,b National Systematics Laboratory of NOAA's Fisheries Service, National Museum of Natural History , Washington , DC , USA
| |
Collapse
|
396
|
Revisiting trends on mitochondrial mega-channels for the import of proteins and nucleic acids. J Bioenerg Biomembr 2016; 49:75-99. [DOI: 10.1007/s10863-016-9662-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/25/2016] [Indexed: 12/14/2022]
|
397
|
Hwang HJ, Dornbos P, Steidemann M, Dunivin TK, Rizzo M, LaPres JJ. Mitochondrial-targeted aryl hydrocarbon receptor and the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin on cellular respiration and the mitochondrial proteome. Toxicol Appl Pharmacol 2016; 304:121-32. [PMID: 27105554 DOI: 10.1016/j.taap.2016.04.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/02/2016] [Accepted: 04/08/2016] [Indexed: 11/18/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor within the Per-Arnt-Sim (PAS) domain superfamily. Exposure to the most potent AHR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is associated with various pathological effects including metabolic syndrome. While research over the last several years has demonstrated a role for oxidative stress and metabolic dysfunction in AHR-dependent TCDD-induced toxicity, the role of the mitochondria in this process has not been fully explored. Our previous research suggested that a portion of the cellular pool of AHR could be found in the mitochondria (mitoAHR). Using a protease protection assay with digitonin extraction, we have now shown that this mitoAHR is localized to the inter-membrane space (IMS) of the organelle. TCDD exposure induced a degradation of mitoAHR similar to that of cytosolic AHR. Furthermore, siRNA-mediated knockdown revealed that translocase of outer-mitochondrial membrane 20 (TOMM20) was involved in the import of AHR into the mitochondria. In addition, TCDD altered cellular respiration in an AHR-dependent manner to maintain respiratory efficiency as measured by oxygen consumption rate (OCR). Stable isotope labeling by amino acids in cell culture (SILAC) identified a battery of proteins within the mitochondrial proteome influenced by TCDD in an AHR-dependent manner. Among these, 17 proteins with fold changes≥2 are associated with various metabolic pathways, suggesting a role of mitochondrial retrograde signaling in TCDD-mediated pathologies. Collectively, these studies suggest that mitoAHR is localized to the IMS and AHR-dependent TCDD-induced toxicity, including metabolic dysfunction, wasting syndrome, and hepatic steatosis, involves mitochondrial dysfunction.
Collapse
Affiliation(s)
- Hye Jin Hwang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States; Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48824, United States
| | - Peter Dornbos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1319, United States
| | - Michelle Steidemann
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1319, United States; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, United States
| | - Taylor K Dunivin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, United States
| | - Mike Rizzo
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1319, United States; Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI 48824, United States
| | - John J LaPres
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States; Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
398
|
Lehmann G, Udasin RG, Ciechanover A. On the linkage between the ubiquitin-proteasome system and the mitochondria. Biochem Biophys Res Commun 2016; 473:80-86. [DOI: 10.1016/j.bbrc.2016.03.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 03/14/2016] [Indexed: 12/20/2022]
|
399
|
Benito-Pescador D, Santander D, Arranz M, Díaz-Mínguez JM, Eslava AP, van Kan JAL, Benito EP. Bcmimp1, a Botrytis cinerea Gene Transiently Expressed in planta, Encodes a Mitochondrial Protein. Front Microbiol 2016; 7:213. [PMID: 26952144 PMCID: PMC4767927 DOI: 10.3389/fmicb.2016.00213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/09/2016] [Indexed: 11/19/2022] Open
Abstract
Botrytis cinerea is a widespread necrotrophic fungus which infects more than 200 plant species. In an attempt to characterize the physiological status of the fungus in planta and to identify genetic factors contributing to its ability to infect the host cells, a differential gene expression analysis during the interaction B. cinerea-tomato was carried out. Gene Bcmimp1 codes for a mRNA detected by differential display in the course of this analysis. During the interaction with the host, it shows a transient expression pattern with maximal expression levels during the colonization and maceration of the infected tissues. Bioinformatic analysis suggested that BCMIMP1 is an integral membrane protein located in the mitochondrial inner membrane. Co-localization experiments with a BCMIMP1-GFP fusion protein confirmed that the protein is targeted to the mitochondria. ΔBcmimp1 mutants do not show obvious phenotypic differences during saprophytic growth and their infection ability was unaltered as compared to the wild-type. Interestingly, the mutants produced increased levels of reactive oxygen species, likely as a consequence of disturbed mitochondrial function. Although Bcmimp1 expression is enhanced in planta it cannot be considered a pathogenicity factor.
Collapse
Affiliation(s)
- David Benito-Pescador
- Instituto Hispano-Luso de Investigaciones Agrarias - Departamento de Microbiología y Genética, Universidad de Salamanca Salamanca, Spain
| | - Daniela Santander
- Instituto Hispano-Luso de Investigaciones Agrarias - Departamento de Microbiología y Genética, Universidad de SalamancaSalamanca, Spain; Facultad de Ciencias Agropecuarias y Ambientale, Universidad Técnica del NorteIbarra, Ecuador
| | - M Arranz
- Departamento de Microbiología y Genética, Universidad de Salamanca Salamanca, Spain
| | - José M Díaz-Mínguez
- Instituto Hispano-Luso de Investigaciones Agrarias - Departamento de Microbiología y Genética, Universidad de Salamanca Salamanca, Spain
| | - Arturo P Eslava
- Departamento de Microbiología y Genética, Universidad de Salamanca Salamanca, Spain
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University Wageningen, Netherlands
| | - Ernesto P Benito
- Instituto Hispano-Luso de Investigaciones Agrarias - Departamento de Microbiología y Genética, Universidad de Salamanca Salamanca, Spain
| |
Collapse
|
400
|
The mammalian homologue of yeast Afg1 ATPase (lactation elevated 1) mediates degradation of nuclear-encoded complex IV subunits. Biochem J 2016; 473:797-804. [PMID: 26759378 DOI: 10.1042/bj20151029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/12/2016] [Indexed: 12/17/2022]
Abstract
Mitochondrial protein homeostasis is crucial for cellular function and integrity and is therefore maintained by several classes of proteins possessing chaperone and/or proteolytic activities. In the present study, we focused on characterization of LACE1 (lactation elevated 1) function in mitochondrial protein homeostasis. LACE1 is the human homologue of yeast mitochondrial Afg1 (ATPase family gene 1) ATPase, a member of the SEC18-NSF, PAS1, CDC48-VCP, TBP family. Yeast Afg1 was shown to mediate degradation of mitochondrially encoded complex IV subunits, and, on the basis of its similarity to CDC48 (p97/VCP), it was suggested to facilitate extraction of polytopic membrane proteins. We show that LACE1, which is a mitochondrial integral membrane protein, exists as part of three complexes of approximately 140, 400 and 500 kDa and is essential for maintenance of fused mitochondrial reticulum and lamellar cristae morphology. We demonstrate that LACE1 mediates degradation of nuclear-encoded complex IV subunits COX4 (cytochrome c oxidase 4), COX5A and COX6A, and is required for normal activity of complexes III and IV of the respiratory chain. Using affinity purification of LACE1-FLAG expressed in a LACE1-knockdown background, we show that the protein interacts physically with COX4 and COX5A subunits of complex IV and with mitochondrial inner-membrane protease YME1L. Finally, we demonstrate by ectopic expression of both K142A Walker A and E214Q Walker B mutants, that an intact ATPase domain is essential for LACE1-mediated degradation of nuclear-encoded complex IV subunits. Thus the present study establishes LACE1 as a novel factor with a crucial role in mitochondrial protein homeostasis.
Collapse
|