351
|
Schweer J, Türkeri H, Link B, Link G. AtSIG6, a plastid sigma factor from Arabidopsis, reveals functional impact of cpCK2 phosphorylation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:192-202. [PMID: 20088902 PMCID: PMC2988416 DOI: 10.1111/j.1365-313x.2010.04138.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 12/23/2009] [Indexed: 05/17/2023]
Abstract
Plastids contain sigma factors, i.e. gene-regulatory proteins for promoter binding and transcription initiation. Despite the physical and functional similarity shared with their prokaryotic counterparts, the plant sigma factors have distinguishing features: most notably the existence of a variable extra sequence comprising their N-terminal portions. This distinct architecture is reflected by functional differences, including phosphorylation control by organellar protein kinase(s) closely related to nucleocytosolic, rather than bacterial-type, enzymes. In particular, cpCK2, a nuclear-coded plastid-targeted casein kinase 2, has been implicated as a key component in plant sigma factor phosphorylation and transcriptional regulation (Eur. J. Biochem. 269, 2002, 3329; Planta, 219, 2004, 298). Although this notion is based mainly on biochemical evidence and in vitro systems, the recent availability of Arabidopsis sigma knock-out lines for complementation by intact and mutant sigma cDNAs has opened up new strategies for the study of transcription regulatory mechanisms in vivo. Using Arabidopsis sigma factor 6 (AtSIG6) as a paradigm, we present data suggesting that: (i) this factor is a substrate for regulatory phosphorylation by cpCK2 both in vitro and in vivo; (ii) cpCK2 phosphorylation of SIG6 occurs at multiple sites, which can widely differ in their effect on the visual and/or molecular phenotype; (iii) in vivo usage of the perhaps most critical cpCK2 site defined by Ser174 requires (pre-)phosphorylation at the n + 3 serine residue Ser177, pointing to 'pathfinder' kinase activity capable of generating a functional cpCK2 substrate site.
Collapse
Affiliation(s)
| | | | | | - Gerhard Link
- *For correspondence (fax: +49 234 321 4188; e-mail )
| |
Collapse
|
352
|
Stitt M, Lunn J, Usadel B. Arabidopsis and primary photosynthetic metabolism - more than the icing on the cake. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:1067-91. [PMID: 20409279 DOI: 10.1111/j.1365-313x.2010.04142.x] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Historically speaking, Arabidopsis was not the plant of choice for investigating photosynthesis, with physiologists and biochemists favouring other species such as Chlorella, spinach and pea. However, its inherent advantages for forward genetics rapidly led to its adoption for photosynthesis research. In the last ten years, the availability of the Arabidopsis genome sequence - still the gold-standard for plant genomes - and the rapid expansion of genetic and genomic resources have further increased its importance. Research in Arabidopsis has not only provided comprehensive information about the enzymes and other proteins involved in photosynthesis, but has also allowed transcriptional responses, protein levels and compartmentation to be analysed at a global level for the first time. Emerging technical and theoretical advances offer another leap forward in our understanding of post-translational regulation and the control of metabolism. To illustrate the impact of Arabidopsis, we provide a historical review of research in primary photosynthetic metabolism, highlighting the role of Arabidopsis in elucidation of the pathway of photorespiration and the regulation of RubisCO, as well as elucidation of the pathways of starch turnover and studies of the significance of starch for plant growth.
Collapse
Affiliation(s)
- Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, Germany.
| | | | | |
Collapse
|
353
|
Friso G, Majeran W, Huang M, Sun Q, van Wijk KJ. Reconstruction of metabolic pathways, protein expression, and homeostasis machineries across maize bundle sheath and mesophyll chloroplasts: large-scale quantitative proteomics using the first maize genome assembly. PLANT PHYSIOLOGY 2010; 152:1219-50. [PMID: 20089766 PMCID: PMC2832236 DOI: 10.1104/pp.109.152694] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 01/17/2010] [Indexed: 05/17/2023]
Abstract
Chloroplasts in differentiated bundle sheath (BS) and mesophyll (M) cells of maize (Zea mays) leaves are specialized to accommodate C(4) photosynthesis. This study provides a reconstruction of how metabolic pathways, protein expression, and homeostasis functions are quantitatively distributed across BS and M chloroplasts. This yielded new insights into cellular specialization. The experimental analysis was based on high-accuracy mass spectrometry, protein quantification by spectral counting, and the first maize genome assembly. A bioinformatics workflow was developed to deal with gene models, protein families, and gene duplications related to the polyploidy of maize; this avoided overidentification of proteins and resulted in more accurate protein quantification. A total of 1,105 proteins were assigned as potential chloroplast proteins, annotated for function, and quantified. Nearly complete coverage of primary carbon, starch, and tetrapyrole metabolism, as well as excellent coverage for fatty acid synthesis, isoprenoid, sulfur, nitrogen, and amino acid metabolism, was obtained. This showed, for example, quantitative and qualitative cell type-specific specialization in starch biosynthesis, arginine synthesis, nitrogen assimilation, and initial steps in sulfur assimilation. An extensive overview of BS and M chloroplast protein expression and homeostasis machineries (more than 200 proteins) demonstrated qualitative and quantitative differences between M and BS chloroplasts and BS-enhanced levels of the specialized chaperones ClpB3 and HSP90 that suggest active remodeling of the BS proteome. The reconstructed pathways are presented as detailed flow diagrams including annotation, relative protein abundance, and cell-specific expression pattern. Protein annotation and identification data, and projection of matched peptides on the protein models, are available online through the Plant Proteome Database.
Collapse
|
355
|
Durek P, Schmidt R, Heazlewood JL, Jones A, MacLean D, Nagel A, Kersten B, Schulze WX. PhosPhAt: the Arabidopsis thaliana phosphorylation site database. An update. Nucleic Acids Res 2010; 38:D828-34. [PMID: 19880383 PMCID: PMC2808987 DOI: 10.1093/nar/gkp810] [Citation(s) in RCA: 306] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 09/10/2009] [Accepted: 09/14/2009] [Indexed: 11/17/2022] Open
Abstract
The PhosPhAt database of Arabidopsis phosphorylation sites was initially launched in August 2007. Since then, along with 10-fold increase in database entries, functionality of PhosPhAt (phosphat.mpimp-golm.mpg.de) has been considerably upgraded and re-designed. PhosPhAt is now more of a web application with the inclusion of advanced search functions allowing combinatorial searches by Boolean terms. The results output now includes interactive visualization of annotated fragmentation spectra and the ability to export spectra and peptide sequences as text files for use in other applications. We have also implemented dynamic links to other web resources thus augmenting PhosPhAt-specific information with external protein-related data. For experimental phosphorylation sites with information about dynamic behavior in response to external stimuli, we display simple time-resolved diagrams. We have included predictions for pT and pY sites and updated pS predictions. Access to prediction algorithm now allows 'on-the-fly' prediction of phosphorylation of any user-uploaded protein sequence. Protein Pfam domain structures are now mapped onto the protein sequence display next to experimental and predicted phosphorylation sites. Finally, we have implemented functional annotation of proteins using MAPMAN ontology. These new developments make the PhosPhAt resource a useful and powerful tool for the scientific community as a whole beyond the plant sciences.
Collapse
Affiliation(s)
- Pawel Durek
- Max Planck Institut für molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany Joint BioEnergy Institute, Lawrence Berkley National Laboratory, Berkeley, CA 94720, USA and The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Robert Schmidt
- Max Planck Institut für molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany Joint BioEnergy Institute, Lawrence Berkley National Laboratory, Berkeley, CA 94720, USA and The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Joshua L. Heazlewood
- Max Planck Institut für molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany Joint BioEnergy Institute, Lawrence Berkley National Laboratory, Berkeley, CA 94720, USA and The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Alexandra Jones
- Max Planck Institut für molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany Joint BioEnergy Institute, Lawrence Berkley National Laboratory, Berkeley, CA 94720, USA and The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Daniel MacLean
- Max Planck Institut für molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany Joint BioEnergy Institute, Lawrence Berkley National Laboratory, Berkeley, CA 94720, USA and The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Axel Nagel
- Max Planck Institut für molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany Joint BioEnergy Institute, Lawrence Berkley National Laboratory, Berkeley, CA 94720, USA and The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Birgit Kersten
- Max Planck Institut für molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany Joint BioEnergy Institute, Lawrence Berkley National Laboratory, Berkeley, CA 94720, USA and The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Waltraud X. Schulze
- Max Planck Institut für molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany Joint BioEnergy Institute, Lawrence Berkley National Laboratory, Berkeley, CA 94720, USA and The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| |
Collapse
|
356
|
Verslues PE, Sharma S. Proline metabolism and its implications for plant-environment interaction. THE ARABIDOPSIS BOOK 2010; 8:e0140. [PMID: 22303265 PMCID: PMC3244962 DOI: 10.1199/tab.0140] [Citation(s) in RCA: 287] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Proline has long been known to accumulate in plants experiencing water limitation and this has driven studies of proline as a beneficial solute allowing plants to increase cellular osmolarity during water limitation. Proline metabolism also has roles in redox buffering and energy transfer and is involved in plant pathogen interaction and programmed cell death. Some of these unique roles of proline depend on the properties of proline itself, whereas others depend on the "proline cycle" of coordinated proline synthesis in the chloroplast and cytoplasm with proline catabolism in the mitochondria. The regulatory mechanisms controlling proline metabolism, intercellular and intracellular transport and connections of proline to other metabolic pathways are all important to the in vivo functions of proline metabolism. Connections of proline metabolism to the oxidative pentose phosphate pathway and glutamate-glutamine metabolism are of particular interest. The N-acetyl glutamate pathway can also produce ornithine and, potentially, proline but its role and activity are unclear. Use of model systems such as Arabidopsis thaliana to better understand both these long studied and newly emerging functions of proline can help in the design of next-generation experiments testing whether proline metabolism is a promising metabolic engineering target for improving stress resistance of economically important plants.
Collapse
Affiliation(s)
- Paul E. Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128 Sec. 2 Academia Rd, Nankang Dist., Taipei, 11529, Taiwan
- Address correspondence to
| | - Sandeep Sharma
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128 Sec. 2 Academia Rd, Nankang Dist., Taipei, 11529, Taiwan
| |
Collapse
|
357
|
Grimsrud PA, den Os D, Wenger CD, Swaney DL, Schwartz D, Sussman MR, Ané JM, Coon JJ. Large-scale phosphoprotein analysis in Medicago truncatula roots provides insight into in vivo kinase activity in legumes. PLANT PHYSIOLOGY 2010; 152:19-28. [PMID: 19923235 PMCID: PMC2799343 DOI: 10.1104/pp.109.149625] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 11/11/2009] [Indexed: 05/20/2023]
Abstract
Nitrogen fixation in legumes requires the development of root organs called nodules and their infection by symbiotic rhizobia. Over the last decade, Medicago truncatula has emerged as a major model plant for the analysis of plant-microbe symbioses and for addressing questions pertaining to legume biology. While the initiation of symbiosis and the development of nitrogen-fixing root nodules depend on the activation of a protein phosphorylation-mediated signal transduction cascade in response to symbiotic signals produced by the rhizobia, few sites of in vivo phosphorylation have previously been identified in M. truncatula. We have characterized sites of phosphorylation on proteins from M. truncatula roots, from both whole cell lysates and membrane-enriched fractions, using immobilized metal affinity chromatography and tandem mass spectrometry. Here, we report 3,457 unique phosphopeptides spanning 3,404 nonredundant sites of in vivo phosphorylation on 829 proteins in M. truncatula Jemalong A17 roots, identified using the complementary tandem mass spectrometry fragmentation methods electron transfer dissociation and collision-activated dissociation. With this being, to our knowledge, the first large-scale plant phosphoproteomic study to utilize electron transfer dissociation, analysis of the identified phosphorylation sites revealed phosphorylation motifs not previously observed in plants. Furthermore, several of the phosphorylation motifs, including LxKxxs and RxxSxxxs, have yet to be reported as kinase specificities for in vivo substrates in any species, to our knowledge. Multiple sites of phosphorylation were identified on several key proteins involved in initiating rhizobial symbiosis, including SICKLE, NUCLEOPORIN133, and INTERACTING PROTEIN OF DMI3. Finally, we used these data to create an open-access online database for M. truncatula phosphoproteomic data.
Collapse
|
358
|
Abstract
Mass-spectrometry-based proteomics, the large-scale analysis of proteins by mass spectrometry, has emerged as a new technology over the last decade and become routine in many plant biology laboratories. While early work consisted merely of listing proteins identified in a given organ or under different conditions of interest, there is a growing need to apply comparative and quantitative proteomics strategies toward gaining novel insights into functional aspects of plant proteins and their dynamics. However, during the transition from qualitative to quantitative protein analysis, the potential and challenges will be tightly coupled. Several strategies for differential proteomics that involve stable isotopes or label-free comparisons and their statistical assessment are possible, each having specific strengths and limitations. Furthermore, incomplete proteome coverage and restricted dynamic range still impose the strongest limitations to data throughput and precise quantitative analysis. This review gives an overview of the current state of the art in differential proteomics and possible strategies in data processing.
Collapse
|
359
|
Baginsky S, Gruissem W. The chloroplast kinase network: new insights from large-scale phosphoproteome profiling. MOLECULAR PLANT 2009; 2:1141-53. [PMID: 19995723 DOI: 10.1093/mp/ssp058] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Protein phosphorylation is one of the most important posttranslational modifications in eukaryotic cells and affects almost all basic cellular processes. The chloroplast as plant-specific cell organelle with important metabolic functions is integrated into the cellular signaling and phosphorylation network. Recent large-scale chloroplast phosphoproteome analyses in Arabidopsis have provided new information about phosphorylation targets and expanded the list of chloroplast metabolic and regulatory functions that are potentially controlled by protein phosphorylation. Phosphorylated peptides identified from chloroplast proteins provide new insights into phosphorylation motifs, protein kinase activities, and substrate utilization. Phosphorylation sites in protein kinases can reveal chloroplast phosphorylation cascades that may network different functions by integrating signaling chains. Our review provides a meta-analysis of currently available chloroplast phosphoproteome information and discusses biological insights from large-scale chloroplast phosphoprotein profiling as well as technological constraints of kinase network analysis.
Collapse
Affiliation(s)
- Sacha Baginsky
- Department of Biology, ETH Zurich, Universitätstrasse 2, 8092 Zürich, Switzerland.
| | | |
Collapse
|
360
|
Zybailov B, Sun Q, van Wijk KJ. Workflow for Large Scale Detection and Validation of Peptide Modifications by RPLC-LTQ-Orbitrap: Application to the Arabidopsis thaliana Leaf Proteome and an Online Modified Peptide Library. Anal Chem 2009; 81:8015-24. [DOI: 10.1021/ac9011792] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Boris Zybailov
- Department of Plant Biology and Computational Biology Service Unit, Cornell University, Ithaca, New York 14853
| | - Qi Sun
- Department of Plant Biology and Computational Biology Service Unit, Cornell University, Ithaca, New York 14853
| | - Klaas J. van Wijk
- Department of Plant Biology and Computational Biology Service Unit, Cornell University, Ithaca, New York 14853
| |
Collapse
|