351
|
Kawaji K, Patel MB, Cantrell CG, Tanaka A, Marino M, Tamura S, Wang H, Wang Y, Carroll TJ, Ota T, Patel AR. A fast, noniterative approach for accelerated high-temporal resolution cine-CMR using dynamically interleaved streak removal in the power-spectral encoded domain with low-pass filtering (DISPEL) and modulo-prime spokes (MoPS). Med Phys 2017; 44:3450-3463. [PMID: 28339110 DOI: 10.1002/mp.12234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To introduce a pair of accelerated non-Cartesian acquisition principles that when combined, exploit the periodicity of k-space acquisition, and thereby enable acquisition of high-temporal cine Cardiac Magnetic Resonance (CMR). METHODS The mathematical formulation of a noniterative, undersampled non-Cartesian cine acquisition and reconstruction is presented. First, a low-pass filtering step that exploits streaking artifact redundancy is provided (i.e., Dynamically Interleaved Streak removal in the Power-spectrum Encoded domain with Low-pass filtering [DISPEL]). Next, an effective radial acquisition for the DISPEL approach that exploits the property of prime numbers is described (i.e., Modulo-Prime Spoke [MoPS]). Both DISPEL and MoPS are examined using numerical simulation of a digital heart phantom to show that high-temporal cine-CMR is feasible without removing physiologic motion vs aperiodic interleaving using Golden Angles. The combined high-temporal cine approach is next examined in 11 healthy subjects for a time-volume curve assessment of left ventricular systolic and diastolic performance vs conventional Cartesian cine-CMR reference. RESULTS The DISPEL method was first shown using simulation under different streak cycles to allow separation of undersampled radial streaking artifacts from physiologic motion with a sufficiently frequent streak-cycle interval. Radial interleaving with MoPS is next shown to allow interleaves with pseudo-Golden-Angle variants, and be more compatible with DISPEL against irrational and nonperiodic rotation angles, including the Golden-Angle-derived rotations. In the in vivo data, the proposed method showed no statistical difference in the systolic performance, while diastolic parameters sensitive to the cine's temporal resolution were statistically significant (P < 0.05 vs Cartesian cine). CONCLUSIONS We demonstrate a high-temporal resolution cine-CMR using DISPEL and MoPS, whose streaking artifact was separated from physiologic motion.
Collapse
Affiliation(s)
- Keigo Kawaji
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Mita B Patel
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | | | - Akiko Tanaka
- Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - Marco Marino
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Satoshi Tamura
- Department of Electrical, Electronic and Computer Engineering, Gifu University, Gifu City, Japan
| | | | - Yi Wang
- Departments of Biomedical Engineering and Radiology, Cornell University, New York, NY, USA
| | - Timothy J Carroll
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Takeyoshi Ota
- Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - Amit R Patel
- Departments of Medicine and Radiology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
352
|
Roy CW, Seed M, Kingdom JC, Macgowan CK. Motion compensated cine CMR of the fetal heart using radial undersampling and compressed sensing. J Cardiovasc Magn Reson 2017; 19:29. [PMID: 28316282 PMCID: PMC5357808 DOI: 10.1186/s12968-017-0346-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 02/18/2017] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND To develop and evaluate a reconstruction framework for high resolution time-resolved CMR of the fetal heart in the presence of motion. METHODS Data were acquired using a golden angle radial trajectory in seven fetal subjects and reconstructed as real-time images to detect fetal movement. Data acquired during through-plane motion were discarded whereas in-plane motion was corrected. A fetal cardiac gating signal was extracted to sort the corrected data by cardiac phase, allowing reconstruction of cine images. The quality of motion corrected images and the effect of data undersampling were quantified using separate expressions for spatial blur and image error. RESULTS Motion corrected reordered cine reconstructions (127 slices) showed improved image quality relative to both uncorrected cines and corresponding real-time images across a range of root-mean-squared (RMS) displacements (0.3-3.7 mm) and fetal heart rates (119-176 bpm). The relative spatial blur between cines with and without motion correction increased with in-plane RMS displacement leading to an effective decrease in the effective spatial resolution for images without motion correction. Image error between undersampled and reference images was less than 10% for reconstructions using 750 or more spokes, yielding a minimum acceptable scan time of approximately 4 s/slice during quiescent through plane motion. CONCLUSIONS By rejecting data corrupted by through-plane motion, and correcting data corrupted by in-plane translation, the proposed reconstruction framework accounts for common sources of motion artifact (gross fetal movement, maternal respiration, fetal cardiac contraction) to produce high quality images of the fetal heart.
Collapse
Affiliation(s)
- Christopher W. Roy
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
- Division of Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, ON Canada
| | - Mike Seed
- Division of Pediatric Cardiology, The Hospital for Sick Children, Toronto, ON Canada
- Departments of Pediatrics and Diagnostic Imaging, University of Toronto, Toronto, ON Canada
| | - John C. Kingdom
- Department of Obstetrics and Gynaecology, Mount Sinai Hospital, Toronto, ON Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON Canada
| | - Christopher K. Macgowan
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
- Division of Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, ON Canada
| |
Collapse
|
353
|
Liu Y, Zhang Y, Wu C, Zhu J, Wang C, Tomko N, Linetsky MD, Salomon RG, Ramos-Estebanez C, Wang Y, Yu X. High-resolution dynamic oxygen-17 MR imaging of mouse brain with golden-ratio-based radial sampling and k-space-weighted image reconstruction. Magn Reson Med 2017; 79:256-263. [PMID: 28295552 DOI: 10.1002/mrm.26669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/07/2017] [Accepted: 02/14/2017] [Indexed: 12/20/2022]
Abstract
PURPOSE The current study aimed to develop a three-dimensional (3D) dynamic oxygen-17 (17 O) MR imaging method with high temporal and spatial resolution to delineate the kinetics of 17 O water uptake and washout in the brains of mice with glioblastoma (GBM). METHODS A 3D imaging method with a stack-of-stars golden-ratio-based radial sampling scheme was employed to acquire 17 O signal in vivo. A k-space-weighted image reconstruction method was used to improve the temporal resolution while preserving spatial resolution. Simulation studies were performed to validate the method. Using this method, the kinetics of 17 O water uptake and washout in the brains of mice with GBM were delineated after an intravenous bolus injection of 17 O water. RESULTS The proposed 17 O imaging method achieved an effective temporal resolution of 7.56 s with a nominal voxel size of 5.625 μL in the mouse brain at 9.4 T. Reduced uptake and prolonged washout of 17 O water were observed in tumor tissue, suggesting compromised cerebral perfusion. CONCLUSION This study demonstrated a promising dynamic 17 O imaging approach that can delineate 17 O water kinetics in vivo with high temporal and spatial resolution. It can also be used to image cerebral oxygen consumption rate in oxygen-17 inhalation studies. Magn Reson Med 79:256-263, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Yuchi Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.,Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yifan Zhang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.,Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chunying Wu
- Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Junqing Zhu
- Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Charlie Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.,Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nicholas Tomko
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mikhail D Linetsky
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | - Robert G Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Yanming Wang
- Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.,Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
354
|
Han F, Zhou Z, Cao M, Yang Y, Sheng K, Hu P. Respiratory motion-resolved, self-gated 4D-MRI using rotating cartesian k-space (ROCK). Med Phys 2017; 44:1359-1368. [PMID: 28133752 DOI: 10.1002/mp.12139] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/20/2016] [Accepted: 01/23/2017] [Indexed: 12/26/2022] Open
Abstract
PURPOSE To propose and validate a respiratory motion resolved, self-gated (SG) 4D-MRI technique to assess patient-specific breathing motion of abdominal organs for radiation treatment planning. METHODS The proposed 4D-MRI technique was based on the balanced steady-state free-precession (bSSFP) technique and 3D k-space encoding. A novel rotating cartesian k-space (ROCK) reordering method was designed which incorporates repeatedly sampled k-space centerline as the SG motion surrogate and allows for retrospective k-space data binning into different respiratory positions based on the amplitude of the surrogate. The multiple respiratory-resolved 3D k-space data were subsequently reconstructed using a joint parallel imaging and compressed sensing method with spatial and temporal regularization. The proposed 4D-MRI technique was validated using a custom-made dynamic motion phantom and was tested in six healthy volunteers, in whom quantitative diaphragm and kidney motion measurements based on 4D-MRI images were compared with those based on 2D-CINE images. RESULTS The 5-minute 4D-MRI scan offers high-quality volumetric images in 1.2 × 1.2 × 1.6 mm3 and eight respiratory positions, with good soft-tissue contrast. In phantom experiments with triangular motion waveform, the motion amplitude measurements based on 4D-MRI were 11.89% smaller than the ground truth, whereas a -12.5% difference was expected due to data binning effects. In healthy volunteers, the difference between the measurements based on 4D-MRI and the ones based on 2D-CINE were 6.2 ± 4.5% for the diaphragm, 8.2 ± 4.9% and 8.9 ± 5.1% for the right and left kidney. CONCLUSION The proposed 4D-MRI technique could provide high-resolution, high-quality, respiratory motion-resolved 4D images with good soft-tissue contrast and are free of the "stitching" artifacts usually seen on 4D-CT and 4D-MRI based on resorting 2D-CINE. It could be used to visualize and quantify abdominal organ motion for MRI-based radiation treatment planning.
Collapse
Affiliation(s)
- Fei Han
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, 300 UCLA Medical Plaza Suite B119, Los Angeles, CA 90095, USA
| | - Ziwu Zhou
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, 300 UCLA Medical Plaza Suite B119, Los Angeles, CA 90095, USA.,Department of Bioengineering, University of California, 300 UCLA Medical Plaza Suite B119, Los Angeles, CA 90095, USA
| | - Minsong Cao
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, 200 UCLA Medical Plaza Suite B265, Los Angeles, CA 90095, USA.,Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine, University of California, 300 UCLA Medical Plaza Suite B119, Los Angeles, CA 90095, USA
| | - Yingli Yang
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, 200 UCLA Medical Plaza Suite B265, Los Angeles, CA 90095, USA.,Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine, University of California, 300 UCLA Medical Plaza Suite B119, Los Angeles, CA 90095, USA
| | - Ke Sheng
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, 200 UCLA Medical Plaza Suite B265, Los Angeles, CA 90095, USA.,Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine, University of California, 300 UCLA Medical Plaza Suite B119, Los Angeles, CA 90095, USA
| | - Peng Hu
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, 300 UCLA Medical Plaza Suite B119, Los Angeles, CA 90095, USA.,Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine, University of California, 300 UCLA Medical Plaza Suite B119, Los Angeles, CA 90095, USA
| |
Collapse
|
355
|
Long T2 suppression in native lung 3-D imaging using k-space reordered inversion recovery dual-echo ultrashort echo time MRI. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 30:387-395. [DOI: 10.1007/s10334-017-0613-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 12/21/2022]
|
356
|
Wang H, DiBella EVR, Adluru G, Park DJ, Taylor MI, Bangerter NK. Effect of slice excitation profile on ungated steady state cardiac perfusion imaging. Biomed Phys Eng Express 2017; 3. [PMID: 29276628 DOI: 10.1088/2057-1976/aa6228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In cardiac perfusion imaging, choice of flip angle is an important factor for steady state acquisition. This work focuses on presenting an analytical framework for understanding how non-ideal slice excitation profiles affect contrast in ungated 2D steady state cardiac perfusion studies, and to study a technique for estimating flip angle that maximizes enhanced/unenhanced myocardial contrast-to-noise ratio (CNR) in single slice and multi-slice acquisitions. A numerical simulation of ungated 2D golden ratio radial spoiled gradient echo (SPGR) was created that takes into consideration the actual (Bloch simulated) slice excitation profile. The effect of slice excitation profile on myocardial CNR as a function of flip angle was assessed in phantoms and in-vivo. For fast RF pulses, the flip angle that yields maximum CNR (considering the actual slice excitation profile) was considerably higher than expected, assuming an ideal excitation. The simulation framework presented accurately predicts the flip angle yielding maximum CNR when the actual slice excitation profile is taken into consideration. The prescribed flip angle for optimal contrast in ungated 2D steady-state SPGR cardiac perfusion studies can vary significantly from that calculated when an ideal slice excitation profile is assumed. Consideration of the actual slice excitation can yield a more optimal flip angle estimate in both the single slice and multi-slice cases.
Collapse
Affiliation(s)
- Haonan Wang
- Department of Electrical & Computer Engineering, Brigham Young University, Provo, UT, USA
| | - Edward V R DiBella
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Ganesh Adluru
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Daniel J Park
- Department of Electrical & Computer Engineering, Brigham Young University, Provo, UT, USA
| | - Meredith I Taylor
- Department of Electrical & Computer Engineering, Brigham Young University, Provo, UT, USA
| | - Neal K Bangerter
- Department of Electrical & Computer Engineering, Brigham Young University, Provo, UT, USA.,Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
357
|
Li G, Wei J, Olek D, Kadbi M, Tyagi N, Zakian K, Mechalakos J, Deasy JO, Hunt M. Direct Comparison of Respiration-Correlated Four-Dimensional Magnetic Resonance Imaging Reconstructed Using Concurrent Internal Navigator and External Bellows. Int J Radiat Oncol Biol Phys 2017; 97:596-605. [PMID: 28011048 PMCID: PMC5288126 DOI: 10.1016/j.ijrobp.2016.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/29/2016] [Accepted: 11/02/2016] [Indexed: 12/25/2022]
Abstract
PURPOSE To compare the image quality of amplitude-binned 4-dimensional magnetic resonance imaging (4DMRI) reconstructed using 2 concurrent respiratory (navigator and bellows) waveforms. METHODS AND MATERIALS A prospective, respiratory-correlated 4DMRI scanning program was used to acquire T2-weighted single-breath 4DMRI images with internal navigator and external bellows. After a 10-second training waveform of a surrogate signal, 2-dimensional MRI acquisition was triggered at a level (bin) and anatomic location (slice) until the bin-slice table was completed for 4DMRI reconstruction. The bellows signal was always collected, even when the navigator trigger was used, to retrospectively reconstruct a bellows-rebinned 4DMRI. Ten volunteers participated in this institutional review board-approved 4DMRI study. Four scans were acquired for each subject, including coronal and sagittal scans triggered by either navigator or bellows, and 6 4DMRI images (navigator-triggered, bellows-rebinned, and bellows-triggered) were reconstructed. The simultaneously acquired waveforms and resulting 4DMRI quality were compared using signal correlation, bin/phase shift, and binning motion artifacts. The consecutive bellows-triggered 4DMRI scan was used for indirect comparison. RESULTS Correlation coefficients between the navigator and bellows signals were found to be patient-specific and inhalation-/exhalation-dependent, ranging from 0.1 to 0.9 because of breathing irregularities (>50% scans) and commonly observed bin/phase shifts (-1.1 ± 0.6 bin) in both 1-dimensional waveforms and diaphragm motion extracted from 4D images. Navigator-triggered 4DMRI contained many fewer binning motion artifacts at the diaphragm than did the bellows-rebinned and bellows-triggered 4DMRI scans. Coronal scans were faster than sagittal scans because of the fewer slices and higher achievable acceleration factors. CONCLUSIONS Navigator-triggered 4DMRI contains substantially fewer binning motion artifacts than bellows-rebinned and bellows-triggered 4DMRI, primarily owing to the deviation of the external from the internal surrogate. The present study compared 2 concurrent surrogates during the same 4DMRI scan and their resulting 4DMRI quality. The navigator-triggered 4DMRI scanning protocol should be preferred to the bellows-based, especially for coronal scans, for clinical respiratory motion simulation.
Collapse
Affiliation(s)
- Guang Li
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Jie Wei
- Department of Computer Science, City College of New York, New York, New York
| | - Devin Olek
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mo Kadbi
- Philips Healthcare, MR Therapy Cleveland, Ohio
| | - Neelam Tyagi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kristen Zakian
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James Mechalakos
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Margie Hunt
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
358
|
Slawig A, Wech T, Ratz V, Tran-Gia J, Neubauer H, Bley T, Köstler H. Multifrequency reconstruction for frequency-modulated bSSFP. Magn Reson Med 2017; 78:2226-2235. [DOI: 10.1002/mrm.26630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/02/2016] [Accepted: 01/09/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Anne Slawig
- Department of Diagnostic and Interventional Radiology; University of Würzburg; Würzburg Germany
| | - Tobias Wech
- Department of Diagnostic and Interventional Radiology; University of Würzburg; Würzburg Germany
| | - Valentin Ratz
- Department of Diagnostic and Interventional Radiology; University of Würzburg; Würzburg Germany
| | - Johannes Tran-Gia
- Department of Diagnostic and Interventional Radiology; University of Würzburg; Würzburg Germany
- Department of Nuclear Medicine; University of Würzburg; Würzburg Germany
| | - Henning Neubauer
- Department of Diagnostic and Interventional Radiology; University of Würzburg; Würzburg Germany
| | - Thorsten Bley
- Department of Diagnostic and Interventional Radiology; University of Würzburg; Würzburg Germany
| | - Herbert Köstler
- Department of Diagnostic and Interventional Radiology; University of Würzburg; Würzburg Germany
| |
Collapse
|
359
|
Guo Y, Lebel RM, Zhu Y, Lingala SG, Shiroishi MS, Law M, Nayak K. High-resolution whole-brain DCE-MRI using constrained reconstruction: Prospective clinical evaluation in brain tumor patients. Med Phys 2017; 43:2013. [PMID: 27147313 DOI: 10.1118/1.4944736] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To clinically evaluate a highly accelerated T1-weighted dynamic contrast-enhanced (DCE) MRI technique that provides high spatial resolution and whole-brain coverage via undersampling and constrained reconstruction with multiple sparsity constraints. METHODS Conventional (rate-2 SENSE) and experimental DCE-MRI (rate-30) scans were performed 20 minutes apart in 15 brain tumor patients. The conventional clinical DCE-MRI had voxel dimensions 0.9 × 1.3 × 7.0 mm(3), FOV 22 × 22 × 4.2 cm(3), and the experimental DCE-MRI had voxel dimensions 0.9 × 0.9 × 1.9 mm(3), and broader coverage 22 × 22 × 19 cm(3). Temporal resolution was 5 s for both protocols. Time-resolved images and blood-brain barrier permeability maps were qualitatively evaluated by two radiologists. RESULTS The experimental DCE-MRI scans showed no loss of qualitative information in any of the cases, while achieving substantially higher spatial resolution and whole-brain spatial coverage. Average qualitative scores (from 0 to 3) were 2.1 for the experimental scans and 1.1 for the conventional clinical scans. CONCLUSIONS The proposed DCE-MRI approach provides clinically superior image quality with higher spatial resolution and coverage than currently available approaches. These advantages may allow comprehensive permeability mapping in the brain, which is especially valuable in the setting of large lesions or multiple lesions spread throughout the brain.
Collapse
Affiliation(s)
- Yi Guo
- Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089
| | - R Marc Lebel
- GE Healthcare, Calgary, Alberta AB T2P 1G1, Canada
| | - Yinghua Zhu
- Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089
| | - Sajan Goud Lingala
- Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089
| | - Mark S Shiroishi
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Meng Law
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Krishna Nayak
- Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
360
|
Zhou Z, Han F, Yan L, Wang DJJ, Hu P. Golden-ratio rotated stack-of-stars acquisition for improved volumetric MRI. Magn Reson Med 2017; 78:2290-2298. [PMID: 28168738 DOI: 10.1002/mrm.26625] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/22/2016] [Accepted: 01/09/2017] [Indexed: 11/06/2022]
Abstract
PURPOSE To develop and evaluate an improved stack-of-stars radial sampling strategy for reducing streaking artifacts. METHODS The conventional stack-of-stars sampling strategy collects the same radial angle for every partition (slice) encoding. In an undersampled acquisition, such an aligned acquisition generates coherent aliasing patterns and introduces strong streaking artifacts. We show that by rotating the radial spokes in a golden-angle manner along the partition-encoding direction, the aliasing pattern is modified, resulting in improved image quality for gridding and more advanced reconstruction methods. Computer simulations were performed and phantom as well as in vivo images for three different applications were acquired. RESULTS Simulation, phantom, and in vivo experiments confirmed that the proposed method was able to generate images with less streaking artifact and sharper structures based on undersampled acquisitions in comparison with the conventional aligned approach at the same acceleration factors. By combining parallel imaging and compressed sensing in the reconstruction, streaking artifacts were mostly removed with improved delineation of fine structures using the proposed strategy. CONCLUSIONS We present a simple method to reduce streaking artifacts and improve image quality in 3D stack-of-stars acquisitions by re-arranging the radial spoke angles in the 3D partition direction, which can be used for rapid volumetric imaging. Magn Reson Med 78:2290-2298, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Ziwu Zhou
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Fei Han
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Lirong Yan
- Laboratory of Functional MRI Technology (LOFT), Stevens Neuroimaging and Informatics Institute, Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - Danny J J Wang
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Laboratory of Functional MRI Technology (LOFT), Stevens Neuroimaging and Informatics Institute, Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - Peng Hu
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Biomedical Physics Interdepartmental Graduate Program, University of California, Los Angeles, California, USA
| |
Collapse
|
361
|
Haris K, Hedström E, Bidhult S, Testud F, Maglaveras N, Heiberg E, Hansson SR, Arheden H, Aletras AH. Self-gated fetal cardiac MRI with tiny golden angle iGRASP: A feasibility study. J Magn Reson Imaging 2017; 46:207-217. [PMID: 28152243 DOI: 10.1002/jmri.25599] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/05/2016] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To develop and assess a technique for self-gated fetal cardiac cine magnetic resonance imaging (MRI) using tiny golden angle radial sampling combined with iGRASP (iterative Golden-angle RAdial Sparse Parallel) for accelerated acquisition based on parallel imaging and compressed sensing. MATERIALS AND METHODS Fetal cardiac data were acquired from five volunteers in gestational week 29-37 at 1.5T using tiny golden angles for eddy currents reduction. The acquired multicoil radial projections were input to a principal component analysis-based compression stage. The cardiac self-gating (CSG) signal for cardiac gating was extracted from the acquired radial projections and the iGRASP reconstruction procedure was applied. In all acquisitions, a total of 4000 radial spokes were acquired within a breath-hold of less than 15 seconds using a balanced steady-state free precession pulse sequence. The images were qualitatively compared by two independent observers (on a scale of 1-4) to a single midventricular cine image from metric optimized gating (MOG) and real-time acquisitions. RESULTS For iGRASP and MOG images, good overall image quality (2.8 ± 0.4 and 2.6 ± 1.3, respectively, for observer 1; 3.6 ± 0.5 and 3.4 ± 0.9, respectively, for observer 2) and cardiac diagnostic quality (3.8 ± 0.4 and 3.4 ± 0.9, respectively, for observer 1; 3.6 ± 0.5 and 3.6 ± 0.9, respectively, for observer 2) were obtained, with visualized myocardial thickening over the cardiac cycle and well-defined myocardial borders to ventricular lumen and liver/lung tissue. For iGRASP, MOG, and real time, left ventricular lumen diameter (14.1 ± 2.2 mm, 14.2 ± 1.9 mm, 14.7 ± 1.1 mm, respectively) and wall thickness (2.7 ± 0.3 mm, 2.6 ± 0.3 mm, 3.0 ± 0.4, respectively) showed agreement and no statistically significant difference was found (all P > 0.05). Images with iGRASP tended to have higher overall image quality scores compared with MOG and particularly real-time images, albeit not statistically significant in this feasibility study (P > 0.99 and P = 0.12, respectively). CONCLUSION Fetal cardiac cine MRI can be performed with iGRASP using tiny golden angles and CSG. Comparison with other fetal cardiac cine MRI methods showed that the proposed method produces high-quality fetal cardiac reconstructions. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:207-217.
Collapse
Affiliation(s)
- Kostas Haris
- Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Greece.,Lund Cardiac MR Group, Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Lund University, Lund, Sweden
| | - Erik Hedström
- Lund Cardiac MR Group, Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Lund University, Lund, Sweden.,Department of Diagnostic Radiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Sebastian Bidhult
- Lund Cardiac MR Group, Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Lund University, Lund, Sweden
| | | | - Nicos Maglaveras
- Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Greece
| | - Einar Heiberg
- Lund Cardiac MR Group, Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Lund University, Lund, Sweden
| | - Stefan R Hansson
- Department of Obstetrics and Gynecology, Skåne University Hospital,Lund University, Lund, Sweden
| | - Håkan Arheden
- Lund Cardiac MR Group, Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Lund University, Lund, Sweden
| | - Anthony H Aletras
- Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Greece.,Lund Cardiac MR Group, Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
362
|
Liu J, Feng L, Shen HW, Zhu C, Wang Y, Mukai K, Brooks GC, Ordovas K, Saloner D. Highly-accelerated self-gated free-breathing 3D cardiac cine MRI: validation in assessment of left ventricular function. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 30:337-346. [PMID: 28120280 DOI: 10.1007/s10334-017-0607-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/21/2016] [Accepted: 01/03/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVE This work presents a highly-accelerated, self-gated, free-breathing 3D cardiac cine MRI method for cardiac function assessment. MATERIALS AND METHODS A golden-ratio profile based variable-density, pseudo-random, Cartesian undersampling scheme was implemented for continuous 3D data acquisition. Respiratory self-gating was achieved by deriving motion signal from the acquired MRI data. A multi-coil compressed sensing technique was employed to reconstruct 4D images (3D+time). 3D cardiac cine imaging with self-gating was compared to bellows gating and the clinical standard breath-held 2D cine imaging for evaluation of self-gating accuracy, image quality, and cardiac function in eight volunteers. Reproducibility of 3D imaging was assessed. RESULTS Self-gated 3D imaging provided an image quality score of 3.4 ± 0.7 vs 4.0 ± 0 with the 2D method (p = 0.06). It determined left ventricular end-systolic volume as 42.4 ± 11.5 mL, end-diastolic volume as 111.1 ± 24.7 mL, and ejection fraction as 62.0 ± 3.1%, which were comparable to the 2D method, with bias ± 1.96 × SD of -0.8 ± 7.5 mL (p = 0.90), 2.6 ± 3.3 mL (p = 0.84) and 1.4 ± 6.4% (p = 0.45), respectively. CONCLUSION The proposed 3D cardiac cine imaging method enables reliable respiratory self-gating performance with good reproducibility, and provides comparable image quality and functional measurements to 2D imaging, suggesting that self-gated, free-breathing 3D cardiac cine MRI framework is promising for improved patient comfort and cardiac MRI scan efficiency.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St, Suite 350, San Francisco, CA, 94107, USA.
| | - Li Feng
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Hsin-Wei Shen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St, Suite 350, San Francisco, CA, 94107, USA
| | - Chengcheng Zhu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St, Suite 350, San Francisco, CA, 94107, USA
| | - Yan Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St, Suite 350, San Francisco, CA, 94107, USA
| | - Kanae Mukai
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Gabriel C Brooks
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Karen Ordovas
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St, Suite 350, San Francisco, CA, 94107, USA
| | - David Saloner
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St, Suite 350, San Francisco, CA, 94107, USA.,Radiology Service, VA Medical Center, San Francisco, CA, USA
| |
Collapse
|
363
|
Zhu Y, Spincemaille P, Liu J, Li S, Nguyen TD, Prince MR, Xie Y, Wang Y. Nonlinear profile order for three-dimensional hybrid radial acquisition applied to self-gated free-breathing cardiac cine MRI. CHINESE PHYSICS B 2017; 26:018701. [DOI: 10.1088/1674-1056/26/1/018701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
|
364
|
Usman M, Ruijsink B, Nazir MS, Cruz G, Prieto C. Free breathing whole-heart 3D CINE MRI with self-gated Cartesian trajectory. Magn Reson Imaging 2016; 38:129-137. [PMID: 28034638 PMCID: PMC5375620 DOI: 10.1016/j.mri.2016.12.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 01/22/2023]
Abstract
Purpose To present a method that uses a novel free-running self-gated acquisition to achieve isotropic resolution in whole heart 3D Cartesian cardiac CINE MRI. Material and methods 3D cardiac CINE MRI using navigator gating results in long acquisition times. Recently, several frameworks based on self-gated non-Cartesian trajectories have been proposed to accelerate this acquisition. However, non-Cartesian reconstructions are computationally expensive due to gridding, particularly in 3D. In this work, we propose a novel highly efficient self-gated Cartesian approach for 3D cardiac CINE MRI. Acquisition is performed using CArtesian trajectory with Spiral PRofile ordering and Tiny golden angle step for eddy current reduction (so called here CASPR-Tiger). Data is acquired continuously under free breathing (retrospective ECG gating, no preparation pulses interruption) for 4–5 min and 4D whole-heart volumes (3D + cardiac phases) with isotropic spatial resolution are reconstructed from all available data using a soft gating technique combined with temporal total variation (TV) constrained iterative SENSE reconstruction. Results For data acquired on eight healthy subjects and three patients, the reconstructed images using the proposed method had good contrast and spatio-temporal variations, correctly recovering diastolic and systolic cardiac phases. Non-significant differences (P > 0.05) were observed in cardiac functional measurements obtained with proposed 3D approach and gold standard 2D multi-slice breath-hold acquisition. Conclusion The proposed approach enables isotropic 3D whole heart Cartesian cardiac CINE MRI in 4 to 5 min free breathing acquisition. A novel self-gated 3D Cartesian acquisition is proposed for free breathing whole-heart cardiac MRI The proposed framework has efficient k-space sampling, better eddy current performance and high computational efficiency The Proposed method is able to achieve high spatio-temporal resolution 3D cardiac CINE The proposed method only requires four to five minute free breathing scan
Collapse
Affiliation(s)
- M Usman
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom; Department of Computer Science, University College London, London, UK.
| | - B Ruijsink
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom
| | - M S Nazir
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom
| | - G Cruz
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom
| | - C Prieto
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom; Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Santiago, Chile
| |
Collapse
|
365
|
Feng L, Benkert T, Block KT, Sodickson DK, Otazo R, Chandarana H. Compressed sensing for body MRI. J Magn Reson Imaging 2016; 45:966-987. [PMID: 27981664 DOI: 10.1002/jmri.25547] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/25/2016] [Indexed: 12/18/2022] Open
Abstract
The introduction of compressed sensing for increasing imaging speed in magnetic resonance imaging (MRI) has raised significant interest among researchers and clinicians, and has initiated a large body of research across multiple clinical applications over the last decade. Compressed sensing aims to reconstruct unaliased images from fewer measurements than are traditionally required in MRI by exploiting image compressibility or sparsity. Moreover, appropriate combinations of compressed sensing with previously introduced fast imaging approaches, such as parallel imaging, have demonstrated further improved performance. The advent of compressed sensing marks the prelude to a new era of rapid MRI, where the focus of data acquisition has changed from sampling based on the nominal number of voxels and/or frames to sampling based on the desired information content. This article presents a brief overview of the application of compressed sensing techniques in body MRI, where imaging speed is crucial due to the presence of respiratory motion along with stringent constraints on spatial and temporal resolution. The first section provides an overview of the basic compressed sensing methodology, including the notion of sparsity, incoherence, and nonlinear reconstruction. The second section reviews state-of-the-art compressed sensing techniques that have been demonstrated for various clinical body MRI applications. In the final section, the article discusses current challenges and future opportunities. LEVEL OF EVIDENCE 5 J. Magn. Reson. Imaging 2017;45:966-987.
Collapse
Affiliation(s)
- Li Feng
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Thomas Benkert
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Kai Tobias Block
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Daniel K Sodickson
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Ricardo Otazo
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Hersh Chandarana
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
366
|
Zhu Y, Li S, Yang J, Li R, Zhang Z, Yu S, Xie Y. Nonlinear profile order for 3D hybrid radial acquisition applied to self-gated free-breathing cardiac cine MRI. J Cardiovasc Magn Reson 2016. [PMCID: PMC5032353 DOI: 10.1186/1532-429x-18-s1-p23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
367
|
Chiew M, Graedel NN, McNab JA, Smith SM, Miller KL. Accelerating functional MRI using fixed-rank approximations and radial-cartesian sampling. Magn Reson Med 2016; 76:1825-1836. [PMID: 26777798 PMCID: PMC4847647 DOI: 10.1002/mrm.26079] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 11/17/2022]
Abstract
PURPOSE Recently, k-t FASTER (fMRI Accelerated in Space-time by means of Truncation of Effective Rank) was introduced for rank-constrained acceleration of fMRI data acquisition. Here we demonstrate improvements achieved through a hybrid three-dimensional radial-Cartesian sampling approach that allows posthoc selection of acceleration factors, as well as incorporation of coil sensitivity encoding in the reconstruction. METHODS The multicoil rank-constrained reconstruction used hard thresholding and shrinkage on matrix singular values of the space-time data matrix, using sensitivity encoding and the nonuniform Fast Fourier Transform to enforce data consistency in the multicoil non-Cartesian k-t domain. Variable acceleration factors were made possible using a radial increment based on the golden ratio. Both retrospective and prospectively under-sampled data were used to assess the fidelity of the enhancements to the k-t FASTER technique in resting and task-fMRI data. RESULTS The improved k-t FASTER is capable of tailoring acceleration factors for recovery of different signal components, achieving up to R = 12.5 acceleration in visual-motor task data. The enhancements reduce data matrix reconstruction errors even at much higher acceleration factors when compared directly with the original k-t FASTER approach. CONCLUSION We have shown that k-t FASTER can be used to significantly accelerate fMRI data acquisition with little penalty to data quality. Magn Reson Med 76:1825-1836, 2016. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Mark Chiew
- FMRIB CentreUniversity of OxfordOxfordUnited Kingdom
| | | | - Jennifer A. McNab
- R.M. Lucas Center for ImagingStanford UniversityStanfordCaliforniaUSA
| | | | | |
Collapse
|
368
|
Tibiletti M, Bianchi A, Stiller D, Rasche V. Pulmonary perfusion quantification with flow-sensitive inversion recovery (FAIR) UTE MRI in small animal imaging. NMR IN BIOMEDICINE 2016; 29:1791-1799. [PMID: 27809405 DOI: 10.1002/nbm.3657] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 06/06/2023]
Abstract
Blood perfusion in lung parenchyma is an important property for assessing lung function. In small animals, its quantitation is limited even with radioactive isotopes or dynamic contrast-enhanced MRI techniques. In this study, the feasibility flow-sensitive alternating inversion recovery (FAIR) for the quantification of blood flow in lung parenchyma in free breathing rats at 7 T has been investigated. In order to obtain sufficient signal from the short T2 * lung parenchyma, a 2D ultra-short echo time (UTE) Look-Locker read-out has been implemented. Acquisitions were segmented to maintain acquisition time within an acceptable range. A method to perform retrospective respiratory gating (DC-SG) has been applied to investigate the impact of respiratory movement. Reproducibilities within and between sessions were estimated, and the ability of FAIR-UTE to identify the decrease of lung perfusion under hyperoxic conditions was tested. The implemented technique allowed for the visualization of lung parenchyma with excellent SNR and no respiratory artifact even in ungated acquisitions. Lung parenchyma perfusion was obtained as 32.54 ± 2.26 mL/g/min in the left lung, and 34.09 ± 2.75 mL/g/min in the right lung. Application of retrospective gating significantly but minimally changes the perfusion values, implying that respiratory gating may not be necessary with this center-our acquisition method. A decrease of 10% in lung perfusion was found between normoxic and hyperoxic conditions, proving the feasibility of the FAIR-UTE approach to quantify lung perfusion changes.
Collapse
Affiliation(s)
- Marta Tibiletti
- Core Facility Small Animal MRI, 89081 Ulm, University, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Andrea Bianchi
- In-Vivo Imaging Laboratory, Target Discovery Research, Boehringer Ingelheim Pharma, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany
| | - Detlef Stiller
- In-Vivo Imaging Laboratory, Target Discovery Research, Boehringer Ingelheim Pharma, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany
| | - Volker Rasche
- University Hospital of Ulm, Internal Medicine II, Ulm, Germany
| |
Collapse
|
369
|
Guo Y, Lingala SG, Zhu Y, Lebel RM, Nayak KS. Direct estimation of tracer-kinetic parameter maps from highly undersampled brain dynamic contrast enhanced MRI. Magn Reson Med 2016; 78:1566-1578. [PMID: 27859563 DOI: 10.1002/mrm.26540] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 09/15/2016] [Accepted: 10/12/2016] [Indexed: 12/12/2022]
Abstract
PURPOSE The purpose of this work was to develop and evaluate a T1 -weighted dynamic contrast enhanced (DCE) MRI methodology where tracer-kinetic (TK) parameter maps are directly estimated from undersampled (k,t)-space data. THEORY AND METHODS The proposed reconstruction involves solving a nonlinear least squares optimization problem that includes explicit use of a full forward model to convert parameter maps to (k,t)-space, utilizing the Patlak TK model. The proposed scheme is compared against an indirect method that creates intermediate images by parallel imaging and compressed sensing before to TK modeling. Thirteen fully sampled brain tumor DCE-MRI scans with 5-second temporal resolution are retrospectively undersampled at rates R = 20, 40, 60, 80, and 100 for each dynamic frame. TK maps are quantitatively compared based on root mean-squared-error (rMSE) and Bland-Altman analysis. The approach is also applied to four prospectively R = 30 undersampled whole-brain DCE-MRI data sets. RESULTS In the retrospective study, the proposed method performed statistically better than indirect method at R ≥ 80 for all 13 cases. This approach provided restoration of TK parameter values with less errors in tumor regions of interest, an improvement compared to a state-of-the-art indirect method. Applied prospectively, the proposed method provided whole-brain, high-resolution TK maps with good image quality. CONCLUSION Model-based direct estimation of TK maps from k,t-space DCE-MRI data is feasible and is compatible up to 100-fold undersampling. Magn Reson Med 78:1566-1578, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Yi Guo
- Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Sajan Goud Lingala
- Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Yinghua Zhu
- Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | | | - Krishna S Nayak
- Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
370
|
Respiratory optimized data selection for more resilient self-navigated whole-heart coronary MR angiography. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 30:215-225. [DOI: 10.1007/s10334-016-0598-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/04/2016] [Accepted: 10/24/2016] [Indexed: 12/28/2022]
|
371
|
Benkert T, Feng L, Sodickson DK, Chandarana H, Block KT. Free-breathing volumetric fat/water separation by combining radial sampling, compressed sensing, and parallel imaging. Magn Reson Med 2016; 78:565-576. [PMID: 27612300 DOI: 10.1002/mrm.26392] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/01/2016] [Accepted: 08/01/2016] [Indexed: 12/18/2022]
Abstract
PURPOSE Conventional fat/water separation techniques require that patients hold breath during abdominal acquisitions, which often fails and limits the achievable spatial resolution and anatomic coverage. This work presents a novel approach for free-breathing volumetric fat/water separation. METHODS Multiecho data are acquired using a motion-robust radial stack-of-stars three-dimensional GRE sequence with bipolar readout. To obtain fat/water maps, a model-based reconstruction is used that accounts for the off-resonant blurring of fat and integrates both compressed sensing and parallel imaging. The approach additionally enables generation of respiration-resolved fat/water maps by detecting motion from k-space data and reconstructing different respiration states. Furthermore, an extension is described for dynamic contrast-enhanced fat-water-separated measurements. RESULTS Uniform and robust fat/water separation is demonstrated in several clinical applications, including free-breathing noncontrast abdominal examination of adults and a pediatric subject with both motion-averaged and motion-resolved reconstructions, as well as in a noncontrast breast exam. Furthermore, dynamic contrast-enhanced fat/water imaging with high temporal resolution is demonstrated in the abdomen and breast. CONCLUSION The described framework provides a viable approach for motion-robust fat/water separation and promises particular value for clinical applications that are currently limited by the breath-holding capacity or cooperation of patients. Magn Reson Med 78:565-576, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Thomas Benkert
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Li Feng
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Daniel K Sodickson
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Hersh Chandarana
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Kai Tobias Block
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
372
|
Graedel NN, McNab JA, Chiew M, Miller KL. Motion correction for functional MRI with three-dimensional hybrid radial-Cartesian EPI. Magn Reson Med 2016; 78:527-540. [PMID: 27604503 PMCID: PMC5516130 DOI: 10.1002/mrm.26390] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 11/13/2022]
Abstract
Purpose Subject motion is a major source of image degradation for functional MRI (fMRI), especially when using multishot sequences like three‐dimensional (3D EPI). We present a hybrid radial‐Cartesian 3D EPI trajectory enabling motion correction in k‐space for functional MRI. Methods The EPI “blades” of the 3D hybrid radial‐Cartesian EPI sequence, called TURBINE, are rotated about the phase‐encoding axis to fill out a cylinder in 3D k‐space. Angular blades are acquired over time using a golden‐angle rotation increment, allowing reconstruction at flexible temporal resolution. The self‐navigating properties of the sequence are used to determine motion parameters from a high temporal‐resolution navigator time series. The motion is corrected in k‐space as part of the image reconstruction, and evaluated for experiments with both cued and natural motion. Results We demonstrate that the motion correction works robustly and that we can achieve substantial artifact reduction as well as improvement in temporal signal‐to‐noise ratio and fMRI activation in the presence of both severe and subtle motion. Conclusion We show the potential for hybrid radial‐Cartesian 3D EPI to substantially reduce artifacts for application in fMRI, especially for subject groups with significant head motion. The motion correction approach does not prolong the scan, and no extra hardware is required. Magn Reson Med 78:527–540, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Nadine N Graedel
- FMRIB Centre for Functional MRI of the Brain, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Jennifer A McNab
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Mark Chiew
- FMRIB Centre for Functional MRI of the Brain, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Karla L Miller
- FMRIB Centre for Functional MRI of the Brain, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
373
|
Contijoch F, Iyer SK, Pilla JJ, Yushkevich P, Gorman JH, Gorman RC, Litt H, Han Y, Witschey WRT. Self-gated MRI of multiple beat morphologies in the presence of arrhythmias. Magn Reson Med 2016; 78:678-688. [PMID: 27579717 DOI: 10.1002/mrm.26381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 07/01/2016] [Accepted: 07/22/2016] [Indexed: 01/17/2023]
Abstract
PURPOSE Develop self-gated MRI for distinct heartbeat morphologies in subjects with arrhythmias. METHODS Golden angle radial data was obtained in seven sinus and eight arrhythmias subjects. An image-based cardiac navigator was derived from single-shot images, distinct beat types were identified, and images were reconstructed for repeated morphologies. Image sharpness, contrast, and volume variation were quantified and compared with self-gated MRI. Images were scored for image quality and artifacts. Hemodynamic parameters were computed for each distinct beat morphology in bigeminy and trigeminy subjects and for sinus beats in patients with infrequent premature ventricular contractions. RESULTS Images of distinct beat types were reconstructed except for two patients with infrequent premature ventricular contractions. Image contrast and sharpness were similar to sinus self-gated images (contrast = 0.45 ± 0.13 and 0.43 ± 0.15; sharpness = 0.21 ± 0.11 and 0.20 ± 0.05). Visual scoring was highest in self-gated images (4.1 ± 0.3) compared with real-time (3.9 ± 0.4) and ECG-gated cine (3.4 ± 1.5). ECG-gated cine had less artifacts than self-gating (2.3 ± 0.7 and 2.1 ± 0.2), but was affected by misgating in two subjects. Among arrhythmia subjects, post-extrasystole/sinus (58.1 ± 8.6 mL) and interrupted sinus (61.4 ± 5.9 mL) stroke volume was higher than extrasystole (32.0 ± 16.5 mL; P < 0.02). CONCLUSION Self-gated imaging can reconstruct images during ectopy and allowed for quantification of hemodynamic function of different beat morphologies. Magn Reson Med 78:678-688, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Francisco Contijoch
- School of Medicine, University of California - San Diego, San Diego, California, USA
| | - Srikant Kamesh Iyer
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James J Pilla
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul Yushkevich
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph H Gorman
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert C Gorman
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Harold Litt
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuchi Han
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Walter R T Witschey
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
374
|
Chen Z, Xia L, Liu F, Wang Q, Li Y, Zhu X, Huang F. An improved non-Cartesian partially parallel imaging by exploiting artificial sparsity. Magn Reson Med 2016; 78:271-279. [DOI: 10.1002/mrm.26360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 06/16/2016] [Accepted: 07/07/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Zhifeng Chen
- Department of Biomedical Engineering; Zhejiang University; Hangzhou Zhejiang People's Republic of China
| | - Ling Xia
- Department of Biomedical Engineering; Zhejiang University; Hangzhou Zhejiang People's Republic of China
- State Key Lab of CAD & CG; Zhejiang University; Hangzhou Zhejiang People's Republic of China
| | - Feng Liu
- School of Information Technology and Electrical Engineering; The University of Queensland; Brisbane QLD Australia
| | - Qiuliang Wang
- Division of Superconducting Magnet Science and Technology, Institute of Electrical Engineering, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Yi Li
- Division of Superconducting Magnet Science and Technology, Institute of Electrical Engineering, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Xuchen Zhu
- Division of Superconducting Magnet Science and Technology, Institute of Electrical Engineering, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Feng Huang
- Philips Healthcare; Suzhou Jiangsu People's Republic of China
| |
Collapse
|
375
|
Schloegl M, Holler M, Schwarzl A, Bredies K, Stollberger R. Infimal convolution of total generalized variation functionals for dynamic MRI. Magn Reson Med 2016; 78:142-155. [PMID: 27476450 DOI: 10.1002/mrm.26352] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/09/2016] [Accepted: 07/01/2016] [Indexed: 11/12/2022]
Abstract
PURPOSE To accelerate dynamic MR applications using infimal convolution of total generalized variation functionals (ICTGV) as spatio-temporal regularization for image reconstruction. THEORY AND METHODS ICTGV comprises a new image prior tailored to dynamic data that achieves regularization via optimal local balancing between spatial and temporal regularity. Here it is applied for the first time to the reconstruction of dynamic MRI data. CINE and perfusion scans were investigated to study the influence of time dependent morphology and temporal contrast changes. ICTGV regularized reconstruction from subsampled MR data is formulated as a convex optimization problem. Global solutions are obtained by employing a duality based non-smooth optimization algorithm. RESULTS The reconstruction error remains on a low level with acceleration factors up to 16 for both CINE and dynamic contrast-enhanced MRI data. The GPU implementation of the algorithm suites clinical demands by reducing reconstruction times of one dataset to less than 4 min. CONCLUSION ICTGV based dynamic magnetic resonance imaging reconstruction allows for vast undersampling and therefore enables for very high spatial and temporal resolutions, spatial coverage and reduced scan time. With the proposed distinction of model and regularization parameters it offers a new and robust method of flexible decomposition into components with different degrees of temporal regularity. Magn Reson Med 78:142-155, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Matthias Schloegl
- Institute of Medical Engineering, Graz University of Technology, Stremayrgasse 16, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Martin Holler
- Institute for Mathematics and Scientific Computing, University of Graz, Heinrichstrasse 36, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Andreas Schwarzl
- Institute of Medical Engineering, Graz University of Technology, Stremayrgasse 16, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Kristian Bredies
- Institute for Mathematics and Scientific Computing, University of Graz, Heinrichstrasse 36, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Rudolf Stollberger
- Institute of Medical Engineering, Graz University of Technology, Stremayrgasse 16, Graz, Austria; BioTechMed-Graz, Graz, Austria
| |
Collapse
|
376
|
Guo L, Derbyshire JA, Herzka DA. Pseudo-projection-driven, self-gated cardiac cine imaging using cartesian golden step phase encoding. Magn Reson Med 2016; 76:417-29. [PMID: 26519940 PMCID: PMC5019250 DOI: 10.1002/mrm.25834] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/17/2015] [Accepted: 06/15/2015] [Indexed: 12/19/2022]
Abstract
PURPOSE To develop and evaluate a novel two-dimensional self-gated imaging technique for free-breathing cardiac cine MRI that is free of motion-detection overhead and requires minimal planning for motion tracking. METHODS Motion along the readout direction was extracted solely from normal Cartesian imaging readouts near ky = 0. During imaging, the readouts below a certain |ky | threshold were scaled in magnitude and filtered in time to form "pseudo-projections," enabling projection-based motion tracking along readout without frequently acquiring the central phase encode. A discrete golden step phase encode scheme allowed the |ky | threshold to be freely set after the scan while maintaining uniform motion sampling. RESULTS The pseudo-projections stream displayed sufficient spatiotemporal resolution for both cardiac and respiratory tracking, allowing retrospective reconstruction of free-breathing non-electrocardiogram (ECG) cines. The technique was tested on healthy subjects, and the resultant image quality, measured by blood-myocardium boundary sharpness, myocardial mass, and single-slice ejection fraction was found to be comparable to standard breath-hold ECG-gated cines. CONCLUSION The use of pseudo-projections for motion tracking was found feasible for cardiorespiratory self-gated imaging. Despite some sensitivity to flow and eddy currents, the simplicity of acquisition makes the proposed technique a valuable tool for self-gated cardiac imaging. Magn Reson Med 76:417-429, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Collapse
Affiliation(s)
- Liheng Guo
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - J. Andrew Derbyshire
- Functional MRI FacilityNational Institute of Mental Health, National Institutes of HealthBethesdaMarylandUSA
| | - Daniel A. Herzka
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
377
|
Respiratory Motion-Resolved Compressed Sensing Reconstruction of Free-Breathing Radial Acquisition for Dynamic Liver Magnetic Resonance Imaging. Invest Radiol 2016; 50:749-56. [PMID: 26146869 DOI: 10.1097/rli.0000000000000179] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE This study aimed to demonstrate feasibility of free-breathing radial acquisition with respiratory motion-resolved compressed sensing reconstruction [extra-dimensional golden-angle radial sparse parallel imaging (XD-GRASP)] for multiphase dynamic gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced liver imaging, and to compare image quality to compressed sensing reconstruction with respiratory motion-averaging (GRASP) and prior conventional breath-held Cartesian-sampled data sets [BH volume interpolated breath-hold examination (VIBE)] in same patients. SUBJECTS AND METHODS In this Health Insurance Portability and Accountability Act-compliant prospective study, 16 subjects underwent free-breathing continuous radial acquisition during Gd-EOB-DTPA injection and had prior BH-VIBE available. Acquired data were reconstructed using motion-averaging GRASP approach in which consecutive 84 spokes were grouped in each contrast-enhanced phase for a temporal resolution of approximately 14 seconds. Additionally, respiratory motion-resolved reconstruction was performed from the same k-space data by sorting each contrast-enhanced phase into multiple respiratory motion states using compressed sensing algorithm named XD-GRASP, which exploits sparsity along both the contrast-enhancement and respiratory-state dimensions.Contrast-enhanced dynamic multiphase XD-GRASP, GRASP, and BH-VIBE images were anonymized, pooled together in a random order, and presented to 2 board-certified radiologists for independent evaluation of image quality, with higher score indicating more optimal examination. RESULTS The XD-GRASP reconstructions had significantly (all P < 0.05) higher overall image quality scores compared to GRASP for early arterial (reader 1: 4.3 ± 0.6 vs 3.31 ± 0.6; reader 2: 3.81 ± 0.8 vs 3.38 ± 0.9) and late arterial (reader 1: 4.5 ± 0.6 vs 3.63 ± 0.6; reader 2: 3.56 ± 0.5 vs 2.88 ± 0.7) phases of enhancement for both readers. The XD-GRASP also had higher overall image quality score in portal venous phase, which was significant for reader 1 (4.44 ± 0.5 vs 3.75 ± 0.8; P = 0.002). In addition, the XD-GRASP had higher overall image quality score compared to BH-VIBE for early (reader 1: 4.3 ± 0.6 vs 3.88 ± 0.6; reader 2: 3.81 ± 0.8 vs 3.50 ± 1.0) and late (reader 1: 4.5 ± 0.6 vs 3.44 ± 0.6; reader 2: 3.56 ± 0.5 vs 2.94 ± 0.9) arterial phases. CONCLUSION Free-breathing motion-resolved XD-GRASP reconstructions provide diagnostic high-quality multiphase images in patients undergoing Gd-EOB-DTPA-enhanced liver examination.
Collapse
|
378
|
Mendler CT, Feuchtinger A, Heid I, Aichler M, D'Alessandria C, Pirsig S, Blechert B, Wester HJ, Braren R, Walch A, Skerra A, Schwaiger M. Tumor Uptake of Anti-CD20 Fabs Depends on Tumor Perfusion. J Nucl Med 2016; 57:1971-1977. [PMID: 27417649 DOI: 10.2967/jnumed.116.176784] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/21/2016] [Indexed: 12/22/2022] Open
Abstract
Antibodies have become an established treatment modality in cancer therapy during the last decade. However, these treatments often suffer from an insufficient and heterogeneous response despite validated antigen or target receptor expression in the tumor. In fact, therapeutic success depends on both the presence of the tumor antigen and its accessibility by the antibody. In search of a suitable preclinical animal model to evaluate the mechanisms of tumor heterogeneity and hemodynamics, we characterized two exemplary non-Hodgkin lymphoma subtypes with comparable CD20 expression and metabolism, SUDHL-4 and Granta-519, using multimodal imaging techniques. METHODS To investigate in vivo biodistribution, two differently modified αCD20 antigen-binding fragments (Fab), prepared by PASylation with a 200-residue polypeptide tag comprising Pro, Ala, and Ser (PAS200) and by fusion with an albumin-binding domain (ABD), were radiolabeled with 125I and intravenously injected into immunocompromised mice bearing corresponding xenografts. RESULTS Validation with 18F-FDG revealed a similar distribution in vital tumor tissue 1 h after injection. However, large differences in tumor uptake were observed when the CD20-specific radiotracers 125I-Fab-ABD and 125I-Fab-PAS200 were applied (respective percentages injected dose per gram at 24 h after injection: 12.3 and 2.4 for Granta-519 vs. 5.8 and 1.2 for SUDHL-4). Three-dimensional light-sheet fluorescence microscopy with Cy5-Fab-PAS200 confirmed better tracer extravasation in the Granta-519 tumors. Moreover, dynamic contrast-enhanced (DCE) MRI revealed significantly reduced perfusion in the SUDHL-4 tumors. CONCLUSION Tracer uptake was highly dependent on local tumor perfusion and Fab permeation in the SUDHL-4 and Granta-519 tumors. Thus, the SUDHL-4 xenograft offers an excellent model for investigating the influence of therapies affecting tumor angiogenesis.
Collapse
Affiliation(s)
- Claudia Theresa Mendler
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, München, Germany .,Munich Center for Integrated Protein Science (CIPS-M) and Lehrstuhl für Biologische Chemie, Technische Universität München, Freising (Weihenstephan), Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Institute of Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Irina Heid
- Institute of Radiology, Klinikum rechts der Isar, Technische Universität München, München, Germany; and
| | - Michaela Aichler
- Research Unit Analytical Pathology, Institute of Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Calogero D'Alessandria
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Sabine Pirsig
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Birgit Blechert
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Hans-Jürgen Wester
- Pharmaceutical Radiochemistry, Technische Universität München, Garching, Germany
| | - Rickmer Braren
- Institute of Radiology, Klinikum rechts der Isar, Technische Universität München, München, Germany; and
| | - Axel Walch
- Research Unit Analytical Pathology, Institute of Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Arne Skerra
- Munich Center for Integrated Protein Science (CIPS-M) and Lehrstuhl für Biologische Chemie, Technische Universität München, Freising (Weihenstephan), Germany
| | - Markus Schwaiger
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, München, Germany
| |
Collapse
|
379
|
Wu Z, Chen W, Khoo MC, Ward SLD, Nayak KS. Evaluation of upper airway collapsibility using real-time MRI. J Magn Reson Imaging 2016; 44:158-67. [PMID: 26708099 PMCID: PMC6768084 DOI: 10.1002/jmri.25133] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/02/2015] [Indexed: 12/28/2022] Open
Abstract
PURPOSE To develop and demonstrate a real-time MRI method for assessing upper airway collapsibility in sleep apnea. MATERIALS AND METHODS Data were acquired on a clinical 3 Tesla scanner using a radial CAIPIRIHNA sequence with modified golden angle view ordering and reconstructed using parallel imaging and compressed sensing with temporal finite difference sparsity constraint. Segmented airway areas together with synchronized facemask pressure were used to calculate airway compliance and projected closing pressure, Pclose , at four axial locations along the upper airway. This technique was demonstrated in five adolescent obstructive sleep apnea (OSA) patients, three adult OSA patients and four healthy volunteers. Heart rate, oxygen saturation, facemask pressure, and abdominal/chest movements were monitored in real-time during the experiments to determine sleep/wakefulness. RESULTS Student's t-tests showed that both compliance and Pclose were significantly different between healthy controls and OSA patients (P < 0.001). The results also suggested that a narrower airway site does not always correspond to higher collapsibility. CONCLUSION With the proposed methods, both compliance and Pclose can be calculated and used to quantify airway collapsibility in OSA with an awake scan of 30 min total scan room time. J. Magn. Reson. Imaging 2016;44:158-167.
Collapse
Affiliation(s)
- Ziyue Wu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
- Alltech Medical Systems America, Solon, Ohio, USA
| | - Weiyi Chen
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California, USA
| | - Michael C.K. Khoo
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Sally L. Davidson Ward
- Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Krishna S. Nayak
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
380
|
Berman BP, Pandey A, Li Z, Jeffries L, Trouard TP, Oliva I, Cortopassi F, Martin DR, Altbach MI, Bilgin A. Volumetric MRI of the lungs during forced expiration. Magn Reson Med 2016; 75:2295-302. [PMID: 26140699 PMCID: PMC11964193 DOI: 10.1002/mrm.25798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/06/2015] [Accepted: 05/11/2015] [Indexed: 01/11/2023]
Abstract
PURPOSE Lung function is typically characterized by spirometer measurements, which do not offer spatially specific information. Imaging during exhalation provides spatial information but is challenging due to large movement over a short time. The purpose of this work is to provide a solution to lung imaging during forced expiration using accelerated magnetic resonance imaging. The method uses radial golden angle stack-of-stars gradient echo acquisition and compressed sensing reconstruction. METHODS A technique for dynamic three-dimensional imaging of the lungs from highly undersampled data is developed and tested on six subjects. This method takes advantage of image sparsity, both spatially and temporally, including the use of reference frames called bookends. Sparsity, with respect to total variation, and residual from the bookends, enables reconstruction from an extremely limited amount of data. RESULTS Dynamic three-dimensional images can be captured at sub-150 ms temporal resolution, using only three (or less) acquired radial lines per slice per timepoint. The images have a spatial resolution of 4.6×4.6×10 mm. Lung volume calculations based on image segmentation are compared to those from simultaneously acquired spirometer measurements. CONCLUSION Dynamic lung imaging during forced expiration is made possible by compressed sensing accelerated dynamic three-dimensional radial magnetic resonance imaging. Magn Reson Med 75:2295-2302, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Benjamin P. Berman
- Program in Applied Mathematics, University of Arizona, Tucson, Arizona, USA
| | - Abhishek Pandey
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona, USA
| | - Zhitao Li
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona, USA
| | - Lindsie Jeffries
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | - Theodore P. Trouard
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
- Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA
| | - Isabel Oliva
- Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA
| | - Felipe Cortopassi
- Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA
| | - Diego R. Martin
- Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA
| | - Maria I. Altbach
- Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA
| | - Ali Bilgin
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
- Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
381
|
Accelerated Brain DCE-MRI Using Iterative Reconstruction With Total Generalized Variation Penalty for Quantitative Pharmacokinetic Analysis: A Feasibility Study. Technol Cancer Res Treat 2016; 16:446-460. [PMID: 27215931 DOI: 10.1177/1533034616649294] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To investigate the feasibility of using undersampled k-space data and an iterative image reconstruction method with total generalized variation penalty in the quantitative pharmacokinetic analysis for clinical brain dynamic contrast-enhanced magnetic resonance imaging. METHODS Eight brain dynamic contrast-enhanced magnetic resonance imaging scans were retrospectively studied. Two k-space sparse sampling strategies were designed to achieve a simulated image acquisition acceleration factor of 4. They are (1) a golden ratio-optimized 32-ray radial sampling profile and (2) a Cartesian-based random sampling profile with spatiotemporal-regularized sampling density constraints. The undersampled data were reconstructed to yield images using the investigated reconstruction technique. In quantitative pharmacokinetic analysis on a voxel-by-voxel basis, the rate constant Ktrans in the extended Tofts model and blood flow FB and blood volume VB from the 2-compartment exchange model were analyzed. Finally, the quantitative pharmacokinetic parameters calculated from the undersampled data were compared with the corresponding calculated values from the fully sampled data. To quantify each parameter's accuracy calculated using the undersampled data, error in volume mean, total relative error, and cross-correlation were calculated. RESULTS The pharmacokinetic parameter maps generated from the undersampled data appeared comparable to the ones generated from the original full sampling data. Within the region of interest, most derived error in volume mean values in the region of interest was about 5% or lower, and the average error in volume mean of all parameter maps generated through either sampling strategy was about 3.54%. The average total relative error value of all parameter maps in region of interest was about 0.115, and the average cross-correlation of all parameter maps in region of interest was about 0.962. All investigated pharmacokinetic parameters had no significant differences between the result from original data and the reduced sampling data. CONCLUSION With sparsely sampled k-space data in simulation of accelerated acquisition by a factor of 4, the investigated dynamic contrast-enhanced magnetic resonance imaging pharmacokinetic parameters can accurately estimate the total generalized variation-based iterative image reconstruction method for reliable clinical application.
Collapse
|
382
|
Castets CR, Lefrançois W, Wecker D, Ribot EJ, Trotier AJ, Thiaudière E, Franconi JM, Miraux S. Fast 3D ultrashort echo-time spiral projection imaging using golden-angle: A flexible protocol for in vivo mouse imaging at high magnetic field. Magn Reson Med 2016; 77:1831-1840. [PMID: 27170060 DOI: 10.1002/mrm.26263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 12/21/2022]
Abstract
PURPOSE To develop a fast three-dimensional (3D) k-space encoding method based on spiral projection imaging (SPI) with an interleaved golden-angle approach and to validate this novel sequence on small animal models. METHODS A disk-like trajectory, in which each disk contained spirals, was developed. The 3D encoding was performed by tilting the disks with a golden angle. The sharpness was first calculated at different T2* values. Then, the sharpness was measured on phantom using variable undersampling ratios. Finally, the sampling method was validated by whole brain time-of-flight angiography and ultrasmall superparamagnetic iron oxide (USPIO) enhanced free-breathing liver angiography on mouse. RESULTS The in vitro results demonstrated the robustness of the method for short T2* and high undersampling ratios. In vivo experiments showed the ability to properly detect small vessels in the brain with an acquisition time shorter than 1 min. Free-breathing mice liver angiography showed the insensitivity of this protocol toward motions and flow artifacts, and enabled the visualization of liver motion during breathing. CONCLUSIONS The method implemented here allowed fast 3D k-space sampling with a high undersampling ratio. Combining the advantages of center-out spirals with the flexibility of the golden angle approach could have major implications for real-time imaging. Magn Reson Med 77:1831-1840, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Charles R Castets
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | - William Lefrançois
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | | | - Emeline J Ribot
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | - Aurélien J Trotier
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | - Eric Thiaudière
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | - Jean-Michel Franconi
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | - Sylvain Miraux
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| |
Collapse
|
383
|
Park J, Shin T, Yoon SH, Goo JM, Park JY. A radial sampling strategy for uniform k-space coverage with retrospective respiratory gating in 3D ultrashort-echo-time lung imaging. NMR IN BIOMEDICINE 2016; 29:576-87. [PMID: 26891126 PMCID: PMC4833643 DOI: 10.1002/nbm.3494] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 12/22/2015] [Accepted: 01/01/2016] [Indexed: 05/07/2023]
Abstract
The purpose of this work was to develop a 3D radial-sampling strategy which maintains uniform k-space sample density after retrospective respiratory gating, and demonstrate its feasibility in free-breathing ultrashort-echo-time lung MRI. A multi-shot, interleaved 3D radial sampling function was designed by segmenting a single-shot trajectory of projection views such that each interleaf samples k-space in an incoherent fashion. An optimal segmentation factor for the interleaved acquisition was derived based on an approximate model of respiratory patterns such that radial interleaves are evenly accepted during the retrospective gating. The optimality of the proposed sampling scheme was tested by numerical simulations and phantom experiments using human respiratory waveforms. Retrospectively, respiratory-gated, free-breathing lung MRI with the proposed sampling strategy was performed in healthy subjects. The simulation yielded the most uniform k-space sample density with the optimal segmentation factor, as evidenced by the smallest standard deviation of the number of neighboring samples as well as minimal side-lobe energy in the point spread function. The optimality of the proposed scheme was also confirmed by minimal image artifacts in phantom images. Human lung images showed that the proposed sampling scheme significantly reduced streak and ring artifacts compared with the conventional retrospective respiratory gating while suppressing motion-related blurring compared with full sampling without respiratory gating. In conclusion, the proposed 3D radial-sampling scheme can effectively suppress the image artifacts due to non-uniform k-space sample density in retrospectively respiratory-gated lung MRI by uniformly distributing gated radial views across the k-space.
Collapse
Affiliation(s)
- Jinil Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Taehoon Shin
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, USA
| | - Soon Ho Yoon
- Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea
| | - Jin Mo Goo
- Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea
- Cancer Research Institute, Seoul National University, Seoul, South Korea
| | - Jang-Yeon Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Correspondence to: J.-Y. Park, Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea.
| |
Collapse
|
384
|
Abstract
Heart disease is a worldwide public health problem; assessment of cardiac function is an important part of the diagnosis and management of heart disease. MRI of the heart can provide clinically useful information on cardiac function, although it is still not routinely used in clinical practice, in part because of limited imaging speed. New accelerated methods for performing cardiovascular MRI (CMR) have the potential to provide both increased imaging speed and robustness to CMR, as well as access to increased functional information. In this review, we will briefly discuss the main methods currently employed to accelerate CMR methods, such as parallel imaging, k-t undersampling and compressed sensing, as well as new approaches that extend the idea of compressed sensing and exploit sparsity to provide richer information of potential use in clinical practice.
Collapse
Affiliation(s)
- Leon Axel
- Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Ricardo Otazo
- Department of Radiology, NYU School of Medicine, New York, NY, USA
| |
Collapse
|
385
|
Levine E, Daniel B, Vasanawala S, Hargreaves B, Saranathan M. 3D Cartesian MRI with compressed sensing and variable view sharing using complementary poisson-disc sampling. Magn Reson Med 2016; 77:1774-1785. [PMID: 27097596 DOI: 10.1002/mrm.26254] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/22/2016] [Accepted: 04/01/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE To enable robust, high spatio-temporal-resolution three-dimensional Cartesian MRI using a scheme incorporating a novel variable density random k-space sampling trajectory allowing flexible and retrospective selection of the temporal footprint with compressed sensing (CS). METHODS A complementary Poisson-disc k-space sampling trajectory was designed to allow view sharing and varying combinations of reduced view sharing with CS from the same prospective acquisition. These schemes were used for two-point Dixon-based dynamic contrast-enhanced MRI (DCE-MRI) of the breast and abdomen. Results were validated in vivo with a novel approach using variable-flip-angle data, which was retrospectively accelerated using the same methods but offered a ground truth. RESULTS In breast DCE-MRI, the temporal footprint could be reduced 2.3-fold retrospectively without introducing noticeable artifacts, improving depiction of rapidly enhancing lesions. Further, experiments with variable-flip-angle data showed that reducing view sharing improved accuracy in reconstruction and T1 mapping. In abdominal MRI, 2.3-fold and 3.6-fold reductions in temporal footprint allowed reduced motion artifacts. CONCLUSION The complementary-Poisson-disc k-space sampling trajectory allowed a retrospective spatiotemporal resolution tradeoff using CS and view sharing, imparting robustness to motion and contrast enhancement. The technique was also validated using a novel approach of fully acquired variable-flip-angle acquisition. Magn Reson Med 77:1774-1785, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Evan Levine
- Lucas Center, Departments of Electrical Engineering and Radiology, Stanford University, Stanford, California, USA
| | - Bruce Daniel
- Lucas Center, Departments of Electrical Engineering and Radiology, Stanford University, Stanford, California, USA
| | - Shreyas Vasanawala
- Lucas Center, Departments of Electrical Engineering and Radiology, Stanford University, Stanford, California, USA
| | - Brian Hargreaves
- Lucas Center, Departments of Electrical Engineering and Radiology, Stanford University, Stanford, California, USA
| | - Manojkumar Saranathan
- Lucas Center, Departments of Electrical Engineering and Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
386
|
Paul J, Wundrak S, Hombach V, Rottbauer W, Rasche V. On the influence of respiratory motion in radial tissue phase mapping cardiac MRI. J Magn Reson Imaging 2016; 44:1218-1228. [PMID: 27086896 DOI: 10.1002/jmri.25286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/31/2016] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To investigate the impact of respiratory motion on radial tissue phase mapping (TPM) measurements, and to improve image quality and scan efficiency without compromising velocity fidelity by increasing the respiratory acceptance window with and without motion correction. MATERIALS AND METHODS A radial golden angle TPM sequence was measured in 10 healthy volunteers in three short axis slices at 3T. Ungated ( CFREE), self-gated with a single acceptance window ( CREF), motion-corrected averaging using all ( CMCall), or selected ( CMC) data reconstructions were compared by means of various image quality measures and resulting velocities. RESULTS Using all data ( CFREE) resulted in significantly higher perceived signal-to-noise ratio (SNR) (P < 0.001), but significantly reduced sharpness (P < 0.001) and contrast (P = 0.02), when compared to CREF. Coefficient of variation (CV) and perceived sharpness were not significantly different (P > 0.05). With motion-correction, perceived sharpness could be significantly improved ( CMC: P = 0.002; CMCall: P = 0.002) in comparison to CFREE. Velocity peaks of CFREE were significantly reduced compared to CREF (all peaks: P < 0.001; except the longitudinal "E" peak: P = 0.03). The peak velocities in CMC and CMCall were not significantly different from CREF (all peaks: P > 0.08; except longitudinal "E"/"A" peaks: P > 0.01). CONCLUSION Free-breathing reconstruction results in good perceived image sharpness and velocity information with slightly, but significantly, reduced peak velocities. For achieving velocities and image quality comparable to data from a single acceptance window, but higher gating efficiency, selected motion-corrected TPM (CMC) can be applied. J. Magn. Reson. Imaging 2016;44:1218-1228.
Collapse
Affiliation(s)
- Jan Paul
- Department of Internal Medicine II, University Hospital of Ulm, Germany.
| | - Stefan Wundrak
- Department of Internal Medicine II, University Hospital of Ulm, Germany
| | - Vinzenz Hombach
- Department of Internal Medicine II, University Hospital of Ulm, Germany
| | | | - Volker Rasche
- Department of Internal Medicine II, University Hospital of Ulm, Germany
| |
Collapse
|
387
|
Cruz G, Atkinson D, Buerger C, Schaeffter T, Prieto C. Accelerated motion corrected three-dimensional abdominal MRI using total variation regularized SENSE reconstruction. Magn Reson Med 2016; 75:1484-98. [PMID: 25996443 PMCID: PMC4979665 DOI: 10.1002/mrm.25708] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 02/16/2015] [Accepted: 03/10/2015] [Indexed: 01/20/2023]
Abstract
PURPOSE Develop a nonrigid motion corrected reconstruction for highly accelerated free-breathing three-dimensional (3D) abdominal images without external sensors or additional scans. METHODS The proposed method accelerates the acquisition by undersampling and performs motion correction directly in the reconstruction using a general matrix description of the acquisition. Data are acquired using a self-gated 3D golden radial phase encoding trajectory, enabling a two stage reconstruction to estimate and then correct motion of the same data. In the first stage total variation regularized iterative SENSE is used to reconstruct highly undersampled respiratory resolved images. A nonrigid registration of these images is performed to estimate the complex motion in the abdomen. In the second stage, the estimated motion fields are incorporated in a general matrix reconstruction, which uses total variation regularization and incorporates k-space data from multiple respiratory positions. The proposed approach was tested on nine healthy volunteers and compared against a standard gated reconstruction using measures of liver sharpness, gradient entropy, visual assessment of image sharpness and overall image quality by two experts. RESULTS The proposed method achieves similar quality to the gated reconstruction with nonsignificant differences for liver sharpness (1.18 and 1.00, respectively), gradient entropy (1.00 and 1.00), visual score of image sharpness (2.22 and 2.44), and visual rank of image quality (3.33 and 3.39). An average reduction of the acquisition time from 102 s to 39 s could be achieved with the proposed method. CONCLUSION In vivo results demonstrate the feasibility of the proposed method showing similar image quality to the standard gated reconstruction while using data corresponding to a significantly reduced acquisition time. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance.
Collapse
Affiliation(s)
- Gastao Cruz
- King's College LondonDivision of Imaging Sciences and Biomedical EngineeringLondonUnited Kingdom
| | - David Atkinson
- Centre for Medical ImagingUniversity College LondonLondonUnited Kingdom
| | | | - Tobias Schaeffter
- King's College LondonDivision of Imaging Sciences and Biomedical EngineeringLondonUnited Kingdom
| | - Claudia Prieto
- King's College LondonDivision of Imaging Sciences and Biomedical EngineeringLondonUnited Kingdom
- Pontificia Universidad Católica de Chile, Escuela de IngenieríaSantiagoChile
| |
Collapse
|
388
|
Dutta J, Huang C, Li Q, El Fakhri G. Pulmonary imaging using respiratory motion compensated simultaneous PET/MR. Med Phys 2016; 42:4227-40. [PMID: 26133621 DOI: 10.1118/1.4921616] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Pulmonary positron emission tomography (PET) imaging is confounded by blurring artifacts caused by respiratory motion. These artifacts degrade both image quality and quantitative accuracy. In this paper, the authors present a complete data acquisition and processing framework for respiratory motion compensated image reconstruction (MCIR) using simultaneous whole body PET/magnetic resonance (MR) and validate it through simulation and clinical patient studies. METHODS The authors have developed an MCIR framework based on maximum a posteriori or MAP estimation. For fast acquisition of high quality 4D MR images, the authors developed a novel Golden-angle RAdial Navigated Gradient Echo (GRANGE) pulse sequence and used it in conjunction with sparsity-enforcing k-t FOCUSS reconstruction. The authors use a 1D slice-projection navigator signal encapsulated within this pulse sequence along with a histogram-based gate assignment technique to retrospectively sort the MR and PET data into individual gates. The authors compute deformation fields for each gate via nonrigid registration. The deformation fields are incorporated into the PET data model as well as utilized for generating dynamic attenuation maps. The framework was validated using simulation studies on the 4D XCAT phantom and three clinical patient studies that were performed on the Biograph mMR, a simultaneous whole body PET/MR scanner. RESULTS The authors compared MCIR (MC) results with ungated (UG) and one-gate (OG) reconstruction results. The XCAT study revealed contrast-to-noise ratio (CNR) improvements for MC relative to UG in the range of 21%-107% for 14 mm diameter lung lesions and 39%-120% for 10 mm diameter lung lesions. A strategy for regularization parameter selection was proposed, validated using XCAT simulations, and applied to the clinical studies. The authors' results show that the MC image yields 19%-190% increase in the CNR of high-intensity features of interest affected by respiratory motion relative to UG and a 6%-51% increase relative to OG. CONCLUSIONS Standalone MR is not the traditional choice for lung scans due to the low proton density, high magnetic susceptibility, and low T2 (∗) relaxation time in the lungs. By developing and validating this PET/MR pulmonary imaging framework, the authors show that simultaneous PET/MR, unique in its capability of combining structural information from MR with functional information from PET, shows promise in pulmonary imaging.
Collapse
Affiliation(s)
- Joyita Dutta
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114 and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Chuan Huang
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114; Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115; and Departments of Radiology and Psychiatry, Stony Brook Medicine, Stony Brook, New York 11794
| | - Quanzheng Li
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114 and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Georges El Fakhri
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114 and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
389
|
Weick S, Völker M, Hemberger K, Meyer C, Ehses P, Polat B, Breuer FA, Blaimer M, Fink C, Schad LR, Sauer OA, Flentje M, Jakob PM. Desynchronization of Cartesian k-space sampling and periodic motion for improved retrospectively self-gated 3D lung MRI using quasi-random numbers. Magn Reson Med 2016; 77:787-793. [PMID: 26968124 DOI: 10.1002/mrm.26159] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 11/10/2022]
Abstract
PURPOSE To demonstrate that desynchronization between Cartesian k-space sampling and periodic motion in free-breathing lung MRI improves the robustness and efficiency of retrospective respiratory self-gating. METHODS Desynchronization was accomplished by reordering the phase (ky ) and partition (kz ) encoding of a three-dimensional FLASH sequence according to two-dimensional, quasi-random (QR) numbers. For retrospective respiratory self-gating, the k-space center signal (DC signal) was acquired separately after each encoded k-space line. QR sampling results in a uniform distribution of k-space lines after gating. Missing lines resulting from the gating process were reconstructed using iterative GRAPPA. Volunteer measurements were performed to compare quasi-random with conventional sampling. Patient measurements were performed to demonstrate the feasibility of QR sampling in a clinical setting. RESULTS The uniformly sampled k-space after retrospective gating allows for a more stable iterative GRAPPA reconstruction and improved ghost artifact reduction compared with conventional sampling. It is shown that this stability can either be used to reduce the total scan time or to reconstruct artifact-free data sets in different respiratory phases, both resulting in an improved efficiency of retrospective respiratory self-gating. CONCLUSION QR sampling leads to desynchronization between repeated data acquisition and periodic respiratory motion. This results in an improved motion artifact reduction in shorter scan time. Magn Reson Med 77:787-793, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Stefan Weick
- Department of Radiation Oncology, University of Würzburg, Germany.,Department of Experimental Physics 5, University of Würzburg, Germany
| | - Michael Völker
- Department of Experimental Physics 5, University of Würzburg, Germany
| | | | - Cord Meyer
- Department of Experimental Physics 5, University of Würzburg, Germany
| | - Philipp Ehses
- Max-Planck-Institute for Biological Cybernetics, University of Tübingen, Germany
| | - Bülent Polat
- Department of Radiation Oncology, University of Würzburg, Germany
| | - Felix A Breuer
- Research Center for Magnetic Resonance Bavaria, Würzburg, Germany
| | - Martin Blaimer
- Research Center for Magnetic Resonance Bavaria, Würzburg, Germany
| | - Christian Fink
- Department of Radiology, Allgemeines Krankenhaus Celle, Germany
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Otto A Sauer
- Department of Radiation Oncology, University of Würzburg, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University of Würzburg, Germany
| | - Peter M Jakob
- Department of Experimental Physics 5, University of Würzburg, Germany.,Department of Radiology, Allgemeines Krankenhaus Celle, Germany
| |
Collapse
|
390
|
Miao X, Lingala SG, Guo Y, Jao T, Usman M, Prieto C, Nayak KS. Accelerated cardiac cine MRI using locally low rank and finite difference constraints. Magn Reson Imaging 2016; 34:707-714. [PMID: 26968142 DOI: 10.1016/j.mri.2016.03.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/14/2016] [Accepted: 03/03/2016] [Indexed: 10/22/2022]
Abstract
PURPOSE To evaluate the potential value of combining multiple constraints for highly accelerated cardiac cine MRI. METHODS A locally low rank (LLR) constraint and a temporal finite difference (FD) constraint were combined to reconstruct cardiac cine data from highly undersampled measurements. Retrospectively undersampled 2D Cartesian reconstructions were quantitatively evaluated against fully-sampled data using normalized root mean square error, structural similarity index (SSIM) and high frequency error norm (HFEN). This method was also applied to 2D golden-angle radial real-time imaging to facilitate single breath-hold whole-heart cine (12 short-axis slices, 9-13s single breath hold). Reconstruction was compared against state-of-the-art constrained reconstruction methods: LLR, FD, and k-t SLR. RESULTS At 10 to 60 spokes/frame, LLR+FD better preserved fine structures and depicted myocardial motion with reduced spatio-temporal blurring in comparison to existing methods. LLR yielded higher SSIM ranking than FD; FD had higher HFEN ranking than LLR. LLR+FD combined the complimentary advantages of the two, and ranked the highest in all metrics for all retrospective undersampled cases. Single breath-hold multi-slice cardiac cine with prospective undersampling was enabled with in-plane spatio-temporal resolutions of 2×2mm(2) and 40ms. CONCLUSION Highly accelerated cardiac cine is enabled by the combination of 2D undersampling and the synergistic use of LLR and FD constraints.
Collapse
Affiliation(s)
- Xin Miao
- Department of Biomedical Engineering, University of Southern California, Los Angeles, USA.
| | - Sajan Goud Lingala
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, USA
| | - Yi Guo
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, USA
| | - Terrence Jao
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, USA
| | - Muhammad Usman
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Claudia Prieto
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Krishna S Nayak
- Department of Biomedical Engineering, University of Southern California, Los Angeles, USA; Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, USA
| |
Collapse
|
391
|
Advanced flow MRI: emerging techniques and applications. Clin Radiol 2016; 71:779-95. [PMID: 26944696 DOI: 10.1016/j.crad.2016.01.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/10/2015] [Accepted: 01/10/2016] [Indexed: 12/12/2022]
Abstract
Magnetic resonance imaging (MRI) techniques provide non-invasive and non-ionising methods for the highly accurate anatomical depiction of the heart and vessels throughout the cardiac cycle. In addition, the intrinsic sensitivity of MRI to motion offers the unique ability to acquire spatially registered blood flow simultaneously with the morphological data, within a single measurement. In clinical routine, flow MRI is typically accomplished using methods that resolve two spatial dimensions in individual planes and encode the time-resolved velocity in one principal direction, typically oriented perpendicular to the two-dimensional (2D) section. This review describes recently developed advanced MRI flow techniques, which allow for more comprehensive evaluation of blood flow characteristics, such as real-time flow imaging, 2D multiple-venc phase contrast MRI, four-dimensional (4D) flow MRI, quantification of complex haemodynamic properties, and highly accelerated flow imaging. Emerging techniques and novel applications are explored. In addition, applications of these new techniques for the improved evaluation of cardiovascular (aorta, pulmonary arteries, congenital heart disease, atrial fibrillation, coronary arteries) as well as cerebrovascular disease (intra-cranial arteries and veins) are presented.
Collapse
|
392
|
Wech T, Seiberlich N, Schindele A, Grau V, Diffley L, Gyngell ML, Borzì A, Köstler H, Schneider JE. Development of Real-Time Magnetic Resonance Imaging of Mouse Hearts at 9.4 Tesla--Simulations and First Application. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:912-920. [PMID: 26595913 PMCID: PMC4948122 DOI: 10.1109/tmi.2015.2501832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A novel method for real-time magnetic resonance imaging for the assessment of cardiac function in mice at 9.4 T is proposed. The technique combines a highly undersampled radial gradient echo acquisition with an image reconstruction utilizing both parallel imaging and compressed sensing. Simulations on an in silico phantom were performed to determine the achievable acceleration factor and to optimize regularization parameters. Several parameters characterizing the quality of the reconstructed images (such as spatial and temporal image sharpness or compartment areas) were calculated for this purpose. Subsequently, double-gated segmented cine data as well as non-gated undersampled real-time data using only six projections per timeframe (temporal resolution ∼ 10 ms) were acquired in a mid-ventricular slice of four normal mouse hearts in vivo. The highly accelerated data sets were then subjected to the introduced reconstruction technique and results were validated against the fully sampled references. Functional parameters obtained from real-time and fully sampled data agreed well with a comparable accuracy for left-ventricular volumes and a slightly larger scatter for mass. This study introduces and validates a real-time cine-MRI technique, which significantly reduces scan time in preclinical cardiac functional imaging and has the potential to investigate mouse models with abnormal heart rhythm.
Collapse
Affiliation(s)
- Tobias Wech
- Department of Diagnostic and Interventional Radiology, University of Würzburg, Würzburg, Germany, and with the Comprehensive Heart Failure Center, University of Würzburg, Würzburg
| | - Nicole Seiberlich
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | | | - Vicente Grau
- Department of Engineering Science, University of Oxford, UK
| | - Leonie Diffley
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, UK
| | | | - Alfio Borzì
- Institute of Mathematics, University of Würzburg, Würzburg, Germany
| | - Herbert Köstler
- Department of Diagnostic and Interventional Radiology, University of Würzburg, Würzburg, Germany, and with the Comprehensive Heart Failure Center, University of Würzburg, Würzburg
| | - Jürgen E. Schneider
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, UK
| |
Collapse
|
393
|
Fast isotropic banding-free bSSFP imaging using 3D dynamically phase-cycled radial bSSFP (3D DYPR-SSFP). Z Med Phys 2016; 26:63-74. [DOI: 10.1016/j.zemedi.2015.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/23/2015] [Accepted: 05/10/2015] [Indexed: 11/21/2022]
|
394
|
Ersoz A, Tugan Muftuler L. Undersampled linogram trajectory for fast imaging (ULTI): experiments at 3 T and 7 T. NMR IN BIOMEDICINE 2016; 29:340-348. [PMID: 26751051 DOI: 10.1002/nbm.3475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/18/2015] [Accepted: 12/01/2015] [Indexed: 06/05/2023]
Abstract
In this study, the performance of linogram acquisition was investigated for the reconstruction of images from undersampled data using parallel imaging methods. The point spread function (PSF) of linogram sampling was analyzed for image sharpness and artifacts. Generalized auto-calibrating partially parallel acquisition was implemented for this new sampling scheme, and images were reconstructed with high acceleration rates. The results were compared with conventional radial sampling methods using simulations and phantom experiments at 3 T. Additionally, a human volunteer was scanned at 7 T. The results demonstrated that the PSF was sharper and the mean artifact power was lower for linogram sampling compared with radial sampling. Results of simulations and phantom experiments were in accord with the findings of the PSF analysis. In simulations, errors in the reconstructed images were lower for linogram sampling. In phantom experiments, fine details and sharp edges were preserved for linogram sampling, while details were blurred for radial sampling. The in vivo human study demonstrated that linogram sampling could provide high quality images of anatomy, even at high acceleration rates. Linogram sampling not only possesses the advantages of radial sampling, such as reduced sensitivity to motion and higher acceleration rates, but it also provides sharper images with fewer artifacts. Moreover, it is less prone to off-resonance artifacts compared with radial sampling. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ali Ersoz
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - L Tugan Muftuler
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Center for Imaging Research, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
395
|
Ginami G, Yerly J, Masci PG, Stuber M. Golden angle dual-inversion recovery acquisition coupled with a flexible time-resolved sparse reconstruction facilitates sequence timing in high-resolution coronary vessel wall MRI at 3 T. Magn Reson Med 2016; 77:961-969. [PMID: 26900941 DOI: 10.1002/mrm.26171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/15/2015] [Accepted: 01/27/2016] [Indexed: 12/17/2022]
Abstract
PURPOSE The need for performing dual-inversion recovery (DIR) coronary vessel wall MRI in correspondence to minimal cardiac motion and optimal blood signal nulling is a major challenge. We propose to address this hurdle by combining DIR with a prolonged acquisition window in conjunction with a golden angle radial trajectory and k-t sparse sensitivity encoding (SENSE) reconstruction to enable a flexible a-posteriori selection of optimized imaging parameters. METHODS Coronary vessel wall data acquisition was performed with DIR golden angle radial imaging in n=15 healthy subjects. Images reconstructed using k-t sparse SENSE and different reconstruction window settings were quantitatively (vessel wall conspicuity, thickness, acquisition, and reconstruction window settings) compared with those obtained with more conventional radial DIR imaging. RESULTS A flexible retrospective selection of the reconstruction window width and position improved vessel wall conspicuity with respect to baseline acquisitions (P < 0.01). Vessel wall thickness remained unchanged (P = nonsignificant (NS)). Temporal window widths were similar for both approaches (P = NS), yet their position within the cardiac cycle differed significantly (P < 0.02). CONCLUSIONS A flexible DIR coronary vessel wall MRI technique that alleviates constraints associated with sophisticated sequence timing was proposed. When compared with a more conventional approach, the technique significantly improved image quality. Magn Reson Med 77:961-969, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Giulia Ginami
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jérôme Yerly
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Centre for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Pier Giorgio Masci
- Division of Cardiology and Cardiac MR Center, University Hospital (CHUV), Lausanne, Switzerland
| | - Matthias Stuber
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Centre for Biomedical Imaging (CIBM), Lausanne, Switzerland
| |
Collapse
|
396
|
Bottomley PA. Sodium MRI in human heart: a review. NMR IN BIOMEDICINE 2016; 29:187-96. [PMID: 25683054 PMCID: PMC4868405 DOI: 10.1002/nbm.3265] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/30/2014] [Accepted: 01/05/2015] [Indexed: 05/13/2023]
Abstract
This paper offers a critical review of the properties, methods and potential clinical application of sodium ((23)Na) MRI in human heart. Because the tissue sodium concentration (TSC) in heart is about ~40 µmol/g wet weight, and the (23)Na gyromagnetic ratio and sensitivity are respectively about one-quarter and one-11th of that of hydrogen ((1)H), the signal-to-noise ratio of (23)Na MRI in the heart is about one-6000th of that of conventional cardiac (1)H MRI. In addition, as a quadrupolar nucleus, (23)Na exhibits ultra-short and multi-component relaxation behavior (T1 ~ 30 ms; T2 ~ 0.5-4 ms and 12-20 ms), which requires fast, specialized, ultra-short echo-time MRI sequences, especially for quantifying TSC. Cardiac (23)Na MRI studies from 1.5 to 7 T measure a volume-weighted sum of intra- and extra-cellular components present at cytosolic concentrations of 10-15 mM and 135-150 mM in healthy tissue, respectively, at a spatial resolution of about 0.1-1 ml in 10 min or so. Currently, intra- and extra-cellular sodium cannot be unambiguously resolved without the use of potentially toxic shift reagents. Nevertheless, increases in TSC attributable to an influx of intra-cellular sodium and/or increased extra-cellular volume have been demonstrated in human myocardial infarction consistent with prior animal studies, and arguably might also be seen in future studies of ischemia and cardiomyopathies--especially those involving defects in sodium transport. While technical implementation remains a hurdle, a central question for clinical use is whether cardiac (23)Na MRI can deliver useful information unobtainable by other more convenient methods, including (1)H MRI.
Collapse
Affiliation(s)
- Paul A Bottomley
- Division of MR Research, Department of Radiology, Park Bldg 310, Johns Hopkins University, 601 600 N, Caroline Wolfe Street, Baltimore MD, USA 21287-0843, PH: (USA) 410 955 0366, FAX: (USA) 410 614 1977,
| |
Collapse
|
397
|
Feng L, Axel L, Chandarana H, Block KT, Sodickson DK, Otazo R. XD-GRASP: Golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing. Magn Reson Med 2016; 75:775-88. [PMID: 25809847 PMCID: PMC4583338 DOI: 10.1002/mrm.25665] [Citation(s) in RCA: 432] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/15/2015] [Accepted: 02/01/2015] [Indexed: 11/11/2022]
Abstract
PURPOSE To develop a novel framework for free-breathing MRI called XD-GRASP, which sorts dynamic data into extra motion-state dimensions using the self-navigation properties of radial imaging and reconstructs the multidimensional dataset using compressed sensing. METHODS Radial k-space data are continuously acquired using the golden-angle sampling scheme and sorted into multiple motion-states based on respiratory and/or cardiac motion signals derived directly from the data. The resulting undersampled multidimensional dataset is reconstructed using a compressed sensing approach that exploits sparsity along the new dynamic dimensions. The performance of XD-GRASP is demonstrated for free-breathing three-dimensional (3D) abdominal imaging, two-dimensional (2D) cardiac cine imaging and 3D dynamic contrast-enhanced (DCE) MRI of the liver, comparing against reconstructions without motion sorting in both healthy volunteers and patients. RESULTS XD-GRASP separates respiratory motion from cardiac motion in cardiac imaging, and respiratory motion from contrast enhancement in liver DCE-MRI, which improves image quality and reduces motion-blurring artifacts. CONCLUSION XD-GRASP represents a new use of sparsity for motion compensation and a novel way to handle motions in the context of a continuous acquisition paradigm. Instead of removing or correcting motion, extra motion-state dimensions are reconstructed, which improves image quality and also offers new physiological information of potential clinical value.
Collapse
Affiliation(s)
- Li Feng
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, New York, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
- Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| | - Leon Axel
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, New York, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
- Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| | - Hersh Chandarana
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, New York, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Kai Tobias Block
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, New York, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Daniel K. Sodickson
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, New York, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
- Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| | - Ricardo Otazo
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, New York, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
- Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
398
|
Trotier AJ, Castets CR, Lefrançois W, Ribot EJ, Franconi JM, Thiaudière E, Miraux S. USPIO-enhanced 3D-cine self-gated cardiac MRI based on a stack-of-stars golden angle short echo time sequence: Application on mice with acute myocardial infarction. J Magn Reson Imaging 2016; 44:355-65. [PMID: 26778077 DOI: 10.1002/jmri.25150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/23/2015] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To develop and assess a 3D-cine self-gated method for cardiac imaging of murine models. MATERIALS AND METHODS A 3D stack-of-stars (SOS) short echo time (STE) sequence with a navigator echo was performed at 7T on healthy mice (n = 4) and mice with acute myocardial infarction (MI) (n = 4) injected with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. In all, 402 spokes were acquired per stack with the incremental or the golden angle method using an angle increment of (360/402)° or 222.48°, respectively. A cylindrical k-space was filled and repeated with a maximum number of repetitions (NR) of 10. 3D cine cardiac images at 156 μm resolution were reconstructed retrospectively and compared for the two methods in terms of contrast-to-noise ratio (CNR). The golden angle images were also reconstructed with NR = 10, 6, and 3, to assess cardiac functional parameters (ejection fraction, EF) on both animal models. RESULTS The combination of 3D SOS-STE and USPIO injection allowed us to optimize the identification of cardiac peaks on navigator signal and generate high CNR between blood and myocardium (15.3 ± 1.0). The golden angle method resulted in a more homogeneous distribution of the spokes inside a stack (P < 0.05), enabling reducing the acquisition time to 15 minutes. EF was significantly different between healthy and MI mice (P < 0.05). CONCLUSION The method proposed here showed that 3D-cine images could be obtained without electrocardiogram or respiratory gating in mice. It allows precise measurement of cardiac functional parameters even on MI mice. J. Magn. Reson. Imaging 2016;44:355-365.
Collapse
Affiliation(s)
- Aurélien J Trotier
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 Université de Bordeaux, Bordeaux, France
| | - Charles R Castets
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 Université de Bordeaux, Bordeaux, France
| | - William Lefrançois
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 Université de Bordeaux, Bordeaux, France
| | - Emeline J Ribot
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 Université de Bordeaux, Bordeaux, France
| | - Jean-Michel Franconi
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 Université de Bordeaux, Bordeaux, France
| | - Eric Thiaudière
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 Université de Bordeaux, Bordeaux, France
| | - Sylvain Miraux
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 Université de Bordeaux, Bordeaux, France
| |
Collapse
|
399
|
Winter P, Kampf T, Helluy X, Gutjahr FT, Meyer CB, Bauer WR, Jakob PM, Herold V. Self-navigation under non-steady-state conditions: Cardiac and respiratory self-gating of inversion recovery snapshot FLASH acquisitions in mice. Magn Reson Med 2016; 76:1887-1894. [PMID: 26743137 DOI: 10.1002/mrm.26068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/06/2015] [Accepted: 11/02/2015] [Indexed: 01/30/2023]
Abstract
PURPOSE An algorithm is presented to enable cardiac and respiratory self-gating in combination with Inversion Recovery Look-Locker read-outs. METHODS A radial inversion recovery snapshot FLASH sequence was adapted for retrospective cardiac T1 measurements in mice. Cardiac and respiratory data were extracted from the k-space center of radial projections and an adapted method for retrospective cardiac synchronization is introduced. Electrocardiogram (ECG) data was acquired concurrently for validation of the proposed self-gating technique. T1 maps generated by the proposed technique were compared with maps reconstructed with the ECG reference. RESULTS Respiratory gating and cardiac trigger points could be obtained for the whole time course of the relaxation dynamic and correlate very well to the ECG signal. T1 maps reconstructed with the self-gating technique are in very good agreement with maps reconstructed with the external reference. CONCLUSION The proposed method extends "wireless" cardiac MRI to non-steady-state inversion recovery measurements. T1 maps were generated with a quality comparable to ECG based reconstructions. As the method does not rely on an ECG trigger signal it provides easier animal handling. Magn Reson Med 76:1887-1894, 2016. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Patrick Winter
- Lehrstuhl Für Experimentelle Physik 5, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Thomas Kampf
- Lehrstuhl Für Experimentelle Physik 5, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Xavier Helluy
- Department of Neuroscience, Neuroimaging Research Centre, Ruhr-Universität, Bochum, Germany
| | - Fabian T Gutjahr
- Lehrstuhl Für Experimentelle Physik 5, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Cord B Meyer
- Lehrstuhl Für Experimentelle Physik 5, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Wolfgang R Bauer
- Universität Würzburg, Medizinische Klinik und Poliklinik I, Würzburg, Germany
| | - Peter M Jakob
- Lehrstuhl Für Experimentelle Physik 5, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Volker Herold
- Lehrstuhl Für Experimentelle Physik 5, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
400
|
Liu J, Pedoia V, Heilmeier U, Ku E, Su F, Khanna S, Imboden J, Graf J, Link T, Li X. High-temporospatial-resolution dynamic contrast-enhanced (DCE) wrist MRI with variable-density pseudo-random circular Cartesian undersampling (CIRCUS) acquisition: evaluation of perfusion in rheumatoid arthritis patients. NMR IN BIOMEDICINE 2016; 29:15-23. [PMID: 26608949 PMCID: PMC4724417 DOI: 10.1002/nbm.3443] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/04/2015] [Accepted: 10/10/2015] [Indexed: 06/05/2023]
Abstract
This study is to evaluate highly accelerated three-dimensional (3D) dynamic contrast-enhanced (DCE) wrist MRI for assessment of perfusion in rheumatoid arthritis (RA) patients. A pseudo-random variable-density undersampling strategy, circular Cartesian undersampling (CIRCUS), was combined with k-t SPARSE-SENSE reconstruction to achieve a highly accelerated 3D DCE wrist MRI. Two healthy volunteers and 10 RA patients were studied. Two patients were on methotrexate (MTX) only (Group I) and the other eight were treated with a combination therapy of MTX and anti-tumor necrosis factor (TNF) therapy (Group II). Patients were scanned at baseline and 3 month follow-up. DCE MR images were used to evaluate perfusion in synovitis and bone marrow edema pattern in the RA wrist joints. A series of perfusion parameters was derived and compared with clinical disease activity scores of 28 joints (DAS28). 3D DCE wrist MR images were obtained with a spatial resolution of 0.3 × 0.3 × 1.5 mm(3) and temporal resolution of 5 s (with an acceleration factor of 20). The derived perfusion parameters, most notably transition time (dT) of synovitis, showed significant negative correlations with DAS28-ESR (r = -0.80, p < 0.05) and DAS28-CRP (r = -0.87, p < 0.05) at baseline and also correlated significantly with treatment responses evaluated by clinical score changes between baseline and 3 month follow-up (with DAS28-ESR r = -0.79, p < 0.05, and DAS28-CRP r = -0.82, p < 0.05). Highly accelerated 3D DCE wrist MRI with improved temporospatial resolution has been achieved in RA patients and provides accurate assessment of neovascularization and perfusion in RA joints, showing promise as a potential tool for evaluating treatment responses.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States
| | - Valentina Pedoia
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States
| | - Ursula Heilmeier
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States
| | - Eric Ku
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States
| | - Favian Su
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States
| | - Sameer Khanna
- University of California Berkeley, Berkeley, California, United States
| | - John Imboden
- Department of Medicine, University of California San Francisco, San Francisco, California, United States
| | - Jonathan Graf
- Department of Medicine, University of California San Francisco, San Francisco, California, United States
| | - Thomas Link
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States
| | - Xiaojuan Li
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States
| |
Collapse
|