351
|
Zhao Y, Ni Y, Wang L, Xu C, Xin C, Zhang C, Zhang G, Xie X, Li L, Huang W. Ligand-displacement-based two-photon fluorogenic probe for visualizing mercapto biomolecules in live cells, Drosophila brains and zebrafish. Analyst 2019; 143:3433-3441. [PMID: 29916502 DOI: 10.1039/c8an00453f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Investigating the change in expression level of mercapto biomolecules (GSH/Cys/Hcy) necessitates a rapid detection method for a series of physiological and pathological processes. Herein, we present a ligand-displacement-based two-photon fluorogenic probe based on an Fe(iii) complex, TPFeS, which is a GSH/Cys/Hcy rapid detection fluorogenic probe for in vitro analysis and live cell/tissue/in vivo imaging. The "in situ" probe is non-fluorescent and was prepared from a 1 : 2 ratio of Fe(iii) and TPS, a novel two-photon (TP) fluorophore with excellent one-photon (OP) and TP properties under physiological conditions, as a fluorescent ligand. This probe shows a rapid and remarkable fluorescence restoration (OFF-ON) property due to the ligand-displacement reaction of mercapto biomolecules in a recyclable manner in vitro. A significant two-photon action cross-section, good selectivity for biothiols, low cytotoxicity, and insensitivity to pH over the biologically relevant pH range allowed the direct visualization of mercapto biomolecules at different levels between normal/drug-treated live cells, as well as in Drosophila brain tissues/zebrafish based on the use of two-photon fluorescence microscopy.
Collapse
Affiliation(s)
- Yanfei Zhao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
352
|
Hosseini L, Vafaee MS, Mahmoudi J, Badalzadeh R. Nicotinamide adenine dinucleotide emerges as a therapeutic target in aging and ischemic conditions. Biogerontology 2019; 20:381-395. [PMID: 30838484 DOI: 10.1007/s10522-019-09805-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/27/2019] [Indexed: 02/06/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) has been described as central coenzyme of redox reactions and is a key regulator of stress resistance and longevity. Aging is a multifactorial and irreversible process that is characterized by a gradual diminution in physiological functions in an organism over time, leading to development of age-associated pathologies and eventually increasing the probability of death. Ischemia is the lack of nutritive blood flow that causes damage and mortality that mostly occurs in various organs during aging. During the process of aging and related ischemic conditions, NAD+ levels decline and lead to nuclear and mitochondrial dysfunctions, resulting in age-related pathologies. The majority of studies have shown that restoring of NAD+ using supplementation with intermediates such as nicotinamide mononucleotide and nicotinamide riboside can be a valuable strategy for recovery of ischemic injury and age-associated defects. This review summarizes the molecular mechanisms responsible for the reduction in NAD+ levels during ischemic disorders and aging, as well as a particular focus is given to the recent progress in the understanding of NAD+ precursor's effects on aging and ischemia.
Collapse
Affiliation(s)
- Leila Hosseini
- Drug Applied Research Center, Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr S Vafaee
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, BRIDGE: Brain Research-Inter-Disciplinary Guided Excellence, University of Southern Denmark, Odense, Denmark.,Neuroscience Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neuroscience Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Badalzadeh
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran. .,Molecular Medicine Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
353
|
Madeo F, Carmona-Gutierrez D, Hofer SJ, Kroemer G. Caloric Restriction Mimetics against Age-Associated Disease: Targets, Mechanisms, and Therapeutic Potential. Cell Metab 2019; 29:592-610. [PMID: 30840912 DOI: 10.1016/j.cmet.2019.01.018] [Citation(s) in RCA: 398] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The increase in life expectancy has boosted the incidence of age-related pathologies beyond social and economic sustainability. Consequently, there is an urgent need for interventions that revert or at least prevent the pathogenic age-associated deterioration. The permanent or periodic reduction of calorie intake without malnutrition (caloric restriction and fasting) is the only strategy that reliably extends healthspan in mammals including non-human primates. However, the strict and life-long compliance with these regimens is difficult, which has promoted the emergence of caloric restriction mimetics (CRMs). We define CRMs as compounds that ignite the protective pathways of caloric restriction by promoting autophagy, a cytoplasmic recycling mechanism, via a reduction in protein acetylation. Here, we describe the current knowledge on molecular, cellular, and organismal effects of known and putative CRMs in mice and humans. We anticipate that CRMs will become part of the pharmacological armamentarium against aging and age-related cardiovascular, neurodegenerative, and malignant diseases.
Collapse
Affiliation(s)
- Frank Madeo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria.
| | | | - Sebastian J Hofer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Guido Kroemer
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, INSERM U 1138, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden; Center of Systems Medicine, Chinese Academy of Science, Suzhou, China.
| |
Collapse
|
354
|
Zhou L, Chen W, Lin D, Hu W, Tang Z. Neuronal apoptosis, axon damage and synapse loss occur synchronously in acute ocular hypertension. Exp Eye Res 2019; 180:77-85. [DOI: 10.1016/j.exer.2018.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/01/2018] [Accepted: 12/14/2018] [Indexed: 10/27/2022]
|
355
|
Park YH, Snook JD, Ostrin EJ, Kim S, Chen R, Frankfort BJ. Transcriptomic profiles of retinal ganglion cells are defined by the magnitude of intraocular pressure elevation in adult mice. Sci Rep 2019; 9:2594. [PMID: 30796289 PMCID: PMC6385489 DOI: 10.1038/s41598-019-39141-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/18/2019] [Indexed: 12/14/2022] Open
Abstract
Elevated intraocular pressure (IOP) is the major risk factor for glaucoma, a sight threatening disease of retinal ganglion cells (RGCs) and their axons. Despite the central importance of IOP, details of the impact of IOP elevation on RGC gene expression remain elusive. We developed a 4-step immunopanning protocol to extract adult mouse RGCs with high fidelity and used it to isolate RGCs from wild type mice exposed to 2 weeks of IOP elevation generated by the microbead model. IOP was elevated to 2 distinct levels which were defined as Mild (IOP increase >1 mmHg and <4 mmHg) and Moderate (IOP increase ≥4 mmHg). RNA sequencing was used to compare the transcriptional environment at each IOP level. Differentially expressed genes were markedly different between the 2 groups, and pathway analysis revealed frequently opposed responses between the IOP levels. These results suggest that the magnitude of IOP elevation has a critical impact on RGC transcriptional changes. Furthermore, it is possible that IOP-based set points exist within RGCs to impact the direction of transcriptional change. It is possible that this improved understanding of changes in RGC gene expression can ultimately lead to novel diagnostics and therapeutics for glaucoma.
Collapse
Affiliation(s)
- Yong H Park
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, 77030, United States
| | - Joshua D Snook
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, 77030, United States
| | - Edwin J Ostrin
- Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Sangbae Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, United States
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, United States.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, United States
| | - Benjamin J Frankfort
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, 77030, United States. .,Department of Neuroscience, Baylor College of Medicine, Houston, Texas, 77030, United States.
| |
Collapse
|
356
|
Zhang M, Ying W. NAD + Deficiency Is a Common Central Pathological Factor of a Number of Diseases and Aging: Mechanisms and Therapeutic Implications. Antioxid Redox Signal 2019; 30:890-905. [PMID: 29295624 DOI: 10.1089/ars.2017.7445] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Increasing evidence has indicated critical roles of nicotinamide adenine dinucleotide, oxidized form (NAD+) in various biological functions. NAD+ deficiency has been found in models of a number of diseases such as cerebral ischemia, myocardial ischemia, and diabetes, and in models of aging. Applications of NAD+ or other approaches that can restore NAD+ levels are highly protective in these models of diseases and aging. NAD+ produces its beneficial effects by targeting at multiple pathological pathways, including attenuating mitochondrial alterations, DNA damage, and oxidative stress, by modulating such enzymes as sirtuins, glyceraldehyde-3-phosphate dehydrogenase, and AP endonuclease. These findings have suggested great therapeutic and nutritional potential of NAD+ for diseases and senescence. Recent Advances: Approaches that can restore NAD+ levels are highly protective in the models of such diseases as glaucoma. The NAD+ deficiency in the diseases and aging results from not only poly(ADP-ribose) polymerase-1 (PARP-1) activation but also decreased nicotinamide phosphoribosyltransferase (Nampt) activity and increased CD38 activity. Significant biological effects of extracellular NAD+ have been found. Increasing evidence has suggested that NAD+ deficiency is a common central pathological factor in a number of diseases and aging. Critical Issues and Future Directions: Future studies are required for solidly establishing the concept that "NAD+ deficiency is a common central pathological factor in a number of disease and aging." It is also necessary to further investigate the mechanisms underlying the NAD+ deficiency in the diseases and aging. Preclinical and clinical studies should be conducted to determine the therapeutic potential of NAD+ for the diseases and aging.
Collapse
Affiliation(s)
- Mingchao Zhang
- 1 Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,2 Collaborative Innovation Center for Genetics and Development, Shanghai, China
| | - Weihai Ying
- 1 Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,2 Collaborative Innovation Center for Genetics and Development, Shanghai, China
| |
Collapse
|
357
|
Kong YXG, Gibbins A, Brooks A. Glaucoma in perspective. Med J Aust 2019; 210:150-152.e1. [PMID: 30767236 DOI: 10.5694/mja2.50011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Yu Xiang George Kong
- Royal Victorian Eye and Ear Hospital, Melbourne, VIC.,Centre for Eye Research Australia, Melbourne, VIC
| | | | - Anne Brooks
- Royal Victorian Eye and Ear Hospital, Melbourne, VIC.,Centre for Eye Research Australia, Melbourne, VIC
| |
Collapse
|
358
|
Makarov MV, Migaud ME. Syntheses and chemical properties of β-nicotinamide riboside and its analogues and derivatives. Beilstein J Org Chem 2019; 15:401-430. [PMID: 30873226 PMCID: PMC6404419 DOI: 10.3762/bjoc.15.36] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/25/2019] [Indexed: 12/17/2022] Open
Abstract
The β-anomeric form of nicotinamide riboside (NR+) is a precursor for nicotinamide adenine dinucleotide (NAD+), a redox cofactor playing a critical role in cell metabolism. Recently, it has been demonstrated that its chloride salt (NR+Cl-) has beneficial effects, and now NR+Cl- is available as a dietary supplement. Syntheses and studies of analogues and derivatives of NR+ are of high importance to unravel the role of NR+ in biochemical processes in living cells and to elaborate the next generation of NR+ derivatives and conjugates with the view of developing novel drug and food supplement candidates. This review provides an overview of the synthetic approaches, the chemical properties, and the structural and functional modifications which have been undertaken on the nicotinoyl riboside scaffold.
Collapse
Affiliation(s)
- Mikhail V Makarov
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Ave., Mobile, AL 36604, USA
| | - Marie E Migaud
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Ave., Mobile, AL 36604, USA
| |
Collapse
|
359
|
James Theoga Raj C, Croft T, Venkatakrishnan P, Groth B, Dhugga G, Cater T, Lin SJ. The copper-sensing transcription factor Mac1, the histone deacetylase Hst1, and nicotinic acid regulate de novo NAD + biosynthesis in budding yeast. J Biol Chem 2019; 294:5562-5575. [PMID: 30760525 DOI: 10.1074/jbc.ra118.006987] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/01/2019] [Indexed: 12/16/2022] Open
Abstract
NADH (NAD+) is an essential metabolite involved in various cellular biochemical processes. The regulation of NAD+ metabolism is incompletely understood. Here, using budding yeast (Saccharomyces cerevisiae), we established an NAD+ intermediate-specific genetic system to identify factors that regulate the de novo branch of NAD+ biosynthesis. We found that a mutant strain (mac1Δ) lacking Mac1, a copper-sensing transcription factor that activates copper transport genes during copper deprivation, exhibits increases in quinolinic acid (QA) production and NAD+ levels. Similar phenotypes were also observed in the hst1Δ strain, deficient in the NAD+-dependent histone deacetylase Hst1, which inhibits de novo NAD+ synthesis by repressing BNA gene expression when NAD+ is abundant. Interestingly, the mac1Δ and hst1Δ mutants shared a similar NAD+ metabolism-related gene expression profile, and deleting either MAC1 or HST1 de-repressed the BNA genes. ChIP experiments with the BNA2 promoter indicated that Mac1 works with Hst1-containing repressor complexes to silence BNA expression. The connection of Mac1 and BNA expression suggested that copper stress affects de novo NAD+ synthesis, and we show that copper stress induces both BNA expression and QA production. Moreover, nicotinic acid inhibited de novo NAD+ synthesis through Hst1-mediated BNA repression, hindered the reuptake of extracellular QA, and thereby reduced de novo NAD+ synthesis. In summary, we have identified and characterized novel NAD+ homeostasis factors. These findings will expand our understanding of the molecular basis and regulation of NAD+ metabolism.
Collapse
Affiliation(s)
- Christol James Theoga Raj
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Trevor Croft
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Padmaja Venkatakrishnan
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Benjamin Groth
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Gagandeep Dhugga
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Timothy Cater
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Su-Ju Lin
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| |
Collapse
|
360
|
Janssen JJE, Grefte S, Keijer J, de Boer VCJ. Mito-Nuclear Communication by Mitochondrial Metabolites and Its Regulation by B-Vitamins. Front Physiol 2019; 10:78. [PMID: 30809153 PMCID: PMC6379835 DOI: 10.3389/fphys.2019.00078] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are cellular organelles that control metabolic homeostasis and ATP generation, but also play an important role in other processes, like cell death decisions and immune signaling. Mitochondria produce a diverse array of metabolites that act in the mitochondria itself, but also function as signaling molecules to other parts of the cell. Communication of mitochondria with the nucleus by metabolites that are produced by the mitochondria provides the cells with a dynamic regulatory system that is able to respond to changing metabolic conditions. Dysregulation of the interplay between mitochondrial metabolites and the nucleus has been shown to play a role in disease etiology, such as cancer and type II diabetes. Multiple recent studies emphasize the crucial role of nutritional cofactors in regulating these metabolic networks. Since B-vitamins directly regulate mitochondrial metabolism, understanding the role of B-vitamins in mito-nuclear communication is relevant for therapeutic applications and optimal dietary lifestyle. In this review, we will highlight emerging concepts in mito-nuclear communication and will describe the role of B-vitamins in mitochondrial metabolite-mediated nuclear signaling.
Collapse
Affiliation(s)
| | | | | | - Vincent C. J. de Boer
- Human and Animal Physiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
361
|
Williams PA, Braine CE, Kizhatil K, Foxworth NE, Tolman NG, Harder JM, Scott RA, Sousa GL, Panitch A, Howell GR, John SWM. Inhibition of monocyte-like cell extravasation protects from neurodegeneration in DBA/2J glaucoma. Mol Neurodegener 2019; 14:6. [PMID: 30670050 PMCID: PMC6341618 DOI: 10.1186/s13024-018-0303-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/05/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Glaucoma is characterized by the progressive dysfunction and loss of retinal ganglion cells. Recent work in animal models suggests that a critical neuroinflammatory event damages retinal ganglion cell axons in the optic nerve head during ocular hypertensive injury. We previously demonstrated that monocyte-like cells enter the optic nerve head in an ocular hypertensive mouse model of glaucoma (DBA/2 J), but their roles, if any, in mediating axon damage remain unclear. METHODS To understand the function of these infiltrating monocyte-like cells, we used RNA-sequencing to profile their transcriptomes. Based on their pro-inflammatory molecular signatures, we hypothesized and confirmed that monocyte-platelet interactions occur in glaucomatous tissue. Furthermore, to test monocyte function we used two approaches to inhibit their entry into the optic nerve head: (1) treatment with DS-SILY, a peptidoglycan that acts as a barrier to platelet adhesion to the vessel wall and to monocytes, and (2) genetic targeting of Itgam (CD11b, an immune cell receptor that enables immune cell extravasation). RESULTS Monocyte specific RNA-sequencing identified novel neuroinflammatory pathways early in glaucoma pathogenesis. Targeting these processes pharmacologically (DS-SILY) or genetically (Itgam / CD11b knockout) reduced monocyte entry and provided neuroprotection in DBA/2 J eyes. CONCLUSIONS These data demonstrate a key role of monocyte-like cell extravasation in glaucoma and demonstrate that modulating neuroinflammatory processes can significantly lessen optic nerve injury.
Collapse
Affiliation(s)
- Pete A Williams
- The Jackson Laboratory, Bar Harbor, ME, USA.,Department of Clinical Neuroscience, Section of Ophthalmology and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | - Rebecca A Scott
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | | | - Alyssa Panitch
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, USA. .,Graduate Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA.
| | - Simon W M John
- The Jackson Laboratory, Bar Harbor, ME, USA. .,Department of Ophthalmology, Tufts University of Medicine, Boston, MA, USA. .,The Howard Hughes Medical Institute, Bar Harbor, ME, USA.
| |
Collapse
|
362
|
Keeping the balance in NAD metabolism. Biochem Soc Trans 2019; 47:119-130. [PMID: 30626706 DOI: 10.1042/bst20180417] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/02/2018] [Accepted: 12/05/2018] [Indexed: 12/30/2022]
Abstract
Research over the last few decades has extended our understanding of nicotinamide adenine dinucleotide (NAD) from a vital redox carrier to an important signalling molecule that is involved in the regulation of a multitude of fundamental cellular processes. This includes DNA repair, cell cycle regulation, gene expression and calcium signalling, in which NAD is a substrate for several families of regulatory proteins, such as sirtuins and ADP-ribosyltransferases. At the molecular level, NAD-dependent signalling events differ from hydride transfer by cleavage of the dinucleotide into an ADP-ribosyl moiety and nicotinamide. Therefore, non-redox functions of NAD require continuous biosynthesis of the dinucleotide. Maintenance of cellular NAD levels is mainly achieved by nicotinamide salvage, yet a variety of other precursors can be used to sustain cellular NAD levels via different biosynthetic routes. Biosynthesis and consumption of NAD are compartmentalised at the subcellular level, and currently little is known about the generation and role of some of these subcellular NAD pools. Impaired biosynthesis or increased NAD consumption is deleterious and associated with ageing and several pathologies. Insults to neurons lead to depletion of axonal NAD and rapid degeneration, partial rescue can be achieved pharmacologically by administration of specific NAD precursors. Restoring NAD levels by stimulating biosynthesis or through supplementation with precursors also produces beneficial therapeutic effects in several disease models. In this review, we will briefly discuss the most recent achievements and the challenges ahead in this diverse research field.
Collapse
|
363
|
Qian M, Liu B. Advances in pharmacological interventions of aging in mice. TRANSLATIONAL MEDICINE OF AGING 2019. [DOI: 10.1016/j.tma.2019.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
364
|
Parikh SM. Increased synthesis of a coenzyme linked to longevity can combat disease. Nature 2018; 563:332-333. [PMID: 30425355 DOI: 10.1038/d41586-018-07088-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
365
|
Chu KO, Chan KP, Chan SO, Ng TK, Jhanji V, Wang CC, Pang CP. Metabolomics of Green-Tea Catechins on Vascular-Endothelial-Growth-Factor-Stimulated Human-Endothelial-Cell Survival. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12866-12875. [PMID: 30406651 DOI: 10.1021/acs.jafc.8b05998] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Neovascularization causes serious oculopathy related to upregulation of vascular-endothelial-growth factor (VEGF) causing new capillary growth via endothelial cells. Green-tea-extract (GTE) constituents possess antiangiogenesis properties. We used VEGF to induce human umbilical-vein endothelial cells (HUVECs) and applied GTE, epigallocatechin gallate (EGCG), and mixtures of different compositions of purified catechins (M1 and M2) to evaluate their efficacies of inhibition and their underlying mechanisms using cell-cycle analysis and untargeted metabolomics techniques. GTE, EGCG, M1, and M2 induced HUVEC apoptosis by 22.1 ± 2, 20.0 ± 0.7, 50.7 ± 8.5, and 69.8 ± 4.1%, respectively. GTE exerted a broad, balanced metabolomics spectrum, involving suppression of the biosynthesis of cellular building blocks and oxidative-phosphorylation metabolites as well as promotion of the biosynthesis of membrane lipids and growth factors. M2 mainly induced mechanisms associated with energy and biosynthesis suppression. Therefore, GTE exerted mechanisms involving both promotion and suppression activities, whereas purified catechins induced extensive apoptosis. GTE could be a more promising antineovascularization remedy for ocular treatment.
Collapse
Affiliation(s)
- Kai On Chu
- Department of Ophthalmology and Visual Sciences , The Chinese University of Hong Kong, Hong Kong Eye Hospital , Kowloon , Hong Kong
- School of Biomedical Sciences , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong
| | - Kwok Ping Chan
- Department of Ophthalmology and Visual Sciences , The Chinese University of Hong Kong, Hong Kong Eye Hospital , Kowloon , Hong Kong
| | - Sun On Chan
- School of Biomedical Sciences , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong
| | - Tsz Kin Ng
- Department of Ophthalmology and Visual Sciences , The Chinese University of Hong Kong, Hong Kong Eye Hospital , Kowloon , Hong Kong
| | - Vishal Jhanji
- Department of Ophthalmology and Visual Sciences , The Chinese University of Hong Kong, Hong Kong Eye Hospital , Kowloon , Hong Kong
| | - Chi Chiu Wang
- School of Biomedical Sciences , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong
- Department of Obstetrics and Gynaecology , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong
- Li Ka Shing Institute of Health Science , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences , The Chinese University of Hong Kong, Hong Kong Eye Hospital , Kowloon , Hong Kong
| |
Collapse
|
366
|
Alqawlaq S, Flanagan JG, Sivak JM. All roads lead to glaucoma: Induced retinal injury cascades contribute to a common neurodegenerative outcome. Exp Eye Res 2018; 183:88-97. [PMID: 30447198 DOI: 10.1016/j.exer.2018.11.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 11/25/2022]
Abstract
Glaucoma describes a distinct optic neuropathy with complex etiology and a variety of associated risk factors, but with similar pathological endpoints. Risk factors such as age, increased intraocular pressure (IOP), low mean arterial pressure, and autoimmune disease, can all be associated with death of retinal ganglion cells (RGCs) and optic nerve head remodeling. Today, IOP management remains the standard of care, even though IOP elevation is not pathognomonic of glaucoma, and patients can continue to lose vision despite effective IOP control. A contemporary view of glaucoma as a complex, neurodegenerative disease has developed, along with the recognition of a need for new disease modifying retinal treatment strategies and improved outcomes. However, the distinction between risk factors triggering the disease process and retinal injury responses is not always clear. In this review, we attempt to distinguish between the various triggers, and their association with subsequent key RGC injury mechanisms. We propose that distinct glaucomatous risk factors result in similar retinal and optic nerve injury cascades, including oxidative and metabolic stress, glial reactivity, and altered inflammatory responses, which induce common molecular signals to induce RGC apoptosis. This organization forms a coherent disease framework and presents conserved targets for therapeutic intervention that are not limited to specific risk factors.
Collapse
Affiliation(s)
- Samih Alqawlaq
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, ON, Canada; Vision Science Research Program, Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - John G Flanagan
- School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, CA, USA
| | - Jeremy M Sivak
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, ON, Canada; Vision Science Research Program, Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
367
|
Yaku K, Okabe K, Nakagawa T. NAD metabolism: Implications in aging and longevity. Ageing Res Rev 2018; 47:1-17. [PMID: 29883761 DOI: 10.1016/j.arr.2018.05.006] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 12/20/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) is an important co-factor involved in numerous physiological processes, including metabolism, post-translational protein modification, and DNA repair. In living organisms, a careful balance between NAD production and degradation serves to regulate NAD levels. Recently, a number of studies have demonstrated that NAD levels decrease with age, and the deterioration of NAD metabolism promotes several aging-associated diseases, including metabolic and neurodegenerative diseases and various cancers. Conversely, the upregulation of NAD metabolism, including dietary supplementation with NAD precursors, has been shown to prevent the decline of NAD and exhibits beneficial effects against aging and aging-associated diseases. In addition, many studies have demonstrated that genetic and/or nutritional activation of NAD metabolism can extend the lifespan of diverse organisms. Collectively, it is clear that NAD metabolism plays important roles in aging and longevity. In this review, we summarize the basic functions of the enzymes involved in NAD synthesis and degradation, as well as the outcomes of their dysregulation in various aging processes. In addition, a particular focus is given on the role of NAD metabolism in the longevity of various organisms, with a discussion of the remaining obstacles in this research field.
Collapse
|
368
|
Lin JB, Apte RS. NAD + and sirtuins in retinal degenerative diseases: A look at future therapies. Prog Retin Eye Res 2018; 67:118-129. [PMID: 29906612 PMCID: PMC6235699 DOI: 10.1016/j.preteyeres.2018.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 12/19/2022]
Abstract
Retinal degenerative diseases are a major cause of morbidity in modern society because visual impairment significantly decreases the quality of life of patients. A significant challenge in treating retinal degenerative diseases is their genetic and phenotypic heterogeneity. However, despite this diversity, many of these diseases share a common endpoint involving death of light-sensitive photoreceptors. Identifying common pathogenic mechanisms that contribute to photoreceptor death in these diverse diseases may lead to a unifying therapy for multiple retinal diseases that would be highly innovative and address a great clinical need. Because the retina and photoreceptors, in particular, have immense metabolic and energetic requirements, many investigators have hypothesized that metabolic dysfunction may be a common link unifying various retinal degenerative diseases. Here, we discuss a new area of research examining the role of NAD+ and sirtuins in regulating retinal metabolism and in the pathogenesis of retinal degenerative diseases. Indeed, the results of numerous studies suggest that NAD+ intermediates or small molecules that modulate sirtuin function could enhance retinal metabolism, reduce photoreceptor death, and improve vision. Although further research is necessary to translate these findings to the bedside, they have strong potential to truly transform the standard of care for patients with retinal degenerative diseases.
Collapse
Affiliation(s)
- Jonathan B Lin
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Neuroscience Graduate Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Rajendra S Apte
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Neuroscience Graduate Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
369
|
Enlarged Optic Nerve Axons and Reduced Visual Function in Mice with Defective Microfibrils. eNeuro 2018; 5:eN-NWR-0260-18. [PMID: 30406200 PMCID: PMC6220594 DOI: 10.1523/eneuro.0260-18.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/13/2018] [Indexed: 01/13/2023] Open
Abstract
Glaucoma is a leading cause of irreversible vision loss due to retinal ganglion cell (RGC) degeneration that develops slowly with age. Elevated intraocular pressure (IOP) is a significant risk factor, although many patients develop glaucoma with IOP in the normal range. Mutations in microfibril-associated genes cause glaucoma in animal models, suggesting the hypothesis that microfibril defects contribute to glaucoma. To test this hypothesis, we investigated IOP and functional/structural correlates of RGC degeneration in mice of either sex with abnormal microfibrils due to heterozygous Tsk mutation of the fibrilin-1 gene (Fbn1Tsk/+). Although IOP was not affected, Fbn1Tsk/+ mice developed functional deficits at advanced age consistent with glaucoma, including reduced RGC responses in electroretinogram (ERG) experiments. While RGC density in the retina was not affected, the density of RGC axons in the optic nerve was significantly reduced in Fbn1Tsk/+ mice. However, reduced axon density correlated with expanded optic nerves, resulting in similar numbers of axons in Fbn1Tsk/+ and control nerves. Axons in the optic nerves of Fbn1Tsk/+ mice were significantly enlarged and axon diameter was strongly correlated with optic nerve area, as has been reported in early pathogenesis of the DBA/2J mouse model of glaucoma. Our results suggest that microfibril abnormalities can lead to phenotypes found in early-stage glaucomatous neurodegeneration. Thinning of the elastic fiber-rich pia mater was found in Fbn1Tsk/+ mice, suggesting mechanisms allowing for optic nerve expansion and a possible biomechanical contribution to determination of axon caliber.
Collapse
|
370
|
Harada C, Kimura A, Guo X, Namekata K, Harada T. Recent advances in genetically modified animal models of glaucoma and their roles in drug repositioning. Br J Ophthalmol 2018; 103:161-166. [PMID: 30366949 PMCID: PMC6362806 DOI: 10.1136/bjophthalmol-2018-312724] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/21/2018] [Accepted: 08/25/2018] [Indexed: 12/18/2022]
Abstract
Glaucoma is one of the leading causes of vision loss in the world. Currently, pharmacological intervention for glaucoma therapy is limited to eye drops that reduce intraocular pressure (IOP). Recent studies have shown that various factors as well as IOP are involved in the pathogenesis of glaucoma, especially in the subtype of normal tension glaucoma. To date, various animal models of glaucoma have been established, including glutamate/aspartate transporter knockout (KO) mice, excitatory amino acid carrier 1 KO mice, optineurin E50K knock-in mice, DBA/2J mice and experimentally induced models. These animal models are very useful for elucidating the pathogenesis of glaucoma and for identifying potential therapeutic targets. However, each model represents only some aspects of glaucoma, never the whole disease. This review will summarise the benefits and limitations of using disease models of glaucoma and recent basic research in retinal protection using existing drugs.
Collapse
Affiliation(s)
- Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
371
|
Kulikova VA, Gromyko DV, Nikiforov AA. The Regulatory Role of NAD in Human and Animal Cells. BIOCHEMISTRY (MOSCOW) 2018; 83:800-812. [PMID: 30200865 DOI: 10.1134/s0006297918070040] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) and its phosphorylated form NADP are the major coenzymes in the redox reactions of various essential metabolic pathways. NAD+ also serves as a substrate for several families of regulatory proteins, such as protein deacetylases (sirtuins), ADP-ribosyltransferases, and poly(ADP-ribose) polymerases, that control vital cell processes including gene expression, DNA repair, apoptosis, mitochondrial biogenesis, unfolded protein response, and many others. NAD+ is also a precursor for calcium-mobilizing secondary messengers. Proper regulation of these NAD-dependent metabolic and signaling pathways depends on how efficiently cells can maintain their NAD levels. Generally, mammalian cells regulate their NAD supply through biosynthesis from the precursors delivered with the diet: nicotinamide and nicotinic acid (vitamin B3), as well as nicotinamide riboside and nicotinic acid riboside. Administration of NAD precursors has been demonstrated to restore NAD levels in tissues (i.e., to produce beneficial therapeutic effects) in preclinical models of various diseases, such as neurodegenerative disorders, obesity, diabetes, and metabolic syndrome.
Collapse
Affiliation(s)
- V A Kulikova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia.,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - D V Gromyko
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - A A Nikiforov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia. .,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| |
Collapse
|
372
|
Bosco A, Anderson SR, Breen KT, Romero CO, Steele MR, Chiodo VA, Boye SL, Hauswirth WW, Tomlinson S, Vetter ML. Complement C3-Targeted Gene Therapy Restricts Onset and Progression of Neurodegeneration in Chronic Mouse Glaucoma. Mol Ther 2018; 26:2379-2396. [PMID: 30217731 DOI: 10.1016/j.ymthe.2018.08.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 08/02/2018] [Accepted: 08/19/2018] [Indexed: 12/16/2022] Open
Abstract
Dysregulation of the complement system is implicated in neurodegeneration, including human and animal glaucoma. Optic nerve and retinal damage in glaucoma is preceded by local complement upregulation and activation, but whether targeting this early innate immune response could have therapeutic benefit remains undefined. Because complement signals through three pathways that intersect at complement C3 activation, here we targeted this step to restore complement balance in the glaucomatous retina and to determine its contribution to degeneration onset and/or progression. To achieve this, we combined adeno-associated virus retinal gene therapy with the targeted C3 inhibitor CR2-Crry. We show that intravitreal injection of AAV2.CR2-Crry produced sustained Crry overexpression in the retina and reduced deposition of the activation product complement C3d on retinal ganglion cells and the inner retina of DBA/2J mice. This resulted in neuroprotection of retinal ganglion cell axons and somata despite continued intraocular pressure elevation, suggesting a direct restriction of neurodegeneration onset and progression and significant delay to terminal disease stages. Our study uncovers a damaging effect of complement C3 or downstream complement activation in glaucoma, and it establishes AAV2.CR2-Crry as a viable therapeutic strategy to target pathogenic C3-mediated complement activation in the glaucomatous retina.
Collapse
Affiliation(s)
- Alejandra Bosco
- Department of Neurobiology and Anatomy, School of Medicine, University of Utah, Salt Lake City, UT, USA.
| | - Sarah R Anderson
- Department of Neurobiology and Anatomy, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Kevin T Breen
- Department of Neurobiology and Anatomy, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Cesar O Romero
- Department of Neurobiology and Anatomy, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Michael R Steele
- Department of Neurobiology and Anatomy, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Vince A Chiodo
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Sanford L Boye
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | | | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Monica L Vetter
- Department of Neurobiology and Anatomy, School of Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
373
|
De novo NAD + biosynthetic impairment in acute kidney injury in humans. Nat Med 2018; 24:1351-1359. [PMID: 30127395 PMCID: PMC6129212 DOI: 10.1038/s41591-018-0138-z] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) extends longevity in experimental organisms, raising interest in its impact on human health. De novo NAD+ biosynthesis from tryptophan is evolutionarily conserved yet considered supplanted among higher species by biosynthesis from nicotinamide (Nam). Here we show that a bottleneck enzyme in de novo biosynthesis, quinolinate phosphoribosyltransferase (QPRT), defends renal NAD+ and mediates resistance to acute kidney injury (AKI). Following murine AKI, renal NAD+ fell, quinolinate rose, and QPRT declined. QPRT+/− mice exhibited higher quinolinate, lower NAD+, and higher AKI susceptibility. Metabolomics proposed elevated urinary quinolinate/tryptophan (uQ:T) as an indicator of reduced QPRT. Elevated uQ:T predicted AKI and other adverse outcomes in critically ill patients. A Phase 1 placebo-controlled study of oral Nam demonstrated dose-related increase in circulating NAD+ metabolites. Nam was well-tolerated and was associated with less AKI. Impaired NAD+ biosynthesis may therefore be a feature of high-risk hospitalizations for which NAD+ augmentation could be beneficial.
Collapse
|
374
|
Sato K, Saigusa D, Saito R, Fujioka A, Nakagawa Y, Nishiguchi KM, Kokubun T, Motoike IN, Maruyama K, Omodaka K, Shiga Y, Uruno A, Koshiba S, Yamamoto M, Nakazawa T. Metabolomic changes in the mouse retina after optic nerve injury. Sci Rep 2018; 8:11930. [PMID: 30093719 PMCID: PMC6085332 DOI: 10.1038/s41598-018-30464-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022] Open
Abstract
In glaucoma, although axonal injury drives retinal ganglion cell (RGC) death, little is known about the underlying pathomechanisms. To provide new mechanistic insights and identify new biomarkers, we combined latest non-targeting metabolomics analyses to profile altered metabolites in the mouse whole retina 2, 4, and 7 days after optic nerve crush (NC). Ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry and liquid chromatography Fourier transform mass spectrometry covering wide spectrum of metabolites in combination highlighted 30 metabolites that changed its concentration after NC. The analysis displayed similar changes for purine nucleotide and glutathione as reported previously in another animal model of axonal injury and detected multiple metabolites that increased after the injury. After studying the specificity of the identified metabolites to RGCs in histological sections using imaging mass spectrometry, two metabolites, i.e., L-acetylcarnitine and phosphatidylcholine were increased not only preceding the peak of RGC death in the whole retina but also at the RGC layer (2.3-fold and 1.2-fold, respectively). These phospholipids propose novel mechanisms of RGC death and may serve as early biomarkers of axonal injury. The combinatory metabolomics analyses promise to illuminate pathomechanisms, reveal biomarkers, and allow the discovery of new therapeutic targets of glaucoma.
Collapse
Affiliation(s)
- Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Ophthalmic imaging and information analytics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Daisuke Saigusa
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan.,Medical Biochemistry, Tohoku University School of Medicine, Sendai, Miyagi, Japan.,LEAP, Japan Agency for Medical Research and Development (AMED), Chiyoda, Tokyo, Japan
| | - Ritsumi Saito
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan.,Medical Biochemistry, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Amane Fujioka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yurika Nakagawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Koji M Nishiguchi
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Taiki Kokubun
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ikuko N Motoike
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan.,Department of Systems Bioinformatics, Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Kazuichi Maruyama
- Department of Innovative Visual Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kazuko Omodaka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Ophthalmic imaging and information analytics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yukihiro Shiga
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Akira Uruno
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan.,Medical Biochemistry, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Seizo Koshiba
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan.,Medical Biochemistry, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan.,Medical Biochemistry, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan. .,Department of Ophthalmic imaging and information analytics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan. .,Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan. .,Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| |
Collapse
|
375
|
Wang Y, Grenell A, Zhong F, Yam M, Hauer A, Gregor E, Zhu S, Lohner D, Zhu J, Du J. Metabolic signature of the aging eye in mice. Neurobiol Aging 2018; 71:223-233. [PMID: 30172221 DOI: 10.1016/j.neurobiolaging.2018.07.024] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/28/2018] [Accepted: 07/29/2018] [Indexed: 12/29/2022]
Abstract
Aging is a major risk factor for age-related ocular diseases including age-related macular degeneration in the retina and retinal pigment epithelium (RPE), cataracts in the lens, glaucoma in the optic nerve, and dry eye syndrome in the cornea. We used targeted metabolomics to analyze metabolites from young (6 weeks) and old (73 weeks) eyes in C57 BL6/J mice. Old mice had diminished electroretinogram responses and decreased number of photoreceptors in their retinas. Among the 297 detected metabolites, 45-114 metabolites are significantly altered in aged eye tissues, mostly in the neuronal tissues (retina and optic nerve) and less in cornea, RPE/choroid, and lens. We noted that changes of metabolites in mitochondrial metabolism and glucose metabolism are common features in the aged retina, RPE/choroid, and optic nerve. The aging retina, cornea, and optic nerve also share similar changes in Nicotinamide adenine dinucleotide (NAD), 1-methylnicotinamides, 3-methylhistidine, and other methylated metabolites. Metabolites in taurine metabolism are strikingly influenced by aging in the cornea and lens. In conclusion, the aging eye has both common and tissue-specific metabolic signatures. These changes may be attributed to dysregulated mitochondrial metabolism, reprogrammed glucose metabolism and impaired methylation in the aging eye. Our findings provide biochemical insights into the mechanisms of age-related ocular changes.
Collapse
Affiliation(s)
- Yekai Wang
- Department of Ophthalmology, West Virginia University, Morgantown, WV, USA; Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Allison Grenell
- Department of Ophthalmology, West Virginia University, Morgantown, WV, USA; Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Fanyi Zhong
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| | - Michelle Yam
- Department of Ophthalmology, West Virginia University, Morgantown, WV, USA; Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Allison Hauer
- Department of Ophthalmology, West Virginia University, Morgantown, WV, USA; Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Elizabeth Gregor
- Department of Ophthalmology, West Virginia University, Morgantown, WV, USA; Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Siyan Zhu
- Department of Ophthalmology, West Virginia University, Morgantown, WV, USA; Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Daniel Lohner
- Department of Ophthalmology, West Virginia University, Morgantown, WV, USA; Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Jiangjiang Zhu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| | - Jianhai Du
- Department of Ophthalmology, West Virginia University, Morgantown, WV, USA; Department of Biochemistry, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
376
|
Wubben TJ, Besirli CG, Johnson MW, Zacks DN. Retinal Neuroprotection: Overcoming the Translational Roadblocks. Am J Ophthalmol 2018; 192:xv-xxii. [PMID: 29702074 DOI: 10.1016/j.ajo.2018.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 11/25/2022]
Abstract
PURPOSE To elucidate the issues that have prevented successful translation of neuroprotective therapeutic modalities for retinal disease from the preclinical to the clinical realm and to suggest strategies to circumvent these barriers in order to develop novel treatments to prevent vision loss. DESIGN Interpretive essay. METHODS Review and synthesis of selected reports of neuroprotective approaches for retinal disease, with interpretation and perspective. RESULTS Retinal neuroprotection is defined as any measure that reduces the death of retinal cells or axonal extensions into the optic nerve, and there is a great unmet need for such therapeutic modalities. Despite encouraging preclinical data, the translation of neuroprotective therapies to the clinic has been fraught with failure. Fundamental issues that have plagued this transition include the animal models used in preclinical studies, the reproducibility of the preclinical data, and the choice of meaningful clinical trial endpoints. Developing animal models that more aptly mimic human disease, defining a set of guidelines for preclinical evaluation of neuroprotective therapies in retinal disease, and identifying and validating biomarkers as surrogate clinical endpoints that shorten and optimize drug development timelines may circumvent some of these barriers to translation. CONCLUSIONS Neuroprotective therapeutic approaches have the potential to prevent vision loss in millions of people affected with eye diseases worldwide. However, a stigma currently accompanies the concept of neuroprotection because of the many past failures to bridge the gap between the preclinical and clinical realms. Understanding and addressing the fundamental reasons for the failure of translatable research provides hope for the future development of neuroprotective therapies.
Collapse
|
377
|
Guymer C, Wood JPM, Chidlow G, Casson RJ. Neuroprotection in glaucoma: recent advances and clinical translation. Clin Exp Ophthalmol 2018; 47:88-105. [DOI: 10.1111/ceo.13336] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/21/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Chelsea Guymer
- Ophthalmic Research Laboratory, South Australian Institute of Ophthalmology; University of Adelaide; Adelaide South Australia Australia
| | - John PM Wood
- Ophthalmic Research Laboratory, South Australian Institute of Ophthalmology; University of Adelaide; Adelaide South Australia Australia
| | - Glyn Chidlow
- Ophthalmic Research Laboratory, South Australian Institute of Ophthalmology; University of Adelaide; Adelaide South Australia Australia
| | - Robert J Casson
- Ophthalmic Research Laboratory, South Australian Institute of Ophthalmology; University of Adelaide; Adelaide South Australia Australia
| |
Collapse
|
378
|
Fry LE, Fahy E, Chrysostomou V, Hui F, Tang J, van Wijngaarden P, Petrou S, Crowston JG. The coma in glaucoma: Retinal ganglion cell dysfunction and recovery. Prog Retin Eye Res 2018; 65:77-92. [DOI: 10.1016/j.preteyeres.2018.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/18/2018] [Accepted: 04/03/2018] [Indexed: 01/07/2023]
|
379
|
Jnk2 deficiency increases the rate of glaucomatous neurodegeneration in ocular hypertensive DBA/2J mice. Cell Death Dis 2018; 9:705. [PMID: 29899326 PMCID: PMC6000001 DOI: 10.1038/s41419-018-0705-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/12/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022]
Abstract
The cJun N-terminal kinases (JNKs; JNK1, JNK2, and JNK3) promote degenerative processes after neuronal injury and in disease. JNK2 and JNK3 have been shown to promote retinal ganglion cell (RGC) death after optic nerve injury. In their absence, long-term survival of RGC somas is significantly increased after mechanical optic nerve injury. In glaucoma, because optic nerve damage is thought to be a major cause of RGC death, JNKs are an important potential target for therapeutic intervention. To assess the role of JNK2 and JNK3 in an ocular hypertensive model of glaucoma, null alleles of Jnk2 and Jnk3 were backcrossed into the DBA/2J (D2) mouse. JNK activation occurred in RGCs following increased intraocular pressure in D2 mice. However, deficiency of both Jnk2 and Jnk3 together did not lessen optic nerve damage or RGC death. These results differentiate the molecular pathways controlling cell death in ocular hypertensive glaucoma compared with mechanical optic nerve injury. It is further shown that JUN, a pro-death component of the JNK pathway in RGCs, can be activated in glaucoma in the absence of JNK2 and JNK3. This implicates JNK1 in glaucomatous RGC death. Unexpectedly, at younger ages, Jnk2-deficient mice were more likely to develop features of glaucomatous neurodegeneration than D2 mice expressing Jnk2. This appears to be due to a neuroprotective effect of JNK2 and not due to a change in intraocular pressure. The Jnk2-deficient context also unmasked a lesser role for Jnk3 in glaucoma. Jnk2 and Jnk3 double knockout mice had a modestly increased risk of neurodegeneration compared with mice only deficient in Jnk2. Overall, these findings are consistent with pleiotropic effects of JNK isoforms in glaucoma and suggest caution is warranted when using JNK inhibitors to treat chronic neurodegenerative conditions.
Collapse
|
380
|
A multiethnic genome-wide association study of primary open-angle glaucoma identifies novel risk loci. Nat Commun 2018; 9:2278. [PMID: 29891935 PMCID: PMC5995837 DOI: 10.1038/s41467-018-04555-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/23/2018] [Indexed: 01/18/2023] Open
Abstract
Primary open-angle glaucoma (POAG) is a leading cause of irreversible vision loss, yet much of the genetic risk remains unaccounted for, especially in African-Americans who have a higher risk for developing POAG. We conduct a multiethnic genome-wide association study (GWAS) of POAG in the GERA cohort, with replication in the UK Biobank (UKB), and vice versa, GWAS in UKB with replication in GERA. We identify 24 loci (P < 5.0 × 10-8), including 14 novel, of which 9 replicate (near FMNL2, PDE7B, TMTC2, IKZF2, CADM2, DGKG, ANKH, EXOC2, and LMX1B). Functional studies support intraocular pressure-related influences of FMNL2 and LMX1B, with certain Lmx1b mutations causing high IOP and glaucoma resembling POAG in mice. The newly identified loci increase the proportion of variance explained in each GERA race/ethnicity group, with the largest gain in African-Americans (0.5-3.1%). A meta-analysis combining GERA and UKB identifies 24 additional loci. Our study provides important insights into glaucoma pathogenesis.
Collapse
|
381
|
Zhang X, Feng Y, Wang Y, Wang J, Xiang D, Niu W, Yuan F. Resveratrol ameliorates disorders of mitochondrial biogenesis and dynamics in a rat chronic ocular hypertension model. Life Sci 2018; 207:234-245. [PMID: 29894715 DOI: 10.1016/j.lfs.2018.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/30/2018] [Accepted: 06/08/2018] [Indexed: 11/24/2022]
Abstract
AIMS To explore the roles of mitochondrial biogenesis and dynamics in both RGC-5 cells apoptosis and rat retinal damage induced by elevated pressure and their involvement in resveratrol (RSV)-induced cell protection. MATERIALS AND METHODS The chronic ocular hypertension (COH) model was established in rats by injecting superparamagnetic iron oxide into anterior chamber. The RGC-5 cells were incubated under ambient and elevated pressure (70 mm Hg) respectively. The intraocular pressure (IOP) was measured using a handheld Tonolab tonometer; mitochondrial dysfunction was analyzed by membrane potential (MMP) depolarization, reactive oxygen species (ROS) level and transmission electron microscope (TEM) detection. Annexin V/PI staining and the terminal deoxynucleotidy transferase dUTP nick end labeling (TUNEL) staining assay were performed for apoptosis detection. Hematoxylin-Eosin staining was performed for retinal morphology detection. The expression of mitochondrial biogenesis and dynamics relating proteins were analyzed by western blot. KEY FINDINGS The retinal morphology and mitochondrial function deteriorated in chronic ocular hypertension (COH) rats. The cells showed apoptosis and mitochondrial dysfunction under elevated pressure (70 mm Hg) incubation. Upregulating AMPK, NRF-1, Tfam, mfn-2, OPA1 expression with RSV-treatment could decrease the cell apoptosis, mitochondrial membrane potential depolarization, ROS generation both in in vitro and in vivo experiments, and normalized the retinal morphology in vivo. SIGNIFICANCE Both in vitro and in vivo experiments demonstrated that activated AMPK/PGC-1α signaling pathway and improved expression of proteins were related to mitochondrial dynamics could be the possible mechanism underlying in the RSV's mitochondrial protection.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Ophthalmology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Yifan Feng
- Department of Ophthalmology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Yuping Wang
- Department of Ophthalmology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Jing Wang
- Department of Ophthalmology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Danni Xiang
- Department of Ophthalmology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Weiran Niu
- Department of Ophthalmology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Fei Yuan
- Department of Ophthalmology, Zhongshan Hospital of Fudan University, Shanghai 200032, China.
| |
Collapse
|
382
|
Yang F, Ma H, Butler MR, Ding XQ. Deficiency of type 2 iodothyronine deiodinase reduces necroptosis activity and oxidative stress responses in retinas of Leber congenital amaurosis model mice. FASEB J 2018; 32:fj201800484RR. [PMID: 29874126 PMCID: PMC6181634 DOI: 10.1096/fj.201800484rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
Abstract
Thyroid hormone (TH) signaling has been shown to regulate cone photoreceptor viability. Suppression of TH signaling with antithyroid drug treatment or by targeting iodothyronine deiodinases and TH receptors preserves cones in mouse models of retinal degeneration, including the Leber congenital amaurosis Rpe65-deficient mice. This work investigates the cellular mechanisms underlying how suppressing TH signaling preserves cones in Rpe65-deficient mice, using mice deficient in type 2 iodothyronine deiodinase (Dio2), the enzyme that converts the prohormone thyroxine to the active hormone triiodothyronine (T3). Deficiency of Dio2 improved cone survival and function in Rpe65-/- and Rpe65-deficiency on a cone dominant background ( Rpe65-/-/ Nrl-/-) mice. Analysis of cell death pathways revealed that receptor-interacting serine/threonine-protein kinase (RIPK)/necroptosis activity was increased in Rpe65-/-/ Nrl-/- retinas, and Dio2 deficiency reversed the alterations. Cell-stress analysis showed that the cellular oxidative stress responses were increased in Rpe65-/-/ Nrl-/- retinas, and Dio2 deficiency abolished the elevations. Similarly, antithyroid drug treatment resulted in reduced RIPK/necroptosis activity and oxidative stress responses in Rpe65-/-/ Nrl-/- retinas. Moreover, treatment with T3 significantly induced RIPK/necroptosis activity and oxidative stress responses in the retina. This work shows that suppression of TH signaling reduces cellular RIPK/necroptosis activity and oxidative stress responses in degenerating retinas, suggesting a mechanism underlying the observed cone preservation.-Yang, F., Ma, H., Butler, M. R., Ding, X.-Q. Deficiency of type 2 iodothyronine deiodinase reduces necroptosis activity and oxidative stress responses in retinas of Leber congenital amaurosis model mice.
Collapse
Affiliation(s)
- Fan Yang
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Hongwei Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michael R. Butler
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
383
|
Purhonen J, Rajendran J, Tegelberg S, Smolander OP, Pirinen E, Kallijärvi J, Fellman V. NAD + repletion produces no therapeutic effect in mice with respiratory chain complex III deficiency and chronic energy deprivation. FASEB J 2018; 32:fj201800090R. [PMID: 29782205 DOI: 10.1096/fj.201800090r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biosynthetic precursors of NAD+ can replenish a decreased cellular NAD+ pool and, supposedly via sirtuin (SIRT) deacetylases, improve mitochondrial function. We found decreased hepatic NAD+ concentration and downregulated biosynthesis in Bcs1lp.S78G knock-in mice with respiratory chain complex III deficiency and mitochondrial hepatopathy. Aiming at ameliorating disease progression via NAD+ repletion and improved mitochondrial function, we fed these mice nicotinamide riboside (NR), a NAD+ precursor. A targeted metabolomics verified successful administration and suggested enhanced NAD+ biosynthesis in the treated mice, although hepatic NAD+ concentration was unchanged at the end point. In contrast to our expectations, NR did not improve the hepatopathy, hepatic mitochondrial respiration, or survival of Bcs1lp.S78G mice. We linked this lack of therapeutic effect to NAD+-independent activation of SIRT-1 and -3 via AMPK and cAMP signaling related to the starvation-like metabolic state of Bcs1lp.S78G mice. In summary, we describe an unusual metabolic state with NAD+ depletion accompanied by energy deprivation signals, uncompromised SIRT function, and upregulated oxidative metabolism. Our study highlights that the knowledge of the underlying complex metabolic alterations is critical when designing therapies for mitochondrial dysfunction.-Purhonen, J., Rajendran, J., Tegelberg, S., Smolander, O.-P., Pirinen, E., Kallijärvi, J., Fellman, V. NAD+ repletion produces no therapeutic effect in mice with respiratory chain complex III deficiency and chronic energy deprivation.
Collapse
Affiliation(s)
- Janne Purhonen
- Folkhälsan Research Center, Helsinki, Finland
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jayasimman Rajendran
- Folkhälsan Research Center, Helsinki, Finland
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Saara Tegelberg
- Folkhälsan Research Center, Helsinki, Finland
- Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | - Eija Pirinen
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jukka Kallijärvi
- Folkhälsan Research Center, Helsinki, Finland
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vineta Fellman
- Folkhälsan Research Center, Helsinki, Finland
- Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Children's Hospital, University of Helsinki, Finland
| |
Collapse
|
384
|
Fricker RA, Green EL, Jenkins SI, Griffin SM. The Influence of Nicotinamide on Health and Disease in the Central Nervous System. Int J Tryptophan Res 2018; 11:1178646918776658. [PMID: 29844677 PMCID: PMC5966847 DOI: 10.1177/1178646918776658] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/29/2017] [Indexed: 12/12/2022] Open
Abstract
Nicotinamide, the amide form of vitamin B3 (niacin), has long been associated with neuronal development, survival, and function in the central nervous system (CNS), being implicated in both neuronal death and neuroprotection. Here, we summarise a body of research investigating the role of nicotinamide in neuronal health within the CNS, with a focus on studies that have shown a neuroprotective effect. Nicotinamide appears to play a role in protecting neurons from traumatic injury, ischaemia, and stroke, as well as being implicated in 3 key neurodegenerative conditions: Alzheimer’s, Parkinson’s, and Huntington’s diseases. A key factor is the bioavailability of nicotinamide, with low concentrations leading to neurological deficits and dementia and high levels potentially causing neurotoxicity. Finally, nicotinamide’s potential mechanisms of action are discussed, including the general maintenance of cellular energy levels and the more specific inhibition of molecules such as the nicotinamide adenine dinucleotide-dependent deacetylase, sirtuin 1 (SIRT1).
Collapse
Affiliation(s)
- Rosemary A Fricker
- School of Medicine and Institute for Science and Technology in Medicine, Keele University, Staffordshire, UK
| | - Emma L Green
- School of Medicine and Institute for Science and Technology in Medicine, Keele University, Staffordshire, UK
| | - Stuart I Jenkins
- School of Medicine and Institute for Science and Technology in Medicine, Keele University, Staffordshire, UK
| | - Síle M Griffin
- School of Medicine and Institute for Science and Technology in Medicine, Keele University, Staffordshire, UK
| |
Collapse
|
385
|
Structural and Functional Rescue of Chronic Metabolically Stressed Optic Nerves through Respiration. J Neurosci 2018; 38:5122-5139. [PMID: 29760184 DOI: 10.1523/jneurosci.3652-17.2018] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/27/2018] [Accepted: 04/24/2018] [Indexed: 01/05/2023] Open
Abstract
Axon degeneration can arise from metabolic stress, potentially a result of mitochondrial dysfunction or lack of appropriate substrate input. In this study, we investigated whether the metabolic vulnerability observed during optic neuropathy in the DBA/2J (D2) model of glaucoma is due to dysfunctional mitochondria or impaired substrate delivery to axons, the latter based on our observation of significantly decreased glucose and monocarboxylate transporters in D2 optic nerve (ON), human ON, and mice subjected to acute glaucoma injury. We placed both sexes of D2 mice destined to develop glaucoma and mice of a control strain, the DBA/2J-Gpnmb+, on a ketogenic diet to encourage mitochondrial function. Eight weeks of the diet generated mitochondria, improved energy availability by reversing monocarboxylate transporter decline, reduced glial hypertrophy, protected retinal ganglion cells and their axons from degeneration, and maintained physiological signaling to the brain. A robust antioxidant response also accompanied the response to the diet. These results suggest that energy compromise and subsequent axon degeneration in the D2 is due to low substrate availability secondary to transporter downregulation.SIGNIFICANCE STATEMENT We show axons in glaucomatous optic nerve are energy depleted and exhibit chronic metabolic stress. Underlying the metabolic stress are low levels of glucose and monocarboxylate transporters that compromise axon metabolism by limiting substrate availability. Axonal metabolic decline was reversed by upregulating monocarboxylate transporters as a result of placing the animals on a ketogenic diet. Optic nerve mitochondria responded capably to the oxidative phosphorylation necessitated by the diet and showed increased number. These findings indicate that the source of metabolic challenge can occur upstream of mitochondrial dysfunction. Importantly, the intervention was successful despite the animals being on the cusp of significant glaucoma progression.
Collapse
|
386
|
Progress in Gene Therapy to Prevent Retinal Ganglion Cell Loss in Glaucoma and Leber's Hereditary Optic Neuropathy. Neural Plast 2018; 2018:7108948. [PMID: 29853847 PMCID: PMC5954906 DOI: 10.1155/2018/7108948] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/04/2018] [Indexed: 12/24/2022] Open
Abstract
The eye is at the forefront of the application of gene therapy techniques to medicine. In the United States, a gene therapy treatment for Leber's congenital amaurosis, a rare inherited retinal disease, recently became the first gene therapy to be approved by the FDA for the treatment of disease caused by mutations in a specific gene. Phase III clinical trials of gene therapy for other single-gene defect diseases of the retina and optic nerve are also currently underway. However, for optic nerve diseases not caused by single-gene defects, gene therapy strategies are likely to focus on slowing or preventing neuronal death through the expression of neuroprotective agents. In addition to these strategies, there has also been recent interest in the potential use of precise genome editing techniques to treat ocular disease. This review focuses on recent developments in gene therapy techniques for the treatment of glaucoma and Leber's hereditary optic neuropathy (LHON). We discuss recent successes in clinical trials for the treatment of LHON using gene supplementation therapy, promising neuroprotective strategies that have been employed in animal models of glaucoma and the potential use of genome editing techniques in treating optic nerve disease.
Collapse
|
387
|
NMNAT1 E257K variant, associated with Leber Congenital Amaurosis (LCA9), causes a mild retinal degeneration phenotype. Exp Eye Res 2018; 173:32-43. [PMID: 29674119 DOI: 10.1016/j.exer.2018.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/18/2018] [Accepted: 04/13/2018] [Indexed: 01/25/2023]
Abstract
NMNAT1 (nicotinamide mononucleotide adenylyltransferase 1) encodes a rate-limiting enzyme that catalyzes the biosynthesis of NAD+ and plays a role in neuroprotection. Mutations in NMNAT1 have been identified to cause a recessive, non-syndromic early form of blindness genetically defined as Leber Congenital Amaurosis 9 (LCA9). One of the most common alleles reported so far in NMNAT1 is the c.769G > A (E257K) missense mutation, which occurs in 70% of all LCA9 cases. However, given its relatively high population frequency and the observation of individuals with homozygous E257K variant without phenotype, the pathogenicity of this allele has been questioned. To address this issue, we have studied the pathogenic effects of this allele by generating a knock-in mouse model. Interestingly, no obvious morphological or functional defects are observed in Nmnat1 E257K homozygous mice up to one year old, even after light-damage. Together with the previous clinical reports, we propose that the E257K allele is a weak hypomorphic allele that has significantly reduced penetrance in the homozygous state. In contrast, compound heterozygous Nmnat1E257K/- mice exhibit photoreceptor defects which are exacerbated upon exposure to light. Furthermore, retina tissue- specific Nmnat1 conditional knockout mice exhibit photoreceptor degeneration before the retina has terminally differentiated. These findings suggest that NMNAT1 plays an important role in photoreceptors and is likely involved in both retinal development and maintenance of photoreceptor integrity.
Collapse
|
388
|
Longterm Reversal of Severe Visual Loss by Mitochondrial Gene Transfer in a Mouse Model of Leber Hereditary Optic Neuropathy. Sci Rep 2018; 8:5587. [PMID: 29615737 PMCID: PMC5882860 DOI: 10.1038/s41598-018-23836-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/22/2018] [Indexed: 11/28/2022] Open
Abstract
In many human disorders mitochondrial dysfunction is central to degeneration of retinal ganglion cells. As these cells do not regenerate, vision is irreversibly lost. Here we show reversal of visual dysfunction by a mitochondrially targeted adeno associated virus in transgenic mice harboring a G11778A mutation in the ND4 subunit of complex I persists longterm and it is associated with reduced loss of RGCs and their axons, improved oxidative phosphorylation, persistence of transferred ND4 DNA and transcription of ND4 mRNA.
Collapse
|
389
|
Ruibin W, Zheng X, Chen J, Zhang X, Yang X, Lin Y. Micro RNA-1298 opposes the effects of chronic oxidative stress on human trabecular meshwork cells via targeting on EIF4E3. Biomed Pharmacother 2018; 100:349-357. [PMID: 29453044 DOI: 10.1016/j.biopha.2018.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/23/2018] [Accepted: 02/02/2018] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the effect and potential mechanism of miR-1298 in the progression of human trabecular meshwork (HTM) cells. MATERIAL AND METHODS Expression of miR-1298 was assessed by quantitative real time PCR (qRT-PCR), as well as in HTM-1 and HTM-2 cells. Mature miR-1298 mimic, miR-1298 inhibitor, and si-EIF4E3 and their corresponding controls were transfected into HTM-1 and HTM-2 to obtain stable HTM cells. Luciferase reporter assay was used to verify regulation between miR-1298 and EIF4E3. Cytotoxicity and Oxidative damage were assessed using commercial kits, and apoptosis was determined using flow cytometry. ECM and apoptosis related factors were determined using qRT-PCR and western blotting, as well as the pathway related factors. RESULTS The expression of miR-1298 was significantly decreased both in glaucoma and HTM cells. MiR-1298 mimic could significantly inhibit the increase of cytotoxicity, apoptosis, accumulation of carbonylated proteins and ECM induced by COS, but miR-1298 inhibitor could obviously promote the increase effects caused by COS in HTM cells. EIF4E3 was a downstream target of miR-1298. Sliced EIF4E3 could significantly inhibit the increase effects induced miR-1298 inhibitor in HTM cells under COS. The expression levels of TGF-β2 and Smad4 were significantly increased, and Wnt3a and β-cantenin were obviously decreased under COS, and miR-1298 inhibitor could markedly promote this increase effect, while sliced EIF4E3 could reverse the effect of miR-1298 under COS. CONCLUSIONS miR-1298 could protect HTM cells to against damage caused by COS via inhibiting TGF-β2/Smad4 pathway and activating canonical Wnt pathway.
Collapse
Affiliation(s)
- Wu Ruibin
- Department of Ophthalmolog, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515000, China.
| | - Xiaowei Zheng
- Department of Ophthalmolog, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Jiaying Chen
- Department of Ophthalmolog, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Xinyi Zhang
- Department of Ophthalmolog, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Xiayin Yang
- Department of Ophthalmolog, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Yuxian Lin
- Department of Ophthalmolog, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515000, China
| |
Collapse
|
390
|
Dietary Niacin and Open-Angle Glaucoma: The Korean National Health and Nutrition Examination Survey. Nutrients 2018; 10:nu10040387. [PMID: 29565276 PMCID: PMC5946172 DOI: 10.3390/nu10040387] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/17/2018] [Accepted: 03/17/2018] [Indexed: 02/05/2023] Open
Abstract
Glaucoma is a leading cause of loss of sight. High intraocular pressure (IOP) is the most critical risk factor. However, glaucoma develops even within a normal IOP range. Normal tension glaucoma (NTG) is more common in Asia, whereas high tension glaucoma is more common in Western countries. The pathogenesis of glaucoma, especially NTG, is poorly understood. We evaluated the correlation between dietary nutrient intake and glaucoma using data from subjects ≥40 years old from the ongoing, nationwide, population-based study, the Korean National Health and Nutrition Examination Survey V (2008-2012). Dietary intake was determined using the 24 h recall method. Fiber (g/day), ash (g/day), calcium (mg/day), phosphorus (mg/day), iron (mg/day), sodium (mg/day), potassium (mg/day), β-Carotene (μg/day), retinol (μg/day), vitamin A (μg Retinol Equivalents/day), thiamine (mg/day), riboflavin (mg/day), niacin (mg/day), and vitamin C (mg/day) were included in nutrient intake data. All nutrient intake was divided into quartiles. The mean IOP did not differ according to quartiles from any nutrients (all p > 0.05). After adjusting for age, gender, income status, education level, smoking, alcohol consumption, physical activity, diabetes, hypertension, IOP, and total energy, the intake of niacin was associated with glaucoma (p = 0.013). Among subjects with IOP ≤ 21 mmHg, only niacin was related to glaucoma in a multivariate analysis (p = 0.022). Dietary nutrient intake was associated with open-angle glaucoma independent of IOP. Individuals with NTG showed lower intake of niacin among nutrients. This finding suggests the possibility that proper diet counseling may be another modifiable factor, aside from IOP, particularly among patients with NTG.
Collapse
|
391
|
Age-related Changes in Eye, Brain and Visuomotor Behavior in the DBA/2J Mouse Model of Chronic Glaucoma. Sci Rep 2018; 8:4643. [PMID: 29545576 PMCID: PMC5854610 DOI: 10.1038/s41598-018-22850-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/02/2018] [Indexed: 12/19/2022] Open
Abstract
Although elevated intraocular pressure (IOP) and age are major risk factors for glaucoma, their effects on glaucoma pathogenesis remain unclear. This study examined the onset and progression of glaucomatous changes to ocular anatomy and physiology, structural and physiological brain integrity, and visuomotor behavior in the DBA/2J mice via non-invasive tonometry, multi-parametric magnetic resonance imaging (MRI) and optokinetic assessments from 5 to 12 months of age. Using T2-weighted MRI, diffusion tensor MRI, and manganese-enhanced MRI, increasing IOP elevation at 9 and 12 months old coincided with anterior chamber deepening, altered fractional anisotropy and radial diffusivity of the optic nerve and optic tract, as well as reduced anterograde manganese transport along the visual pathway respectively in the DBA/2J mice. Vitreous body elongation and visuomotor function deterioration were observed until 9 months old, whereas axial diffusivity only decreased at 12 months old in diffusion tensor MRI. Under the same experimental settings, C57BL/6J mice only showed modest age-related changes. Taken together, these results indicate that the anterior and posterior visual pathways of the DBA/2J mice exhibit differential susceptibility to glaucomatous neurodegeneration observable by in vivo multi-modal examinations.
Collapse
|
392
|
Chini EN, Chini CCS, Espindola Netto JM, de Oliveira GC, van Schooten W. The Pharmacology of CD38/NADase: An Emerging Target in Cancer and Diseases of Aging. Trends Pharmacol Sci 2018; 39:424-436. [PMID: 29482842 DOI: 10.1016/j.tips.2018.02.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/23/2018] [Accepted: 02/03/2018] [Indexed: 10/18/2022]
Abstract
Recent reports indicate that intracellular NAD levels decline in tissues during chronological aging, and that therapies aimed at increasing cellular NAD levels could have beneficial effects in many age-related diseases. The protein CD38 (cluster of differentiation 38) is a multifunctional enzyme that degrades NAD and modulates cellular NAD homeostasis. At the physiological level, CD38 has been implicated in the regulation of metabolism and in the pathogenesis of multiple conditions including aging, obesity, diabetes, heart disease, asthma, and inflammation. Interestingly, many of these functions are mediated by CD38 enzymatic activity. In addition, CD38 has also been identified as a cell-surface marker in hematologic cancers such as multiple myeloma, and a cytotoxic anti-CD38 antibody has been approved by the FDA for use in this disease. Although this is a remarkable development, killing CD38-positive tumor cells with cytotoxic anti-CD38 antibodies is only one of the potential pharmacological uses of targeting CD38. The present review discusses the biology of the CD38 enzyme and the current state of development of pharmacological tools aimed at CD38, and explores how these agents may represent a novel approach for treating human conditions including cancer, metabolic disease, and diseases of aging.
Collapse
Affiliation(s)
- Eduardo N Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | - Claudia C S Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Jair Machado Espindola Netto
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Guilherme C de Oliveira
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
393
|
Velez G, Machlab DA, Tang PH, Sun Y, Tsang SH, Bassuk AG, Mahajan VB. Proteomic analysis of the human retina reveals region-specific susceptibilities to metabolic- and oxidative stress-related diseases. PLoS One 2018; 13:e0193250. [PMID: 29466423 PMCID: PMC5821407 DOI: 10.1371/journal.pone.0193250] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/07/2018] [Indexed: 12/14/2022] Open
Abstract
Differences in regional protein expression within the human retina may explain molecular predisposition of specific regions to ophthalmic diseases like age-related macular degeneration, cystoid macular edema, retinitis pigmentosa, and diabetic retinopathy. To quantify protein levels in the human retina and identify patterns of differentially-expressed proteins, we collected foveomacular, juxta-macular, and peripheral retina punch biopsies from healthy donor eyes and analyzed protein content by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Protein expression was analyzed with 1-way ANOVA, gene ontology, pathway representation, and network analysis. We identified a mean of 1,974 proteins in the foveomacular retina, 1,999 in the juxta-macular retina, and 1,779 in the peripheral retina. Six hundred ninety-seven differentially-expressed proteins included those unique to and abundant in each anatomic region. Proteins with higher expression in each region include: heat-shock protein 90-alpha (HSP90AA1), and pyruvate kinase (PKM) in the foveomacular retina; vimentin (VIM) and fructose-bisphosphate aldolase C (ALDOC); and guanine nucleotide-binding protein subunit beta-1 (GNB1) and guanine nucleotide-binding protein subunit alpha-1 (GNAT1) in the peripheral retina. Pathway analysis identified downstream mediators of the integrin signaling pathway to be highly represented in the foveomacular region (P = 6.48 e-06). Metabolic pathways were differentially expressed among all retinal regions. Gene ontology analysis showed that proteins related to antioxidant activity were higher in the juxta-macular and the peripheral retina, but present in lower amounts in the foveomacular retina. Our proteomic analysis suggests that certain retinal regions are susceptible to different forms of metabolic and oxidative stress. The findings give mechanistic insight into retina function, reveal important molecular processes, and prioritize new pathways for therapeutic targeting.
Collapse
Affiliation(s)
- Gabriel Velez
- Omics Laboratory, Stanford University, Palo Alto, California, United States of America
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California, United States of America
- Medical Scientist Training Program, University of Iowa, Iowa City, Iowa, United States of America
| | - Daniel A. Machlab
- Omics Laboratory, Stanford University, Palo Alto, California, United States of America
| | - Peter H. Tang
- Omics Laboratory, Stanford University, Palo Alto, California, United States of America
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California, United States of America
- Palo Alto Veterans Administration, Palo Alto, California, United States of America
| | - Yang Sun
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California, United States of America
- Palo Alto Veterans Administration, Palo Alto, California, United States of America
| | - Stephen H. Tsang
- Jonas Children’s Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology & Cell Biology, Institute of Human Nutrition, Columbia University, New York, New York, United States of America
- Department of Pathology & Cell Biology, College of Physicians & Surgeons, Columbia University, New York, New York, United States of America
| | - Alexander G. Bassuk
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Vinit B. Mahajan
- Omics Laboratory, Stanford University, Palo Alto, California, United States of America
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California, United States of America
- Palo Alto Veterans Administration, Palo Alto, California, United States of America
- * E-mail:
| |
Collapse
|
394
|
Guo X, Jiang Q, Tuccitto A, Chan D, Alqawlaq S, Won GJ, Sivak JM. The AMPK-PGC-1α signaling axis regulates the astrocyte glutathione system to protect against oxidative and metabolic injury. Neurobiol Dis 2018; 113:59-69. [PMID: 29438738 DOI: 10.1016/j.nbd.2018.02.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 01/10/2018] [Accepted: 02/08/2018] [Indexed: 02/04/2023] Open
Abstract
Neurons are highly sensitive to metabolic and oxidative injury, but endogenous astrocyte mechanisms have a critical capacity to provide protection from these stresses. We previously reported that the master regulator PGC-1α (peroxisome proliferator-activated receptor gamma coactivator-1α) is necessary for retinal astrocytes to mount effective injury responses, with particular regard to oxidative stress. Yet, this pathway has not been well studied in glia. PGC-1α is a transcriptional co-activator that is dysregulated in a variety of neurodegenerative diseases. It functions as a master regulator of cellular bioenergetics, with the ability to regulate tissue specific responses. A key inducer of PGC-1α signaling is adenosine monophosphate-activated kinase (AMPK). Thus, the AMPK-PGC-1α signaling axis coordinates metabolic and oxidative damage responses in the central nervous system (CNS). Here we report that AMPK selectively regulates expression of GCLM (glutamate cysteine ligase modulatory subunit) in astrocytes, but not neurons, through PGC-1α activation. Glutamate cysteine ligase (GCL) is the rate limiting enzyme in the biosynthesis of glutathione (GSH); a critical antioxidant and detoxifying peptide in the CNS. Through this mechanism we describe PGC-1α-dependent induction of GSH synthesis and antioxidant activity in astrocytes, and in the rodent retina in vivo. Furthermore, we demonstrate that therapeutic agonism of this pathway with the AMP mimetic, AICAR, rescues GSH levels in vivo, while reducing RGC death and astrocyte reactivity, following retinal ischemia/reperfusion injury. This mechanism presents a novel strategy for enhancing protective astrocyte antioxidant capacity in the CNS.
Collapse
Affiliation(s)
- Xiaoxin Guo
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada
| | - Qi Jiang
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Alessandra Tuccitto
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Darren Chan
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada
| | - Samih Alqawlaq
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Gah-Jone Won
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada
| | - Jeremy M Sivak
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
395
|
Abstract
Nicotinic acid and nicotinamide, collectively referred to as niacin, are nutritional precursors of the bioactive molecules nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP). NAD and NADP are important cofactors for most cellular redox reactions, and as such are essential to maintain cellular metabolism and respiration. NAD also serves as a cosubstrate for a large number of ADP-ribosylation enzymes with varied functions. Among the NAD-consuming enzymes identified to date are important genetic and epigenetic regulators, e.g., poly(ADP-ribose)polymerases and sirtuins. There is rapidly growing knowledge of the close connection between dietary niacin intake, NAD(P) availability, and the activity of NAD(P)-dependent epigenetic regulator enzymes. It points to an exciting role of dietary niacin intake as a central regulator of physiological processes, e.g., maintenance of genetic stability, and of epigenetic control mechanisms modulating metabolism and aging. Insight into the role of niacin and various NAD-related diseases ranging from cancer, aging, and metabolic diseases to cardiovascular problems has shifted our view of niacin as a vitamin to current views that explore its potential as a therapeutic.
Collapse
Affiliation(s)
- James B Kirkland
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
396
|
Williams PA, Harder JM, Cardozo BH, Foxworth NE, John SWM. Nicotinamide treatment robustly protects from inherited mouse glaucoma. Commun Integr Biol 2018; 11:e1356956. [PMID: 29497468 PMCID: PMC5824969 DOI: 10.1080/19420889.2017.1356956] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 12/27/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is a key molecule in several cellular processes and is essential for healthy mitochondrial metabolism. We recently reported that mitochondrial dysfunction is among the very first changes to occur within retinal ganglion cells during initiation of glaucoma in DBA/2J mice. Furthermore, we demonstrated that an age-dependent decline of NAD contributes to mitochondrial dysfunction and vulnerability to glaucoma. The decrease in NAD renders retinal ganglion cells vulnerable to a metabolic crisis following periods of high intraocular pressure. Treating mice with the NAD precursor nicotinamide (the amide form of vitamin B3) inhibited many age- and high intraocular pressure- dependent changes with the highest tested dose decreasing the likelihood of developing glaucoma by ∼10-fold. In this communication, we present further evidence of the neuroprotective effects of nicotinamide against glaucoma in mice, including its prevention of optic nerve excavation and axon loss as assessed by histologic analysis and axon counting. We also show analyses of age- and intraocular pressure- dependent changes in transcripts of NAD producing enzymes within retinal ganglion cells and that nicotinamide treatment prevents these transcriptomic changes.
Collapse
Affiliation(s)
- Pete A Williams
- The Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Jeffrey M Harder
- The Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Brynn H Cardozo
- The Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Nicole E Foxworth
- The Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Simon W M John
- The Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, ME, USA.,Department of Ophthalmology, Tufts University of Medicine, Boston, MA, USA
| |
Collapse
|
397
|
Chou TH, Musada GR, Romano GL, Bolton E, Porciatti V. Anesthetic Preconditioning as Endogenous Neuroprotection in Glaucoma. Int J Mol Sci 2018; 19:E237. [PMID: 29342845 PMCID: PMC5796185 DOI: 10.3390/ijms19010237] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 12/15/2022] Open
Abstract
Blindness in glaucoma is the result of death of Retinal Ganglion Cells (RGCs) and their axons. RGC death is generally preceded by a stage of reversible dysfunction and structural remodeling. Current treatments aimed at reducing intraocular pressure (IOP) are ineffective or incompletely effective in management of the disease. IOP-independent neuroprotection or neuroprotection as adjuvant to IOP lowering in glaucoma remains a challenge as effective agents without side effects have not been identified yet. We show in DBA/2J mice with spontaneous IOP elevation and glaucoma that the lifespan of functional RGCs can be extended by preconditioning RGCs with retrobulbar lidocaine in one eye at four months of age that temporary blocks RGC axonal transport. The contralateral, PBS-injected eye served as control. Lidocaine-induced impairment of axonal transport to superior colliculi was assessed by intravitreal injection of cholera toxin B. Long-term (nine months) effect of lidocaine were assessed on RGC electrical responsiveness (PERG), IOP, expression of relevant protein (BDNF, TrkB, PSD95, GFAP, Synaptophysin, and GAPDH) and RGC density. While lidocaine treatment did not alter the age-related increase of IOP, TrkB expression was elevated, GFAP expression was decreased, RGC survival was improved by 35%, and PERG function was preserved. Results suggest that the lifespan of functional RGCs in mouse glaucoma can be extended by preconditioning RGCs in early stages of the disease using a minimally invasive treatment with retrobulbar lidocaine, a common ophthalmologic procedure. Lidocaine is inexpensive, safe and is approved by Food and Drug Administration (FDA) to be administered intravenously.
Collapse
Affiliation(s)
- Tsung-Han Chou
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, Miami, FL 33136, USA.
| | - Ganeswara Rao Musada
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, Miami, FL 33136, USA.
| | - Giovanni Luca Romano
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, Miami, FL 33136, USA.
| | - Elizabeth Bolton
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, Miami, FL 33136, USA.
| | - Vittorio Porciatti
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, Miami, FL 33136, USA.
| |
Collapse
|
398
|
Sharif NA. iDrugs and iDevices Discovery Research: Preclinical Assays, Techniques, and Animal Model Studies for Ocular Hypotensives and Neuroprotectants. J Ocul Pharmacol Ther 2018; 34:7-39. [PMID: 29323613 DOI: 10.1089/jop.2017.0125] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Discovery ophthalmic research is centered around delineating the molecular and cellular basis of ocular diseases and finding and exploiting molecular and genetic pathways associated with them. From such studies it is possible to determine suitable intervention points to address the disease process and hopefully to discover therapeutics to treat them. An investigational new drug (IND) filing for a new small-molecule drug, peptide, antibody, genetic treatment, or a device with global health authorities requires a number of preclinical studies to provide necessary safety and efficacy data. Specific regulatory elements needed for such IND-enabling studies are beyond the scope of this article. However, to enhance the overall data packages for such entities and permit high-quality foundation-building publications for medical affairs, additional research and development studies are always desirable. This review aims to provide examples of some target localization/verification, ocular drug discovery processes, and mechanistic and portfolio-enhancing exploratory investigations for candidate drugs and devices for the treatment of ocular hypertension and glaucomatous optic neuropathy (neurodegeneration of retinal ganglion cells and their axons). Examples of compound screening assays, use of various technologies and techniques, deployment of animal models, and data obtained from such studies are also presented.
Collapse
Affiliation(s)
- Najam A Sharif
- 1 Global Alliances & External Research , Santen Incorporated, Emeryville, California.,2 Department of Pharmaceutical Sciences, Texas Southern University , Houston, Texas.,3 Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center , Fort Worth, Texas
| |
Collapse
|
399
|
Croft T, James Theoga Raj C, Salemi M, Phinney BS, Lin SJ. A functional link between NAD + homeostasis and N-terminal protein acetylation in Saccharomyces cerevisiae. J Biol Chem 2018; 293:2927-2938. [PMID: 29317496 DOI: 10.1074/jbc.m117.807214] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/15/2017] [Indexed: 12/12/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential metabolite participating in cellular redox chemistry and signaling, and the complex regulation of NAD+ metabolism is not yet fully understood. To investigate this, we established a NAD+-intermediate specific reporter system to identify factors required for salvage of metabolically linked nicotinamide (NAM) and nicotinic acid (NA). Mutants lacking components of the NatB complex, NAT3 and MDM20, appeared as hits in this screen. NatB is an Nα-terminal acetyltransferase responsible for acetylation of the N terminus of specific Met-retained peptides. In NatB mutants, increased NA/NAM levels were concomitant with decreased NAD+ We identified the vacuolar pool of nicotinamide riboside (NR) as the source of this increased NA/NAM. This NR pool is increased by nitrogen starvation, suggesting NAD+ and related metabolites may be trafficked to the vacuole for recycling. Supporting this, increased NA/NAM release in NatB mutants was abolished by deleting the autophagy protein ATG14 We next examined Tpm1 (tropomyosin), whose function is regulated by NatB-mediated acetylation, and Tpm1 overexpression (TPM1-oe) was shown to restore some NatB mutant defects. Interestingly, although TPM1-oe largely suppressed NA/NAM release in NatB mutants, it did not restore NAD+ levels. We showed that decreased nicotinamide mononucleotide adenylyltransferase (Nma1/Nma2) levels probably caused the NAD+ defects, and NMA1-oe was sufficient to restore NAD+ NatB-mediated N-terminal acetylation of Nma1 and Nma2 appears essential for maintaining NAD+ levels. In summary, our results support a connection between NatB-mediated protein acetylation and NAD+ homeostasis. Our findings may contribute to understanding the molecular basis and regulation of NAD+ metabolism.
Collapse
Affiliation(s)
- Trevor Croft
- Department of Microbiology and Molecular Genetics, College of Biological Sciences
| | | | - Michelle Salemi
- Proteomic Core Facility, University of California, Davis, California 95616
| | - Brett S Phinney
- Proteomic Core Facility, University of California, Davis, California 95616
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences.
| |
Collapse
|
400
|
Antonio ML, Laura R, Annagrazia A, Tiziana CM, Rossella R. Rational Basis for Nutraceuticals in the Treatment of Glaucoma. Curr Neuropharmacol 2018; 16:1004-1017. [PMID: 29119928 PMCID: PMC6120110 DOI: 10.2174/1570159x15666171109124520] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Glaucoma, the second leading cause of blindness worldwide, is a chronic optic neuropathy characterized by progressive retinal ganglion cell (RGC) axons degeneration and death. Primary open-angle glaucoma (OAG), the most common type, is often associated with increased intraocular pressure (IOP), however other factors have been recognized to partecipate to the patogenesis of the optic neuropathy. IOP-independent mechanisms that contribute to the glaucoma-related neurodegeneration include oxidative stress, excitotoxicity, neuroinflammation, and impaired ocular blood flow. The involvement of several and diverse factors is one of the reasons for the progression of glaucoma observed even under efficient IOP control with the currently available drugs. METHODS Current research and online content related to the potential of nutritional supplements for limiting retinal damage and improving RGC survival is reviewed. RESULTS Recent studies have suggested a link between dietary factors and glaucoma risk. Particularly, some nutrients have proven capable of lowering IOP, increase circulation to the optic nerve, modulate excitotoxicity and promote RGC survival. However, the lack of clinical trials limit their current therapeutic use. The appropriate use of nutraceuticals that may be able to modify the risk of glaucoma may provide insight into glaucoma pathogenesis and decrease the need for, and therefore the side effects from, conventional therapies. CONCLUSION The effects of nutrients with anti-oxidant and neuroprotective properties are of great interest and nutraceuticals may offer some therapeutic potential although a further rigorous evaluation of nutraceuticals in the treatment of glaucoma is needed to determine their safety and efficacy.
Collapse
Affiliation(s)
- Morrone Luigi Antonio
- Address correspondence to this author at the Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, via P. Bucci, 87036 Rende (CS) Italy; E-mail:
| | | | | | | | | |
Collapse
|