351
|
Cowan J, Pandey S, Filion LG, Angel JB, Kumar A, Cameron DW. Comparison of interferon-γ-, interleukin (IL)-17- and IL-22-expressing CD4 T cells, IL-22-expressing granulocytes and proinflammatory cytokines during latent and active tuberculosis infection. Clin Exp Immunol 2012; 167:317-29. [PMID: 22236009 PMCID: PMC3278699 DOI: 10.1111/j.1365-2249.2011.04520.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2011] [Indexed: 01/17/2023] Open
Abstract
In this study, we investigated the role and expression of T helper type 17 (Th17) cells and Th17 cytokines in human tuberculosis. We show that the basal proportion of interferon (IFN)-γ-, interleukin (IL)-17- and IL-22-expressing CD4(+) T cells and IL-22-expressing granulocytes in peripheral blood were significantly lower in latently infected healthy individuals and active tuberculosis patients compared to healthy controls. In contrast, CD4(+) T cells expressing IL-17, IL-22 and IFN-γ were increased significantly following mycobacterial antigens stimulation in both latent and actively infected patients. Interestingly, proinflammatory IFN-γ and tumour necrosis factor (TNF)-α were increased following antigen stimulation in latent infection. Similarly, IL-1β, IL-4, IL-8, IL-22 and TNF-α were increased in the serum of latently infected individuals, whereas IL-6 and TNF-α were increased significantly in actively infected patients. Overall, we observed differential induction of IL-17-, IL-22- and IFN-γ-expressing CD4(+) T cells, IL-22-expressing granulocytes and proinflammatory cytokines in circulation and following antigenic stimulation in latent and active tuberculosis.
Collapse
Affiliation(s)
- J Cowan
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | | | | | | | | | | |
Collapse
|
352
|
Chegou NN, Black GF, Loxton AG, Stanley K, Essone PN, Klein MR, Parida SK, Kaufmann SHE, Doherty TM, Friggen AH, Franken KL, Ottenhoff TH, Walzl G. Potential of novel Mycobacterium tuberculosis infection phase-dependent antigens in the diagnosis of TB disease in a high burden setting. BMC Infect Dis 2012; 12:10. [PMID: 22260319 PMCID: PMC3282638 DOI: 10.1186/1471-2334-12-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 01/20/2012] [Indexed: 02/06/2023] Open
Abstract
Background Confirming tuberculosis (TB) disease in suspects in resource limited settings is challenging and calls for the development of more suitable diagnostic tools. Different Mycobacterium tuberculosis (M.tb) infection phase-dependent antigens may be differentially recognized in infected and diseased individuals and therefore useful as diagnostic tools for differentiating between M.tb infection states. In this study, we assessed the diagnostic potential of 118 different M.tb infection phase-dependent antigens in TB patients and household contacts (HHCs) in a high-burden setting. Methods Antigens were evaluated using the 7-day whole blood culture technique in 23 pulmonary TB patients and in 19 to 21 HHCs (total n = 101), who were recruited from a high-TB incidence community in Cape Town, South Africa. Interferon-gamma (IFN-γ) levels in culture supernatants were determined by ELISA. Results Eight classical TB vaccine candidate antigens, 51 DosR regulon encoded antigens, 23 TB reactivation antigens, 5 TB resuscitation promoting factors (rpfs), 6 starvation and 24 other stress response-associated TB antigens were evaluated in the study. The most promising antigens for ascertaining active TB were the rpfs (Rv0867c, Rv2389c, Rv2450c, Rv1009 and Rv1884c), with Areas under the receiver operating characteristics curves (AUCs) between 0.72 and 0.80. A combination of M.tb specific ESAT-6/CFP-10 fusion protein, Rv2624c and Rv0867c accurately predicted 73% of the TB patients and 80% of the non-TB cases after cross validation. Conclusions IFN-γ responses to TB rpfs show promise as TB diagnostic candidates and should be evaluated further for discrimination between M.tb infection states.
Collapse
Affiliation(s)
- Novel N Chegou
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research and MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
353
|
A riboswitch-based inducible gene expression system for mycobacteria. PLoS One 2012; 7:e29266. [PMID: 22279533 PMCID: PMC3261144 DOI: 10.1371/journal.pone.0029266] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 11/23/2011] [Indexed: 12/19/2022] Open
Abstract
Research on the human pathogen Mycobacterium tuberculosis (Mtb) would benefit from novel tools for regulated gene expression. Here we describe the characterization and application of a synthetic riboswitch-based system, which comprises a mycobacterial promoter for transcriptional control and a riboswitch for translational control. The system was used to induce and repress heterologous protein overexpression reversibly, to create a conditional gene knockdown, and to control gene expression in a macrophage infection model. Unlike existing systems for controlling gene expression in Mtb, the riboswitch does not require the co-expression of any accessory proteins: all of the regulatory machinery is encoded by a short DNA segment directly upstream of the target gene. The inducible riboswitch platform has the potential to be a powerful general strategy for creating customized gene regulation systems in Mtb.
Collapse
|
354
|
Vos MH, Bouzhir-Sima L, Lambry JC, Luo H, Eaton-Rye JJ, Ioanoviciu A, Ortiz de Montellano PR, Liebl U. Ultrafast ligand dynamics in the heme-based GAF sensor domains of the histidine kinases DosS and DosT from Mycobacterium tuberculosis. Biochemistry 2012; 51:159-66. [PMID: 22142262 PMCID: PMC3254832 DOI: 10.1021/bi201467c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The transcriptional regulator DosR from M. tuberculosis plays a crucial role in the virulence to dormancy transition of the pathogen. DosR can be activated by DosT and DosS, two histidine kinases with heme-containing sensor GAF domains, capable of diatomic ligand binding. To investigate the initial processes occurring upon ligand dissociation, we performed ultrafast time-resolved absorption spectroscopy of the isolated sensor domains ligated with O(2), NO, and CO. The results reveal a relatively closed heme pocket for both proteins. For DosT the yield of O(2) escape from the heme pocket on the picoseconds time scale upon photodissociation was found to be very low (1.5%), similar to other heme-based oxygen sensor proteins, implying that this sensor acts as an effective O(2) trap. Remarkably, this yield is an order of magnitude higher in DosS (18%). For CO, by contrast, the fraction of CO rebinding within the heme pocket is higher in DosS. Experiments with mutant DosT sensor domains and molecular dynamics simulations indicate an important role in ligand discrimination of the distal tyrosine, present in both proteins, which forms a hydrogen bond with heme-bound O(2). We conclude that despite their similarity, DosT and DosS display ligand-specific different primary dynamics during the initial phases of intraprotein signaling. The distal tyrosine, present in both proteins, plays an important role in these processes.
Collapse
Affiliation(s)
- Marten H Vos
- Laboratory for Optics and Biosciences, CNRS Ecole Polytechnique, 91128 Palaiseau, France.
| | | | | | | | | | | | | | | |
Collapse
|
355
|
Abstract
Mycobacterium tuberculosis is a difficult pathogen to combat and the first-line drugs currently in use are 40-60 years old. The need for new TB drugs is urgent, but the time to identify, develop and ultimately advance new drug regimens onto the market has been excruciatingly slow. On the other hand, the drugs currently in clinical development, and the recent gains in knowledge of the pathogen and the disease itself give us hope for finding new drug targets and new drug leads. In this article we highlight the unique biology of the pathogen and several possible ways to identify new TB chemical leads. The Global Alliance for TB Drug Development (TB Alliance) is a not-for-profit organization whose mission is to accelerate the discovery and development of new TB drugs. The organization carries out research and development in collaboration with many academic laboratories and pharmaceutical companies around the world. In this perspective we will focus on the early discovery phases of drug development and try to provide snapshots of both the current status and future prospects.
Collapse
|
356
|
Soluble Urokinase Plasminogen Activator Receptor Levels in Tuberculosis Patients at High Risk for Multidrug Resistance. Tuberc Res Treat 2012; 2012:240132. [PMID: 23304490 PMCID: PMC3532865 DOI: 10.1155/2012/240132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/19/2012] [Indexed: 11/17/2022] Open
Abstract
The soluble urokinase plasminogen activator receptor (suPAR) has been shown to be a strong prognostic biomarker for tuberculosis (TB). In the present study, the profiles of plasma suPAR levels in pulmonary TB patients at high risk for multidrug resistance were analyzed and compared with those in multidrug resistant (MDR)-TB patients. Forty patients were prospectively included, consisting of 10 MDR-TB patients and 30 TB patients at high risk for MDR, underwent clinical assesment. Plasma suPAR levels were measured using ELISA (SUPARnostic, Denmark) and bacterial cultures were performed in addition to drug susceptibility tests. All patients of suspected MDR-TB group demonstrated significantly higher suPAR levels compared with the healthy TB-negative group (1.79 ng/mL). Among the three groups at high risk for MDR-TB, only the relapse group (7.87 ng/mL) demonstrated suPAR levels comparable with those of MDR-TB patients (7.67 ng/mL). suPAR levels in the two-month negative acid-fast bacilli conversion group (9.29 ng/mL) were higher than positive control, whereas levels in the group consisting of therapy failure patients (5.32 ng/mL) were lower. Our results strongly suggest that suPAR levels enable rapid screening of suspected MDR-TB patients, but cannot differentiate between groups.
Collapse
|
357
|
ald of Mycobacterium tuberculosis encodes both the alanine dehydrogenase and the putative glycine dehydrogenase. J Bacteriol 2011; 194:1045-54. [PMID: 22210765 DOI: 10.1128/jb.05914-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The putative glycine dehydrogenase of Mycobacterium tuberculosis catalyzes the reductive amination of glyoxylate to glycine but not the reverse reaction. The enzyme was purified and identified as the previously characterized alanine dehydrogenase. The Ald enzyme was expressed in Escherichia coli and had both pyruvate and glyoxylate aminating activities. The gene, ald, was inactivated in M. tuberculosis, which resulted in the loss of all activities. Both enzyme activities were found associated with the cell and were not detected in the extracellular filtrate. By using an anti-Ald antibody, the protein was localized to the cell membrane, with a smaller fraction in the cytosol. None was detected in the extracellular medium. The ald knockout strain grew without alanine or glycine and was able to utilize glycine but not alanine as a nitrogen source. Transcription of ald was induced when alanine was the sole nitrogen source, and higher levels of Ald enzyme were measured. Ald is proposed to have several functions, including ammonium incorporation and alanine breakdown.
Collapse
|
358
|
Khan A, Sarkar D. Nitrate reduction pathways in mycobacteria and their implications during latency. MICROBIOLOGY-SGM 2011; 158:301-307. [PMID: 22174380 DOI: 10.1099/mic.0.054759-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mycobacterial persistence has gained a lot of attention with respect to developing novel antitubercular drugs, which could drastically reduce the duration of tuberculosis (TB) therapy. A better understanding of the physiology of Mycobacterium tuberculosis, and of the metabolic state of the bacillus during the latent period, is a primary need in finding drug targets against persistent TB. Recent biochemical and genetic studies of nitrate reduction in mycobacteria have revealed the roles of distinct proteins and enzymes involved in the pathway. The differential degree of nitrate reduction among pathogenic and non-pathogenic mycobacterial species, and its regulation during oxygen and nutrient limitation, suggest a link between nitrate reduction pathways and latency. The respiratory and assimilatory reduction of nitrate in mycobacteria may be interconnected to facilitate rapid adaptation to changing oxygen and/or nitrogen conditions, increasing metabolic flexibility for survival in the hostile host environment. This review summarizes the nitrate metabolic pathways operative in mycobacteria to provide an insight into the mechanisms that M. tuberculosis has evolved to adapt successfully to the host environment.
Collapse
Affiliation(s)
- Arshad Khan
- Department of Pathology and Laboratory Medicine, University of Texas, Health Science Center at Houston, Medical School, Houston, TX 77030, USA
| | - Dhiman Sarkar
- Combi Chem-Bio Resource Center, National Chemical Laboratory, Dr Homi Bhabha Road, Pune, Maharashtra 411008, India
| |
Collapse
|
359
|
Welsh KJ, Hwang SA, Boyd S, Kruzel ML, Hunter RL, Actor JK. Influence of oral lactoferrin on Mycobacterium tuberculosis induced immunopathology. Tuberculosis (Edinb) 2011; 91 Suppl 1:S105-13. [PMID: 22138562 DOI: 10.1016/j.tube.2011.10.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The ability of lactoferrin to provide protection and decrease immunopathology in infectious diseases was evaluated using an aggressive aerosol model of Mycobacterium tuberculosis (MTB) infection. C57BL/6 mice were challenged with MTB strain Erdman and treated with 0.5% bovine lactoferrin added to the drinking water starting at day 0 or day 7 post-infection. Mice were sacrificed at three weeks post-challenge and evaluated for organ bacterial burden, lung histopathology, and ELISpot analysis of the lung and spleen for immune cell phenotypes. Mice given tap water alone had lung log10 colony forming units (CFUs) of 7.5 ± 0.3 at week 3 post-infection. Lung CFUs were significantly decreased in mice given lactoferrin starting the day of infection (6.4 ± 0.7), as well as in mice started therapeutically on lactoferrin at day 7 after established infection (6.5 ± 0.4). Quantitative immunohistochemistry using multispectral imaging demonstrated that lung inflammation was significantly reduced in both groups of lactoferrin treated mice, with decreased foamy macrophages, increased total lymphocytes, and increased numbers of CD4+ and CD8+ cells. ELISpot analysis showed that lactoferrin treated mice had increased numbers of CD4 + IFN-γ+ and IL-17 producing cells in the lung, cells that have protective functions during MTB infection. Lactoferrin alone did not alter the proliferation of MTB in either broth or macrophage culture, but enhanced IFN-γ mediated MTB killing by macrophages in a nitric oxide dependent manner. These studies indicate that lactoferrin may be a novel therapeutic for the treatment of tuberculosis, and may be useful in infectious diseases to reduced immune-mediated tissue damage.
Collapse
Affiliation(s)
- Kerry J Welsh
- Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, 6431 Fannin, MSB 2.214, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
360
|
Matsumoto S. [Analysis of molecular mechanisms of the virulence and growth coordination of Mycobacterium tuberculosis]. Nihon Saikingaku Zasshi 2011; 66:531-537. [PMID: 22214749 DOI: 10.3412/jsb.66.531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Sohkichi Matsumoto
- Department of Bacteriology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| |
Collapse
|
361
|
Validation of the essential ClpP protease in Mycobacterium tuberculosis as a novel drug target. J Bacteriol 2011; 194:663-8. [PMID: 22123255 DOI: 10.1128/jb.06142-11] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mycobacterium tuberculosis is a pathogen of major global importance. Validated drug targets are required in order to develop novel therapeutics for drug-resistant strains and to shorten therapy. The Clp protease complexes provide a means for quality control of cellular proteins; the proteolytic activity of ClpP in concert with the ATPase activity of the ClpX/ClpC subunits results in degradation of misfolded or damaged proteins. Thus, the Clp system plays a major role in basic metabolism, as well as in stress responses and pathogenic mechanisms. M. tuberculosis has two ClpP proteolytic subunits. Here we demonstrate that ClpP1 is essential for viability in this organism in culture, since the gene could only be deleted from the chromosome when a second functional copy was provided. Overexpression of clpP1 had no effect on growth in aerobic culture or viability under anaerobic conditions or during nutrient starvation. In contrast, clpP2 overexpression was toxic, suggesting different roles for the two homologs. We synthesized known activators of ClpP protease activity; these acyldepsipeptides (ADEPs) were active against M. tuberculosis. ADEP activity was enhanced by the addition of efflux pump inhibitors, demonstrating that ADEPs gain access to the cell but that export occurs. Taken together, the genetic and chemical validation of ClpP as a drug target leads to new avenues for drug discovery.
Collapse
|
362
|
de la Paz Santangelo M, Gest PM, Guerin ME, Coinçon M, Pham H, Ryan G, Puckett SE, Spencer JS, Gonzalez-Juarrero M, Daher R, Lenaerts AJ, Schnappinger D, Therisod M, Ehrt S, Sygusch J, Jackson M. Glycolytic and non-glycolytic functions of Mycobacterium tuberculosis fructose-1,6-bisphosphate aldolase, an essential enzyme produced by replicating and non-replicating bacilli. J Biol Chem 2011; 286:40219-31. [PMID: 21949126 PMCID: PMC3220552 DOI: 10.1074/jbc.m111.259440] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 09/09/2011] [Indexed: 12/29/2022] Open
Abstract
The search for antituberculosis drugs active against persistent bacilli has led to our interest in metallodependent class II fructose-1,6-bisphosphate aldolase (FBA-tb), a key enzyme of gluconeogenesis absent from mammalian cells. Knock-out experiments at the fba-tb locus indicated that this gene is required for the growth of Mycobacterium tuberculosis on gluconeogenetic substrates and in glucose-containing medium. Surface labeling and enzymatic activity measurements revealed that this enzyme was exported to the cell surface of M. tuberculosis and produced under various axenic growth conditions including oxygen depletion and hence by non-replicating bacilli. Importantly, FBA-tb was also produced in vivo in the lungs of infected guinea pigs and mice. FBA-tb bound human plasmin(ogen) and protected FBA-tb-bound plasmin from regulation by α(2)-antiplasmin, suggestive of an involvement of this enzyme in host/pathogen interactions. The crystal structures of FBA-tb in the native form and in complex with a hydroxamate substrate analog were determined to 2.35- and 1.9-Å resolution, respectively. Whereas inhibitor attachment had no effect on the plasminogen binding activity of FBA-tb, it competed with the natural substrate of the enzyme, fructose 1,6-bisphosphate, and substantiated a previously unknown reaction mechanism associated with metallodependent aldolases involving recruitment of the catalytic zinc ion by the substrate upon active site binding. Altogether, our results highlight the potential of FBA-tb as a novel therapeutic target against both replicating and non-replicating bacilli.
Collapse
Affiliation(s)
- Maria de la Paz Santangelo
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
- Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas-Instituto Nacional de Tecnología Agropecuaria, 1686 Buenos Aires, Argentina
| | - Petra M. Gest
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| | - Marcelo E. Guerin
- Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC-UPV/EHU), Barrio Sarriena s/n, Leioa, 48940 Bizkaia, Spain
- Departamento de Bioquímica, Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Mathieu Coinçon
- Département de Biochimie, Université de Montréal, CP 6128, Station centre-ville, Montréal PQ H3C 3J7, Canada
| | - Ha Pham
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| | - Gavin Ryan
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| | - Susan E. Puckett
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065
| | - John S. Spencer
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| | - Mercedes Gonzalez-Juarrero
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| | - Racha Daher
- Laboratoire de Chimie Bioorganique et Bioinorganique-Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182, Université Paris Sud, 91405 Orsay, France and
| | - Anne J. Lenaerts
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065
| | - Michel Therisod
- Laboratoire de Chimie Bioorganique et Bioinorganique-Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182, Université Paris Sud, 91405 Orsay, France and
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065
| | - Jurgen Sygusch
- Département de Biochimie, Université de Montréal, CP 6128, Station centre-ville, Montréal PQ H3C 3J7, Canada
| | - Mary Jackson
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| |
Collapse
|
363
|
Kiran M, Maloney E, Lofton H, Chauhan A, Jensen R, Dziedzic R, Madiraju M, Rajagopalan M. Mycobacterium tuberculosis ftsZ expression and minimal promoter activity. Tuberculosis (Edinb) 2011; 89 Suppl 1:S60-4. [PMID: 20006308 DOI: 10.1016/s1472-9792(09)70014-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Optimal levels of ftsZ gene product are shown to be required for initiation of the cell division process in Mycobacterium tuberculosis. Here, we report that the ftsZ gene expression is sharply down-regulated during starvation and hypoxia, conditions that are believed to result in growth arrest, but is restored upon dilution of cultures into fresh oxygen-rich media. Primer extension analysis identified four transcriptional start sites, designated as P1, P2, P3 and P4 at nucleotide positions -43, -101, -263, and -787, respectively, in the immediate upstream flanking region of the ftsZ initiation codon. Promoter deletion and homologous recombination experiments revealed that ftsZ expression from the 101-bp region is sufficient for M. tuberculosis viability. All promoter strains had reduced FtsZ levels compared to wild-type, although the loss of P4 severely compromised FtsZ levels during both the active and stationary phases. We propose that ftsZ expression from all promoters is required for optimal intracellular FtsZ levels and that the activities of P4 and possibly other promoters are down-regulated during growth-arrest conditions.
Collapse
Affiliation(s)
- Manjot Kiran
- Biochemistry Department, The University of Texas Health Science Center @ Tyler, Tyler, TX 75708, USA
| | | | | | | | | | | | | | | |
Collapse
|
364
|
Abstract
Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis (TB), is the most successful pathogen of mankind and remains a major threat to global health as the leading cause of death due to a bacterial pathogen. Yet 90-95% of those who are infected with MTB remain otherwise healthy. These people are classified as "latently infected," but remain a reservoir from which active TB cases will continue to develop ("reactivation tuberculosis"). Latent infection is defined by the absence of clinical symptoms of TB in addition to a delayed hypersensitivity reaction to the purified protein derivative of MTB used in tuberculin skin test or a T-cell response to MTB-specific antigens. In the absence of reliable control measures for tuberculosis, understanding latent MTB infection and subsequent reactivation is a research priority. This review aims to summarize the recent findings in human and non-human primate models of tuberculosis that have led to new concepts of latent tuberculosis.
Collapse
Affiliation(s)
- Hannah P Gideon
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, W1144 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
365
|
Porretta E, Happel KI, Teng XS, Ramsay A, Mason CM. The impact of alcohol on BCG-induced immunity against Mycobacterium tuberculosis. Alcohol Clin Exp Res 2011; 36:310-7. [PMID: 22014229 DOI: 10.1111/j.1530-0277.2011.01624.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Alcoholics are at heightened risk for developing active tuberculosis. This study evaluates chronic alcohol consumption in a murine model of vaccination with Mycobacterium bovis Bacille Calmette-Guèrin (BCG) and subsequent pulmonary infection with virulent Mycobacterium tuberculosis. METHODS BALB/c mice were administered the Lieber-DeCarli liquid ethanol diet or pair-fed the liquid control diet for 3 weeks either before or after subcutaneous vaccination with M. bovis BCG. At least 3 weeks after BCG vaccination, groups of mice on the aforesaid diets were challenged with intratracheal infection with M. tuberculosis H37Rv. Lung mycobacterial burden, and lung and lung-associated lymph node CD4(+) lymphocyte production of tuberculosis-specific interferon (IFN)-γ were assayed. Popliteal lymph node lymphocytes from both dietary regimens undergoing BCG vaccination (in the absence of M. tuberculosis infection) were also evaluated for purified protein derivative-induced IFN-γ production by ELISpot assay. RESULTS Mice begun on alcohol prior to vaccination with M. bovis BCG demonstrated impaired control of pulmonary challenge with virulent M. tuberculosis, as well as impaired lung CD4(+) and popliteal lymph node T-cell IFN-γ responses. If BCG vaccination was delivered prior to initiation of alcohol feeding, the mice remained protected against a subsequent challenge with M. tuberculosis, and BCG-induced immunity was not impaired in either the lung or the popliteal lymph nodes. CONCLUSIONS Alcohol consumption blunts the development of the adaptive immune response to M. bovis BCG vaccination, which impairs the control of a secondary challenge with M. tuberculosis, but only if the alcohol exposure is begun prior to BCG vaccination. These results provide insight into mechanisms by which alcohol consumption impairs antimycobacterial immunity, including in response to vaccination and subsequent pathogenic challenge.
Collapse
Affiliation(s)
- Elizabeth Porretta
- Pulmonary/Critical Care Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | | | | | | | | |
Collapse
|
366
|
Pharmacokinetic evaluation of the penetration of antituberculosis agents in rabbit pulmonary lesions. Antimicrob Agents Chemother 2011; 56:446-57. [PMID: 21986820 DOI: 10.1128/aac.05208-11] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Standard antituberculosis (anti-TB) therapy requires the use of multiple drugs for a minimum of 6 months, with variable outcomes that are influenced by a number of microbiological, pathological, and clinical factors. This is despite the availability of antibiotics that have good activity against Mycobacterium tuberculosis in vitro and favorable pharmacokinetic profiles in plasma. However, little is known about the distribution of widely used antituberculous agents in the pulmonary lesions where the pathogen resides. The rabbit model of TB infection was used to explore the hypothesis that standard drugs have various abilities to penetrate lung tissue and lesions and that adequate drug levels are not consistently reached at the site of infection. Using noncompartmental and population pharmacokinetic approaches, we modeled the rate and extent of distribution of isoniazid, rifampin, pyrazinamide, and moxifloxacin in rabbit lung and lesions. Moxifloxacin reproducibly showed favorable partitioning into lung and granulomas, while the exposure of isoniazid, rifampin, and pyrazinamide in lesions was markedly lower than in plasma. The extent of penetration in lung and lesions followed different trends for each drug. All four agents distributed rapidly from plasma to tissue with equilibration half-lives of less than 1 min to an hour. The models adequately described the plasma concentrations and reasonably captured actual lesion concentrations. Though further refinement is needed to accurately predict the behavior of these drugs in human subjects, our results enable the integration of lesion-specific pharmacokinetic-pharmacodynamic (PK-PD) indices in clinical trial simulations and in in vitro PK-PD studies with M. tuberculosis.
Collapse
|
367
|
Kurthkoti K, Varshney U. Distinct mechanisms of DNA repair in mycobacteria and their implications in attenuation of the pathogen growth. Mech Ageing Dev 2011; 133:138-46. [PMID: 21982925 DOI: 10.1016/j.mad.2011.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 08/28/2011] [Accepted: 09/22/2011] [Indexed: 01/20/2023]
Abstract
About a third of the human population is estimated to be infected with Mycobacterium tuberculosis. Emergence of drug resistant strains and the protracted treatment strategies have compelled the scientific community to identify newer drug targets, and to develop newer vaccines. In the host macrophages, the bacterium survives within an environment rich in reactive nitrogen and oxygen species capable of damaging its genome. Therefore, for its successful persistence in the host, the pathogen must need robust DNA repair mechanisms. Analysis of M. tuberculosis genome sequence revealed that it lacks mismatch repair pathway suggesting a greater role for other DNA repair pathways such as the nucleotide excision repair, and base excision repair pathways. In this article, we summarize the outcome of research involving these two repair pathways in mycobacteria focusing primarily on our own efforts. Our findings, using Mycobacterium smegmatis model, suggest that deficiency of various DNA repair functions in single or in combinations severely compromises their DNA repair capacity and attenuates their growth under conditions typically encountered in macrophages.
Collapse
Affiliation(s)
- Krishna Kurthkoti
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
368
|
A mathematical representation of the development of Mycobacterium tuberculosis active, latent and dormant stages. J Theor Biol 2011; 292:44-59. [PMID: 21968442 DOI: 10.1016/j.jtbi.2011.09.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 07/25/2011] [Accepted: 09/21/2011] [Indexed: 01/15/2023]
Abstract
The majority of individuals infected with Mycobacterium tuberculosis (Mtb) bacilli develop latent infection. Mtb becomes dormant and phenotypically drug resistant when it encounters multiple stresses within the host, and expresses a set of genes, known as the dormancy regulon, in vivo. These genes are expressed in vitro in response to nitric oxide (NO), hypoxia (oxygen deprivation), and nutrient starvation. The occurrence and reactivation of latent tuberculosis (TB) is not clearly understood. The ability of the pathogen to enter and exit from different states is associated with its ability to cause persistent infection. During infection it is not known whether the organism is in a persistent slow replicating state or a dormant non-replicating state, with the latter ultimately causing a latent infection with the potential to reactivate to active disease. We collected gene expression data for Mtb bacilli under different stress conditions that simulate latency or dormancy. Time course experiments were selected and differentially expressed gene profiles were determined at each time point. A mathematical model was then developed to show the dynamics of Mtb latency based on the profile of differentially expressed genes. Analysis of the time course data show the dynamics of latency occurrence in vitro and the mathematical model reveals all possible scenarios of Mtb latency development with respect to the different conditions that may be produced by the immune response in vivo. The mathematical model provides a biological explanation of how Mtb latency occurs based on observed gene expression changes in in vitro latency models.
Collapse
|
369
|
Siddiqui KF, Amir M, Agrewala JN. Understanding the biology of 16 kDa antigen ofMycobacterium tuberculosis: Scope in diagnosis, vaccine design and therapy. Crit Rev Microbiol 2011; 37:349-57. [DOI: 10.3109/1040841x.2011.606425] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
370
|
Marrapu VK, Chaturvedi V, Singh S, Singh S, Sinha S, Bhandari K. Novel aryloxy azolyl chalcones with potent activity against Mycobacterium tuberculosis H37Rv. Eur J Med Chem 2011; 46:4302-10. [DOI: 10.1016/j.ejmech.2011.06.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 06/14/2011] [Accepted: 06/27/2011] [Indexed: 11/26/2022]
|
371
|
Dover LG, Coxon GD. Current Status and Research Strategies in Tuberculosis Drug Development. J Med Chem 2011; 54:6157-65. [DOI: 10.1021/jm200305q] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Lynn G. Dover
- Biomolecular and Biomedical Research Centre, School of Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Geoffrey D. Coxon
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
372
|
Quartararo CE, Blanchard JS. Kinetic and chemical mechanism of malate synthase from Mycobacterium tuberculosis. Biochemistry 2011; 50:6879-87. [PMID: 21728344 PMCID: PMC3153559 DOI: 10.1021/bi2007299] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Malate synthase catalyzes the Claisen-like condensation of acetyl-coenzyme A (AcCoA) and glyoxylate in the glyoxylate shunt of the citric acid cycle. The Mycobacterium tuberculosis malate synthase G gene, glcB, was cloned, and the N-terminal His(6)-tagged 80 kDa protein was expressed in soluble form and purified by metal affinity chromatography. A chromogenic 4,4'-dithiodipyridine assay did not yield linear kinetics, but the generation of an active site-directed mutant, C619S, gave an active enzyme and linear kinetics. The resulting mutant exhibited kinetics comparable to those of the wild type and was used for the full kinetic analysis. Initial velocity studies were intersecting, suggesting a sequential mechanism, which was confirmed by product and dead-end inhibition. The inhibition studies delineated the ordered binding of glyoxylate followed by AcCoA and the ordered release of CoA followed by malate. The pH dependencies of k(cat) and k(cat)/K(gly) are both bell-shaped, and catalysis depends on a general base (pK = 5.3) and a general acid (pK = 9.2). Primary kinetic isotope effects determined using [C(2)H(3)-methyl]acetyl-CoA suggested that proton removal and carbon-carbon bond formation were partially rate-limiting. Solvent kinetic isotope effects on k(cat) suggested the hydrolysis of the malyl-CoA intermediate was also partially rate-limiting. Multiple kinetic isotope effects, utilizing D(2)O and [C(2)H(3)-methyl]acetyl-CoA, confirmed a stepwise mechanism in which the step exhibiting primary kinetic isotope effects precedes the step exhibiting the solvent isotope effects. We combined the kinetic data and the pH dependence of the kinetic parameters with existing structural and mutagenesis data to propose a chemical mechanism for malate synthase from M. tuberculosis.
Collapse
Affiliation(s)
- Christine E. Quartararo
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| | - John S. Blanchard
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| |
Collapse
|
373
|
Gupta RK, Srivastava R. Resuscitation promoting factors: a family of microbial proteins in survival and resuscitation of dormant mycobacteria. Indian J Microbiol 2011; 52:114-21. [PMID: 23729870 DOI: 10.1007/s12088-011-0202-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 10/26/2010] [Indexed: 01/14/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is an extraordinarily successful pathogen of humankind. It has been estimated that up to one-third of the world's population is infected with M. tuberculosis, and this population is an important reservoir for disease reactivation. Resuscitation promoting factor (Rpf) is a secretory protein, which was first reported in Micrococcus luteus. There are five functionally redundant Rpf-like proteins found in M. tuberculosis. Rpf promotes the resuscitation of dormant bacilli to yield normal, viable colony forming bacteria. All Rpfs share a conserved domain of about 70 amino acids and possess a lysozyme-like activity. The structural studies of the conserved domain suggest that Rpfs could be considered as a c-type lysozyme and lytic transglycosylases. Recently a novel class of nitrophenylthiocyanates (NPT) inhibitors of the muralytic activity of Rpf were reported which opens a new approach in the study of cell-wall hydrolyzing enzymes. This review describes molecular and structural studies conducted on Rpf proteins, their role in the resuscitation of dormant bacteria, in the reactivation of latent infection and identification of low molecular weight inhibitors of resuscitation promoting factors.
Collapse
Affiliation(s)
- Ravi Kr Gupta
- Microbiology Division, Central Drug Research Institute (CSIR), Lucknow, 226001 India
| | | |
Collapse
|
374
|
Slama N, Leiba J, Eynard N, Daffé M, Kremer L, Quémard A, Molle V. Negative regulation by Ser/Thr phosphorylation of HadAB and HadBC dehydratases from Mycobacterium tuberculosis type II fatty acid synthase system. Biochem Biophys Res Commun 2011; 412:401-6. [PMID: 21819969 DOI: 10.1016/j.bbrc.2011.07.051] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 07/13/2011] [Indexed: 11/30/2022]
Abstract
The type II fatty acid synthase system of mycobacteria is involved in the biosynthesis of major and essential lipids, mycolic acids, key-factors of Mycobacterium tuberculosis pathogenicity. One reason of the remarkable survival ability of M. tuberculosis in infected hosts is partly related to the presence of cell wall-associated mycolic acids. Despite their importance, the mechanisms that modulate synthesis of these lipids in response to environmental changes are unknown. We demonstrate here that HadAB and HadBC dehydratases of this system are phosphorylated by Ser/Thr protein kinases, which negatively affects their enzymatic activity. The phosphorylation of HadAB/BC is growth phase-dependent, suggesting that it represents a mechanism by which mycobacteria might tightly control mycolic acid biosynthesis under non-replicating condition.
Collapse
Affiliation(s)
- Nawel Slama
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Département Mécanismes Moléculaires des Infections Mycobactériennes, 205 Route de Narbonne, F-31077 Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
375
|
The residue threonine 82 of DevR (DosR) is essential for DevR activation and function in Mycobacterium tuberculosis despite its atypical location. J Bacteriol 2011; 193:4849-58. [PMID: 21764934 DOI: 10.1128/jb.05051-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The DevR (DosR) response regulator initiates the bacterial adaptive response to a variety of signals, including hypoxia in in vitro models of dormancy. Its receiver domain works as a phosphorylation-mediated switch to activate the DNA binding property of its output domain. Receiver domains are characterized by the presence of several highly conserved residues, and these sequence features correlate with structure and hence function. In response regulators, interaction of phosphorylated aspartic acid at the active site with the conserved threonine is believed to be crucial for phosphorylation-mediated conformational change. DevR contains all the conserved residues, but the structure of its receiver domain in the unphosphorylated protein is strikingly different, and key threonine (T82), tyrosine (Y101), and lysine (K104) residues are placed uncharacteristically far from the D54 phosphorylation site. In view of the atypical location of T82 in DevR, the present study aimed to examine the importance of this residue in the activation mechanism. Mycobacterium tuberculosis expressing a DevR T82A mutant protein is defective in autoregulation and supports hypoxic induction of the DevR regulon only very weakly. These defects are ascribed to slow and partial phosphorylation and the failure of T82A mutant protein to bind cooperatively with DNA. Our results indicate that the T82 residue is crucial in implementing conformational changes in DevR that are essential for cooperative binding and for subsequent gene activation. We propose that the function of the T82 residue in the activation mechanism of DevR is conserved in spite of the unusual architecture of its receiver domain.
Collapse
|
376
|
Challenges, successes and hopes in the development of novel TB therapeutics. Future Med Chem 2011; 1:749-56. [PMID: 21426037 DOI: 10.4155/fmc.09.53] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Despite efficacious drugs for treatment, TB continues to affect enormous numbers of patients throughout the world. Failure to control TB may be related to the biological characteristics of Mycobacterium tuberculosis, the nature of susceptible hosts often impoverished and poorly supported by healthcare infrastructure and the complex treatment regimens that must be used. Challenges to anti-TB drug development include the organism's slow replication, the ability of M. tuberculosis to survive in a dormant state and to persist despite therapy, its impregnable cell wall and its capacity to develop resistance to drugs. The need for extended therapy using combinations of drugs remains a practical obstacle to effective control in poor, malnourished and diseased communities most susceptible to TB. High-throughput screening of candidate agents and investigation of drugs already in use for other infections are yielding promising new candidates for TB treatment. New families of drugs entering clinical trials include 5-nitroimidazoles, diarylquinolines and ethylene diamines. Increasing funding initiatives, advances in the biology of TB and strategies for drug discovery have rejuvenated the pipeline of new drugs for TB, promising an expanding armamentarium of effective drugs with improved tolerability and potential to treat drug-resistant cases.
Collapse
|
377
|
Gerasimova A, Kazakov AE, Arkin AP, Dubchak I, Gelfand MS. Comparative genomics of the dormancy regulons in mycobacteria. J Bacteriol 2011; 193:3446-52. [PMID: 21602344 PMCID: PMC3133309 DOI: 10.1128/jb.00179-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 05/06/2011] [Indexed: 11/20/2022] Open
Abstract
In response to stresses, Mycobacterium cells become dormant. This process is regulated by the DosR transcription factor. In Mycobacterium tuberculosis, the dormancy regulon is well characterized and contains the dosR gene itself and dosS and dosT genes encoding DosR kinases, nitroreductases (acg; Rv3131), diacylglycerol acyltransferase (DGAT) (Rv3130c), and many universal stress proteins (USPs). In this study, we apply comparative genomic analysis to characterize the DosR regulons in nine Mycobacterium genomes, Rhodococcus sp. RHA1, Nocardia farcinica, and Saccharopolyspora erythraea. The regulons are highly labile, containing eight core gene groups (regulators, kinases, USPs, DGATs, nitroreductases, ferredoxins, heat shock proteins, and the orthologs of the predicted kinase [Rv2004c] from M. tuberculosis) and 10 additional genes with more restricted taxonomic distribution that are mostly involved in anaerobic respiration. The largest regulon is observed in M. marinum and the smallest in M. abscessus. Analysis of large gene families encoding USPs, nitroreductases, and DGATs demonstrates a mosaic distribution of regulated and nonregulated members, suggesting frequent acquisition and loss of DosR-binding sites.
Collapse
Affiliation(s)
- Anna Gerasimova
- Energy Bioscience Institute, University of California, Berkeley, California 94720, USA.
| | | | | | | | | |
Collapse
|
378
|
Abstract
Tuberculosis continues to be a major public health problem in many parts of the world. Significant obstacles in controlling the epidemic are the length of treatment and the large reservoir of latently infected people. Bacteria form dormant, drug-tolerant persister cells, which may be responsible for the difficulty in treating both acute and latent infections. We find that in Mycobacterium tuberculosis, low numbers of drug-tolerant persisters are present in lag and early exponential phases, increasing sharply at late exponential and stationary phases to make up ~1% of the population. This suggests that persister formation is governed by both stochastic and deterministic mechanisms. In order to isolate persisters, an exponentially growing population was treated with d-cycloserine, and cells surviving lysis were collected by centrifugation. A transcriptome of persisters was obtained by using hybridization to an Affymetrix array. The transcriptome shows downregulation of metabolic and biosynthetic pathways, consistent with a certain degree of dormancy. A set of genes was upregulated in persisters, and these are likely involved in persister formation and maintenance. A comparison of the persister transcriptome with transcriptomes obtained for several in vitro dormancy models identified a small number of genes upregulated in all cases, which may represent a core dormancy response. It is estimated that every third person on the planet is infected with Mycobacterium tuberculosis. The two major problems in controlling M. tuberculosis are the length of the treatment and the large reservoir of latently infected people. Dormant persister cells may be responsible for both problems. We find that M. tuberculosis produces persisters in vitro in a growth phase-dependent manner. Persisters were isolated from an exponentially growing population, and their transcriptome shows a distinct pattern of dormancy. These results give the first insight into M. tuberculosis persisters and point to possible mechanisms responsible for their formation.
Collapse
|
379
|
Chauhan S, Sharma D, Singh A, Surolia A, Tyagi JS. Comprehensive insights into Mycobacterium tuberculosis DevR (DosR) regulon activation switch. Nucleic Acids Res 2011; 39:7400-14. [PMID: 21653552 PMCID: PMC3177182 DOI: 10.1093/nar/gkr375] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
DevR regulon function is believed to be crucial for the survival of Mycobacterium tuberculosis during dormancy. In this study, we undertook a comprehensive analysis of the DevR regulon. All the regulon promoters were assigned to four classes based on the number of DevR binding sites (Dev boxes). A minimum of two boxes are essential for complete interaction and their tandem arrangement is an architectural hallmark at all promoters. Initial interaction of DevR with the conserved box is essential for its cooperative binding to adjacent sites bearing low to very poor sequence conservation and is the universal mechanism underlying DevR-mediated transcriptional induction. The functional importance of tandem arrangement was established by analyzing promoter variants harboring Dev boxes with altered spacing. Conserved sequence logos were generated from 47 binding sequences which included 24 newly discovered Dev boxes. In each half site of an 18-bp binding motif, G5 and C7 are essential for DevR binding. Finally, we show that DevR regulon induction occurs in a temporal manner and genes that are induced early are also usually powerfully induced. The information theory-based approach along with binding and temporal expression studies provide us with comprehensive insights into the complex pattern of DevR regulon activation.
Collapse
Affiliation(s)
- Santosh Chauhan
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | | | | | | | |
Collapse
|
380
|
Banerjee S, Ekka MK, Kumaran S. Comparative thermodynamic studies on substrate and product binding of O-acetylserine sulfhydrylase reveals two different ligand recognition modes. BMC BIOCHEMISTRY 2011; 12:31. [PMID: 21631959 PMCID: PMC3141655 DOI: 10.1186/1471-2091-12-31] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 06/02/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND The importance of understanding the detailed mechanism of cysteine biosynthesis in bacteria is underscored by the fact that cysteine is the only sulfur donor for all cellular components containing reduced sulfur. O-acetylserine sulfhydrylase (OASS) catalyzes this crucial last step in the cysteine biosynthesis and has been recognized as an important gene for the survival and virulence of pathogenic bacteria. Structural and kinetic studies have contributed to the understanding of mechanistic aspects of OASS, but details of ligand recognition features of OASS are not available. In the absence of any detailed study on the energetics of ligand binding, we have studied the thermodynamics of OASS from Salmonella typhimurium (StOASS), Haemophilus influenzae (HiOASS), and Mycobacterium tuberculosis (MtOASS) binding to their substrate O-acetylserine (OAS), substrate analogue (methionine), and product (cysteine). RESULTS Ligand binding properties of three OASS enzymes are studied under defined solution conditions. Both substrate and product binding is an exothermic reaction, but their thermodynamic signatures are very different. Cysteine binding to OASS shows that both enthalpy and entropy contribute significantly to the binding free energy at all temperatures (10-30°C) examined. The analyses of interaction between OASS with OAS (substrate) or methionine (substrate analogue) revealed a completely different mode of binding. Binding of both OAS and methionine to OASS is dominated by a favorable entropy change, with minor contribution from enthalpy change (ΔH(St-Met) = -1.5 ± 0.1 kJ/mol; TΔS(St-Met) = 8.2 kJ/mol) at 20°C. Our salt dependent ligand binding studies indicate that methionine binding affinity is more sensitive to [NaCl] as compared to cysteine affinity. CONCLUSIONS We show that OASS from three different pathogenic bacteria bind substrate and product through two different mechanisms. Results indicate that predominantly entropy driven methionine binding is not mediated through classical hydrophobic binding, instead, may involve desolvation of the polar active site. We speculate that OASS in general, may exhibit two different binding mechanisms for recognizing substrates and products.
Collapse
Affiliation(s)
- Shrijita Banerjee
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | | | | |
Collapse
|
381
|
Sala C, Hartkoorn RC. Tuberculosis drugs: new candidates and how to find more. Future Microbiol 2011; 6:617-33. [DOI: 10.2217/fmb.11.46] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The recent years have witnessed significant progress in the development of new drug candidates for the treatment of TB. While many of these are now in clinical trials, continued research is needed in order to sustain the drug discovery pipeline and meet the increasing needs of TB patients. These include shortening treatment, killing drug-resistant strains, and finding medications compatible with antiretroviral and diabetes therapy. Nowadays, TB drug discovery benefits from high-throughput screening methods, availability of conditional expression systems, and biophysical and biochemical techniques that enable target-based rational drug design. This article reviews the current state of TB drug development and discusses possible approaches to finding new leads.
Collapse
Affiliation(s)
| | - Ruben C Hartkoorn
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Station 19, CH-1015 Lausanne, Switzerland
| |
Collapse
|
382
|
Miller CH, O'Toole RF. Navigating tuberculosis drug discovery with target-based screening. Expert Opin Drug Discov 2011; 6:839-54. [DOI: 10.1517/17460441.2011.586999] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
383
|
Cho HY, Cho HJ, Kim MH, Kang BS. Blockage of the channel to heme by the E87 side chain in the GAF domain of Mycobacterium tuberculosis DosS confers the unique sensitivity of DosS to oxygen. FEBS Lett 2011; 585:1873-8. [PMID: 21536032 DOI: 10.1016/j.febslet.2011.04.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 04/20/2011] [Accepted: 04/20/2011] [Indexed: 11/25/2022]
Abstract
Two sensor kinases, DosS and DosT, are responsible for recognition of hypoxia in Mycobacterium tuberculosis. Both proteins are structurally similar to each other, but DosS is a redox sensor while DosT binds oxygen. The primary difference between the two proteins is the channel to the heme present in their GAF domains. DosS has a channel that is blocked by E87 while DosT has an open channel. Absorption spectra of DosS mutants with an open channel show that they bind oxygen as DosT does when they are exposed to air, while DosT G85E mutant is oxidized similarly to DosS without formation of an oxy-ferrous form. This suggests that oxygen accessibility to heme is the primary factor governing the oxygen-binding properties of these proteins.
Collapse
Affiliation(s)
- Ha Yeon Cho
- School of Life Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | |
Collapse
|
384
|
Fauvart M, De Groote VN, Michiels J. Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies. J Med Microbiol 2011; 60:699-709. [PMID: 21459912 DOI: 10.1099/jmm.0.030932-0] [Citation(s) in RCA: 312] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Certain infectious diseases caused by pathogenic bacteria are typically chronic in nature. Potentially deadly examples include tuberculosis, caused by Mycobacterium tuberculosis, cystic fibrosis-associated lung infections, primarily caused by Pseudomonas aeruginosa, and candidiasis, caused by the fungal pathogen Candida albicans. A hallmark of this type of illness is the recalcitrance to treatment with antibiotics, even in the face of laboratory tests showing the causative agents to be sensitive to drugs. Recent studies have attributed this treatment failure to the presence of a small, transiently multidrug-tolerant subpopulation of cells, so-called persister cells. Here, we review our current understanding of the role that persisters play in the treatment and outcome of chronic infections. In a second part, we offer a perspective on the development of anti-persister therapies based on genes and mechanisms that have been implicated in persistence over the last decade.
Collapse
Affiliation(s)
- Maarten Fauvart
- Centre of Microbial and Plant Genetics, K.U.Leuven, Leuven, Belgium
| | | | - Jan Michiels
- Centre of Microbial and Plant Genetics, K.U.Leuven, Leuven, Belgium
| |
Collapse
|
385
|
Alderwick LJ, Lloyd GS, Lloyd AJ, Lovering AL, Eggeling L, Besra GS. Biochemical characterization of the Mycobacterium tuberculosis phosphoribosyl-1-pyrophosphate synthetase. Glycobiology 2011; 21:410-25. [PMID: 21045009 PMCID: PMC3055594 DOI: 10.1093/glycob/cwq173] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/21/2010] [Accepted: 10/22/2010] [Indexed: 11/17/2022] Open
Abstract
Mycobacterium tuberculosis arabinogalactan (AG) is an essential cell wall component. It provides a molecular framework serving to connect peptidoglycan to the outer mycolic acid layer. The biosynthesis of the arabinan domains of AG and lipoarabinomannan (LAM) occurs via a combination of membrane bound arabinofuranosyltransferases, all of which utilize decaprenol-1-monophosphorabinose as a substrate. The source of arabinose ultimately destined for deposition into cell wall AG or LAM originates exclusively from phosphoribosyl-1-pyrophosphate (pRpp), a central metabolite which is also required for other essential metabolic processes, such as de novo purine and pyrimidine biosyntheses. In M. tuberculosis, a single pRpp synthetase enzyme (Mt-PrsA) is solely responsible for the generation of pRpp, by catalyzing the transfer of pyrophosphate from ATP to the C1 hydroxyl position of ribose-5-phosphate. Here, we report a detailed biochemical and biophysical study of Mt-PrsA, which exhibits the most rapid enzyme kinetics reported for a pRpp synthetase.
Collapse
Affiliation(s)
- Luke J Alderwick
- School of Biosciences, University of Birmingham, Edgbaston Park Road, Birmingham B15 2TT, UK
| | - Georgina S Lloyd
- School of Biosciences, University of Birmingham, Edgbaston Park Road, Birmingham B15 2TT, UK
| | - Adrian J Lloyd
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Andrew L Lovering
- School of Biosciences, University of Birmingham, Edgbaston Park Road, Birmingham B15 2TT, UK
| | - Lothar Eggeling
- Institute of Biotechnology 1, Forschungszentrum Julich GmbH, D-52425 Julich, Germany
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Edgbaston Park Road, Birmingham B15 2TT, UK
| |
Collapse
|
386
|
Chim N, Habel JE, Johnston JM, Krieger I, Miallau L, Sankaranarayanan R, Morse RP, Bruning J, Swanson S, Kim H, Kim CY, Li H, Bulloch EM, Payne RJ, Manos-Turvey A, Hung LW, Baker EN, Lott JS, James MN, Terwilliger TC, Eisenberg DS, Sacchettini JC, Goulding CW. The TB Structural Genomics Consortium: a decade of progress. Tuberculosis (Edinb) 2011; 91:155-72. [PMID: 21247804 PMCID: PMC3310434 DOI: 10.1016/j.tube.2010.11.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 11/19/2010] [Accepted: 11/26/2010] [Indexed: 01/03/2023]
Abstract
The TB Structural Genomics Consortium is a worldwide organization of collaborators whose mission is the comprehensive structural determination and analyses of Mycobacterium tuberculosis proteins to ultimately aid in tuberculosis diagnosis and treatment. Congruent to the overall vision, Consortium members have additionally established an integrated facilities core to streamline M. tuberculosis structural biology and developed bioinformatics resources for data mining. This review aims to share the latest Consortium developments with the TB community, including recent structures of proteins that play significant roles within M. tuberculosis. Atomic resolution details may unravel mechanistic insights and reveal unique and novel protein features, as well as important protein-protein and protein-ligand interactions, which ultimately lead to a better understanding of M. tuberculosis biology and may be exploited for rational, structure-based therapeutics design.
Collapse
Affiliation(s)
- Nicholas Chim
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Jeff E. Habel
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jodie M. Johnston
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1142, New Zealand
| | - Inna Krieger
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Linda Miallau
- UCLA-DOE Lab of Structural Biology, Howard Hughes Medical Institute, Molecular Biology Institute, University of California, UCLA Box 951570, Los Angeles, CA 90095, USA
| | - Ramasamy Sankaranarayanan
- Group in Protein Structure and Function, Department of Biochemistry, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G2H7
| | - Robert P. Morse
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - John Bruning
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Stephanie Swanson
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Haelee Kim
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Chang-Yub Kim
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Hongye Li
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Esther M. Bulloch
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1142, New Zealand
| | - Richard J. Payne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Li-Wei Hung
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Edward N. Baker
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1142, New Zealand
| | - J. Shaun Lott
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1142, New Zealand
| | - Michael N.G. James
- Group in Protein Structure and Function, Department of Biochemistry, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G2H7
| | | | - David S. Eisenberg
- UCLA-DOE Lab of Structural Biology, Howard Hughes Medical Institute, Molecular Biology Institute, University of California, UCLA Box 951570, Los Angeles, CA 90095, USA
| | - James C. Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Celia W. Goulding
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
- Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| |
Collapse
|
387
|
Roy S, Vijay S, Arumugam M, Anand D, Mir M, Ajitkumar P. Mycobacterium tuberculosis expresses ftsE gene through multiple transcripts. Curr Microbiol 2011; 62:1581-9. [PMID: 21336990 DOI: 10.1007/s00284-011-9897-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 02/06/2011] [Indexed: 11/25/2022]
Abstract
Bacterial FtsE gene codes for the ATP-binding protein, FtsE, which in complex with the transmembrane protein, FtsX, participates in diverse cellular processes. Therefore, regulated expression of FtsE and FtsX might be critical to the human pathogen, Mycobacterium tuberculosis, under stress conditions. Although ftsX gene of M. tuberculosis (MtftsX) is known to be transcribed from a promoter inside the upstream gene, ftsE, the transcriptional status of ftsE gene of M. tuberculosis (MtftsE) remains unknown. Therefore, the authors initiated transcriptional analyses of MtftsE, using total RNA from M. tuberculosis cells that were grown under stress conditions, which the pathogen is exposed to, in granuloma in tuberculosis patients. Primer extension experiments showed the presence of putative transcripts, T1, T2, T3, and T4. T1 originated from the intergenic region between the upstream gene, MRA_3135, and MtftsE. T2 and T3 were found initiated from within MRA_3135. T4 was transcribed from a region upstream of MRA_3135. RT-PCR confirmed co-transcription of MRA_3135 and MtftsE. The cloned putative promoter regions for T1, T2, and T3 elicited transcriptional activity in Mycobacterium smegmatis transformants. T1, T2, and T3, but no new transcript, were present in the M. tuberculosis cells that were grown under the stress conditions, which the pathogen is exposed to in granuloma in tuberculosis patients. It showed lack of modulation of MtftsE transcripts under the stress conditions tested, indicating that ftsE may not have a stress response-specific function in M. tuberculosis.
Collapse
Affiliation(s)
- Sougata Roy
- Indian Institute of Science, Microbiology and Cell Biology, Bangalore, Karnataka
| | | | | | | | | | | |
Collapse
|
388
|
Yukl ET, Ioanoviciu A, Sivaramakrishnan S, Nakano MM, Ortiz de Montellano PR, Moënne-Loccoz P. Nitric oxide dioxygenation reaction in DevS and the initial response to nitric oxide in Mycobacterium tuberculosis. Biochemistry 2011; 50:1023-8. [PMID: 21250657 PMCID: PMC3079480 DOI: 10.1021/bi1015315] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DevS and DosT from Mycobacterium tuberculosis (MTB) are paralogous heme-based sensor kinases that respond to hypoxia and to low concentrations of nitric oxide (NO). Both proteins work with the response regulator DevR as a two-component regulatory system to induce the dormancy regulon in MTB. While DevS and DosT are inactive when dioxygen is bound to the heme Fe(II) at their sensor domain, autokinase activity is observed in their heme Fe(II)-NO counterparts. To date, the conversion between active and inactive states and the reactivity of the heme-oxy complex toward NO have not been investigated. Here, we use stopped-flow UV-vis spectroscopy and rapid freeze quench resonance Raman spectroscopy to probe these reactions in DevS. Our data reveal that the heme-O(2) complex of DevS reacts efficiently with NO to produce nitrate and the oxidized Fe(III) heme through an NO dioxygenation reaction that parallels the catalytic reactions of bacterial flavohemoglobin and truncated hemoglobins. Autophosphorylation activity assays show that the Fe(III) heme state of DevS remains inactive but exhibits a high affinity for NO and forms an Fe(III)-NO complex that is readily reduced by ascorbate, a mild reducing agent. On the basis of these results, we conclude that upon exposure to low NO concentrations, the inactive oxy-heme complex of DevS is rapidly converted to the Fe(II)-NO complex in the reducing environment of living cells and triggers the initiation of dormancy.
Collapse
Affiliation(s)
- Erik T. Yukl
- Divison of Environmental & Biomolecular Systems, Oregon Health & Science University, 20,000 NW Walker Road, Beaverton, Oregon 97006-8921
| | - Alexandra Ioanoviciu
- Department of Pharmaceutical Chemistry, University of California, 600 16 Street, San Francisco, California 94158-2517
| | - Santhosh Sivaramakrishnan
- Department of Pharmaceutical Chemistry, University of California, 600 16 Street, San Francisco, California 94158-2517
| | - Michiko M. Nakano
- Divison of Environmental & Biomolecular Systems, Oregon Health & Science University, 20,000 NW Walker Road, Beaverton, Oregon 97006-8921
| | - Paul R. Ortiz de Montellano
- Department of Pharmaceutical Chemistry, University of California, 600 16 Street, San Francisco, California 94158-2517
| | - Pierre Moënne-Loccoz
- Divison of Environmental & Biomolecular Systems, Oregon Health & Science University, 20,000 NW Walker Road, Beaverton, Oregon 97006-8921
| |
Collapse
|
389
|
Pieroni M, Tipparaju SK, Lun S, Song Y, Sturm AW, Bishai WR, Kozikowski AP. Pyrido[1,2-a]benzimidazole-based agents active against tuberculosis (TB), multidrug-resistant (MDR) TB and extensively drug-resistant (XDR) TB. ChemMedChem 2011; 6:334-42. [PMID: 21259445 PMCID: PMC4575222 DOI: 10.1002/cmdc.201000490] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Indexed: 01/25/2023]
Abstract
The struggle against tuberculosis (TB) is still far from over. TB, caused by Mycobacterium tuberculosis, is one of the deadliest infections worldwide. Co-infection with human immunodeficiency virus (HIV) and the emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) strains have further increased the burden for this disease. Herein, we report the discovery of 2-(4-chlorobenzyl)-3-methyl-1-oxo-1H,5H-pyrido[1,2-a]benzimidazole-4-carbonitrile as an effective antitubercular agent and the structural modifications of this molecule that have led to analogues with improved potency and lower toxicity. A number of these derivatives were also active at sub-micromolar concentrations against resistant TB strains and devoid of apparent toxicity to Vero cells, thereby underscoring their value as novel scaffolds for the development of new anti-TB drugs.
Collapse
Affiliation(s)
- Marco Pieroni
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612 (USA)
| | - Suresh K. Tipparaju
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612 (USA)
| | - Shichun Lun
- Center for Tuberculosis Research, Dept. of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, Baltimore, MD 21231-1044 (USA)
| | - Yang Song
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 6061
| | - A. Willem Sturm
- Nelson R. Mandela School of Medicine University of KwaZulu-Natal, Suite Z310 Doris Duke Building 719 Umbilo Road, Durban 4001 Private Bag X7, Congella, Durban 4013, (South Africa)
| | - William R. Bishai
- Center for Tuberculosis Research, Dept. of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, Baltimore, MD 21231-1044 (USA)
| | - Alan P. Kozikowski
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612 (USA)
| |
Collapse
|
390
|
Gautam US, Chauhan S, Tyagi JS. Determinants outside the DevR C-terminal domain are essential for cooperativity and robust activation of dormancy genes in Mycobacterium tuberculosis. PLoS One 2011; 6:e16500. [PMID: 21304599 PMCID: PMC3029386 DOI: 10.1371/journal.pone.0016500] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Accepted: 01/03/2011] [Indexed: 11/23/2022] Open
Abstract
Background DevR (also called as DosR) is a two-domain response regulator of the NarL subfamily that controls dormancy adaptation of Mycobacterium tuberculosis (M. tb). In response to inducing signals such as hypoxia and ascorbic acid, the N-terminal receiver domain of DevR (DevRN) is phosphorylated at Asp54. This results in DevR binding to DNA via its C-terminal domain (DevRC) and subsequent induction of the DevR regulon. The mechanism of phosphorylation-mediated activation is not known. The present study was designed to understand the role of the N- and C-terminal domains of DevR in DevR regulon genes activation. Methodology/Principal Findings Towards deciphering the activation mechanism of DevR, we compared the DNA binding properties of DevRC and DevR and correlated the findings with their ability to activate gene expression. We show that isolated DevRC can interact with DNA, but only with the high affinity site of a representative target promoter. Therefore, one role of DevRN is to mask the intrinsic DNA binding function of DevRC. However, unlike phosphorylated DevR, isolated DevRC does not interact with the adjacent low affinity binding site suggesting that a second role of DevRN is in cooperative binding to the secondary site. Transcriptional analysis shows that consistent with unmasking of its DNA binding property, DevRC supports the aerobic induction, albeit feebly, of DevR regulon genes but is unable to sustain gene activation during hypoxia. Conclusions/Significance DevR is a unique response regulator that employs a dual activation mechanism including relief of inhibition and cooperative interaction with binding sites. Importantly, both these functions reside outside the C-terminal domain. DevRN is also essential for stabilizing DevR and sustaining autoregulation under hypoxia. Hence, both domains of DevR are required for robust transcription activation.
Collapse
Affiliation(s)
- Uma Shankar Gautam
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, Indian
| | - Santosh Chauhan
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, Indian
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, Indian
- * E-mail:
| |
Collapse
|
391
|
Identification of human T-cell responses to Mycobacterium tuberculosis resuscitation-promoting factors in long-term latently infected individuals. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:676-83. [PMID: 21248154 DOI: 10.1128/cvi.00492-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Mycobacterium bovis BCG vaccine is the only tuberculosis (TB) vaccine available, yet it provides limited protection against pulmonary TB in adults and fails to protect against TB reactivation. We hypothesized that immunity against Mycobacterium tuberculosis "resuscitation-promoting factors" (Rpfs), which are small bacterial proteins that promote proliferation of dormant mycobacteria, may be relevant in the human immune response to M. tuberculosis. In previous unpublished work, we found that Rpfs Rv0867c and Rv2389c induced gamma interferon (IFN-γ) production in the blood of TB patients' healthy household contacts in several different African populations. Here we examine these two dominant Rpf antigens in more detail and define the nature of the responding T-cell subsets. Multiparameter cytokine profiling showed that Rv2389c and, to a lesser extent, Rv0867c were recognized by mycobacterium-responsive healthy Dutch individuals; peptide-scanning revealed several epitopes, including a single immunodominant epitope in Rv2389c. Rv0867c and, to a lesser extent, Rv2389c Rpf-specific T-cell responses were maintained for decades in long-term M. tuberculosis nonprogressors. Prominent Rv0867c-specific double- and single-cytokine-producing CD8(+) T-cell subset responses were found, including a large population of CD8(+) effector memory and effector T-cell subsets. We conclude that M. tuberculosis Rpf antigens are important targets in the human immune response to M. tuberculosis and represent interesting TB vaccine candidate antigens.
Collapse
|
392
|
Abstract
There is a critical need for improving the level of chemistry awareness in systems biology. The data and information related to modulation of genes and proteins by small molecules continue to accumulate at the same time as simulation tools in systems biology and whole body physiologically based pharmacokinetics (PBPK) continue to evolve. We called this emerging area at the interface between chemical biology and systems biology systems chemical biology (SCB) (Nat Chem Biol 3: 447-450, 2007).The overarching goal of computational SCB is to develop tools for integrated chemical-biological data acquisition, filtering and processing, by taking into account relevant information related to interactions between proteins and small molecules, possible metabolic transformations of small molecules, as well as associated information related to genes, networks, small molecules, and, where applicable, mutants and variants of those proteins. There is yet an unmet need to develop an integrated in silico pharmacology/systems biology continuum that embeds drug-target-clinical outcome (DTCO) triplets, a capability that is vital to the future of chemical biology, pharmacology, and systems biology. Through the development of the SCB approach, scientists will be able to start addressing, in an integrated simulation environment, questions that make the best use of our ever-growing chemical and biological data repositories at the system-wide level. This chapter reviews some of the major research concepts and describes key components that constitute the emerging area of computational systems chemical biology.
Collapse
Affiliation(s)
- Tudor I Oprea
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | | | | | | |
Collapse
|
393
|
Affiliation(s)
- Hyejin Kim
- Korean Institute of Tuberculosis, Osong, Chungcheongbuk-do, Korea
| | - Sungweon Ryoo
- Korean Institute of Tuberculosis, Osong, Chungcheongbuk-do, Korea
| |
Collapse
|
394
|
Marriner GA, Nayyar A, Uh E, Wong SY, Mukherjee T, Via LE, Carroll M, Edwards RL, Gruber TD, Choi I, Lee J, Arora K, England KD, Boshoff HIM, Barry CE. The Medicinal Chemistry of Tuberculosis Chemotherapy. TOPICS IN MEDICINAL CHEMISTRY 2011. [DOI: 10.1007/7355_2011_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
395
|
Barry CE. Lessons from seven decades of antituberculosis drug discovery. Curr Top Med Chem 2011; 11:1216-25. [PMID: 21401509 PMCID: PMC6380367 DOI: 10.2174/156802611795429158] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 11/25/2010] [Indexed: 12/31/2022]
Abstract
Despite massive global efforts tuberculosis rates continue to climb and drug-resistance rates are rising to alarming levels. Discovering new agents for treating this bacterial pathogen poses unique challenges, but these challenges have been faced throughout the entire modern history of research into anti-infectives. This review looks back at every decade since the 1940s and summarizes the most important drugs developed during each decade highlighting the lessons learned during these successful medicinal chemistry programs. Looking forward we must accelerate the integration of these past lessons with the impressive advances that have been made in the basic understanding of the biology of this disease.
Collapse
Affiliation(s)
- Clifton E Barry
- Tuberculosis Research Section, LCID, NIAID, NIH, Bethesda, MD, USA.
| |
Collapse
|
396
|
Lee DY, Chung BKS, Yusufi FN, Selvarasu S. In silico genome-scale modeling and analysis for identifying anti-tubercular drug targets. Drug Dev Res 2010. [DOI: 10.1002/ddr.20408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
397
|
Jagannathan V, Kaur P, Datta S. Polyphosphate kinase from M. tuberculosis: an interconnect between the genetic and biochemical role. PLoS One 2010; 5:e14336. [PMID: 21179463 PMCID: PMC3002279 DOI: 10.1371/journal.pone.0014336] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 11/11/2010] [Indexed: 11/19/2022] Open
Abstract
The enzyme Polyphosphate Kinase (PPK) catalyses the reversible transfer of the terminal γ-Pi of ATP to form a long chain Polyphosphate (PolyP). Using an IPTG inducible mycobacterial vector, the vulnerability of this gene has been evaluated by antisense knockdown experiments in M. tuberculosis. Expression profiling studies point to the fact that down regulation of PPK caused cidality during the late phase in contrast to its bacteriostatic mode immediately following antisense expression. PPK thus seems to be a suitable anti-tubercular drug target. The enzyme which is a tetramer has been cloned in E. coli and purified to homogeneity. An enzyme assay suitable for High Throughput Screening was optimized by using the statistical Taguchi protocol and the kinetic parameters determined. The enzyme displayed a strong product inhibition by ADP. In order to accurately estimate the product inhibition, progress curve analysis of the enzyme reaction was monitored. The kinetic equation describing the progress curve was suitably modified by taking into account the product inhibition. The reversible nature of the enzyme indicated a possibility of a two way ATP↔ADP switch operating in the bacteria as a response to its growth requirement.
Collapse
|
398
|
Abstract
Mycobacterium tuberculosis, which causes tuberculosis, remains a major human public health threat. This is largely due to a sizeable reservoir of latently infected individuals, who may relapse into active disease decades after first acquiring the infection. Furthermore, patients have a very slow response to treatment of active disease. Latency and antibiotic tolerance are commonly taken as a proxy for dormancy, a stable nonreplicative state. However, latency is a clinical term that is solely defined by a lack of disease indicators. The actual state of the bacterium in human latency is not well understood. Here we evaluate the results of several in vitro models of dormancy and consider the applicability of various animal models for studying aspects of human latency and resistance to killing by antibiotics. Furthermore, we propose a model for the initiation of dormancy and resuscitation during infection.
Collapse
Affiliation(s)
- Michael C Chao
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
399
|
Honaker RW, Dhiman RK, Narayanasamy P, Crick DC, Voskuil MI. DosS responds to a reduced electron transport system to induce the Mycobacterium tuberculosis DosR regulon. J Bacteriol 2010; 192:6447-55. [PMID: 20952575 PMCID: PMC3008535 DOI: 10.1128/jb.00978-10] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 10/01/2010] [Indexed: 01/14/2023] Open
Abstract
The DosR regulon in Mycobacterium tuberculosis is involved in respiration-limiting conditions, its induction is controlled by two histidine kinases, DosS and DosT, and recent experimental evidence indicates DosS senses either molecular oxygen or a redox change. Under aerobic conditions, induction of the DosR regulon by DosS, but not DosT, was observed after the addition of ascorbate, a powerful cytochrome c reductant, demonstrating that DosS responds to a redox signal even in the presence of high oxygen tension. During hypoxic conditions, regulon induction was attenuated by treatment with compounds that occluded electron flow into the menaquinone pool or decreased the size of the menaquinone pool itself. Increased regulon expression during hypoxia was observed when exogenous menaquinone was added, demonstrating that the menaquinone pool is a limiting factor in regulon induction. Taken together, these data demonstrate that a reduced menaquinone pool directly or indirectly triggers induction of the DosR regulon via DosS. Biochemical analysis of menaquinones upon entry into hypoxic/anaerobic conditions demonstrated the disappearance of the unsaturated species and low-level maintenance of the mono-saturated menaquinone. Relative to the unsaturated form, an analog of the saturated form is better able to induce signaling via DosS and rescue inhibition of menaquinone synthesis and is less toxic. The menaquinone pool is central to the electron transport system (ETS) and therefore provides a mechanistic link between the respiratory state of the bacilli and DosS signaling. Although this report demonstrates that DosS responds to a reduced ETS, it does not rule out a role for oxygen in silencing signaling.
Collapse
Affiliation(s)
- Ryan W. Honaker
- University of Colorado Denver, School of Medicine, Department of Microbiology, P18-9115, 12800 East 19th Avenue, P.O. Box 6511, Aurora, Colorado 80045, Colorado State University, Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, 1682 Campus Delivery, Fort Collins, Colorado 80523
| | - Rakesh K. Dhiman
- University of Colorado Denver, School of Medicine, Department of Microbiology, P18-9115, 12800 East 19th Avenue, P.O. Box 6511, Aurora, Colorado 80045, Colorado State University, Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, 1682 Campus Delivery, Fort Collins, Colorado 80523
| | - Prabagaran Narayanasamy
- University of Colorado Denver, School of Medicine, Department of Microbiology, P18-9115, 12800 East 19th Avenue, P.O. Box 6511, Aurora, Colorado 80045, Colorado State University, Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, 1682 Campus Delivery, Fort Collins, Colorado 80523
| | - Dean C. Crick
- University of Colorado Denver, School of Medicine, Department of Microbiology, P18-9115, 12800 East 19th Avenue, P.O. Box 6511, Aurora, Colorado 80045, Colorado State University, Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, 1682 Campus Delivery, Fort Collins, Colorado 80523
| | - Martin I. Voskuil
- University of Colorado Denver, School of Medicine, Department of Microbiology, P18-9115, 12800 East 19th Avenue, P.O. Box 6511, Aurora, Colorado 80045, Colorado State University, Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, 1682 Campus Delivery, Fort Collins, Colorado 80523
| |
Collapse
|
400
|
Fang X, Wallqvist A, Reifman J. Development and analysis of an in vivo-compatible metabolic network of Mycobacterium tuberculosis. BMC SYSTEMS BIOLOGY 2010; 4:160. [PMID: 21092312 PMCID: PMC3225870 DOI: 10.1186/1752-0509-4-160] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 11/23/2010] [Indexed: 11/16/2022]
Abstract
Background During infection, Mycobacterium tuberculosis confronts a generally hostile and nutrient-poor in vivo host environment. Existing models and analyses of M. tuberculosis metabolic networks are able to reproduce experimentally measured cellular growth rates and identify genes required for growth in a range of different in vitro media. However, these models, under in vitro conditions, do not provide an adequate description of the metabolic processes required by the pathogen to infect and persist in a host. Results To better account for the metabolic activity of M. tuberculosis in the host environment, we developed a set of procedures to systematically modify an existing in vitro metabolic network by enhancing the agreement between calculated and in vivo-measured gene essentiality data. After our modifications, the new in vivo network contained 663 genes, 838 metabolites, and 1,049 reactions and had a significantly increased sensitivity (0.81) in predicted gene essentiality than the in vitro network (0.31). We verified the modifications generated from the purely computational analysis through a review of the literature and found, for example, that, as the analysis suggested, lipids are used as the main source for carbon metabolism and oxygen must be available for the pathogen under in vivo conditions. Moreover, we used the developed in vivo network to predict the effects of double-gene deletions on M. tuberculosis growth in the host environment, explore metabolic adaptations to life in an acidic environment, highlight the importance of different enzymes in the tricarboxylic acid-cycle under different limiting nutrient conditions, investigate the effects of inhibiting multiple reactions, and look at the importance of both aerobic and anaerobic cellular respiration during infection. Conclusions The network modifications we implemented suggest a distinctive set of metabolic conditions and requirements faced by M. tuberculosis during host infection compared with in vitro growth. Likewise, the double-gene deletion calculations highlight the importance of specific metabolic pathways used by the pathogen in the host environment. The newly constructed network provides a quantitative model to study the metabolism and associated drug targets of M. tuberculosis under in vivo conditions.
Collapse
Affiliation(s)
- Xin Fang
- Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command, Ft, Detrick, MD 21702, USA
| | | | | |
Collapse
|