351
|
Serinagaoglu Y, Paré J, Giovannini M, Cao X. Nf2-Yap signaling controls the expansion of DRG progenitors and glia during DRG development. Dev Biol 2014; 398:97-109. [PMID: 25433207 DOI: 10.1016/j.ydbio.2014.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/14/2014] [Accepted: 11/18/2014] [Indexed: 11/17/2022]
Abstract
Molecular mechanisms governing the maintenance and proliferation of dorsal root ganglia (DRG) progenitors are largely unknown. Here we reveal that the Hippo pathway regulates the expansion of DRG progenitors and glia during mammalian DRG development. The key effectors of this pathway, transcriptional coactivators Yap and Taz, are expressed in DRG progenitors and glia during DRG development but are at least partially inhibited from activating transcription. Aberrant YAP activation leads to overexpansion of DRG progenitor and glial populations. We further show that the Neurofibromatosis 2 (Nf2) tumor suppressor inhibits Yap during DRG development. Loss of Nf2 leads to similar phenotypes as does YAP hyperactivation, and deleting Yap suppresses these phenotypes. Our study demonstrates that Nf2-Yap signaling plays important roles in controlling the expansion of DRG progenitors and glia during DRG development.
Collapse
Affiliation(s)
- Yelda Serinagaoglu
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Joshua Paré
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Marco Giovannini
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90057, USA
| | - Xinwei Cao
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
352
|
Abstract
During development, cardiogenesis is orchestrated by a family of heart progenitors that build distinct regions of the heart. Each region contains diverse cell types that assemble to form the complex structures of the individual cardiac compartments. Cardiomyocytes are the main cell type found in the heart and ensure contraction of the chambers and efficient blood flow throughout the body. Injury to the cardiac muscle often leads to heart failure due to the loss of a large number of cardiomyocytes and its limited intrinsic capacity to regenerate the damaged tissue, making it one of the leading causes of morbidity and mortality worldwide. In this Primer we discuss how insights into the molecular and cellular framework underlying cardiac development can be used to guide the in vitro specification of cardiomyocytes, whether by directed differentiation of pluripotent stem cells or via direct lineage conversion. Additional strategies to generate cardiomyocytes in situ, such as reactivation of endogenous cardiac progenitors and induction of cardiomyocyte proliferation, will also be discussed.
Collapse
Affiliation(s)
- Daniela Später
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA Department of Bioscience, CVMD iMED, AstraZeneca, Pepparedsleden 1, Mölndal 43150, Sweden
| | - Emil M Hansson
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA Department of Cell and Molecular Biology and Medicine, Karolinska Institutet, 35 Berzelius Vag, Stockholm 171 77, Sweden
| | - Lior Zangi
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA Department of Cardiology, Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA Cardiovascular Research Center, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Kenneth R Chien
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA Department of Cell and Molecular Biology and Medicine, Karolinska Institutet, 35 Berzelius Vag, Stockholm 171 77, Sweden
| |
Collapse
|
353
|
Senyo SE, Lee RT, Kühn B. Cardiac regeneration based on mechanisms of cardiomyocyte proliferation and differentiation. Stem Cell Res 2014; 13:532-41. [PMID: 25306390 PMCID: PMC4435693 DOI: 10.1016/j.scr.2014.09.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 09/10/2014] [Accepted: 09/16/2014] [Indexed: 12/23/2022] Open
Abstract
Cardiomyocyte proliferation and progenitor differentiation are endogenous mechanisms of myocardial development. Cardiomyocytes continue to proliferate in mammals for part of post-natal development. In adult mammals under homeostatic conditions, cardiomyocytes proliferate at an extremely low rate. Because the mechanisms of cardiomyocyte generation provide potential targets for stimulating myocardial regeneration, a deep understanding is required for developing such strategies. We will discuss approaches for examining cardiomyocyte regeneration, review the specific advantages, challenges, and controversies, and recommend approaches for interpretation of results. We will also draw parallels between developmental and regenerative principles of these mechanisms and how they could be targeted for treating heart failure.
Collapse
Affiliation(s)
- Samuel E Senyo
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Brigham Regenerative Medicine Center, Cambridge, MA 02139, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Richard T Lee
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Brigham Regenerative Medicine Center, Cambridge, MA 02139, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Bernhard Kühn
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
354
|
Li J, Gao E, Vite A, Yi R, Gomez L, Goossens S, van Roy F, Radice GL. Alpha-catenins control cardiomyocyte proliferation by regulating Yap activity. Circ Res 2014; 116:70-9. [PMID: 25305307 DOI: 10.1161/circresaha.116.304472] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Shortly after birth, muscle cells of the mammalian heart lose their ability to divide. Thus, they are unable to effectively replace dying cells in the injured heart. The recent discovery that the transcriptional coactivator Yes-associated protein (Yap) is necessary and sufficient for cardiomyocyte proliferation has gained considerable attention. However, the upstream regulators and signaling pathways that control Yap activity in the heart are poorly understood. OBJECTIVE To investigate the role of α-catenins in the heart using cardiac-specific αE- and αT-catenin double knockout mice. METHODS AND RESULTS We used 2 cardiac-specific Cre transgenes to delete both αE-catenin (Ctnna1) and αT-catenin (Ctnna3) genes either in the perinatal or in the adult heart. Perinatal depletion of α-catenins increased cardiomyocyte number in the postnatal heart. Increased nuclear Yap and the cell cycle regulator cyclin D1 accompanied cardiomyocyte proliferation in the α-catenin double knockout hearts. Fetal genes were increased in the α-catenin double knockout hearts indicating a less mature cardiac gene expression profile. Knockdown of α-catenins in neonatal rat cardiomyocytes also resulted in increased proliferation, which could be blocked by knockdown of Yap. Finally, inactivation of α-catenins in the adult heart using an inducible Cre led to increased nuclear Yap and cardiomyocyte proliferation and improved contractility after myocardial infarction. CONCLUSIONS These studies demonstrate that α-catenins are critical regulators of Yap, a transcriptional coactivator essential for cardiomyocyte proliferation. Furthermore, we provide proof of concept that inhibiting α-catenins might be a useful strategy to promote myocardial regeneration after injury.
Collapse
Affiliation(s)
- Jifen Li
- From the Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA (J.L., E.G., A.V., R.Y., L.G., G.L.R.); Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium (S.G., F.v.R.); Inflammation Research Center, Flanders Institute for Biotechnology (VIB), Ghent, Belgium (S.G., F.v.R.); and INSERM UMR-1060, Laboratoire CarMeN, Université Lyon 1, Faculté de médecine, Rockefeller et Charles Merieux Lyon-Sud, Lyon, France (L.G.). Current address for E.G.: Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA
| | - Erhe Gao
- From the Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA (J.L., E.G., A.V., R.Y., L.G., G.L.R.); Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium (S.G., F.v.R.); Inflammation Research Center, Flanders Institute for Biotechnology (VIB), Ghent, Belgium (S.G., F.v.R.); and INSERM UMR-1060, Laboratoire CarMeN, Université Lyon 1, Faculté de médecine, Rockefeller et Charles Merieux Lyon-Sud, Lyon, France (L.G.). Current address for E.G.: Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA
| | - Alexia Vite
- From the Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA (J.L., E.G., A.V., R.Y., L.G., G.L.R.); Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium (S.G., F.v.R.); Inflammation Research Center, Flanders Institute for Biotechnology (VIB), Ghent, Belgium (S.G., F.v.R.); and INSERM UMR-1060, Laboratoire CarMeN, Université Lyon 1, Faculté de médecine, Rockefeller et Charles Merieux Lyon-Sud, Lyon, France (L.G.). Current address for E.G.: Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA
| | - Roslyn Yi
- From the Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA (J.L., E.G., A.V., R.Y., L.G., G.L.R.); Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium (S.G., F.v.R.); Inflammation Research Center, Flanders Institute for Biotechnology (VIB), Ghent, Belgium (S.G., F.v.R.); and INSERM UMR-1060, Laboratoire CarMeN, Université Lyon 1, Faculté de médecine, Rockefeller et Charles Merieux Lyon-Sud, Lyon, France (L.G.). Current address for E.G.: Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA
| | - Ludovic Gomez
- From the Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA (J.L., E.G., A.V., R.Y., L.G., G.L.R.); Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium (S.G., F.v.R.); Inflammation Research Center, Flanders Institute for Biotechnology (VIB), Ghent, Belgium (S.G., F.v.R.); and INSERM UMR-1060, Laboratoire CarMeN, Université Lyon 1, Faculté de médecine, Rockefeller et Charles Merieux Lyon-Sud, Lyon, France (L.G.). Current address for E.G.: Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA
| | - Steven Goossens
- From the Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA (J.L., E.G., A.V., R.Y., L.G., G.L.R.); Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium (S.G., F.v.R.); Inflammation Research Center, Flanders Institute for Biotechnology (VIB), Ghent, Belgium (S.G., F.v.R.); and INSERM UMR-1060, Laboratoire CarMeN, Université Lyon 1, Faculté de médecine, Rockefeller et Charles Merieux Lyon-Sud, Lyon, France (L.G.). Current address for E.G.: Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA
| | - Frans van Roy
- From the Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA (J.L., E.G., A.V., R.Y., L.G., G.L.R.); Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium (S.G., F.v.R.); Inflammation Research Center, Flanders Institute for Biotechnology (VIB), Ghent, Belgium (S.G., F.v.R.); and INSERM UMR-1060, Laboratoire CarMeN, Université Lyon 1, Faculté de médecine, Rockefeller et Charles Merieux Lyon-Sud, Lyon, France (L.G.). Current address for E.G.: Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA
| | - Glenn L Radice
- From the Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA (J.L., E.G., A.V., R.Y., L.G., G.L.R.); Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium (S.G., F.v.R.); Inflammation Research Center, Flanders Institute for Biotechnology (VIB), Ghent, Belgium (S.G., F.v.R.); and INSERM UMR-1060, Laboratoire CarMeN, Université Lyon 1, Faculté de médecine, Rockefeller et Charles Merieux Lyon-Sud, Lyon, France (L.G.). Current address for E.G.: Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA.
| |
Collapse
|
355
|
Liang N, Zhang C, Dill P, Panasyuk G, Pion D, Koka V, Gallazzini M, Olson EN, Lam H, Henske EP, Dong Z, Apte U, Pallet N, Johnson RL, Terzi F, Kwiatkowski DJ, Scoazec JY, Martignoni G, Pende M. Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex. ACTA ACUST UNITED AC 2014; 211:2249-63. [PMID: 25288394 PMCID: PMC4203941 DOI: 10.1084/jem.20140341] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Liang et al. find that the tumor suppressors TSC1 and TSC2, defects in which underlie the genetic disease Tuberous Sclerosis Complex (TSC), drive the mTOR-dependent autophagosomal destruction of the transcriptional activator YAP. Blocking YAP inhibited the abnormal proliferation of TSC1/2-deficient human cells and reversed TSC-like disease symptoms in mosaic Tsc1 mutant mice. Genetic studies have shown that the tuberous sclerosis complex (TSC) 1–TSC2–mammalian target of Rapamycin (mTOR) and the Hippo–Yes-associated protein 1 (YAP) pathways are master regulators of organ size, which are often involved in tumorigenesis. The crosstalk between these signal transduction pathways in coordinating environmental cues, such as nutritional status and mechanical constraints, is crucial for tissue growth. Whether and how mTOR regulates YAP remains elusive. Here we describe a novel mouse model of TSC which develops renal mesenchymal lesions recapitulating human perivascular epithelioid cell tumors (PEComas) from patients with TSC. We identify that YAP is up-regulated by mTOR in mouse and human PEComas. YAP inhibition blunts abnormal proliferation and induces apoptosis of TSC1–TSC2-deficient cells, both in culture and in mosaic Tsc1 mutant mice. We further delineate that YAP accumulation in TSC1/TSC2-deficient cells is due to impaired degradation of the protein by the autophagosome/lysosome system. Thus, the regulation of YAP by mTOR and autophagy is a novel mechanism of growth control, matching YAP activity with nutrient availability under growth-permissive conditions. YAP may serve as a potential therapeutic target for TSC and other diseases with dysregulated mTOR activity.
Collapse
Affiliation(s)
- Ning Liang
- Institut Necker-Enfants Malades, CS 61431, Paris, France Institut National de la Santé et de la Recherche Médicale, U1151, F-75014 Paris, France Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Chi Zhang
- Institut Necker-Enfants Malades, CS 61431, Paris, France Institut National de la Santé et de la Recherche Médicale, U1151, F-75014 Paris, France Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Patricia Dill
- Institut Necker-Enfants Malades, CS 61431, Paris, France Institut National de la Santé et de la Recherche Médicale, U1151, F-75014 Paris, France Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France Department of Pediatric Neurology and Developmental Medicine, University Children's Hospital Basel, University of Basel, 4056 Basel, Switzerland
| | - Ganna Panasyuk
- Institut Necker-Enfants Malades, CS 61431, Paris, France Institut National de la Santé et de la Recherche Médicale, U1151, F-75014 Paris, France Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Delphine Pion
- Institut Necker-Enfants Malades, CS 61431, Paris, France Institut National de la Santé et de la Recherche Médicale, U1151, F-75014 Paris, France Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Vonda Koka
- Institut Necker-Enfants Malades, CS 61431, Paris, France Institut National de la Santé et de la Recherche Médicale, U1151, F-75014 Paris, France Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Morgan Gallazzini
- Institut Necker-Enfants Malades, CS 61431, Paris, France Institut National de la Santé et de la Recherche Médicale, U1151, F-75014 Paris, France Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Hilaire Lam
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Elizabeth P Henske
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Georgia Health Sciences University and Charlie Norwood VA Medical Center, Augusta, Georgia, GA 30192
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160
| | - Nicolas Pallet
- Institut National de la Santé et de la Recherche Médicale U775 and Université Paris Descartes, 75006 Paris, France Service de Néphrologie, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Randy L Johnson
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Fabiola Terzi
- Institut Necker-Enfants Malades, CS 61431, Paris, France Institut National de la Santé et de la Recherche Médicale, U1151, F-75014 Paris, France Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - David J Kwiatkowski
- Translational Medicine Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | | | - Guido Martignoni
- Department of Pathology and Diagnostic, University of Verona, 37129 Verona, Italy Pederzoli Hospital, Peschiera, 37134 Verona, Italy
| | - Mario Pende
- Institut Necker-Enfants Malades, CS 61431, Paris, France Institut National de la Santé et de la Recherche Médicale, U1151, F-75014 Paris, France Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| |
Collapse
|
356
|
Lin Z, Zhou P, von Gise A, Gu F, Ma Q, Chen J, Guo H, van Gorp PRR, Wang DZ, Pu WT. Pi3kcb links Hippo-YAP and PI3K-AKT signaling pathways to promote cardiomyocyte proliferation and survival. Circ Res 2014; 116:35-45. [PMID: 25249570 DOI: 10.1161/circresaha.115.304457] [Citation(s) in RCA: 252] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
RATIONALE Yes-associated protein (YAP), the nuclear effector of Hippo signaling, regulates cellular growth and survival in multiple organs, including the heart, by interacting with TEA (transcriptional enhancer activator)-domain sequence-specific DNA-binding proteins. Recent studies showed that YAP stimulates cardiomyocyte proliferation and survival. However, the direct transcriptional targets through which YAP exerts its effects are poorly defined. OBJECTIVE To identify direct YAP targets that mediate its mitogenic and antiapoptotic effects in the heart. METHODS AND RESULTS We identified direct YAP targets by combining differential gene expression analysis in YAP gain- and loss-of-function with genome-wide identification of YAP-bound loci using chromatin immunoprecipitation and high throughput sequencing. This screen identified Pik3cb, encoding p110β, a catalytic subunit of phosphoinositol-3-kinase, as a candidate YAP effector that promotes cardiomyocyte proliferation and survival. YAP and TEA-domain occupied a conserved enhancer within the first intron of Pik3cb, and this enhancer drove YAP-dependent reporter gene expression. Yap gain- and loss-of-function studies indicated that YAP is necessary and sufficient to activate the phosphoinositol-3-kinase-Akt pathway. Like Yap, Pik3cb gain-of-function stimulated cardiomyocyte proliferation, and Pik3cb knockdown dampened YAP mitogenic activity. Reciprocally, impaired heart function in Yap loss-of-function was significantly rescued by adeno-associated virus-mediated Pik3cb expression. CONCLUSIONS Pik3cb is a crucial direct target of YAP, through which the YAP activates phosphoinositol-3-kinase-AKT pathway and regulates cardiomyocyte proliferation and survival.
Collapse
Affiliation(s)
- Zhiqiang Lin
- From the Department of Cardiology, Boston Children's Hospital, MA (Z.L., P.Z., A.v.G., F.G., Q.M., J.C., H.G., P.R.R.v.G., D.-Z.W., W.T.P.); Department of Pediatric Cardiology and Intensive Care, MHH-Hannover Medical School, Hannover, Germany (A.v.G.); Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (H.G.); Department of Cardiology, Leiden University Medical Center, The Netherlands (P.R.R.v.G.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (D.-Z.W., W.T.P.)
| | - Pingzhu Zhou
- From the Department of Cardiology, Boston Children's Hospital, MA (Z.L., P.Z., A.v.G., F.G., Q.M., J.C., H.G., P.R.R.v.G., D.-Z.W., W.T.P.); Department of Pediatric Cardiology and Intensive Care, MHH-Hannover Medical School, Hannover, Germany (A.v.G.); Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (H.G.); Department of Cardiology, Leiden University Medical Center, The Netherlands (P.R.R.v.G.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (D.-Z.W., W.T.P.)
| | - Alexander von Gise
- From the Department of Cardiology, Boston Children's Hospital, MA (Z.L., P.Z., A.v.G., F.G., Q.M., J.C., H.G., P.R.R.v.G., D.-Z.W., W.T.P.); Department of Pediatric Cardiology and Intensive Care, MHH-Hannover Medical School, Hannover, Germany (A.v.G.); Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (H.G.); Department of Cardiology, Leiden University Medical Center, The Netherlands (P.R.R.v.G.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (D.-Z.W., W.T.P.)
| | - Fei Gu
- From the Department of Cardiology, Boston Children's Hospital, MA (Z.L., P.Z., A.v.G., F.G., Q.M., J.C., H.G., P.R.R.v.G., D.-Z.W., W.T.P.); Department of Pediatric Cardiology and Intensive Care, MHH-Hannover Medical School, Hannover, Germany (A.v.G.); Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (H.G.); Department of Cardiology, Leiden University Medical Center, The Netherlands (P.R.R.v.G.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (D.-Z.W., W.T.P.)
| | - Qing Ma
- From the Department of Cardiology, Boston Children's Hospital, MA (Z.L., P.Z., A.v.G., F.G., Q.M., J.C., H.G., P.R.R.v.G., D.-Z.W., W.T.P.); Department of Pediatric Cardiology and Intensive Care, MHH-Hannover Medical School, Hannover, Germany (A.v.G.); Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (H.G.); Department of Cardiology, Leiden University Medical Center, The Netherlands (P.R.R.v.G.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (D.-Z.W., W.T.P.)
| | - Jinghai Chen
- From the Department of Cardiology, Boston Children's Hospital, MA (Z.L., P.Z., A.v.G., F.G., Q.M., J.C., H.G., P.R.R.v.G., D.-Z.W., W.T.P.); Department of Pediatric Cardiology and Intensive Care, MHH-Hannover Medical School, Hannover, Germany (A.v.G.); Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (H.G.); Department of Cardiology, Leiden University Medical Center, The Netherlands (P.R.R.v.G.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (D.-Z.W., W.T.P.)
| | - Haidong Guo
- From the Department of Cardiology, Boston Children's Hospital, MA (Z.L., P.Z., A.v.G., F.G., Q.M., J.C., H.G., P.R.R.v.G., D.-Z.W., W.T.P.); Department of Pediatric Cardiology and Intensive Care, MHH-Hannover Medical School, Hannover, Germany (A.v.G.); Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (H.G.); Department of Cardiology, Leiden University Medical Center, The Netherlands (P.R.R.v.G.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (D.-Z.W., W.T.P.)
| | - Pim R R van Gorp
- From the Department of Cardiology, Boston Children's Hospital, MA (Z.L., P.Z., A.v.G., F.G., Q.M., J.C., H.G., P.R.R.v.G., D.-Z.W., W.T.P.); Department of Pediatric Cardiology and Intensive Care, MHH-Hannover Medical School, Hannover, Germany (A.v.G.); Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (H.G.); Department of Cardiology, Leiden University Medical Center, The Netherlands (P.R.R.v.G.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (D.-Z.W., W.T.P.)
| | - Da-Zhi Wang
- From the Department of Cardiology, Boston Children's Hospital, MA (Z.L., P.Z., A.v.G., F.G., Q.M., J.C., H.G., P.R.R.v.G., D.-Z.W., W.T.P.); Department of Pediatric Cardiology and Intensive Care, MHH-Hannover Medical School, Hannover, Germany (A.v.G.); Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (H.G.); Department of Cardiology, Leiden University Medical Center, The Netherlands (P.R.R.v.G.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (D.-Z.W., W.T.P.)
| | - William T Pu
- From the Department of Cardiology, Boston Children's Hospital, MA (Z.L., P.Z., A.v.G., F.G., Q.M., J.C., H.G., P.R.R.v.G., D.-Z.W., W.T.P.); Department of Pediatric Cardiology and Intensive Care, MHH-Hannover Medical School, Hannover, Germany (A.v.G.); Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (H.G.); Department of Cardiology, Leiden University Medical Center, The Netherlands (P.R.R.v.G.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (D.-Z.W., W.T.P.).
| |
Collapse
|
357
|
Affiliation(s)
- James B Papizan
- From the Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas
| | - Eric N Olson
- From the Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas.
| |
Collapse
|
358
|
Wackerhage H, Del Re DP, Judson RN, Sudol M, Sadoshima J. The Hippo signal transduction network in skeletal and cardiac muscle. Sci Signal 2014; 7:re4. [PMID: 25097035 DOI: 10.1126/scisignal.2005096] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery of the Hippo pathway can be traced back to two areas of research. Genetic screens in fruit flies led to the identification of the Hippo pathway kinases and scaffolding proteins that function together to suppress cell proliferation and tumor growth. Independent research, often in the context of muscle biology, described Tead (TEA domain) transcription factors, which bind CATTCC DNA motifs to regulate gene expression. These two research areas were joined by the finding that the Hippo pathway regulates the activity of Tead transcription factors mainly through phosphorylation of the transcriptional coactivators Yap and Taz, which bind to and activate Teads. Additionally, many other signal transduction proteins crosstalk to members of the Hippo pathway forming a Hippo signal transduction network. We discuss evidence that the Hippo signal transduction network plays important roles in myogenesis, regeneration, muscular dystrophy, and rhabdomyosarcoma in skeletal muscle, as well as in myogenesis, organ size control, and regeneration of the heart. Understanding the role of Hippo kinases in skeletal and heart muscle physiology could have important implications for translational research.
Collapse
Affiliation(s)
- Henning Wackerhage
- School of Medical Sciences, University of Aberdeen, Health Sciences Building, Foresterhill, AB25 2ZD Aberdeen, Scotland, UK.
| | - Dominic P Del Re
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Robert N Judson
- School of Medical Sciences, University of Aberdeen, Health Sciences Building, Foresterhill, AB25 2ZD Aberdeen, Scotland, UK. Biomedical Research Centre, University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Marius Sudol
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Republic of Singapore. Department of Medicine, Mount Sinai School of Medicine, One Gustave Levy Place, New York, NY 10029, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103, USA
| |
Collapse
|
359
|
Ma Y, Yang Y, Wang F, Wei Q, Qin H. Hippo-YAP signaling pathway: A new paradigm for cancer therapy. Int J Cancer 2014; 137:2275-86. [PMID: 25042563 DOI: 10.1002/ijc.29073] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 07/02/2014] [Indexed: 01/11/2023]
Abstract
In the past decades, the Hippo signaling pathway has been delineated and shown to play multiple roles in the control of organ size in both Drosophila and mammals. In mammals, the Hippo pathway is a kinase cascade leading from Mst1/2 to YAP and its paralog TAZ. Several studies have demonstrated that YAP/TAZ is a candidate oncogene and that other members of the Hippo pathway are tumor suppressive genes. The dysregulation of the Hippo pathway has been observed in a variety of cancers. This review chronicles the recent progress in elucidating the function of Hippo signaling in tumorigenesis and provide a rich source of potential targets for cancer therapy.
Collapse
Affiliation(s)
- Yanlei Ma
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China
| | - Yongzhi Yang
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China
| | - Feng Wang
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China
| | - Huanlong Qin
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
360
|
Zi M, Maqsood A, Prehar S, Mohamed TMA, Abou-Leisa R, Robertson A, Cartwright EJ, Ray SG, Oh S, Lim DS, Neyses L, Oceandy D. The mammalian Ste20-like kinase 2 (Mst2) modulates stress-induced cardiac hypertrophy. J Biol Chem 2014; 289:24275-88. [PMID: 25035424 DOI: 10.1074/jbc.m114.562405] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Hippo signaling pathway has recently moved to center stage in cardiac research because of its key role in cardiomyocyte proliferation and regeneration of the embryonic and newborn heart. However, its role in the adult heart is incompletely understood. We investigate here the role of mammalian Ste20-like kinase 2 (Mst2), one of the central regulators of this pathway. Mst2(-/-) mice showed no alteration in cardiomyocyte proliferation. However, Mst2(-/-) mice exhibited a significant reduction of hypertrophy and fibrosis in response to pressure overload. Consistently, overexpression of MST2 in neonatal rat cardiomyocytes significantly enhanced phenylephrine-induced cellular hypertrophy. Mechanistically, Mst2 positively modulated the prohypertrophic Raf1-ERK1/2 pathway. However, activation of the downstream effectors of the Hippo pathway (Yes-associated protein) was not affected by Mst2 ablation. An initial genetic study in mitral valve prolapse patients revealed an association between a polymorphism in the human MST2 gene and adverse cardiac remodeling. These results reveal a novel role of Mst2 in stress-dependent cardiac hypertrophy and remodeling in the adult mouse and likely human heart.
Collapse
Affiliation(s)
- Min Zi
- From the Institute of Cardiovascular Sciences, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Arfa Maqsood
- From the Institute of Cardiovascular Sciences, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Sukhpal Prehar
- From the Institute of Cardiovascular Sciences, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Tamer M A Mohamed
- From the Institute of Cardiovascular Sciences, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Riham Abou-Leisa
- From the Institute of Cardiovascular Sciences, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Abigail Robertson
- From the Institute of Cardiovascular Sciences, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Elizabeth J Cartwright
- From the Institute of Cardiovascular Sciences, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Simon G Ray
- the Department of Cardiology, South Manchester University Hospital and Manchester Academic Health Science Centre, Manchester M23 9LT, United Kingdom, and
| | - Sangphil Oh
- the Department of Biological Sciences, National Creative Research Initiatives Center, Graduate School of Nanoscience and Technology (WCU), Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Dae-Sik Lim
- the Department of Biological Sciences, National Creative Research Initiatives Center, Graduate School of Nanoscience and Technology (WCU), Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Ludwig Neyses
- From the Institute of Cardiovascular Sciences, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Delvac Oceandy
- From the Institute of Cardiovascular Sciences, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom,
| |
Collapse
|
361
|
Gomez M, Gomez V, Hergovich A. The Hippo pathway in disease and therapy: cancer and beyond. Clin Transl Med 2014; 3:22. [PMID: 25097725 PMCID: PMC4107774 DOI: 10.1186/2001-1326-3-22] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 06/26/2014] [Indexed: 12/22/2022] Open
Abstract
The Hippo tumour suppressor pathway co-ordinates cell proliferation, cell death and cell differentiation to regulate tissue growth control. In mammals, a conserved core Hippo signalling module receives signal inputs on different levels to ensure the proper regulation of YAP/TAZ activities as transcriptional co-activators. While the core module members MST1/2, Salvador, LATS1/2 and MOB1 have been attributed tumour suppressive functions, YAP/TAZ have been mainly described to have oncogenic roles, although some reports provided evidence supporting growth suppressive roles of YAP/TAZ in certain cancer settings. Intriguingly, mammalian Hippo signalling is also implicated in non-cancer diseases and plays a role in tissue regeneration following injury. Cumulatively, these findings indicate that the pharmacological inhibition or activation of the Hippo pathway could be desirable depending on the disease context. In this review, we first summarise the functions of the mammalian Hippo pathway in tumour formation, and then discuss non-cancer diseases involving Hippo signalling core components with a specific focus on our current understanding of the non-cancer roles of MST1/2 and YAP/TAZ. In addition, the pros and cons of possible pharmacological interventions with Hippo signalling will be reviewed, with particular emphasis on anti-cancer drug development and regenerative medicine.
Collapse
Affiliation(s)
- Marta Gomez
- Tumour Suppressor Signalling Networks laboratory, UCL Cancer Institute, University College London, 72 Huntley Street, WC1E 6BT London, UK
| | - Valenti Gomez
- Tumour Suppressor Signalling Networks laboratory, UCL Cancer Institute, University College London, 72 Huntley Street, WC1E 6BT London, UK
| | - Alexander Hergovich
- Tumour Suppressor Signalling Networks laboratory, UCL Cancer Institute, University College London, 72 Huntley Street, WC1E 6BT London, UK
| |
Collapse
|
362
|
Porrello ER, Olson EN. A neonatal blueprint for cardiac regeneration. Stem Cell Res 2014; 13:556-70. [PMID: 25108892 DOI: 10.1016/j.scr.2014.06.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/13/2014] [Accepted: 06/24/2014] [Indexed: 12/26/2022] Open
Abstract
Adult mammals undergo minimal regeneration following cardiac injury, which severely compromises cardiac function and contributes to the ongoing burden of heart failure. In contrast, the mammalian heart retains a transient capacity for cardiac regeneration during fetal and early neonatal life. Recent studies have established the importance of several evolutionarily conserved mechanisms for heart regeneration in lower vertebrates and neonatal mammals including induction of cardiomyocyte proliferation, epicardial cell activation, angiogenesis, extracellular matrix deposition and immune cell infiltration. In this review, we provide an up-to-date account of the molecular and cellular basis for cardiac regeneration in lower vertebrates and neonatal mammals. The historical context for these recent findings and their ramifications for the future development of cardiac regenerative therapies are also discussed.
Collapse
Affiliation(s)
- Enzo R Porrello
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Eric N Olson
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
363
|
Varelas X. The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development 2014; 141:1614-26. [PMID: 24715453 DOI: 10.1242/dev.102376] [Citation(s) in RCA: 492] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Studies over the past 20 years have defined the Hippo signaling pathway as a major regulator of tissue growth and organ size. Diverse roles for the Hippo pathway have emerged, the majority of which in vertebrates are determined by the transcriptional regulators TAZ and YAP (TAZ/YAP). Key processes regulated by TAZ/YAP include the control of cell proliferation, apoptosis, movement and fate. Accurate control of the levels and localization of these factors is thus essential for early developmental events, as well as for tissue homeostasis, repair and regeneration. Recent studies have revealed that TAZ/YAP activity is regulated by mechanical and cytoskeletal cues as well as by various extracellular factors. Here, I provide an overview of these and other regulatory mechanisms and outline important developmental processes controlled by TAZ and YAP.
Collapse
Affiliation(s)
- Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Room K-620, Boston, MA 02118, USA
| |
Collapse
|
364
|
Zhang H, von Gise A, Liu Q, Hu T, Tian X, He L, Pu W, Huang X, He L, Cai CL, Camargo FD, Pu WT, Zhou B. Yap1 is required for endothelial to mesenchymal transition of the atrioventricular cushion. J Biol Chem 2014; 289:18681-92. [PMID: 24831012 DOI: 10.1074/jbc.m114.554584] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cardiac malformations due to aberrant development of the atrioventricular (AV) valves are among the most common forms of congenital heart diseases. Normally, heart valve mesenchyme is formed from an endothelial to mesenchymal transition (EMT) of endothelial cells of the endocardial cushions. Yes-associated protein 1 (YAP1) has been reported to regulate EMT in vitro, in addition to its known role as a major regulator of organ size and cell proliferation in vertebrates, leading us to hypothesize that YAP1 is required for heart valve development. We tested this hypothesis by conditional inactivation of YAP1 in endothelial cells and their derivatives. This resulted in markedly hypocellular endocardial cushions due to impaired formation of heart valve mesenchyme by EMT and to reduced endocardial cell proliferation. In endothelial cells, TGFβ induces nuclear localization of Smad2/3/4 complex, which activates expression of Snail, Twist1, and Slug, key transcription factors required for EMT. YAP1 interacts with this complex, and loss of YAP1 disrupts TGFβ-induced up-regulation of Snail, Twist1, and Slug. Together, our results identify a role of YAP1 in regulating EMT through modulation of TGFβ-Smad signaling and through proliferative activity during cardiac cushion development.
Collapse
Affiliation(s)
- Hui Zhang
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Alexander von Gise
- the Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts 02115, the Department of Pediatric Cardiology and Intensive Care, MHH-Hannover Medical School, 30669 Hannover, Germany
| | - Qiaozhen Liu
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tianyuan Hu
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xueying Tian
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lingjuan He
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenjuan Pu
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiuzhen Huang
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liang He
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chen-Leng Cai
- the Department of Developmental and Regenerative Biology, Center for Molecular Cardiology of the Child Health and Development Institute, the Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York 10029
| | - Fernando D Camargo
- the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, and
| | - William T Pu
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Zhou
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China,
| |
Collapse
|
365
|
Lin Z, von Gise A, Zhou P, Gu F, Ma Q, Jiang J, Yau AL, Buck JN, Gouin KA, van Gorp PRR, Zhou B, Chen J, Seidman JG, Wang DZ, Pu WT. Cardiac-specific YAP activation improves cardiac function and survival in an experimental murine MI model. Circ Res 2014; 115:354-63. [PMID: 24833660 DOI: 10.1161/circresaha.115.303632] [Citation(s) in RCA: 329] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE Yes-associated protein (YAP), the terminal effector of the Hippo signaling pathway, is crucial for regulating embryonic cardiomyocyte proliferation. OBJECTIVE We hypothesized that YAP activation after myocardial infarction (MI) would preserve cardiac function and improve survival. METHODS AND RESULTS We used a cardiac-specific, inducible expression system to activate YAP in adult mouse heart. Activation of YAP in adult heart promoted cardiomyocyte proliferation and did not deleteriously affect heart function. Furthermore, YAP activation after MI preserved heart function and reduced infarct size. Using adeno-associated virus subtype 9 (AAV9) as a delivery vector, we expressed human YAP (hYAP) in the adult murine myocardium immediately after MI. We found that AAV9:hYAP significantly improved cardiac function and mouse survival. AAV9:hYAP did not exert its salutary effects by reducing cardiomyocyte apoptosis. Rather, AAV9:hYAP stimulated adult cardiomyocyte proliferation. Gene expression profiling indicated that AAV9:hYAP stimulated expression of cell cycle genes and promoted a less mature cardiac gene expression signature. CONCLUSIONS Cardiac-specific YAP activation after MI mitigated myocardial injury, improved cardiac function, and enhanced survival. These findings suggest that therapeutic activation of YAP or its downstream targets, potentially through AAV-mediated gene therapy, may be a strategy to improve outcome after MI.
Collapse
Affiliation(s)
- Zhiqiang Lin
- From the Departments of Cardiology, Boston Children's Hospital (Z.L., A.v.G., P.Z., F.G., Q.M., A.L.Y., J.N.B., K.A.G., P.R.R.v.G., B.Z., J.C., D.-Z.W., W.T.P.) and Genetics (J.J., J.G.S.), Harvard Medical School, Boston, MA; Department of Pediatric Cardiology and Intensive Care, MHH-Hannover Medical School, Hannover, Germany (A.v.G.); Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands (P.R.R.v.G.); Harvard Stem Cell Institute, Harvard University, Cambridge, MA (D.-Z.W., W.T.P.); and Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (B.Z.)
| | - Alexander von Gise
- From the Departments of Cardiology, Boston Children's Hospital (Z.L., A.v.G., P.Z., F.G., Q.M., A.L.Y., J.N.B., K.A.G., P.R.R.v.G., B.Z., J.C., D.-Z.W., W.T.P.) and Genetics (J.J., J.G.S.), Harvard Medical School, Boston, MA; Department of Pediatric Cardiology and Intensive Care, MHH-Hannover Medical School, Hannover, Germany (A.v.G.); Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands (P.R.R.v.G.); Harvard Stem Cell Institute, Harvard University, Cambridge, MA (D.-Z.W., W.T.P.); and Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (B.Z.)
| | - Pingzhu Zhou
- From the Departments of Cardiology, Boston Children's Hospital (Z.L., A.v.G., P.Z., F.G., Q.M., A.L.Y., J.N.B., K.A.G., P.R.R.v.G., B.Z., J.C., D.-Z.W., W.T.P.) and Genetics (J.J., J.G.S.), Harvard Medical School, Boston, MA; Department of Pediatric Cardiology and Intensive Care, MHH-Hannover Medical School, Hannover, Germany (A.v.G.); Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands (P.R.R.v.G.); Harvard Stem Cell Institute, Harvard University, Cambridge, MA (D.-Z.W., W.T.P.); and Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (B.Z.)
| | - Fei Gu
- From the Departments of Cardiology, Boston Children's Hospital (Z.L., A.v.G., P.Z., F.G., Q.M., A.L.Y., J.N.B., K.A.G., P.R.R.v.G., B.Z., J.C., D.-Z.W., W.T.P.) and Genetics (J.J., J.G.S.), Harvard Medical School, Boston, MA; Department of Pediatric Cardiology and Intensive Care, MHH-Hannover Medical School, Hannover, Germany (A.v.G.); Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands (P.R.R.v.G.); Harvard Stem Cell Institute, Harvard University, Cambridge, MA (D.-Z.W., W.T.P.); and Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (B.Z.)
| | - Qing Ma
- From the Departments of Cardiology, Boston Children's Hospital (Z.L., A.v.G., P.Z., F.G., Q.M., A.L.Y., J.N.B., K.A.G., P.R.R.v.G., B.Z., J.C., D.-Z.W., W.T.P.) and Genetics (J.J., J.G.S.), Harvard Medical School, Boston, MA; Department of Pediatric Cardiology and Intensive Care, MHH-Hannover Medical School, Hannover, Germany (A.v.G.); Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands (P.R.R.v.G.); Harvard Stem Cell Institute, Harvard University, Cambridge, MA (D.-Z.W., W.T.P.); and Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (B.Z.)
| | - Jianming Jiang
- From the Departments of Cardiology, Boston Children's Hospital (Z.L., A.v.G., P.Z., F.G., Q.M., A.L.Y., J.N.B., K.A.G., P.R.R.v.G., B.Z., J.C., D.-Z.W., W.T.P.) and Genetics (J.J., J.G.S.), Harvard Medical School, Boston, MA; Department of Pediatric Cardiology and Intensive Care, MHH-Hannover Medical School, Hannover, Germany (A.v.G.); Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands (P.R.R.v.G.); Harvard Stem Cell Institute, Harvard University, Cambridge, MA (D.-Z.W., W.T.P.); and Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (B.Z.)
| | - Allan L Yau
- From the Departments of Cardiology, Boston Children's Hospital (Z.L., A.v.G., P.Z., F.G., Q.M., A.L.Y., J.N.B., K.A.G., P.R.R.v.G., B.Z., J.C., D.-Z.W., W.T.P.) and Genetics (J.J., J.G.S.), Harvard Medical School, Boston, MA; Department of Pediatric Cardiology and Intensive Care, MHH-Hannover Medical School, Hannover, Germany (A.v.G.); Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands (P.R.R.v.G.); Harvard Stem Cell Institute, Harvard University, Cambridge, MA (D.-Z.W., W.T.P.); and Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (B.Z.)
| | - Jessica N Buck
- From the Departments of Cardiology, Boston Children's Hospital (Z.L., A.v.G., P.Z., F.G., Q.M., A.L.Y., J.N.B., K.A.G., P.R.R.v.G., B.Z., J.C., D.-Z.W., W.T.P.) and Genetics (J.J., J.G.S.), Harvard Medical School, Boston, MA; Department of Pediatric Cardiology and Intensive Care, MHH-Hannover Medical School, Hannover, Germany (A.v.G.); Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands (P.R.R.v.G.); Harvard Stem Cell Institute, Harvard University, Cambridge, MA (D.-Z.W., W.T.P.); and Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (B.Z.)
| | - Katryna A Gouin
- From the Departments of Cardiology, Boston Children's Hospital (Z.L., A.v.G., P.Z., F.G., Q.M., A.L.Y., J.N.B., K.A.G., P.R.R.v.G., B.Z., J.C., D.-Z.W., W.T.P.) and Genetics (J.J., J.G.S.), Harvard Medical School, Boston, MA; Department of Pediatric Cardiology and Intensive Care, MHH-Hannover Medical School, Hannover, Germany (A.v.G.); Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands (P.R.R.v.G.); Harvard Stem Cell Institute, Harvard University, Cambridge, MA (D.-Z.W., W.T.P.); and Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (B.Z.)
| | - Pim R R van Gorp
- From the Departments of Cardiology, Boston Children's Hospital (Z.L., A.v.G., P.Z., F.G., Q.M., A.L.Y., J.N.B., K.A.G., P.R.R.v.G., B.Z., J.C., D.-Z.W., W.T.P.) and Genetics (J.J., J.G.S.), Harvard Medical School, Boston, MA; Department of Pediatric Cardiology and Intensive Care, MHH-Hannover Medical School, Hannover, Germany (A.v.G.); Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands (P.R.R.v.G.); Harvard Stem Cell Institute, Harvard University, Cambridge, MA (D.-Z.W., W.T.P.); and Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (B.Z.)
| | - Bin Zhou
- From the Departments of Cardiology, Boston Children's Hospital (Z.L., A.v.G., P.Z., F.G., Q.M., A.L.Y., J.N.B., K.A.G., P.R.R.v.G., B.Z., J.C., D.-Z.W., W.T.P.) and Genetics (J.J., J.G.S.), Harvard Medical School, Boston, MA; Department of Pediatric Cardiology and Intensive Care, MHH-Hannover Medical School, Hannover, Germany (A.v.G.); Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands (P.R.R.v.G.); Harvard Stem Cell Institute, Harvard University, Cambridge, MA (D.-Z.W., W.T.P.); and Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (B.Z.)
| | - Jinghai Chen
- From the Departments of Cardiology, Boston Children's Hospital (Z.L., A.v.G., P.Z., F.G., Q.M., A.L.Y., J.N.B., K.A.G., P.R.R.v.G., B.Z., J.C., D.-Z.W., W.T.P.) and Genetics (J.J., J.G.S.), Harvard Medical School, Boston, MA; Department of Pediatric Cardiology and Intensive Care, MHH-Hannover Medical School, Hannover, Germany (A.v.G.); Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands (P.R.R.v.G.); Harvard Stem Cell Institute, Harvard University, Cambridge, MA (D.-Z.W., W.T.P.); and Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (B.Z.)
| | - Jonathan G Seidman
- From the Departments of Cardiology, Boston Children's Hospital (Z.L., A.v.G., P.Z., F.G., Q.M., A.L.Y., J.N.B., K.A.G., P.R.R.v.G., B.Z., J.C., D.-Z.W., W.T.P.) and Genetics (J.J., J.G.S.), Harvard Medical School, Boston, MA; Department of Pediatric Cardiology and Intensive Care, MHH-Hannover Medical School, Hannover, Germany (A.v.G.); Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands (P.R.R.v.G.); Harvard Stem Cell Institute, Harvard University, Cambridge, MA (D.-Z.W., W.T.P.); and Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (B.Z.)
| | - Da-Zhi Wang
- From the Departments of Cardiology, Boston Children's Hospital (Z.L., A.v.G., P.Z., F.G., Q.M., A.L.Y., J.N.B., K.A.G., P.R.R.v.G., B.Z., J.C., D.-Z.W., W.T.P.) and Genetics (J.J., J.G.S.), Harvard Medical School, Boston, MA; Department of Pediatric Cardiology and Intensive Care, MHH-Hannover Medical School, Hannover, Germany (A.v.G.); Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands (P.R.R.v.G.); Harvard Stem Cell Institute, Harvard University, Cambridge, MA (D.-Z.W., W.T.P.); and Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (B.Z.)
| | - William T Pu
- From the Departments of Cardiology, Boston Children's Hospital (Z.L., A.v.G., P.Z., F.G., Q.M., A.L.Y., J.N.B., K.A.G., P.R.R.v.G., B.Z., J.C., D.-Z.W., W.T.P.) and Genetics (J.J., J.G.S.), Harvard Medical School, Boston, MA; Department of Pediatric Cardiology and Intensive Care, MHH-Hannover Medical School, Hannover, Germany (A.v.G.); Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands (P.R.R.v.G.); Harvard Stem Cell Institute, Harvard University, Cambridge, MA (D.-Z.W., W.T.P.); and Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (B.Z.).
| |
Collapse
|
366
|
Abstract
The Hippo signaling pathway, consisting of a highly conserved kinase cascade (MST and Lats) and downstream transcription coactivators (YAP and TAZ), plays a key role in tissue homeostasis and organ size control by regulating tissue-specific stem cells. Moreover, this pathway plays a prominent role in tissue repair and regeneration. Dysregulation of the Hippo pathway is associated with cancer development. Recent studies have revealed a complex network of upstream inputs, including cell density, mechanical sensation, and G-protein-coupled receptor (GPCR) signaling, that modulate Hippo pathway activity. This review focuses on the role of the Hippo pathway in stem cell biology and its potential implications in tissue homeostasis and cancer.
Collapse
Affiliation(s)
- Jung-Soon Mo
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego La Jolla, CA, USA
| | - Hyun Woo Park
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego La Jolla, CA, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego La Jolla, CA, USA
| |
Collapse
|
367
|
Lin Z, Pu WT. Harnessing Hippo in the heart: Hippo/Yap signaling and applications to heart regeneration and rejuvenation. Stem Cell Res 2014; 13:571-81. [PMID: 24881775 DOI: 10.1016/j.scr.2014.04.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/15/2014] [Accepted: 04/19/2014] [Indexed: 11/19/2022] Open
Abstract
The adult mammalian heart exhibits limited regenerative capacity after myocardial injury, a shortcoming that is responsible for the current lack of definitive treatments for heart failure. A search for approaches that might enhance adult heart regeneration has led to interest in the Hippo/Yap signaling pathway, a recently discovered signaling pathway that regulates cell proliferation and organ growth. Here we provide a brief overview of the Hippo/Yap pathway and its known roles in the developing and adult heart. We discuss the implications of Hippo/Yap signaling for regulation of cardiomyocyte death and regeneration.
Collapse
Affiliation(s)
- Zhiqiang Lin
- Department of Cardiology, Children's Hospital Boston, USA
| | - William T Pu
- Department of Cardiology, Children's Hospital Boston, USA; Harvard Stem Cell Institute, Harvard University, USA.
| |
Collapse
|
368
|
Affiliation(s)
- Yong Hu
- From the Department of Cardiology, Children's Hospital Boston, Boston, MA (Y.H., W.T.P.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | | |
Collapse
|
369
|
Zhou J. An emerging role for Hippo-YAP signaling in cardiovascular development. J Biomed Res 2014; 28:251-4. [PMID: 25050107 PMCID: PMC4102837 DOI: 10.7555/jbr.28.20140020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/24/2014] [Indexed: 12/20/2022] Open
Abstract
The Hippo signaling pathway was originally discovered in Drosophila and shown to be critical for organ size control and tumorigenesis. This pathway consists of a cascade of kinases and several adaptors that lead to the phosphorylation and inhibition, through nuclear exclusion, of the transcriptional cofactor Yorkie in Drosophila or YAP (yes associated protein) in mammals. Recent studies demonstrate that cardiac-specific deletion of the Hippo pathway kinase Mst (STE20-like protein kinases) co-activator WW45 (WW domain-containing adaptor 45), Mst1, Mst2, or Lats2 (large tumor suppressor homologue 2) in mice result in over-grown hearts with elevated cardiomyocyte proliferation. Consistent with these observations, over-expression of YAP in the mouse embryonic heart increases heart size and promotes cardiac regeneration and contractility after myocardial infarction by inducing cardiomyocyte proliferation, whereas deletion of YAP in the mouse heart impedes cardiomyocyte proliferation, causing myocardial hypoplasia and embryonic or premature lethality. YAP has also been shown to play an important role in the vascular system. Specific-deletion of YAP from vascular smooth muscle cells in mice results in aberrant development of large arteries with a hypoplastic arterial wall phenotype. Hippo-YAP signaling cross-talks with other signaling pathways such as IGF (insulin-like growth factor) and Wnt signaling to promote heart growth by increasing expression of cell cycle genes. The purpose of this review is to summarize these recent findings and discuss potential diagnostic or therapeutic strategies in cardiovascular system based on manipulating the Hippo-YAP signaling.
Collapse
Affiliation(s)
- Jiliang Zhou
- Department of Pharmacology & Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| |
Collapse
|
370
|
Zacchigna S, Giacca M. Extra- and intracellular factors regulating cardiomyocyte proliferation in postnatal life. Cardiovasc Res 2014; 102:312-20. [PMID: 24623280 DOI: 10.1093/cvr/cvu057] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
One of the striking differences that distinguish the adult from the embryonic heart in mammals and set it apart from the heart in urodeles and teleosts is the incapacity of cardiomyocytes to respond to damage by proliferation. While the molecular reasons underlying these characteristics still await elucidation, mounting evidence collected over the last several years indicates that cardiomyocyte proliferation can be modulated by different extracellular molecules. The exogenous administration of selected growth factors is capable of inducing neonatal and, in some instances, also adult cardiomyocyte proliferation. Other diffusible factors can regulate the proliferation and cardiac commitment of endogenous or implanted stem cells. While the individual role of these factors in the paracrine control of normal heart homeostasis still needs to be defined, this information is relevant for the development of novel therapeutic strategies for cardiac regeneration. In addition, recent evidence indicates that postnatal cardiomyocyte proliferation is controlled by genetically defined pathways, such as the Hippo pathway, and can be modulated by perturbing the endogenous cardiomyocyte microRNA network; the identification of the cytokines that activate these molecular circuits holds great potential for clinical translation.
Collapse
Affiliation(s)
- Serena Zacchigna
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology , Padriciano, 99, Trieste 34149, Italy
| | | |
Collapse
|
371
|
Du X, Dong Y, Shi H, Li J, Kong S, Shi D, Sun LV, Xu T, Deng K, Tao W. Mst1 and mst2 are essential regulators of trophoblast differentiation and placenta morphogenesis. PLoS One 2014; 9:e90701. [PMID: 24595170 PMCID: PMC3942462 DOI: 10.1371/journal.pone.0090701] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 02/03/2014] [Indexed: 12/21/2022] Open
Abstract
The placenta is essential for survival and growth of the fetus because it promotes the delivery of nutrients and oxygen from the maternal circulation as well as fetal waste disposal. Mst1 and Mst2 (Mst1/2), key components of the mammalian hpo/Mst signaling pathway, encode two highly conserved Ser/Thr kinases and play important roles in the prevention of tumorigenesis and autoimmunity, control of T cell development and trafficking, and embryonic development. However, their functions in placental development are not fully understood, and the underlying cellular and molecular mechanisms remain elusive. Here, we investigated the functions of Mst1/2 in mouse placental development using both conventional and conditional (endothelial) Mst1/2 double knockout mice. We found that the number of trophoblast giant cells dramatically increased while spongiotrophoblast cells almost completely disappeared in Mst1/2 deficient placentas. We showed that Mst1/2 deficiency down regulated the expression of Mash2, which is required for suppressing the differentiation of trophoblast giant cells. Furthermore, we demonstrated that endothelial-specific deletion of Mst1/2 led to impaired placental labyrinthine vasculature and embryonic lethality at E11.5, but neither affected vasculature in yolk sac and embryo proper nor endocardium development. Collectively, our findings suggest that Mst1/2 regulate placental development by control of trophoblast cell differentiation and labyrinthine vasculature at midgestation and Mst1/2 control labyrinth morphogenesis in trophoblast- and fetal endothelial-dependent manners. Thus, our studies have defined novel roles of Mst1/2 in mouse placental development.
Collapse
Affiliation(s)
- Xingrong Du
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China
| | - Yongli Dong
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China
| | - Hao Shi
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiang Li
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China
| | - Shanshan Kong
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China
| | - Donghua Shi
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China
| | - Ling V. Sun
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China
| | - Tian Xu
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Kejing Deng
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail: (WT); (KD)
| | - Wufan Tao
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail: (WT); (KD)
| |
Collapse
|
372
|
Canonical Wnt signalling activates TAZ through PP1A during osteogenic differentiation. Cell Death Differ 2014; 21:854-63. [PMID: 24510127 DOI: 10.1038/cdd.2014.8] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 12/13/2013] [Accepted: 01/02/2014] [Indexed: 12/16/2022] Open
Abstract
TAZ, a transcriptional modulator, has a key role in cell proliferation, differentiation and stem cell self-renewal. TAZ activity is regulated by several signalling pathways, including Hippo, GPCR and Wnt signalling, but the regulatory mechanisms of TAZ activation are not yet clearly understood. In this report, we show that TAZ is regulated by canonical Wnt signalling during osteogenic differentiation. Wnt3a increases TAZ expression and an inhibitor of GSK3β, a downstream effector of Wnt signalling, induces TAZ. Wnt3a facilitates the dephosphorylation of TAZ, which stabilises TAZ and prevents it from binding 14-3-3 proteins, thus inducing the nuclear localisation of TAZ. Dephosphorylation of TAZ occurs via PP1A, and depletion of PP1A blocks Wnt3a-induced TAZ stabilisation. Wnt3a-induced TAZ activates osteoblastic differentiation and siRNA-induced TAZ depletion decreases Wnt3a-induced osteoblast differentiation. Taken together, these results show that TAZ mediates Wnt3a-stimulated osteogenic differentiation through PP1A, suggesting that the Wnt signal regulates the Hippo pathway.
Collapse
|
373
|
Heallen T, Morikawa Y, Leach J, Tao G, Willerson JT, Johnson RL, Martin JF. Hippo signaling impedes adult heart regeneration. Development 2014; 140:4683-90. [PMID: 24255096 DOI: 10.1242/dev.102798] [Citation(s) in RCA: 366] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heart failure due to cardiomyocyte loss after ischemic heart disease is the leading cause of death in the United States in large part because heart muscle regenerates poorly. The endogenous mechanisms preventing mammalian cardiomyocyte regeneration are poorly understood. Hippo signaling, an ancient organ size control pathway, is a kinase cascade that inhibits developing cardiomyocyte proliferation but it has not been studied postnatally or in fully mature adult cardiomyocytes. Here, we investigated Hippo signaling in adult cardiomyocyte renewal and regeneration. We found that unstressed Hippo-deficient adult mouse cardiomyocytes re-enter the cell cycle and undergo cytokinesis. Moreover, Hippo deficiency enhances cardiomyocyte regeneration with functional recovery after adult myocardial infarction as well as after postnatal day eight (P8) cardiac apex resection and P8 myocardial infarction. In damaged hearts, Hippo mutant cardiomyocytes also have elevated proliferation. Our findings reveal that Hippo signaling is an endogenous repressor of adult cardiomyocyte renewal and regeneration. Targeting the Hippo pathway in human disease might be beneficial for the treatment of heart disease.
Collapse
Affiliation(s)
- Todd Heallen
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
374
|
Abstract
OPINION STATEMENT Myocardial infarction is the most common cause of cardiac injury in humans and results in acute loss of large numbers of myocardial cells. Unfortunately, the mammalian heart is unable to replenish the cells that are lost following a myocardial infarction and an eventual progression to heart failure can often occur as a result. Regenerative medicine based approaches are actively being developed; however, a complete blueprint on how mammalian hearts can regenerate is still missing. Knowledge gained from studying animal models, such as zebrafish, newt, and neonatal mice, that can naturally regenerate their hearts after injury have provided an understanding of the molecular mechanisms involved in heart repair and regeneration. This research offers novel strategies to overcome the limited regenerative response observed in human patients.
Collapse
|
375
|
Fujiu K, Nagai R. Fibroblast-mediated pathways in cardiac hypertrophy. J Mol Cell Cardiol 2014; 70:64-73. [PMID: 24492068 DOI: 10.1016/j.yjmcc.2014.01.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 01/20/2014] [Accepted: 01/23/2014] [Indexed: 12/26/2022]
Abstract
Under normal physiological conditions, cardiac fibroblasts are the primary producers of extracellular matrix and supply a mechanical scaffold for efficacious heart contractions induced by cardiomyocytes. In the hypertrophic heart, cardiac fibroblasts provide a pivotal contribution to cardiac remodeling. Many growth factors and extracellular matrix components secreted by cardiac fibroblasts induce and modify cardiomyocyte hypertrophy. Recent evidence revealed that cardiomyocyte-cardiac fibroblast communications are complex and multifactorial. Many growth factors and molecules contribute to cardiac hypertrophy via different roles that include induction of hypertrophy and the feedback hypertrophic response, fine-tuning of adaptive hypertrophy, limitation of left ventricular dilation, and modification of interstitial changes. This review focuses on recent work and topics and provides a mechanistic insight into cardiomyocyte-cardiac fibroblast communication in cardiac hypertrophy. This article is part of a Special Issue entitled "Myocyte-Fibroblast Signalling in Myocardium ".
Collapse
Affiliation(s)
- Katsuhito Fujiu
- Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, Tokyo, Japan; Translational Systems Biology and Medicine Initiative (TSBMI), The University of Tokyo, Tokyo, Japan.
| | - Ryozo Nagai
- Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program), Tokyo, Japan; Jichi Medical University, Tochigi, Japan.
| |
Collapse
|
376
|
Wang Y, Hu G, Liu F, Wang X, Wu M, Schwarz JJ, Zhou J. Deletion of yes-associated protein (YAP) specifically in cardiac and vascular smooth muscle cells reveals a crucial role for YAP in mouse cardiovascular development. Circ Res 2014; 114:957-65. [PMID: 24478334 DOI: 10.1161/circresaha.114.303411] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
RATIONALE Our previous study has shown that yes-associated protein (YAP) plays a crucial role in the phenotypic modulation of vascular smooth muscle cells (SMCs) in response to arterial injury. However, the role of YAP in vascular SMC development is unknown. OBJECTIVE The goal of this study was to investigate the functional role of YAP in cardiovascular development in mice and determine the mechanisms underlying YAP's actions. METHODS AND RESULTS YAP was deleted in cardiomyocytes and vascular SMCs by crossing YAP flox mice with SM22α-Cre transgenic mice. Cardiac/SMC-specific deletion of YAP directed by SM22α-Cre resulted in perinatal lethality in mice because of profound cardiac defects including hypoplastic myocardium, membranous ventricular septal defect, and double outlet right ventricle. The cardiac/SMC-specific YAP knockout mice also displayed severe vascular abnormalities including hypoplastic arterial wall, short/absent brachiocephalic artery, and retroesophageal right subclavian artery. Deletion of YAP in mouse vascular SMCs induced expression of a subset of cell cycle arrest genes including G-protein-coupled receptor 132 (Gpr132). Silencing Gpr132 promoted SMC proliferation, whereas overexpression of Gpr132 attenuated SMC growth by arresting cell cycle in G0/G1 phase, suggesting that ablation of YAP-induced impairment of SMC proliferation was mediated, at least in part, by induction of Gpr132 expression. Mechanistically, YAP recruited the epigenetic repressor histone deacetylase-4 to suppress Gpr132 gene expression via a muscle CAT element in the Gpr132 gene. CONCLUSIONS YAP plays a critical role in cardiac/SMC proliferation during cardiovascular development by epigenetically regulating expression of a set of cell cycle suppressors.
Collapse
Affiliation(s)
- Yong Wang
- From the Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta (Y.W., G.H., F.L., J.Z.); and Center for Cardiovascular Sciences, Albany Medical College, NY (X.W., M.W., J.J.S.)
| | | | | | | | | | | | | |
Collapse
|
377
|
Lian X, Zhang J, Zhu K, Kamp TJ, Palecek SP. Insulin inhibits cardiac mesoderm, not mesendoderm, formation during cardiac differentiation of human pluripotent stem cells and modulation of canonical Wnt signaling can rescue this inhibition. Stem Cells 2014. [PMID: 23193013 DOI: 10.1002/stem.1289] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The study of the regulatory signaling hierarchies of human heart development is limited by a lack of model systems that can reproduce the precise developmental events that occur during human embryogenesis. The advent of human pluripotent stem cell (hPSC) technology and robust cardiac differentiation methods affords a unique opportunity to monitor the full course of cardiac induction in vitro. Here, we show that stage-specific activation of insulin signaling strongly inhibited cardiac differentiation during a monolayer-based differentiation protocol that used transforming growth factor β superfamily ligands to generate cardiomyocytes. However, insulin did not repress cardiomyocyte differentiation in a defined protocol that used small molecule regulators of canonical Wnt signaling. By examining the context of insulin inhibition of cardiomyocyte differentiation, we determined that the inhibitory effects by insulin required Wnt/β-catenin signaling and that the cardiomyocyte differentiation defect resulting from insulin exposure was rescued by inhibition of Wnt/β-catenin during the cardiac mesoderm (Nkx2.5+) stage. Thus, insulin and Wnt/β-catenin signaling pathways, as a network, coordinate to influence hPSC differentiation to cardiomyocytes, with the Wnt/β-catenin pathway dominant to the insulin pathway. Our study contributes to the understanding of the regulatory hierarchies of human cardiomyocyte differentiation and has implications for modeling human heart development.
Collapse
Affiliation(s)
- Xiaojun Lian
- Department of Chemical & Biological Engineering University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
378
|
Shao D, Zhai P, Del Re DP, Sciarretta S, Yabuta N, Nojima H, Lim DS, Pan D, Sadoshima J. A functional interaction between Hippo-YAP signalling and FoxO1 mediates the oxidative stress response. Nat Commun 2014; 5:3315. [PMID: 24525530 PMCID: PMC3962829 DOI: 10.1038/ncomms4315] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/24/2014] [Indexed: 12/16/2022] Open
Abstract
The Hippo pathway is an evolutionarily conserved regulator of organ size and tumorigenesis that negatively regulates cell growth and survival. Here we report that Yes-associated protein (YAP), the terminal effector of the Hippo pathway, interacts with FoxO1 in the nucleus of cardiomyocytes, thereby promoting survival. YAP and FoxO1 form a functional complex on the promoters of the catalase and manganese superoxide dismutase (MnSOD) antioxidant genes and stimulate their transcription. Inactivation of YAP, induced by Hippo activation, suppresses FoxO1 activity and decreases antioxidant gene expression, suggesting that Hippo signalling modulates the FoxO1-mediated antioxidant response. In the setting of ischaemia/reperfusion (I/R) in the heart, activation of Hippo antagonizes YAP-FoxO1, leading to enhanced oxidative stress-induced cell death through downregulation of catalase and MnSOD. Conversely, restoration of YAP activity protects against I/R injury. These results suggest that YAP is a nuclear co-factor of FoxO1 and that the Hippo pathway negatively affects cardiomyocyte survival by inhibiting the function of YAP-FoxO1.
Collapse
Affiliation(s)
- Dan Shao
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07103, USA
| | - Peiyong Zhai
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07103, USA
| | - Dominic P. Del Re
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07103, USA
| | - Sebastiano Sciarretta
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07103, USA
| | - Norikazu Yabuta
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroshi Nojima
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Dae-Sik Lim
- Department of Biological Sciences, National Creative Research Initiatives Center, Biomedical Research Center, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Korea
| | - Duojia Pan
- Howard Hughes Medical Institute and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07103, USA
| |
Collapse
|
379
|
Song JY, Park R, Kim JY, Hughes L, Lu L, Kim S, Johnson RL, Cho SH. Dual function of Yap in the regulation of lens progenitor cells and cellular polarity. Dev Biol 2013; 386:281-90. [PMID: 24384391 DOI: 10.1016/j.ydbio.2013.12.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/21/2013] [Accepted: 12/23/2013] [Indexed: 10/25/2022]
Abstract
Hippo-Yap signaling has been implicated in organ size determination via its regulation of cell proliferation, growth and apoptosis (Pan, 2007). The vertebrate lens comprises only two major cell types, lens progenitors and differentiated fiber cells, thereby providing a relatively simple system for studying size-controlling mechanisms. In order to investigate the role of Hippo-Yap signaling in lens size regulation, we conditionally ablated Yap in the developing mouse lens. Lens progenitor-specific deletion of Yap led to near obliteration of the lens primarily due to hypocellularity in the lens epithelium (LE) and accompanying lens fiber (LF) defects. A significantly reduced LE progenitor pool resulted mainly from failed self-renewal and increased apoptosis. Additionally, Yap-deficient lens progenitor cells precociously exited the cell cycle and expressed the LF marker, β-Crystallin. The mutant progenitor cells also exhibited multiple cellular and subcellular alterations including cell and nuclear shape change, organellar polarity disruption, and disorganized apical polarity complex and junction proteins such as Crumbs, Pals1, Par3 and ZO-1. Yap-deficient LF cells failed to anchor to the overlying LE layer, impairing their normal elongation and packaging. Furthermore, our localization study results suggest that, in the developing LE, Yap participates in the cell context-dependent transition from the proliferative to differentiation-competent state by integrating cell density information. Taken together, our results shed new light on Yap's indispensable and novel organizing role in mammalian organ size control by coordinating multiple events including cell proliferation, differentiation, and polarity.
Collapse
Affiliation(s)
- Ji Yun Song
- Shriners Hospitals Pediatric Research Center and Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | - Raehee Park
- Shriners Hospitals Pediatric Research Center and Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | - Jin Young Kim
- Shriners Hospitals Pediatric Research Center and Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | - Lucinda Hughes
- Shriners Hospitals Pediatric Research Center and Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | - Li Lu
- Department of Biochemistry and Molecular Biology, University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, United States
| | - Seonhee Kim
- Shriners Hospitals Pediatric Research Center and Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | - Randy L Johnson
- Department of Biochemistry and Molecular Biology, University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, United States
| | - Seo-Hee Cho
- Shriners Hospitals Pediatric Research Center and Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, United States.
| |
Collapse
|
380
|
Johnson R, Halder G. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov 2013; 13:63-79. [PMID: 24336504 DOI: 10.1038/nrd4161] [Citation(s) in RCA: 729] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Hippo signalling pathway is an emerging growth control and tumour suppressor pathway that regulates cell proliferation and stem cell functions. Defects in Hippo signalling and hyperactivation of its downstream effectors Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) contribute to the development of cancer, which suggests that pharmacological inhibition of YAP and TAZ activity may be an effective anticancer strategy. Conversely, YAP and TAZ can also have beneficial roles in stimulating tissue repair and regeneration following injury, so their activation may be therapeutically useful in these contexts. A complex network of intracellular and extracellular signalling pathways that modulate YAP and TAZ activities have recently been identified. Here, we review the regulation of the Hippo signalling pathway, its functions in normal homeostasis and disease, and recent progress in the identification of small-molecule pathway modulators.
Collapse
Affiliation(s)
- Randy Johnson
- 1] Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. [2] Genes and Development Program, and Cancer Biology Program, Graduate School for Biological Sciences, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. [3] Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Georg Halder
- VIB Center for the Biology of Disease, KU Leuven Center for Human Genetics, University of Leuven 3000, Belgium
| |
Collapse
|
381
|
Chen SN, Gurha P, Lombardi R, Ruggiero A, Willerson JT, Marian AJ. The hippo pathway is activated and is a causal mechanism for adipogenesis in arrhythmogenic cardiomyopathy. Circ Res 2013; 114:454-68. [PMID: 24276085 DOI: 10.1161/circresaha.114.302810] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
RATIONALE Mutations in the intercalated disc proteins, such as plakophilin 2 (PKP2), cause arrhythmogenic cardiomyopathy (AC). AC is characterized by the replacement of cardiac myocytes by fibro-adipocytes, cardiac dysfunction, arrhythmias, and sudden death. OBJECTIVE To delineate the molecular pathogenesis of AC. METHODS AND RESULTS Localization and levels of selected intercalated disc proteins, including signaling molecules, were markedly reduced in human hearts with AC. Altered protein constituents of intercalated discs were associated with activation of the upstream Hippo molecules in the human hearts, in Nkx2.5-Cre:Dsp(W/F) and Myh6:Jup mouse models of AC, and in the PKP2 knockdown HL-1 myocytes (HL-1(PKP2:shRNA)). Level of active protein kinase C-α isoform, which requires PKP2 for activity, was reduced. In contrast, neurofibromin 2 (or Merlin), a molecule upstream of the Hippo pathway and that is inactivated by protein kinase C-α isoform, was activated. Consequently, the downstream Hippo molecules mammalian STE20-like protein kinases 1/2 (MST1/2), large tumor suppressor kinases 1/2 (LATS1/2), and Yes-associated protein (YAP) (the latter is the effector of the pathway) were phosphorylated. Coimmunoprecipitation detected binding of phosphorylated YAP, phosphorylated β-catenin, and junction protein plakoglobin (the latter translocated from the junction). RNA sequencing, transcript quantitative polymerase chain reaction, and reporter assays showed suppressed activity of SV40 transcriptional enhancer factor domain (TEAD) and transcription factor 7-like 2 (TCF7L2), which are transcription factors of the Hippo and the canonical Wnt signaling, respectively. In contrast, adipogenesis was enhanced. Simultaneous knockdown of Lats1/2, molecules upstream to YAP, rescued inactivation of YAP and β-catenin and adipogenesis in the HL-1(PKP2:shRNA) myocytes. CONCLUSIONS Molecular remodeling of the intercalated discs leads to pathogenic activation of the Hippo pathway, suppression of the canonical Wnt signaling, and enhanced adipogenesis in AC. The findings offer novel mechanisms for the pathogenesis of AC.
Collapse
Affiliation(s)
- Suet Nee Chen
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, The University of Texas Health Sciences Center at Houston, Houston, TX; and Texas Heart Institute, Houston, TX
| | | | | | | | | | | |
Collapse
|
382
|
Muralidhar SA, Mahmoud AI, Canseco D, Xiao F, Sadek HA. Harnessing the power of dividing cardiomyocytes. Glob Cardiol Sci Pract 2013; 2013:212-21. [PMID: 24689023 PMCID: PMC3963758 DOI: 10.5339/gcsp.2013.29] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 09/20/2013] [Indexed: 12/13/2022] Open
Abstract
Lower vertebrates, such as newt and zebrafish, retain a robust cardiac regenerative capacity following injury. Recently, our group demonstrated that neonatal mammalian hearts have a remarkable regenerative potential in the first few days after birth. Although adult mammals lack this regenerative potential, it is now clear that there is measurable cardiomyocyte turnover that occurs in the adult mammalian heart. In both neonatal and adult mammals, proliferation of pre-existing cardiomyocytes appears to be the underlying mechanism of myocyte turnover. This review will highlight the advances and landmark studies that opened new frontiers in cardiac regeneration.
Collapse
Affiliation(s)
- Shalini A Muralidhar
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ahmed I Mahmoud
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Diana Canseco
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Feng Xiao
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Hesham A Sadek
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
383
|
Paradis AN, Gay MS, Zhang L. Binucleation of cardiomyocytes: the transition from a proliferative to a terminally differentiated state. Drug Discov Today 2013; 19:602-9. [PMID: 24184431 DOI: 10.1016/j.drudis.2013.10.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/26/2013] [Accepted: 10/25/2013] [Indexed: 11/17/2022]
Abstract
Cardiomyocytes possess a unique ability to transition from mononucleate to the mature binucleate phenotype in late fetal development and around birth. Mononucleate cells are proliferative, whereas binucleate cells exit the cell cycle and no longer proliferate. This crucial period of terminal differentiation dictates cardiomyocyte endowment for life. Adverse early life events can influence development of the heart, affecting cardiomyocyte number and contributing to heart disease late in life. Although much is still unknown about the mechanisms underlying the binucleation process, many studies are focused on molecules involved in cell cycle regulation and cytokinesis as well as epigenetic modifications that can occur during this transition. Better understanding of these mechanisms could provide a basis for recovering the proliferative capacity of cardiomyocytes.
Collapse
Affiliation(s)
- Alexandra N Paradis
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Maresha S Gay
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
384
|
Kelleher FC, O'Sullivan H. Oxford and the Savannah: can the hippo provide an explanation for Peto's paradox? Clin Cancer Res 2013; 20:557-64. [PMID: 24166913 DOI: 10.1158/1078-0432.ccr-13-2010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Peto's paradox is the counterintuitive finding that increasing body mass and thereby cell number does not correlate with an increase in cancer incidence across different species. The Hippo signaling pathway is an evolutionarily conserved system that determines organ size by regulating apoptosis and cell proliferation. It also affects cell growth by microRNA-29 (miR-29)-mediated cross-talk to the mTOR signaling pathway. Whether these pathways that decide organ size could explain this paradox merits consideration. Inactivation of most genes of the Hippo pathway in Drosophila melanogaster genetic screens causes excessive tissue-specific growth of developing tissues. Altered Hippo pathway activity is frequently found in diverse tumor types, but mutations of component pathway genes are rare. Most Hippo pathway components are encoded by tumor suppressor genes (TSG), but an exception is the downstream effector gene called YAP. Activity of the Hippo pathway causes deactivating phosphorylation of YES-associated protein (YAP) with nuclear exclusion. YAP can also be phosphorylated at a second site, S127, by AKT. YAP induces the expression of genes responsible for proliferation and suppression of apoptosis. Resolving Peto's paradox may serendipitously provide new insights into the biology and treatment of cancer. This article considers Hippo signaling and Peto's paradox in the context of TSG-oncogene computed models. Interspecies differences in dietary composition, metabolic rates, and anabolic processes are also discussed in the context of Hippo-mTOR signaling. The metabolically important LKB1-AMPK (liver kinase B1-AMP activated protein kinase) signaling axis that suppresses the mTOR pathway is also considered.
Collapse
Affiliation(s)
- Fergal C Kelleher
- Authors' Affiliations: St. Vincent's University Hospital, Dublin, Ireland; and Whangarei Base Hospital, Whangarei, New Zealand
| | | |
Collapse
|
385
|
Stromal-epithelial crosstalk regulates kidney progenitor cell differentiation. Nat Cell Biol 2013; 15:1035-44. [PMID: 23974041 PMCID: PMC3891676 DOI: 10.1038/ncb2828] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 07/16/2013] [Indexed: 12/11/2022]
Abstract
Current models suggest that the fate of the kidney epithelial progenitors is solely regulated by signals from the adjacent ureteric bud. The bud provides signals that regulate the survival, renewal and differentiation of these cells. Recent data suggest that Wnt9b, a ureteric bud-derived factor, is sufficient for both progenitor cell renewal and differentiation. How the same molecule induces two seemingly contradictory processes is unknown. Here, we show that signals from the stromal fibroblasts cooperate with Wnt9b to promote differentiation of the progenitors. The atypical cadherin Fat4 encodes at least part of this stromal signal. Our data support a model whereby proper kidney size/function is regulated by balancing opposing signals from the ureteric bud and stroma to promote renewal and differentiation of the nehron progenitors.
Collapse
|
386
|
Abstract
The adult mammalian heart has limited potential for regeneration. Thus, after injury, cardiomyocytes are permanently lost, and contractility is diminished. In contrast, the neonatal heart can regenerate owing to sustained cardiomyocyte proliferation. Identification of critical regulators of cardiomyocyte proliferation and quiescence represents an important step toward potential regenerative therapies. Yes-associated protein (Yap), a transcriptional cofactor in the Hippo signaling pathway, promotes proliferation of embryonic cardiomyocytes by activating the insulin-like growth factor and Wnt signaling pathways. Here we report that mice bearing mutant alleles of Yap and its paralog WW domain containing transcription regulator 1 (Taz) exhibit gene dosage-dependent cardiac phenotypes, suggesting redundant roles of these Hippo pathway effectors in establishing proper myocyte number and maintaining cardiac function. Cardiac-specific deletion of Yap impedes neonatal heart regeneration, resulting in a default fibrotic response. Conversely, forced expression of a constitutively active form of Yap in the adult heart stimulates cardiac regeneration and improves contractility after myocardial infarction. The regenerative activity of Yap is correlated with its activation of embryonic and proliferative gene programs in cardiomyocytes. These findings identify Yap as an important regulator of cardiac regeneration and provide an experimental entry point to enhance this process.
Collapse
|
387
|
Lavado A, He Y, Paré J, Neale G, Olson EN, Giovannini M, Cao X. Tumor suppressor Nf2 limits expansion of the neural progenitor pool by inhibiting Yap/Taz transcriptional coactivators. Development 2013; 140:3323-34. [PMID: 23863479 DOI: 10.1242/dev.096537] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Brain development requires a precise balance between expansion of the neural progenitor pool and the production of postmitotic neurons and glia. Disruption of this equilibrium results in a myriad of structural abnormalities and disorders of the nervous system. The molecular mechanism that restricts neural progenitor expansion is poorly understood. Here we show that the tumor suppressor neurofibromatosis 2 (Nf2; merlin) limits the expansion of neural progenitor cells (NPCs) in the mammalian dorsal telencephalon. Nf2 is localized at the apical region of NPCs. In the absence of Nf2, NPCs of the cortical hem, hippocampal primordium and neocortical primordium overexpand, while production of Cajal-Retzius cells and hippocampal neurons decreases, resulting in severe malformation of the hippocampus in adult mice. We further show that Nf2 functions by inhibiting the Yap/Taz transcriptional coactivators, probably through a mechanism that is distinct from the canonical Hippo pathway. Overexpressing human YAP in NPCs causes a hippocampal malformation phenotype that closely resembles that of Nf2 mutants and, importantly, deleting Yap in the Nf2 mutant background largely restores hippocampal development. Our studies uncover Nf2 as an important inhibitor of neural progenitor expansion and establish Yap/Taz as key downstream effectors of Nf2 during brain development.
Collapse
Affiliation(s)
- Alfonso Lavado
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | |
Collapse
|
388
|
Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat Rev Mol Cell Biol 2013; 14:529-41. [PMID: 23839576 DOI: 10.1038/nrm3619] [Citation(s) in RCA: 367] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As the adult mammalian heart has limited potential for regeneration and repair, the loss of cardiomyocytes during injury and disease can result in heart failure and death. The cellular processes and regulatory mechanisms involved in heart growth and development can be exploited to repair the injured adult heart through 'reawakening' pathways that are active during embryogenesis. Heart function has been restored in rodents by reprogramming non-myocytes into cardiomyocytes, by expressing transcription factors (GATA4, HAND2, myocyte-specific enhancer factor 2C (MEF2C) and T-box 5 (TBX5)) and microRNAs (miR-1, miR-133, miR-208 and miR-499) that control cardiomyocyte identity. Stimulating cardiomyocyte dedifferentiation and proliferation by activating mitotic signalling pathways involved in embryonic heart growth represents a complementary approach for heart regeneration and repair. Recent advances in understanding the mechanistic basis of heart development offer exciting opportunities for effective therapies for heart failure.
Collapse
|
389
|
Huang Y, Harrison MR, Osorio A, Kim J, Baugh A, Duan C, Sucov HM, Lien CL. Igf Signaling is Required for Cardiomyocyte Proliferation during Zebrafish Heart Development and Regeneration. PLoS One 2013; 8:e67266. [PMID: 23840646 PMCID: PMC3694143 DOI: 10.1371/journal.pone.0067266] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 05/14/2013] [Indexed: 12/26/2022] Open
Abstract
Unlike its mammalian counterpart, the adult zebrafish heart is able to fully regenerate after severe injury. One of the most important events during the regeneration process is cardiomyocyte proliferation, which results in the replacement of lost myocardium. Growth factors that induce cardiomyocyte proliferation during zebrafish heart regeneration remain to be identified. Signaling pathways important for heart development might be reutilized during heart regeneration. IGF2 was recently shown to be important for cardiomyocyte proliferation and heart growth during mid-gestation heart development in mice, although its role in heart regeneration is unknown. We found that expression of igf2b was upregulated during zebrafish heart regeneration. Following resection of the ventricle apex, igf2b expression was detected in the wound, endocardium and epicardium at a time that coincides with cardiomyocyte proliferation. Transgenic zebrafish embryos expressing a dominant negative form of Igf1 receptor (dn-Igf1r) had fewer cardiomyocytes and impaired heart development, as did embryos treated with an Igf1r inhibitor. Moreover, inhibition of Igf1r signaling blocked cardiomyocyte proliferation during heart development and regeneration. We found that Igf signaling is required for a subpopulation of cardiomyocytes marked by gata4:EGFP to contribute to the regenerating area. Our findings suggest that Igf signaling is important for heart development and myocardial regeneration in zebrafish.
Collapse
Affiliation(s)
- Ying Huang
- Heart Institute, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California, United States of America
- Program of Developmental Biology and Regenerative Medicine, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California, United States of America
- Craniofacial Biology Graduate Program, Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Michael R. Harrison
- Heart Institute, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California, United States of America
- Program of Developmental Biology and Regenerative Medicine, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - Arthela Osorio
- Heart Institute, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California, United States of America
- Program of Developmental Biology and Regenerative Medicine, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - Jieun Kim
- Heart Institute, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California, United States of America
- Program of Developmental Biology and Regenerative Medicine, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - Aaron Baugh
- Heart Institute, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California, United States of America
- Program of Developmental Biology and Regenerative Medicine, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - Cunming Duan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Henry M. Sucov
- Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry & Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, United States of America
| | - Ching-Ling Lien
- Heart Institute, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California, United States of America
- Program of Developmental Biology and Regenerative Medicine, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California, United States of America
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, United States of America
- Department of Biochemistry & Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, United States of America
- * E-mail:
| |
Collapse
|
390
|
Morgan JT, Murphy CJ, Russell P. What do mechanotransduction, Hippo, Wnt, and TGFβ have in common? YAP and TAZ as key orchestrating molecules in ocular health and disease. Exp Eye Res 2013; 115:1-12. [PMID: 23792172 DOI: 10.1016/j.exer.2013.06.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/03/2013] [Accepted: 06/10/2013] [Indexed: 01/09/2023]
Abstract
Cells in vivo are exposed to a complex signaling environment. Biochemical signaling modalities, such as secreted proteins, specific extracellular matrix domains and ion fluxes certainly compose an important set of regulatory signals to cells. However, these signals are not exerted in isolation, but rather in concert with biophysical cues of the surrounding tissue, such as stiffness and topography. In this review, we attempt to highlight the biophysical attributes of ocular tissues and their influence on cellular behavior. Additionally, we introduce the proteins YAP and TAZ as targets of biophysical and biochemical signaling and important agonists and antagonists of numerous signaling pathways, including TGFβ and Wnt. We frame the discussion around this extensive signaling crosstalk, which allows YAP and TAZ to act as orchestrating molecules, capable of integrating biophysical and biochemical cues into a broad cellular response. Finally, while we draw on research from various fields to provide a full picture of YAP and TAZ, we attempt to highlight the intersections with vision science and the exciting work that has already been performed.
Collapse
Affiliation(s)
- Joshua T Morgan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | | | | |
Collapse
|
391
|
Beigi F, Schmeckpeper J, Pow-Anpongkul P, Payne JA, Zhang L, Zhang Z, Huang J, Mirotsou M, Dzau VJ. C3orf58, a novel paracrine protein, stimulates cardiomyocyte cell-cycle progression through the PI3K-AKT-CDK7 pathway. Circ Res 2013; 113:372-80. [PMID: 23784961 DOI: 10.1161/circresaha.113.301075] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
RATIONALE The regenerative capacity of the heart is markedly diminished shortly after birth, coinciding with overall withdrawal of cardiomyocytes from cell cycle. Consequently, the adult mammalian heart has limited capacity to regenerate after injury. The discovery of factors that can induce cardiomyocyte proliferation is, therefore, of high interest and has been the focus of extensive investigation throughout the past years. OBJECTIVE We have recently identified C3orf58 as a novel hypoxia and Akt induced stem cell factor (HASF) secreted from mesenchymal stem cells, which can promote cardiac repair through cytoprotective mechanisms. Here, we tested the hypothesis that HASF can also contribute to cardiac regeneration by stimulating cardiomyocyte division and proliferation. METHODS AND RESULTS Neonatal ventricular cardiomyocytes were stimulated in culture for 7 days with purified recombinant HASF protein. Compared with control untreated cells, HASF-treated neonatal cardiomyocytes exhibited 60% increase in DNA synthesis as measured by bromodeoxyuridine incorporation. These results were confirmed by immunofluorescence confocal microscopy showing a 50% to 100% increase in the number of cardiomyocytes in the mitotic and cytokinesis phases. Importantly, in vivo cardiac overexpression of HASF in a transgenic mouse model resulted in enhanced level of DNA synthesis and cytokinesis in neonatal and adult cardiomyocytes. These proliferative effects were modulated by a phosphoinositide 3-kinase-protein kinase B-cycle-dependent kinase 7 pathway as revealed by the use of phosphoinositide 3-kinase -pathway-specific inhibitors and silencing of the Cdk7 gene. CONCLUSIONS Our studies support the hypothesis that HASF induces cardiomyocyte proliferation via a phosphoinositide 3-kinase-protein kinase B-cycle-dependent kinase 7 pathway. The implications of this finding may be significant for cardiac regeneration biology and therapeutics.
Collapse
Affiliation(s)
- Farideh Beigi
- Department of Medicine, Mandel Center for Hypertension and Atherosclerosis Research, Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
392
|
Chakraborty S, Sengupta A, Yutzey KE. Tbx20 promotes cardiomyocyte proliferation and persistence of fetal characteristics in adult mouse hearts. J Mol Cell Cardiol 2013; 62:203-13. [PMID: 23751911 DOI: 10.1016/j.yjmcc.2013.05.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/17/2013] [Accepted: 05/30/2013] [Indexed: 11/25/2022]
Abstract
While differentiated cardiomyocytes proliferate prior to birth, adult cardiomyocytes in mammals exhibit relatively little proliferative activity. The T-box transcription factor Tbx20 is necessary and sufficient to promote prenatal cardiomyocyte proliferation, and Tbx20 also is required for adult cardiac homeostasis. The ability of Tbx20 to promote post-natal and adult cardiomyocyte proliferation was examined in mice with cardiomyocyte-specific Tbx20 gain-of-function beginning in the fetal period. In adult hearts, increased Tbx20 expression promotes cardiomyocyte proliferation and results in increased numbers of small, cycling, mononucleated cardiomyocytes, marked by persistent expression of fetal contractile protein genes. In adult cardiomyocytes in vivo and in neonatal rat cardiomyocytes in culture, Tbx20 promotes the activation of BMP2/pSmad1/5/8 and PI3K/AKT/GSK3β/β-catenin signaling pathways concomitant with increased cell proliferation. Inhibition of PI3K/AKT/GSK3β/β-catenin signaling reduces, but does not eliminate, Tbx20-mediated increases in cell proliferation, providing evidence for parallel regulatory pathways downstream of BMP/Smad1/5/8 signaling in promoting cardiomyocyte proliferation after birth. Thus, Tbx20 overexpression beginning in the fetal period activates multiple cardiac proliferative pathways after birth and maintains adult cardiomyocytes in an immature state in vivo.
Collapse
|
393
|
Yu XY, Geng YJ, Lei HP, Lin QX, Yuan J, Li Y. IGF-1 prevents high glucose-induced cell cycle arrest in cardiomyocytes via β-catenin pathway. Int J Cardiol 2013; 168:2869-70. [PMID: 23642823 DOI: 10.1016/j.ijcard.2013.03.145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 03/29/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Xi-Yong Yu
- Medical Research Center, Guangdong General Hospital, Guangdong Provincial Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, PR China.
| | | | | | | | | | | |
Collapse
|
394
|
Iwasa H, Maimaiti S, Kuroyanagi H, Kawano S, Inami K, Timalsina S, Ikeda M, Nakagawa K, Hata Y. Yes-associated protein homolog, YAP-1, is involved in the thermotolerance and aging in the nematode Caenorhabditis elegans. Exp Cell Res 2013; 319:931-45. [DOI: 10.1016/j.yexcr.2013.01.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 01/14/2013] [Accepted: 01/31/2013] [Indexed: 01/12/2023]
|
395
|
Constitutive expression of Yes-associated protein (Yap) in adult skeletal muscle fibres induces muscle atrophy and myopathy. PLoS One 2013; 8:e59622. [PMID: 23544078 PMCID: PMC3609830 DOI: 10.1371/journal.pone.0059622] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/15/2013] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to investigate the function of the Hippo pathway member Yes-associated protein (Yap, gene name Yap1) in skeletal muscle fibres in vivo. Specifically we bred an inducible, skeletal muscle fibre-specific knock-in mouse model (MCK-tTA-hYAP1 S127A) to test whether the over expression of constitutively active Yap (hYAP1 S127A) is sufficient to drive muscle hypertrophy or stimulate changes in fibre type composition. Unexpectedly, after 5–7 weeks of constitutive hYAP1 S127A over expression, mice suddenly and rapidly lost 20–25% body weight and suffered from gait impairments and kyphosis. Skeletal muscles atrophied by 34–40% and the muscle fibre cross sectional area decreased by ≈40% when compared to control mice. Histological analysis revealed evidence of skeletal muscle degeneration and regeneration, necrotic fibres and a NADH-TR staining resembling centronuclear myopathy. In agreement with the histology, mRNA expression of markers of regenerative myogenesis (embryonic myosin heavy chain, Myf5, myogenin, Pax7) and muscle protein degradation (atrogin-1, MuRF1) were significantly elevated in muscles from transgenic mice versus control. No significant changes in fibre type composition were detected using ATPase staining. The phenotype was largely reversible, as a cessation of hYAP1 S127A expression rescued body and muscle weight, restored muscle morphology and prevented further pathological progression. To conclude, high Yap activity in muscle fibres does not induce fibre hypertrophy nor fibre type changes but instead results in a reversible atrophy and deterioration.
Collapse
|
396
|
Choi WY, Gemberling M, Wang J, Holdway JE, Shen MC, Karlstrom RO, Poss KD. In vivo monitoring of cardiomyocyte proliferation to identify chemical modifiers of heart regeneration. Development 2013; 140:660-6. [PMID: 23293297 DOI: 10.1242/dev.088526] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Adult mammalian cardiomyocytes have little capacity to proliferate in response to injury, a deficiency that underlies the poor regenerative ability of human hearts after myocardial infarction. By contrast, zebrafish regenerate heart muscle after trauma by inducing proliferation of spared cardiomyocytes, providing a model for identifying manipulations that block or enhance these events. Although direct genetic or chemical screens of heart regeneration in adult zebrafish present several challenges, zebrafish embryos are ideal for high-throughput screening. Here, to visualize cardiomyocyte proliferation events in live zebrafish embryos, we generated transgenic zebrafish lines that employ fluorescent ubiquitylation-based cell cycle indicator (FUCCI) technology. We then performed a chemical screen and identified several small molecules that increase or reduce cardiomyocyte proliferation during heart development. These compounds act via Hedgehog, Insulin-like growth factor or Transforming growth factor β signaling pathways. Direct examination of heart regeneration after mechanical or genetic ablation injuries indicated that these pathways are activated in regenerating cardiomyocytes and that they can be pharmacologically manipulated to inhibit or enhance cardiomyocyte proliferation during adult heart regeneration. Our findings describe a new screening system that identifies molecules and pathways with the potential to modify heart regeneration.
Collapse
Affiliation(s)
- Wen-Yee Choi
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
397
|
Konsavage WM, Yochum GS. Intersection of Hippo/YAP and Wnt/β-catenin signaling pathways. Acta Biochim Biophys Sin (Shanghai) 2013; 45:71-9. [PMID: 23027379 DOI: 10.1093/abbs/gms084] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Traditionally, signaling pathways have been perceived to act in an autonomous manner to regulate tissue morphology, size, differentiation, and development. Recent evidence suggests that these pathways often intersect and regulate one another to elicit an appropriate response to a complex set of stimuli. Two pathways known to be important for development, growth, and homeostasis are the Wnt/β-catenin and the Hippo/YAP pathways. Growing data indicate that these two pathways influence each other in a number of ways to properly regulate tissue growth and repair. Deregulation of these pathways often contributes to tumorigenesis. In this review, we will discuss the points of intersection between the Wnt/β-catenin and Hippo/YAP pathways and how these interactions contribute to homeostasis, organ repair, and tumorigenesis.
Collapse
Affiliation(s)
- Wesley M Konsavage
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033-0850, USA
| | | |
Collapse
|
398
|
Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1. Proc Natl Acad Sci U S A 2013; 110:2569-74. [PMID: 23359693 DOI: 10.1073/pnas.1216462110] [Citation(s) in RCA: 282] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Hippo signaling pathway inhibits cell growth and regulates organ size through a kinase cascade that leads to the phosphorylation and nuclear exclusion of the growth-promoting transcriptional coactivator Yes-associated protein (YAP)/Yorkie. It mediates contact inhibition of cell growth downstream of cadherin adhesion molecules and other cell surface proteins. Contact inhibition is often antagonized by mitogenic growth factor signaling. We report an important mechanism for this antagonism, inhibition of Hippo pathway signaling by mitogenic growth factors. EGF treatment of immortalized mammary cells triggers the rapid translocation of YAP into the nucleus along with YAP dephosphorylation, both of which depend on Lats, the terminal kinase in the Hippo pathway. A small-molecule inhibitor screen of downstream effector pathways shows that EGF receptor inhibits the Hippo pathway through activation of PI3-kinase (PI3K) and phosphoinositide-dependent kinase (PDK1), but independent of AKT activity. The PI3K-PDK1 pathway also mediates YAP nuclear translocation downstream of lysophosphatidic acid and serum as a result of constitutive oncogenic activation of PI3K. PDK1 associates with the core Hippo pathway-kinase complex through the scaffold protein Salvador. The entire Hippo core complex dissociates in response to EGF signaling in a PI3K-PDK1-dependent manner, leading to inactivation of Lats, dephosphorylation of YAP, and YAP nuclear accumulation and transcriptional activation of its target gene, CTGF. These findings show that an important activity of mitogenic signaling pathways is to inactivate the growth-inhibitory Hippo pathway and provide a mechanism for antagonism between contact inhibition and growth factor action.
Collapse
|
399
|
Barry ER, Camargo FD. The Hippo superhighway: signaling crossroads converging on the Hippo/Yap pathway in stem cells and development. Curr Opin Cell Biol 2013; 25:247-53. [PMID: 23312716 DOI: 10.1016/j.ceb.2012.12.006] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 12/14/2012] [Accepted: 12/26/2012] [Indexed: 01/08/2023]
Abstract
Tissue regeneration is vital to the form and function of an organ. At the core of an organs' ability to self-renew is the stem cell, which maintains homeostasis, and repopulates injured or aged tissue. Tissue damage can dramatically change the dimensions of an organ, and during regeneration, an organ must halt growth once the original tissue dimensions have been restored. Therefore, stem cells must give rise to the appropriate number of differentiated progeny to achieve homeostasis. How this tissue-size checkpoint is regulated and how tissue size information relayed to stem cell compartments is unclear, however, it is likely that these mechanisms are altered during the course of tumorigenesis. An emerging signaling cascade, the Hippo Signaling Pathway, is a broadly conserved potent organ size regulator [1]. However, this pathway does not act alone. A number of examples demonstrate crosstalk between Hippo and other signaling pathways including Wnt, Tgfβ and Notch, with implications for stem cell biology. Here, we focus on these interactions primarily in the context of well characterized stem cell populations.
Collapse
Affiliation(s)
- Evan R Barry
- Stem Cell Program, Chidren's Hospital, Boston, MA 02115, United States
| | | |
Collapse
|
400
|
Del Re DP, Yang Y, Nakano N, Cho J, Zhai P, Yamamoto T, Zhang N, Yabuta N, Nojima H, Pan D, Sadoshima J. Yes-associated protein isoform 1 (Yap1) promotes cardiomyocyte survival and growth to protect against myocardial ischemic injury. J Biol Chem 2012; 288:3977-88. [PMID: 23275380 DOI: 10.1074/jbc.m112.436311] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Yap1 is an important regulator of cardiomyocyte proliferation and embryonic heart development, yet the function of endogenous Yap1 in the adult heart remains unknown. We studied the role of Yap1 in maintaining basal cardiac function and in modulating injury after chronic myocardial infarction (MI). Cardiomyocyte-specific homozygous inactivation of Yap1 in the postnatal heart (Yap(F/F)Cre) elicited increased myocyte apoptosis and fibrosis, dilated cardiomyopathy, and premature death. Heterozygous deletion (Yap(+/F)Cre) did not cause an overt cardiac phenotype compared with Yap(F/F) control mice at base line. In response to stress (MI), nuclear Yap1 was found selectively in the border zone and not in the remote area of the heart. After chronic MI (28 days), Yap(+/F)Cre mice had significantly increased myocyte apoptosis and fibrosis, with attenuated compensatory cardiomyocyte hypertrophy, and further impaired function versus Yap(+/F) control mice. Studies in isolated cardiomyocytes demonstrated that Yap1 expression is sufficient to promote increased cell size and hypertrophic gene expression and protected cardiomyocytes against H(2)O(2)-induced cell death, whereas Yap1 depletion attenuated phenylephrine-induced hypertrophy and augmented apoptosis. Finally, we observed a significant decrease in cardiomyocyte proliferation in Yap(+/F)Cre hearts compared with Yap(+/F) controls after MI and demonstrated that Yap1 is sufficient to promote cardiomyocyte proliferation in isolated cardiomyocytes. Our findings suggest that Yap1 is critical for basal heart homeostasis and that Yap1 deficiency exacerbates injury in response to chronic MI.
Collapse
Affiliation(s)
- Dominic P Del Re
- Cardiovascular Research Institute and Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|