351
|
Ruze R, Song J, Yin X, Chen Y, Xu R, Wang C, Zhao Y. Mechanisms of obesity- and diabetes mellitus-related pancreatic carcinogenesis: a comprehensive and systematic review. Signal Transduct Target Ther 2023; 8:139. [PMID: 36964133 PMCID: PMC10039087 DOI: 10.1038/s41392-023-01376-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 03/26/2023] Open
Abstract
Research on obesity- and diabetes mellitus (DM)-related carcinogenesis has expanded exponentially since these two diseases were recognized as important risk factors for cancers. The growing interest in this area is prominently actuated by the increasing obesity and DM prevalence, which is partially responsible for the slight but constant increase in pancreatic cancer (PC) occurrence. PC is a highly lethal malignancy characterized by its insidious symptoms, delayed diagnosis, and devastating prognosis. The intricate process of obesity and DM promoting pancreatic carcinogenesis involves their local impact on the pancreas and concurrent whole-body systemic changes that are suitable for cancer initiation. The main mechanisms involved in this process include the excessive accumulation of various nutrients and metabolites promoting carcinogenesis directly while also aggravating mutagenic and carcinogenic metabolic disorders by affecting multiple pathways. Detrimental alterations in gastrointestinal and sex hormone levels and microbiome dysfunction further compromise immunometabolic regulation and contribute to the establishment of an immunosuppressive tumor microenvironment (TME) for carcinogenesis, which can be exacerbated by several crucial pathophysiological processes and TME components, such as autophagy, endoplasmic reticulum stress, oxidative stress, epithelial-mesenchymal transition, and exosome secretion. This review provides a comprehensive and critical analysis of the immunometabolic mechanisms of obesity- and DM-related pancreatic carcinogenesis and dissects how metabolic disorders impair anticancer immunity and influence pathophysiological processes to favor cancer initiation.
Collapse
Affiliation(s)
- Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Chengcheng Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| |
Collapse
|
352
|
Liu J, Luo F, Wen L, Zhao Z, Sun H. Current Understanding of Microbiomes in Cancer Metastasis. Cancers (Basel) 2023; 15:1893. [PMID: 36980779 PMCID: PMC10047396 DOI: 10.3390/cancers15061893] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Cancer has been the first killer that threatens people's lives and health. Despite recent improvements in cancer treatment, metastasis continues to be the main reason for death from cancer. The functions of microbiome in cancer metastasis have been studied recently, and it is proved that microbiome can influence tumor metastasis, as well as positive or negative responses to therapy. Here, we summarize the mechanisms of microorganisms affecting cancer metastasis, which include epithelial-mesenchymal transition (EMT), immunity, fluid shear stress (FSS), and matrix metalloproteinases (MMPs). This review will not only give a further understanding of relationship between microbiome and cancer metastasis, but also provide a new perspective for the microbiome's application in cancer metastasis prevention, early detection, and treatment.
Collapse
Affiliation(s)
| | | | | | | | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
353
|
Sun H, Wang Y, Xiao Z, Huang X, Wang H, He T, Jiang X. multiMiAT: an optimal microbiome-based association test for multicategory phenotypes. Brief Bioinform 2023; 24:7005163. [PMID: 36702753 DOI: 10.1093/bib/bbad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/28/2023] Open
Abstract
Microbes can affect the metabolism and immunity of human body incessantly, and the dysbiosis of human microbiome drives not only the occurrence but also the progression of disease (i.e. multiple statuses of disease). Recently, microbiome-based association tests have been widely developed to detect the association between the microbiome and host phenotype. However, the existing methods have not achieved satisfactory performance in testing the association between the microbiome and ordinal/nominal multicategory phenotypes (e.g. disease severity and tumor subtype). In this paper, we propose an optimal microbiome-based association test for multicategory phenotypes, namely, multiMiAT. Specifically, under the multinomial logit model framework, we first introduce a microbiome regression-based kernel association test for multicategory phenotypes (multiMiRKAT). As a data-driven optimal test, multiMiAT then integrates multiMiRKAT, score test and MiRKAT-MC to maintain excellent performance in diverse association patterns. Massive simulation experiments prove the success of our method. Furthermore, multiMiAT is also applied to real microbiome data experiments to detect the association between the gut microbiome and clinical statuses of colorectal cancer as well as for diverse statuses of Clostridium difficile infections.
Collapse
Affiliation(s)
- Han Sun
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China
- School of Computer Science, Central China Normal University, Wuhan 430079, China
- School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China
| | - Yue Wang
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China
- School of Computer Science, Central China Normal University, Wuhan 430079, China
| | - Zhen Xiao
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China
- School of Computer Science, Central China Normal University, Wuhan 430079, China
- School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China
| | - Xiaoyun Huang
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China
- School of Computer Science, Central China Normal University, Wuhan 430079, China
- Collaborative & Innovative Center for Educational Technology, Central China Normal University, Wuhan 430079, China
| | - Haodong Wang
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China
- School of Computer Science, Central China Normal University, Wuhan 430079, China
| | - Tingting He
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China
- School of Computer Science, Central China Normal University, Wuhan 430079, China
- National Language Resources Monitoring & Research Center for Network Media, Central China Normal University, Wuhan 430079, China
| | - Xingpeng Jiang
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China
- School of Computer Science, Central China Normal University, Wuhan 430079, China
- National Language Resources Monitoring & Research Center for Network Media, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
354
|
Asawa S, Nüesch M, Gvozdenovic A, Aceto N. Circulating tumour cells in gastrointestinal cancers: food for thought? Br J Cancer 2023; 128:1981-1990. [PMID: 36932192 DOI: 10.1038/s41416-023-02228-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
Abstract
Gastrointestinal (GI) cancers account for 35% of cancer-related deaths, predominantly due to their ability to spread and generate drug-tolerant metastases. Arising from different locations in the GI system, the majority of metastatic GI malignancies colonise the liver and the lungs. In this context, circulating tumour cells (CTCs) are playing a critical role in the formation of new metastases, and their presence in the blood of patients has been correlated with a poor outcome. In addition to their prognostic utility, prospective targeting of CTCs may represent a novel, yet ambitious strategy in the fight against metastasis. A better understanding of CTC biology, mechanistic underpinnings and weaknesses may facilitate the development of previously underappreciated anti-metastasis approaches. Here, along with related clinical studies, we outline a selection of the literature describing biological features of CTCs with an impact on their metastasis forming ability in different GI cancers.
Collapse
Affiliation(s)
- Simran Asawa
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Manuel Nüesch
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Ana Gvozdenovic
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland.
| |
Collapse
|
355
|
Zhang Z, Chen H, Huang J, Zhang S, Li Z, Kong C, Mao Y, Han B. Early Administration of Vancomycin Inhibits Pulmonary Embolism by Remodeling Gut Microbiota. J Pers Med 2023; 13:jpm13030537. [PMID: 36983718 PMCID: PMC10059710 DOI: 10.3390/jpm13030537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Pulmonary embolism (PE) is a common and potentially fatal condition in the emergency department, and early identification of modifiable risk factors for prevention and management is highly desirable. Although gut dysbiosis is associated with a high incidence of venous thromboembolism, the role and mechanisms of the gut microbiome in the pathogenesis of venous thromboembolism, especially PE, remain unexplored. Here, we attempted to elucidate the benefits of the gut microbiome in the pathogenesis of PE using multiple antibiotics and fecal microbiota transplantation (FMT) for early intervention in a classical mouse model of PE. The results showed that early administration of various antibiotics (except ampicillin) could inhibit pulmonary thrombosis to a certain extent and reduced mortality in young and old mice with PE. Among them, vancomycin has the best inhibitory effect on PE. With the help of gut microbiota sequencing analysis, we found that antibiotic treatment can reshape the gut microbiota; especially vancomycin can significantly improve the gut microbiota structure in PE mice. Furthermore, FMT could transfer vancomycin-modified gut microbes into mice and inhibit the pathogenesis of PE, possibly due to increased intestinal colonization by Parasutterella. These data elucidate the underlying molecular mechanism by which early administration of vancomycin can remodel the gut microbiota to suppress PE, providing new clues for clinical optimization and development of PE prevention strategies.
Collapse
Affiliation(s)
- Zhengyan Zhang
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai 201199, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Huiling Chen
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai 201199, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Jiating Huang
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Shilong Zhang
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai 201199, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Zhanming Li
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai 201199, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Chaoyue Kong
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai 201199, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Yuqin Mao
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai 201199, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Bing Han
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai 201199, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China
- Correspondence:
| |
Collapse
|
356
|
Luu M, Schütz B, Lauth M, Visekruna A. The Impact of Gut Microbiota-Derived Metabolites on the Tumor Immune Microenvironment. Cancers (Basel) 2023; 15:cancers15051588. [PMID: 36900377 PMCID: PMC10001145 DOI: 10.3390/cancers15051588] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Prevention of the effectiveness of anti-tumor immune responses is one of the canonical cancer hallmarks. The competition for crucial nutrients within the tumor microenvironment (TME) between cancer cells and immune cells creates a complex interplay characterized by metabolic deprivation. Extensive efforts have recently been made to understand better the dynamic interactions between cancer cells and surrounding immune cells. Paradoxically, both cancer cells and activated T cells are metabolically dependent on glycolysis, even in the presence of oxygen, a metabolic process known as the Warburg effect. The intestinal microbial community delivers various types of small molecules that can potentially augment the functional capabilities of the host immune system. Currently, several studies are trying to explore the complex functional relationship between the metabolites secreted by the human microbiome and anti-tumor immunity. Recently, it has been shown that a diverse array of commensal bacteria synthetizes bioactive molecules that enhance the efficacy of cancer immunotherapy, including immune checkpoint inhibitor (ICI) treatment and adoptive cell therapy with chimeric antigen receptor (CAR) T cells. In this review, we highlight the importance of commensal bacteria, particularly of the gut microbiota-derived metabolites that are capable of shaping metabolic, transcriptional and epigenetic processes within the TME in a therapeutically meaningful way.
Collapse
Affiliation(s)
- Maik Luu
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Burkhard Schütz
- Institute of Anatomy and Cell Biology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Matthias Lauth
- Department of Gastroenterology, Center for Tumor and Immune Biology (ZTI), Philipps-University Marburg, 35043 Marburg, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, 35043 Marburg, Germany
- Correspondence:
| |
Collapse
|
357
|
Frenkel M, David A, Sapire K, Hausner D. Complementary and Integrative Medicine in Pancreatic Cancer. Curr Oncol Rep 2023; 25:231-242. [PMID: 36735141 DOI: 10.1007/s11912-023-01370-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE OF REVIEW Pancreatic cancer has high mortality and morbidity rates, associated with the issues of typically late diagnosis and the limited effectiveness of current treatments. Patients tend to experience multiple symptoms that can include anxiety, fear, depression, fatigue, weakness, peripheral neuropathy, and abdominal pain, which reduce quality of life (QoL) and may compromise the treatment continuum. Many of those symptoms are amenable to complementary and integrative medicine (CIM) therapies as a part of supportive and palliative care. This article reviews research findings on the beneficial effect of use of CIM modalities in regard to pancreatic cancer, with emphasis on pancreatic ductal adenocarcinoma (PDAC). RECENT FINDINGS Given the often-poor prognosis of the disease, patients with PDAC often seek integrative therapies to help manage the disease itself, to provide support through cancer treatment and its symptoms, and to provide emotional stress relief. Data is accumulating in the past few years on the potential benefits of CIM to the management of pancreatic cancer symptoms and treatment side effects, in order to augment supportive care. This data reveal that nutrition counselling; digestive enzyme therapy; microbiome support; dietary supplements; lifestyle interventions (physical activity and circadian health/sleep hygiene) appear to improve QoL of these patients through reduced symptom burden and meeting psychological needs, such as distress and fatigue. Acupuncture, mindfulness, yoga, reflexology, massage, and homeopathy may also contribute to symptom reduction, both physical and psychological, in all stages of the disease. There is supporting evidence that some CIM modalities may alleviate side effects and symptoms related to pancreatic cancer and its treatment, suggesting that practitioners might consider integrating these modalities in certain situations encountered in the treatment of pancreatic cancer. Further investigation is needed to define the optimal integration of CIM into the treatment and supportive care of patients affected by pancreatic cancer.
Collapse
Affiliation(s)
- Moshe Frenkel
- Complementary and Integrative Medicine Service, Oncology Division, Rambam Health Care Campus, Haifa, Israel.
| | - Adi David
- Tal Center for Integrative Medicine, Institute of Oncology, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Kenneth Sapire
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Hausner
- Tal Center for Integrative Medicine, Institute of Oncology, Chaim Sheba Medical Center, Ramat-Gan, Israel.,Palliative Care Service, Chaim Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
358
|
Tintelnot J, Xu Y, Lesker TR, Schönlein M, Konczalla L, Giannou AD, Pelczar P, Kylies D, Puelles VG, Bielecka AA, Peschka M, Cortesi F, Riecken K, Jung M, Amend L, Bröring TS, Trajkovic-Arsic M, Siveke JT, Renné T, Zhang D, Boeck S, Strowig T, Uzunoglu FG, Güngör C, Stein A, Izbicki JR, Bokemeyer C, Sinn M, Kimmelman AC, Huber S, Gagliani N. Microbiota-derived 3-IAA influences chemotherapy efficacy in pancreatic cancer. Nature 2023; 615:168-174. [PMID: 36813961 PMCID: PMC9977685 DOI: 10.1038/s41586-023-05728-y] [Citation(s) in RCA: 182] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 01/12/2023] [Indexed: 02/24/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is expected to be the second most deadly cancer by 2040, owing to the high incidence of metastatic disease and limited responses to treatment1,2. Less than half of all patients respond to the primary treatment for PDAC, chemotherapy3,4, and genetic alterations alone cannot explain this5. Diet is an environmental factor that can influence the response to therapies, but its role in PDAC is unclear. Here, using shotgun metagenomic sequencing and metabolomic screening, we show that the microbiota-derived tryptophan metabolite indole-3-acetic acid (3-IAA) is enriched in patients who respond to treatment. Faecal microbiota transplantation, short-term dietary manipulation of tryptophan and oral 3-IAA administration increase the efficacy of chemotherapy in humanized gnotobiotic mouse models of PDAC. Using a combination of loss- and gain-of-function experiments, we show that the efficacy of 3-IAA and chemotherapy is licensed by neutrophil-derived myeloperoxidase. Myeloperoxidase oxidizes 3-IAA, which in combination with chemotherapy induces a downregulation of the reactive oxygen species (ROS)-degrading enzymes glutathione peroxidase 3 and glutathione peroxidase 7. All of this results in the accumulation of ROS and the downregulation of autophagy in cancer cells, which compromises their metabolic fitness and, ultimately, their proliferation. In humans, we observed a significant correlation between the levels of 3-IAA and the efficacy of therapy in two independent PDAC cohorts. In summary, we identify a microbiota-derived metabolite that has clinical implications in the treatment of PDAC, and provide a motivation for considering nutritional interventions during the treatment of patients with cancer.
Collapse
Affiliation(s)
- Joseph Tintelnot
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Yang Xu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till R Lesker
- Research Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Martin Schönlein
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonie Konczalla
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anastasios D Giannou
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Penelope Pelczar
- I. Department of Medicine, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Dominik Kylies
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Victor G Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Agata A Bielecka
- Research Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Manuela Peschka
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Newborn Screening and Metabolic Laboratory, Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Filippo Cortesi
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Jung
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lena Amend
- Research Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tobias S Bröring
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marija Trajkovic-Arsic
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK Partner Site Essen) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jens T Siveke
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK Partner Site Essen) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Danmei Zhang
- Department of Internal Medicine III, Ludwig-Maximilians-University (LMU) Hospital, Munich, Germany
| | - Stefan Boeck
- Department of Internal Medicine III, Ludwig-Maximilians-University (LMU) Hospital, Munich, Germany
| | - Till Strowig
- Research Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Hannover Medical School (MHH), Hannover, Germany
| | - Faik G Uzunoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cenap Güngör
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Stein
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hematology-Oncology Practice Hamburg (HOPE), University Cancer Center Hamburg, Hamburg, Germany
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marianne Sinn
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alec C Kimmelman
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- I. Department of Medicine, University Medical Center Hamburg- Eppendorf, Hamburg, Germany.
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany.
| |
Collapse
|
359
|
Terrisse S, Zitvogel L, Kroemer G. Impact of microbiota on breast cancer hormone therapy. Cell Stress 2023; 7:12-19. [PMID: 36926118 PMCID: PMC10012050 DOI: 10.15698/cst2023.03.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023] Open
Abstract
Recent observations indicate that the pathogenesis and prognosis of hormone-receptor breast cancer is not only dictated by the properties of the malignant cells but also by immune and microbial parameters. Thus, the immunosurveillance system retards the development of hormone-positive breast cancer and contributes to the therapeutic efficacy of estrogen receptor antagonists and aromatase inhibitors. Moreover, the anticancer immune response is profoundly modulated by the local and intestinal microbiota, which influences cancer cell-intrinsic signaling pathways, affects the composition and function of the immune infiltrate present in the tumor microenvironment and modulates the metabolism of estrogens. Indeed, specific bacteria in the gut produce enzymes that affect the enterohepatic cycle of estrogen metabolites, convert estrogens into androgens or generate estrogen-like molecules. The knowledge of these circuitries is in its infancy, calling for further in-depth analyses.
Collapse
Affiliation(s)
| | - Laurence Zitvogel
- INSERM U1015, Equipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France.,University Paris Saclay, Gif-sur-Yvette, France.,Gustave Roussy, ClinicObiome, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le Cancer, Université de Paris Cité, Sorbonne Université, Institut Universitaire de France, Inserm U1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
360
|
Attebury H, Daley D. The Gut Microbiome and Pancreatic Cancer Development and Treatment. Cancer J 2023; 29:49-56. [PMID: 36957973 PMCID: PMC10042586 DOI: 10.1097/ppo.0000000000000647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
ABSTRACT Changes in the gut microbiome have been increasingly shown to accompany oncogenesis across various tumors. Similarly, microbial dysbiosis was found to be associated with pancreatic cancer progression and survival outcomes, expanding the field of tumor microenvironment research in pancreatic cancer. Mechanistic studies in pancreatic cancer models implicate components of the gut and pancreatic cancer microbiome in regulating tumorigenesis by altering cancer cell signaling, modulating immune function, and influencing the efficacy of current therapies in pancreatic cancer. This review discusses the outcomes of microbial modulation across various preclinical and clinical studies and highlights ongoing trials targeting the microbiome for pancreatic cancer therapy.
Collapse
|
361
|
Mattiola I, Diefenbach A. Regulation of innate immune system function by the microbiome: Consequences for tumor immunity and cancer immunotherapy. Semin Immunol 2023; 66:101724. [PMID: 36758379 DOI: 10.1016/j.smim.2023.101724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 02/10/2023]
Abstract
Innate effector cells are immune cells endowed with host protective features and cytotoxic functions. By sensing the tissue environment, innate cells have an important role in regulating the transition from homeostasis to inflammation and the establishment of pathological states, including the onset and development of cancer. The tumor microenvironment induces molecular and functional modifications in innate cells, dampening their capability to initiate and sustain anti-tumor immune responses. Emerging studies clearly showed a contribution of the microbiota in modulating the functions of innate cells in cancer. Commensal microorganisms can not only directly interact with innate cells in the tumor microenvironment but can also exert immunomodulatory features from non-tumor sites through the release of microbial products. The microbiota can mediate the priming of innate cells at mucosal tissues and determine the strength of immune responses mediated by such cells when they migrate to non-mucosal tissues, having an impact on cancer. Finally, several evidences reported a strong contribution of the microbiota in promoting innate immune responses during anti-cancer therapies leading to enhanced therapeutic efficacy. In this review, we considered the current knowledge on the role of the microbiota in shaping host innate immune responses in cancer.
Collapse
Affiliation(s)
- Irene Mattiola
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany.
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany; Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
362
|
Temel HY, Kaymak Ö, Kaplan S, Bahcivanci B, Gkoutos GV, Acharjee A. Role of microbiota and microbiota-derived short-chain fatty acids in PDAC. Cancer Med 2023; 12:5661-5675. [PMID: 36205023 PMCID: PMC10028056 DOI: 10.1002/cam4.5323] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/08/2022] [Accepted: 09/23/2022] [Indexed: 02/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive lethal diseases among other cancer types. Gut microbiome and its metabolic regulation play a crucial role in PDAC. Metabolic regulation in the gut is a complex process that involves microbiome and microbiome-derived short-chain fatty acids (SCFAs). SCFAs regulate inflammation, as well as lipid and glucose metabolism, through different pathways. This review aims to summarize recent developments in PDAC in the context of gut and oral microbiota and their associations with short-chain fatty acid (SCFA). In addition to this, we discuss possible therapeutic applications using microbiota in PDAC.
Collapse
Affiliation(s)
- Hülya Yılmaz Temel
- Department of Bioengineering, Faculty of EngineeringEge UniversityIzmirTurkey
| | - Öznur Kaymak
- Department of Bioengineering, Faculty of EngineeringEge UniversityIzmirTurkey
| | - Seren Kaplan
- Department of Bioengineering, Faculty of EngineeringEge UniversityIzmirTurkey
| | - Basak Bahcivanci
- Institute of Cancer and Genomic Sciences, University of BirminghamBirminghamUK
| | - Georgios V. Gkoutos
- Institute of Cancer and Genomic Sciences, University of BirminghamBirminghamUK
- National Institute for Health Research Surgical Reconstruction, Queen Elizabeth Hospital BirminghamBirminghamUK
- MRC Health Data Research UK (HDR UK)BirminghamUK
| | - Animesh Acharjee
- Institute of Cancer and Genomic Sciences, University of BirminghamBirminghamUK
- National Institute for Health Research Surgical Reconstruction, Queen Elizabeth Hospital BirminghamBirminghamUK
- MRC Health Data Research UK (HDR UK)BirminghamUK
| |
Collapse
|
363
|
Bernardo G, Le Noci V, Ottaviano E, De Cecco L, Camisaschi C, Guglielmetti S, Di Modica M, Gargari G, Bianchi F, Indino S, Sartori P, Borghi E, Sommariva M, Tagliabue E, Triulzi T, Sfondrini L. Reduction of Staphylococcus epidermidis in the mammary tumor microbiota induces antitumor immunity and decreases breast cancer aggressiveness. Cancer Lett 2023; 555:216041. [PMID: 36565918 DOI: 10.1016/j.canlet.2022.216041] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
The mammary gland hosts a microbiota, which differs between malignant versus normal tissue. We found that aerosolized antibiotics decrease murine mammary tumor growth and strongly limit lung metastasis. Oral absorbable antibiotics also reduced mammary tumors. In ampicillin-treated nodules, the immune microenvironment consisted of an M1 profile and improved T cell/macrophage infiltration. In these tumors, we noted an under-representation of microbial recognition and complement pathways, supported by TLR2/TLR7 protein and C3-fragment deposition reduction. By 16S rRNA gene profiling, we observed increased Staphylococcus levels in untreated tumors, among which we isolated Staphylococcus epidermidis, which had potent inflammatory activity and increased Tregs. Conversely, oral ampicillin lowered Staphylococcus epidermidis in mammary tumors and expanded bacteria promoting an M1 phenotype and reducing MDSCs and tumor growth. Ampicillin/paclitaxel combination improved the chemotherapeutic efficacy. Notably, an Amp-like signature, based on genes differentially expressed in murine tumors, identified breast cancer patients with better prognosis and high immune infiltration that correlated with a bacteria response signature. This study highlights the significant influence of mammary tumor microbiota on local immune status and the relevance of its treatment with antibiotics, in combination with breast cancer therapies.
Collapse
Affiliation(s)
- Giancarla Bernardo
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy.
| | - Valentino Le Noci
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy.
| | - Emerenziana Ottaviano
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Via di Rudinì 8, 20142, Milan, Italy.
| | - Loris De Cecco
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS - Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| | - Chiara Camisaschi
- Biomarkers Unit, Department of Applied Research and Technical Development, Fondazione IRCCS - Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| | - Simone Guglielmetti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy.
| | - Martina Di Modica
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS - Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| | - Giorgio Gargari
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy.
| | - Francesca Bianchi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy; U.O. Laboratorio di Morfologia Umana Applicata, IRCCS Policlinico San Donato, Piazza Edmondo Malan 2, 20097, San Donato Milanese, Milan, Italy.
| | - Serena Indino
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy.
| | - Patrizia Sartori
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy.
| | - Elisa Borghi
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Via di Rudinì 8, 20142, Milan, Italy.
| | - Michele Sommariva
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy; Molecular Targeting Unit, Department of Research, Fondazione IRCCS - Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| | - Elda Tagliabue
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS - Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| | - Tiziana Triulzi
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS - Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy; Molecular Targeting Unit, Department of Research, Fondazione IRCCS - Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| |
Collapse
|
364
|
Mohseni AH, Taghinezhad-S S, Casolaro V, Lv Z, Li D. Potential links between the microbiota and T cell immunity determine the tumor cell fate. Cell Death Dis 2023; 14:154. [PMID: 36828830 PMCID: PMC9958015 DOI: 10.1038/s41419-023-05560-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 02/26/2023]
Abstract
The central role of the microbiota as a pivotal factor regulating anti-tumor immune responses has recently been appreciated. Increasing evidence has put a spotlight on the connection of microbiota to T cells, by showing impaired effector and/or memory responses in germ-free (GF) mice or in the presence of dysbiotic communities, and association with tumor growth and overall survival (OS). These observations also have significant implications for anti-tumor therapy and vaccination, suggesting that the communication between T cells and the microbiota involves soluble mediators (microbiota-derived metabolites) that influence various functions of T cells. In addition, there is growing appreciation of the role of bacterial translocation into the peritumoral milieu from the intestinal tract, as well as of locally developed tumor microbial communities, spatially separated from the gut microbiota, in shaping the tumor microbiome. Collectively, these findings have added new support to the idea that tonic inputs mirroring the existence of tumor microbiome could regulate the function of tumor-infiltrating T cells and tissue-resident memory T (TRM) cells. In this review, we focus on recent advances and aspects of these active areas of investigation and provide a comprehensive overview of the unique mechanisms that play a pivotal role in the regulation of anti-tumor immunity by the microbiota, some of which could be of particular relevance for addressing problems caused by tumor heterogeneity. It is our hope that this review will provide a theoretical foundation for future investigations in this area.
Collapse
Affiliation(s)
- Amir Hossein Mohseni
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sedigheh Taghinezhad-S
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Salerno, Italy
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
- Clinical Nuclear Medicine Center, Tongji University School of Medicine, Shanghai, China.
- Imaging Clinical Medical Center, Tongji University School of Medicine, Shanghai, China.
| | - Dan Li
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
- Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
365
|
Consistent Stool Metagenomic Biomarkers Associated with the Response To Melanoma Immunotherapy. mSystems 2023; 8:e0102322. [PMID: 36809182 PMCID: PMC10134792 DOI: 10.1128/msystems.01023-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
The human gut microbiome plays an important role in both health and disease. Recent studies have demonstrated a strong influence of the gut microbiome composition on the efficacy of cancer immunotherapy. However, available studies have not yet succeeded in finding reliable and consistent metagenomic markers that are associated with the response to immunotherapy. Therefore, the reanalysis of the published data may improve our understanding of the association between the composition of the gut microbiome and the treatment response. In this study, we focused on melanoma-related metagenomic data, which are more abundant than are data from other tumor types. We analyzed the metagenomes of 680 stool samples from 7 studies that were published earlier. The taxonomic and functional biomarkers were selected after comparing the metagenomes of patients showing different treatment responses. The list of selected biomarkers was also validated on additional metagenomic data sets that were dedicated to the influence of fecal microbiota transplantation on the response to melanoma immunotherapy. According to our analysis, the resulting cross-study taxonomic biomarkers included three bacterial species: Faecalibacterium prausnitzii, Bifidobacterium adolescentis, and Eubacterium rectale. 101 groups of genes were identified to be functional biomarkers, including those potentially involved in the production of immune-stimulating molecules and metabolites. Moreover, we ranked the microbial species by the number of genes encoding functionally relevant biomarkers that they contained. Thus, we put together a list of potentially the most beneficial bacteria for immunotherapy success. F. prausnitzii, E. rectale, and three species of bifidobacteria stood out as the most beneficial species, even though some useful functions were also present in other bacterial species. IMPORTANCE In this study, we put together a list of potentially the most beneficial bacteria that were associated with a responsiveness to melanoma immunotherapy. Another important result of this study is the list of functional biomarkers of responsiveness to immunotherapy, which are dispersed among different bacterial species. This result possibly explains the existing irregularities between studies regarding the bacterial species that are beneficial to melanoma immunotherapy. Overall, these findings can be utilized to issue recommendations for gut microbiome correction in cancer immunotherapy, and the resulting list of biomarkers might serve as a good stepping stone for the development of a diagnostic test that is aimed at predicting patients' responses to melanoma immunotherapy.
Collapse
|
366
|
Long Y, Tang L, Zhou Y, Zhao S, Zhu H. Causal relationship between gut microbiota and cancers: a two-sample Mendelian randomisation study. BMC Med 2023; 21:66. [PMID: 36810112 PMCID: PMC9945666 DOI: 10.1186/s12916-023-02761-6] [Citation(s) in RCA: 178] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Evidence from observational studies and clinical trials suggests that the gut microbiota is associated with cancer. However, the causal association between gut microbiota and cancer remains to be determined. METHODS We first identified two sets of gut microbiota based on phylum, class, order, family, and genus level information, and cancer data were obtained from the IEU Open GWAS project. We then performed two-sample Mendelian randomisation (MR) to determine whether the gut microbiota is causally associated with eight cancer types. Furthermore, we performed a bi-directional MR analysis to examine the direction of the causal relations. RESULTS We identified 11 causal relationships between genetic liability in the gut microbiome and cancer, including those involving the genus Bifidobacterium. We found 17 strong associations between genetic liability in the gut microbiome and cancer. Moreover, we found 24 associations between genetic liability in the gut microbiome and cancer using multiple datasets. CONCLUSIONS Our MR analysis revealed that the gut microbiota was causally associated with cancers and may be useful in providing new insights for further mechanistic and clinical studies of microbiota-mediated cancer.
Collapse
Affiliation(s)
- Yiwen Long
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Lanhua Tang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Yangying Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Shushan Zhao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China. .,Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| | - Hong Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|
367
|
Jardim SR, de Souza LMP, de Souza HSP. The Rise of Gastrointestinal Cancers as a Global Phenomenon: Unhealthy Behavior or Progress? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3640. [PMID: 36834334 PMCID: PMC9962127 DOI: 10.3390/ijerph20043640] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The overall burden of cancer is rapidly increasing worldwide, reflecting not only population growth and aging, but also the prevalence and spread of risk factors. Gastrointestinal (GI) cancers, including stomach, liver, esophageal, pancreatic, and colorectal cancers, represent more than a quarter of all cancers. While smoking and alcohol use are the risk factors most commonly associated with cancer development, a growing consensus also includes dietary habits as relevant risk factors for GI cancers. Current evidence suggests that socioeconomic development results in several lifestyle modifications, including shifts in dietary habits from local traditional diets to less-healthy Western diets. Moreover, recent data indicate that increased production and consumption of processed foods underlies the current pandemics of obesity and related metabolic disorders, which are directly or indirectly associated with the emergence of various chronic noncommunicable conditions and GI cancers. However, environmental changes are not restricted to dietary patterns, and unhealthy behavioral features should be analyzed with a holistic view of lifestyle. In this review, we discussed the epidemiological aspects, gut dysbiosis, and cellular and molecular characteristics of GI cancers and explored the impact of unhealthy behaviors, diet, and physical activity on developing GI cancers in the context of progressive societal changes.
Collapse
Affiliation(s)
- Silvia Rodrigues Jardim
- Division of Worker’s Health, Universidade Federal do Rio de Janeiro, Rio de Janeiro 22290-140, RJ, Brazil
| | - Lucila Marieta Perrotta de Souza
- Departamento de Clínica Médica, Hospital Universitário, Universidade Federal do Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco 255, Ilha do Fundão, Rio de Janeiro 21941-913, RJ, Brazil
| | - Heitor Siffert Pereira de Souza
- Departamento de Clínica Médica, Hospital Universitário, Universidade Federal do Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco 255, Ilha do Fundão, Rio de Janeiro 21941-913, RJ, Brazil
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, Rio de Janeiro 22281-100, RJ, Brazil
| |
Collapse
|
368
|
Liu Z, Zhang X, Zhang H, Zhang H, Yi Z, Zhang Q, Liu Q, Liu X. Multi-Omics Analysis Reveals Intratumor Microbes as Immunomodulators in Colorectal Cancer. Microbiol Spectr 2023; 11:e0503822. [PMID: 36786568 PMCID: PMC10100960 DOI: 10.1128/spectrum.05038-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/19/2023] [Indexed: 02/15/2023] Open
Abstract
Recent studies indicated that intratumor microbes are an essential part of the tumor microenvironment. Here, we performed an integrated analysis of genetic, epigenetic, and intratumor microbial factors to unravel the potential remodeling mechanisms of immune-cell infiltration (ICI) and tumorigenesis of colorectal cancer (CRC). We identified the components and structure of the intratumor microbiome as primary contributors to the difference in survival between ICI subtypes. Multiple tumor-infiltrating immune cells (TIICs) and immune-related genes were associated with intratumor microbial abundance. Additionally, we found that Clostridium was enriched in CRC patients who were nonsensitive to immune checkpoint blockade (ICB) therapy. We further provided clues that the intratumor microbes might influence the response to ICB therapy by mediating TIICs, especially MAIT (mucosa-associated invariant T) cells. Finally, three ICB-related TIICs and 22 of their associated microbes showed the potential to predict the response to ICB therapy (area under the receiver operating characteristic curve [AUC] = 89%). Our findings highlight the crucial role of intratumor microbes in affecting immune-cell infiltration patterns, prognosis, and therapy response of CRC and provide insights for improving current immunotherapeutic treatment strategies and prognosis for CRC patients. IMPORTANCE Using the multi-omics data from The Cancer Genome Atlas (TCGA) colorectal cancer (CRC) cohort, we estimated the tumor microenvironment (TME) infiltration patterns of patients and unraveled the interplay of gene expression, epigenetic modification, and the intratumor microbiome. This study suggests the impact of intratumor microbes on maintaining the tumor immune microenvironment in the pathogenesis of CRC and modulating the response to immune checkpoint blockade (ICB) therapy. We identified a set of combined features, including 3 ICB-related tumor-infiltrating immune cells (TIICs) and 22 of their associated microbes, that are predictive of ICB responses.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Pathogen Biology—Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Xuemei Zhang
- Department of Pathogen Biology—Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Haoding Zhang
- Department of Pathogen Biology—Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Hong Zhang
- Department of Pathogen Biology—Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Zhongyuan Yi
- Department of Pathogen Biology—Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Qingqing Zhang
- Department of Pathogen Biology—Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Qisha Liu
- Department of Pathogen Biology—Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Xingyin Liu
- Department of Pathogen Biology—Microbiology Division, State Key Laboratory of Reproductive Medicine, Key Laboratory of Pathogen of Jiangsu Province, Key Laboratory of Human Functional Genomics of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| |
Collapse
|
369
|
Zhong H, Liu S, Zhu J, Wu L. Associations between genetically predicted levels of blood metabolites and pancreatic cancer risk. Int J Cancer 2023; 153:103-110. [PMID: 36757187 DOI: 10.1002/ijc.34466] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive solid malignancies, which is featured by systematic metabolism. Thus, a better understanding of metabolic dysregulation in PDAC is important to better characterize its etiology. Here, we performed a large metabolome-wide association study (MWAS) to systematically explore associations between genetically predicted metabolite levels in blood and PDAC risk. Using data from 881 subjects of European descent in the TwinsUK Project, comprehensive genetic models were built to predict serum metabolite levels. These prediction models were applied to the genetic data of 8275 cases and 6723 controls included in the PanScan (I, II and III) and PanC4 consortia. After assessing the metabolite-PDAC risk associations by a slightly modified TWAS/FUSION framework, we identified five metabolites (including two dipeptides) showing significant associations with PDAC risk at false discovery rate (FDR) <0.05. Integrated with gut microbial information, two-sample Mendelian randomization (MR) analyses were further performed to investigate the relationship among serum metabolites, gut microbiome features and PDAC. The flavonoid-degrading bacteria Flavonifractor sp90199495 was found to be associated with metabolite X-21849 and it was also shown to be associated with PDAC risk. Collectively, our study identified novel candidate metabolites for PDAC risk, which could lead to new insights into the etiology of PDAC and improved treatment options.
Collapse
Affiliation(s)
- Hua Zhong
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Shuai Liu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Jingjing Zhu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| |
Collapse
|
370
|
Ohkusa T, Nishikawa Y, Sato N. Gastrointestinal disorders and intestinal bacteria: Advances in research and applications in therapy. Front Med (Lausanne) 2023; 9:935676. [PMID: 36825261 PMCID: PMC9941163 DOI: 10.3389/fmed.2022.935676] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/27/2022] [Indexed: 02/09/2023] Open
Abstract
Intestinal bacteria coexist with humans and play a role in suppressing the invasion of pathogens, producing short-chain fatty acids, producing vitamins, and controlling the immune system. Studies have been carried out on culturable bacterial species using bacterial culture methods for many years. However, as metagenomic analysis of bacterial genes has been developed since the 1990s, it has recently revealed that many bacteria in the intestine cannot be cultured and that approximately 1,000 species and 40 trillion bacteria are present in the gut microbiota. Furthermore, the composition of the microbiota is different in each disease state compared with the healthy state, and dysbiosis has received much attention as a cause of various diseases. Regarding gastrointestinal diseases, dysbiosis has been reported to be involved in inflammatory bowel disease, irritable bowel syndrome, and non-alcoholic steatohepatitis. Recent findings have also suggested that dysbiosis is involved in colon cancer, liver cancer, pancreatic cancer, esophageal cancer, and so on. This review focuses on the relationship between the gut microbiota and gastrointestinal/hepatobiliary diseases and also discusses new therapies targeting the gut microbiota.
Collapse
Affiliation(s)
| | - Yuriko Nishikawa
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobuhiro Sato
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
371
|
Xu S, Xiong Y, Fu B, Guo D, Sha Z, Lin X, Wu H. Bacteria and macrophages in the tumor microenvironment. Front Microbiol 2023; 14:1115556. [PMID: 36825088 PMCID: PMC9941202 DOI: 10.3389/fmicb.2023.1115556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/12/2023] [Indexed: 02/10/2023] Open
Abstract
Cancer and microbial infections are significant worldwide health challenges. Numerous studies have demonstrated that bacteria may contribute to the emergence of cancer. In this review, we assemble bacterial species discovered in various cancers to describe their variety and specificity. The relationship between bacteria and macrophages in cancer is also highlighted, and we look for ample proof to establish a biological basis for bacterial-induced macrophage polarization. Finally, we quickly go over the potential roles of metabolites, cytokines, and microRNAs in the regulation of the tumor microenvironment by bacterially activated macrophages. The complexity of bacteria and macrophages in cancer will be revealed as we gain a better understanding of their pathogenic mechanisms, which will lead to new therapeutic approaches for both inflammatory illnesses and cancer.
Collapse
Affiliation(s)
| | | | - Beibei Fu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Dong Guo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Zhou Sha
- School of Life Sciences, Chongqing University, Chongqing, China
| | | | | |
Collapse
|
372
|
Falcomatà C, Bärthel S, Schneider G, Rad R, Schmidt-Supprian M, Saur D. Context-Specific Determinants of the Immunosuppressive Tumor Microenvironment in Pancreatic Cancer. Cancer Discov 2023; 13:278-297. [PMID: 36622087 PMCID: PMC9900325 DOI: 10.1158/2159-8290.cd-22-0876] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 01/10/2023]
Abstract
Immunotherapies have shown benefits across a range of human cancers, but not pancreatic ductal adenocarcinoma (PDAC). Recent evidence suggests that the immunosuppressive tumor microenvironment (TME) constitutes an important roadblock to their efficacy. The landscape of the TME differs substantially across PDAC subtypes, indicating context-specific principles of immunosuppression. In this review, we discuss how PDAC cells, the local TME, and systemic host and environmental factors drive immunosuppression in context. We argue that unraveling the mechanistic drivers of the context-specific modes of immunosuppression will open new possibilities to target PDAC more efficiently by using multimodal (immuno)therapeutic interventions. SIGNIFICANCE Immunosuppression is an almost universal hallmark of pancreatic cancer, although this tumor entity is highly heterogeneous across its different subtypes and phenotypes. Here, we provide evidence that the diverse TME of pancreatic cancer is a central executor of various different context-dependent modes of immunosuppression, and discuss key challenges and novel opportunities to uncover, functionalize, and target the central drivers and functional nodes of immunosuppression for therapeutic exploitation.
Collapse
Affiliation(s)
- Chiara Falcomatà
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Stefanie Bärthel
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Günter Schneider
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- University Medical Center Göttingen, Department of General, Visceral and Pediatric Surgery, Göttingen, Germany
| | - Roland Rad
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marc Schmidt-Supprian
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
373
|
Sayin S, Rosener B, Li CG, Ho B, Ponomarova O, Ward DV, Walhout AJM, Mitchell A. Evolved bacterial resistance to the chemotherapy gemcitabine modulates its efficacy in co-cultured cancer cells. eLife 2023; 12:83140. [PMID: 36734518 PMCID: PMC9931390 DOI: 10.7554/elife.83140] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/22/2023] [Indexed: 02/04/2023] Open
Abstract
Drug metabolism by the microbiome can influence anticancer treatment success. We previously suggested that chemotherapies with antimicrobial activity can select for adaptations in bacterial drug metabolism that can inadvertently influence the host's chemoresistance. We demonstrated that evolved resistance against fluoropyrimidine chemotherapy lowered its efficacy in worms feeding on drug-evolved bacteria (Rosener et al., 2020). Here, we examine a model system that captures local interactions that can occur in the tumor microenvironment. Gammaproteobacteria-colonizing pancreatic tumors can degrade the nucleoside-analog chemotherapy gemcitabine and, in doing so, can increase the tumor's chemoresistance. Using a genetic screen in Escherichia coli, we mapped all loss-of-function mutations conferring gemcitabine resistance. Surprisingly, we infer that one third of top resistance mutations increase or decrease bacterial drug breakdown and therefore can either lower or raise the gemcitabine load in the local environment. Experiments in three E. coli strains revealed that evolved adaptation converged to inactivation of the nucleoside permease NupC, an adaptation that increased the drug burden on co-cultured cancer cells. The two studies provide complementary insights on the potential impact of microbiome adaptation to chemotherapy by showing that bacteria-drug interactions can have local and systemic influence on drug activity.
Collapse
Affiliation(s)
- Serkan Sayin
- Department of Systems Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Brittany Rosener
- Department of Systems Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Carmen G Li
- Department of Systems Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Bao Ho
- Department of Systems Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Olga Ponomarova
- Department of Systems Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Doyle V Ward
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Program in Microbiome Dynamics, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Albertha JM Walhout
- Department of Systems Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Amir Mitchell
- Department of Systems Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Program in Microbiome Dynamics, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| |
Collapse
|
374
|
Jiang Z, Zhang W, Zhang Z, Sha G, Wang D, Tang D. Intratumoral microbiota: A new force in diagnosing and treating pancreatic cancer. Cancer Lett 2023; 554:216031. [PMID: 36481214 DOI: 10.1016/j.canlet.2022.216031] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer is an increasingly growing source of cancer-related deaths and is often diagnosed at advanced stages. Its treatment is difficult because of the poor results of conventional treatments, such as surgery, chemotherapy, and radiotherapy. Microbiota and their products can regulate the microenvironment of pancreatic tumors, the biological behavior of pancreatic cancer cells, and the functionality of the immune system. Promising results have been achieved in treating pancreatic cancer by regulating microbiota. However, intratumoral microbiota is still in its infancy as a new field of discovery for pancreatic cancer. This review summarizes the mechanisms by which intratumoral microbiota causes pancreatic cancer tumorigenesis, progression, and metastasis and demonstrates their significant potential in diagnosing and treating pancreatic cancer. Additionally, we present an outlook on the future of intratumoral microbiota in treating pancreatic cancer.
Collapse
Affiliation(s)
- Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, 225001, China.
| | - Wenjie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, 225001, China.
| | - Zhilin Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, 225001, China.
| | - Gengyu Sha
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, 225001, China.
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225001, China.
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225001, China.
| |
Collapse
|
375
|
Parke EC, Plutynski A. Going big by going small: Trade-offs in microbiome explanations of cancer. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2023; 97:101-110. [PMID: 36645963 DOI: 10.1016/j.shpsa.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 09/29/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Microbial factors have been implicated in cancer risk, disease progression, treatment and prevention. The key word, however, is "implicated." Our aim in this paper is to map out some of the tensions between competing methods, goals, and standards of evidence in cancer research with respect to the causal role of microbial factors. We discuss an array of pragmatic and epistemic trade-offs in this research area: prioritizing coarse-grained versus fine-grained explanations of the roles of microbiota in cancer; explaining general versus specific cancer targets; studying model organisms versus human patients; and understanding and explaining cancer versus developing diagnostic tools and treatments. In light of these trade-offs and the distinctive complexity and heterogeneity on both sides of the microbiome-cancer relationship, we suggest that it would be more productive and intellectually honest to frame much of this work, at least currently, in terms of generating causal hypotheses to investigate further. Claims of established causal connections between the microbiome and cancer are in many cases overstated. We also discuss the value of "black boxing" microbial causal variables in this research context and draw some general cautionary lessons for ongoing discussions of microbiomes and cancer.
Collapse
Affiliation(s)
- Emily C Parke
- Philosophy, School of Humanities, University of Auckland, New Zealand.
| | - Anya Plutynski
- Philosophy, Washington University in St. Louis, United States
| |
Collapse
|
376
|
Are intratumoral microbiota involved in the progression of intraductal papillary mucinous neoplasms of the pancreas? Surgery 2023; 173:503-510. [PMID: 36404180 DOI: 10.1016/j.surg.2022.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/16/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Microbiota have been reported to influence the development of various gastrointestinal neoplasms through the mechanism of sustained inflammation; however, few data are available regarding their influence on intraductal papillary mucinous neoplasms. The aim of this study was to assess the association between specific microbiota and the clinicopathologic characteristics of intraductal papillary mucinous neoplasms of the pancreas. METHODS DNA was extracted from formalin-fixed, paraffin-embedded samples of 30 patients who underwent pancreatectomy for intraductal papillary mucinous neoplasm, and polymerase chain reaction was used to create sequence libraries using the primer set for the V3 and V4 region of 16S recombinant DNA. Filtered sequence reads were then processed into operational taxonomic units with a 97% identity threshold and the relative abundance of bacteria compared between the 2 groups using operational taxonomic units. RESULTS There was a trend toward fewer Firmicutes and more Proteobacteria and Fusobacteria in the relative abundance of main duct operational taxonomic units than in branch duct operational taxonomic units. The relative abundances of Bacteroidetes (P < .01) and Fusobacteria (P = .04) were significantly higher in invasive intraductal papillary mucinous neoplasms than in noninvasive intraductal papillary mucinous neoplasms. The relative abundance of the intestinal type was significantly lower in Firmicutes than the relative abundance of the nonintestinal type (P = .04). Notably, main duct operational taxonomic units with the intestinal subtype were affected by increased proportions of Proteobacteria and Fusobacteria, and Fusobacteria were abundant in the intestinal type of invasive main duct operational taxonomic units. CONCLUSION Intratumoral microbiota may be involved in the progression of operational taxonomic units.
Collapse
|
377
|
Beutel AK, Halbrook CJ. Barriers and opportunities for gemcitabine in pancreatic cancer therapy. Am J Physiol Cell Physiol 2023; 324:C540-C552. [PMID: 36571444 PMCID: PMC9925166 DOI: 10.1152/ajpcell.00331.2022] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) has become one of the leading causes of cancer-related deaths across the world. A lack of durable responses to standard-of-care chemotherapies renders its treatment particularly challenging and largely contributes to the devastating outcome. Gemcitabine, a pyrimidine antimetabolite, is a cornerstone in PDA treatment. Given the importance of gemcitabine in PDA therapy, extensive efforts are focusing on exploring mechanisms by which cancer cells evade gemcitabine cytotoxicity, but strategies to overcome them have not been translated into patient care. Here, we will introduce the standard treatment paradigm for patients with PDA, highlight mechanisms of gemcitabine action, elucidate gemcitabine resistance mechanisms, and discuss promising strategies to circumvent them.
Collapse
Affiliation(s)
- Alica K Beutel
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
- Department of Internal Medicine, University Hospital Ulm, Ulm, Germany
| | - Christopher J Halbrook
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
- Chao Family Comprehensive Cancer Center, Orange, California
| |
Collapse
|
378
|
Chang MR, Rusanov DA, Arakelyan J, Alshehri M, Asaturova AV, Kireeva GS, Babak MV, Ang WH. Targeting emerging cancer hallmarks by transition metal complexes: Cancer stem cells and tumor microbiome. Part I. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
379
|
Champion C, Neagoe RM, Effernberger M, Sala DT, Servant F, Christensen JE, Arnoriaga-Rodriguez M, Amar J, Lelouvier B, Loubieres P, Azalbert V, Minty M, Thomas C, Blasco-Baque V, Gamboa F, Tilg H, Cardellini M, Federici M, Fernández-Real JM, Loubes JM, Burcelin R. Human liver microbiota modeling strategy at the early onset of fibrosis. BMC Microbiol 2023; 23:34. [PMID: 36717776 PMCID: PMC9885577 DOI: 10.1186/s12866-023-02774-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Gut microbiota is involved in the development of liver diseases such as fibrosis. We and others identified that selected sets of gut bacterial DNA and bacteria translocate to tissues, notably the liver, to establish a non-infectious tissue microbiota composed of microbial DNA and a low frequency live bacteria. However, the precise set of bacterial DNA, and thereby the corresponding taxa associated with the early stages of fibrosis need to be identified. Furthermore, to overcome the impact of different group size and patient origins we adapted innovative statistical approaches. Liver samples with low liver fibrosis scores (F0, F1, F2), to study the early stages of the disease, were collected from Romania(n = 36), Austria(n = 10), Italy(n = 19), and Spain(n = 17). The 16S rRNA gene was sequenced. We considered the frequency, sparsity, unbalanced sample size between cohorts to identify taxonomic profiles and statistical differences. RESULTS Multivariate analyses, including adapted spectral clustering with L1-penalty fair-discriminant strategies, and predicted metagenomics were used to identify that 50% of liver taxa associated with the early stage fibrosis were Enterobacteriaceae, Pseudomonadaceae, Xanthobacteriaceae and Burkholderiaceae. The Flavobacteriaceae and Xanthobacteriaceae discriminated between F0 and F1. Predicted metagenomics analysis identified that the preQ0 biosynthesis and the potential pathways involving glucoryranose and glycogen degradation were negatively associated with liver fibrosis F1-F2 vs F0. CONCLUSIONS Without demonstrating causality, our results suggest first a role of bacterial translocation to the liver in the progression of fibrosis, notably at the earliest stages. Second, our statistical approach can identify microbial signatures and overcome issues regarding sample size differences, the impact of environment, and sets of analyses. TRIAL REGISTRATION TirguMECCH ROLIVER Prospective Cohort for the Identification of Liver Microbiota, registration 4065/2014. Registered 01 01 2014.
Collapse
Affiliation(s)
- Camille Champion
- grid.7429.80000000121866389Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France ,grid.15781.3a0000 0001 0723 035XUnité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: ‘Intestinal Risk FactorsDiabetesDyslipidemia’, Université Paul Sabatier (UPS), F-31432 Toulouse Cedex 4, France ,grid.15781.3a0000 0001 0723 035XInstitut de Mathématiques de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Radu M. Neagoe
- Second Department of Surgery, Emergency Mureş County Hospital, University of Medicine Pharmacy, Science and Technology “George Emil Palade” Tîrgu Mures, Târgu Mureș, Romania
| | - Maria Effernberger
- grid.5361.10000 0000 8853 2677Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela T. Sala
- Second Department of Surgery, Emergency Mureş County Hospital, University of Medicine Pharmacy, Science and Technology “George Emil Palade” Tîrgu Mures, Târgu Mureș, Romania
| | | | - Jeffrey E. Christensen
- grid.7429.80000000121866389Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France ,grid.15781.3a0000 0001 0723 035XUnité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: ‘Intestinal Risk FactorsDiabetesDyslipidemia’, Université Paul Sabatier (UPS), F-31432 Toulouse Cedex 4, France
| | - Maria Arnoriaga-Rodriguez
- grid.411295.a0000 0001 1837 4818Department of Diabetes, Endocrinology and Nutrition, University Hospital of Girona ‘Dr Josep Trueta’, Girona, Spain ,grid.429182.4Institut d’Investigacio Biomedica de Girona IdibGi, Girona, Spain ,CIBER Fisiopatologia de La Obesidad Y Nutricion, Girona, Spain
| | - Jacques Amar
- grid.7429.80000000121866389Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France ,grid.15781.3a0000 0001 0723 035XUnité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: ‘Intestinal Risk FactorsDiabetesDyslipidemia’, Université Paul Sabatier (UPS), F-31432 Toulouse Cedex 4, France ,grid.414295.f0000 0004 0638 3479Therapeutics Department, Rangueil Hospital, Toulouse, France
| | | | - Pascale Loubieres
- grid.7429.80000000121866389Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France ,grid.15781.3a0000 0001 0723 035XUnité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: ‘Intestinal Risk FactorsDiabetesDyslipidemia’, Université Paul Sabatier (UPS), F-31432 Toulouse Cedex 4, France
| | - Vincent Azalbert
- grid.7429.80000000121866389Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France ,grid.15781.3a0000 0001 0723 035XUnité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: ‘Intestinal Risk FactorsDiabetesDyslipidemia’, Université Paul Sabatier (UPS), F-31432 Toulouse Cedex 4, France
| | - Matthieu Minty
- grid.7429.80000000121866389Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France ,grid.15781.3a0000 0001 0723 035XUnité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: ‘Intestinal Risk FactorsDiabetesDyslipidemia’, Université Paul Sabatier (UPS), F-31432 Toulouse Cedex 4, France
| | - Charlotte Thomas
- grid.7429.80000000121866389Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France ,grid.15781.3a0000 0001 0723 035XUnité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: ‘Intestinal Risk FactorsDiabetesDyslipidemia’, Université Paul Sabatier (UPS), F-31432 Toulouse Cedex 4, France
| | - Vincent Blasco-Baque
- grid.7429.80000000121866389Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France ,grid.15781.3a0000 0001 0723 035XUnité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: ‘Intestinal Risk FactorsDiabetesDyslipidemia’, Université Paul Sabatier (UPS), F-31432 Toulouse Cedex 4, France
| | - Fabrice Gamboa
- grid.15781.3a0000 0001 0723 035XInstitut de Mathématiques de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Herbert Tilg
- grid.5361.10000 0000 8853 2677Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Marina Cardellini
- grid.6530.00000 0001 2300 0941Department of Systems Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Massimo Federici
- grid.6530.00000 0001 2300 0941Department of Systems Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Jose-Manuel Fernández-Real
- grid.411295.a0000 0001 1837 4818Department of Diabetes, Endocrinology and Nutrition, University Hospital of Girona ‘Dr Josep Trueta’, Girona, Spain ,grid.429182.4Institut d’Investigacio Biomedica de Girona IdibGi, Girona, Spain ,CIBER Fisiopatologia de La Obesidad Y Nutricion, Girona, Spain
| | - Jean Michel Loubes
- grid.15781.3a0000 0001 0723 035XInstitut de Mathématiques de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Rémy Burcelin
- grid.7429.80000000121866389Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France ,grid.15781.3a0000 0001 0723 035XUnité Mixte de Recherche (UMR) 1297, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2: ‘Intestinal Risk FactorsDiabetesDyslipidemia’, Université Paul Sabatier (UPS), F-31432 Toulouse Cedex 4, France
| |
Collapse
|
380
|
Karska J, Kowalski S, Saczko J, Moisescu MG, Kulbacka J. Mechanosensitive Ion Channels and Their Role in Cancer Cells. MEMBRANES 2023; 13:167. [PMID: 36837670 PMCID: PMC9965697 DOI: 10.3390/membranes13020167] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Mechanical forces are an inherent element in the world around us. The effects of their action can be observed both on the macro and molecular levels. They can also play a prominent role in the tissues and cells of animals due to the presence of mechanosensitive ion channels (MIChs) such as the Piezo and TRP families. They are essential in many physiological processes in the human body. However, their role in pathology has also been observed. Recent discoveries have highlighted the relationship between these channels and the development of malignant tumors. Multiple studies have shown that MIChs mediate the proliferation, migration, and invasion of various cancer cells via various mechanisms. This could show MIChs as new potential biomarkers in cancer detection and prognosis and interesting therapeutic targets in modern oncology. Our paper is a review of the latest literature on the role of the Piezo1 and TRP families in the molecular mechanisms of carcinogenesis in different types of cancer.
Collapse
Affiliation(s)
- Julia Karska
- Faculty of Medicine, Wroclaw Medical University, 50-345 Wroclaw, Poland
| | - Szymon Kowalski
- Faculty of Medicine, Wroclaw Medical University, 50-345 Wroclaw, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Mihaela G. Moisescu
- Department of Biophysics and Cellular Biotechnology, Research Center of Excellence in Biophysics and Cellular Biotechnology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
| |
Collapse
|
381
|
Benkhaled S, Peters C, Jullian N, Arsenijevic T, Navez J, Van Gestel D, Moretti L, Van Laethem JL, Bouchart C. Combination, Modulation and Interplay of Modern Radiotherapy with the Tumor Microenvironment and Targeted Therapies in Pancreatic Cancer: Which Candidates to Boost Radiotherapy? Cancers (Basel) 2023; 15:cancers15030768. [PMID: 36765726 PMCID: PMC9913158 DOI: 10.3390/cancers15030768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Pancreatic ductal adenocarcinoma cancer (PDAC) is a highly diverse disease with low tumor immunogenicity. PDAC is also one of the deadliest solid tumor and will remain a common cause of cancer death in the future. Treatment options are limited, and tumors frequently develop resistance to current treatment modalities. Since PDAC patients do not respond well to immune checkpoint inhibitors (ICIs), novel methods for overcoming resistance are being explored. Compared to other solid tumors, the PDAC's tumor microenvironment (TME) is unique and complex and prevents systemic agents from effectively penetrating and killing tumor cells. Radiotherapy (RT) has the potential to modulate the TME (e.g., by exposing tumor-specific antigens, recruiting, and infiltrating immune cells) and, therefore, enhance the effectiveness of targeted systemic therapies. Interestingly, combining ICI with RT and/or chemotherapy has yielded promising preclinical results which were not successful when translated into clinical trials. In this context, current standards of care need to be challenged and transformed with modern treatment techniques and novel therapeutic combinations. One way to reconcile these findings is to abandon the concept that the TME is a well-compartmented population with spatial, temporal, physical, and chemical elements acting independently. This review will focus on the most interesting advancements of RT and describe the main components of the TME and their known modulation after RT in PDAC. Furthermore, we will provide a summary of current clinical data for combinations of RT/targeted therapy (tRT) and give an overview of the most promising future directions.
Collapse
Affiliation(s)
- Sofian Benkhaled
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
- Department of Radiation Oncology, UNIL-CHUV, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Cedric Peters
- Department of Radiation Oncology, AZ Turnhout, Rubensstraat 166, 2300 Turnhout, Belgium
| | - Nicolas Jullian
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Tatjana Arsenijevic
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hopital Universitaire de Bruxelles H.U.B. CUB Hopital Erasme, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Julie Navez
- Department of Hepato-Biliary-Pancreatic Surgery, Hopital Universitaire de Bruxelles H.U.B. CUB Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Dirk Van Gestel
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Luigi Moretti
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Jean-Luc Van Laethem
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hopital Universitaire de Bruxelles H.U.B. CUB Hopital Erasme, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Christelle Bouchart
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
- Correspondence: ; Tel.: +32-25-413-800
| |
Collapse
|
382
|
Ungureanu BS, Gheorghe DN, Nicolae FM, Râmboiu S, Radu PA, Șurlin VM, Strâmbu VDE, Gheonea DI, Roman A, Șurlin P. Could there be an interplay between periodontal changes and pancreatic malignancies? World J Clin Cases 2023; 11:545-555. [PMID: 36793639 PMCID: PMC9923858 DOI: 10.12998/wjcc.v11.i3.545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/19/2022] [Accepted: 01/10/2023] [Indexed: 01/23/2023] Open
Abstract
The term "periodontal disease" refers to a group of chronic inflammatory illnesses caused by specific microorganisms from subgingival biofilm, that affect the tooth-supporting tissues. Recent research has also shown that periodontal infection plays a role in aggravating systemic disease states at distal sites, reinforcing the significance of the oral cavity for general health. Additionally, it has been suggested that gastroenterological malignancies may be promoted by hematogenous, enteral or lymphatic translocation of periopathogens. In the past 25 years, the global burden of pancreatic cancer (PC) has more than doubled, making it one of the major causes of cancer-related mortality. Periodontitis has been linked to at least 50% increased risk of PC and it could be considered a risk factor for this malignancy. A recent study performed on 59000 African American women with a follow up of 21 years showed that participants who had poor dental health had higher chances of PC. The findings, according to researchers, might be related to the inflammation that some oral bacteria trigger. Regarding the mortality of PC, periodontitis considerably raises the chance of dying from PC. Microbiome alterations in the gut, oral cavity and pancreatic tissues of PC patients occur when compared to healthy flora, demonstrating a link between PC and microecology. Inflammation may also contribute to PC development, although the underlying pathway is not yet known. The function of the microbiome in PC risk has drawn more focus over the last decade. Future risk of PC has been linked to the oral microbiome, specifically increased levels of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans and decreased relative abundance of Leptotrichia and Fusobacteria, suggesting that it may have an impact on the inflammatory condition by expanding, altering, and regulating the commensal microbiome. Patients who received periodontal treatment had significantly decreased incidence rate ratios for PC. By analyzing patterns in the microbiome composition throughout PC development and establishing strategies to enhance the cancer-associated microbial system, we can increase the efficacy of therapy and eventually find an application for the microbial system. The development of immunogenomics and gut micro-genomics in the life sciences will result in a significant advancement in our understanding of how microbial systems and immunotherapy interact, and it may also have intriguing therapeutic implications for extending the lifetime of PC patients.
Collapse
Affiliation(s)
- Bogdan Silviu Ungureanu
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| | - Dorin Nicolae Gheorghe
- Department of Periodontology, Research Center of Periodontal-Systemic Implications, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| | - Flavia Mirela Nicolae
- Department of Periodontology, Research Center of Periodontal-Systemic Implications, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| | - Sandu Râmboiu
- Department 1st of Surgery, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| | - Petru Adrian Radu
- Department of General Surgery, “Carol Davila” University of Medicine and Pharmacy, Bucharest 020021, Romania
| | - Valeriu Marin Șurlin
- Department 1st of Surgery, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| | - Victor Dan Eugen Strâmbu
- Department of General Surgery, “Carol Davila” University of Medicine and Pharmacy, Bucharest 020021, Romania
| | - Dan Ionut Gheonea
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| | - Alexandra Roman
- Department of Periodontology, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Petra Șurlin
- Department of Periodontology, Research Center of Periodontal-Systemic Implications, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| |
Collapse
|
383
|
Zhao J, Yang Y, Xu H, Zheng J, Shen C, Chen T, Wang T, Wang B, Yi J, Zhao D, Wu E, Qin Q, Xia L, Qiao L. Data-independent acquisition boosts quantitative metaproteomics for deep characterization of gut microbiota. NPJ Biofilms Microbiomes 2023; 9:4. [PMID: 36693863 PMCID: PMC9873935 DOI: 10.1038/s41522-023-00373-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Metaproteomics can provide valuable insights into the functions of human gut microbiota (GM), but is challenging due to the extreme complexity and heterogeneity of GM. Data-independent acquisition (DIA) mass spectrometry (MS) has been an emerging quantitative technique in conventional proteomics, but is still at the early stage of development in the field of metaproteomics. Herein, we applied library-free DIA (directDIA)-based metaproteomics and compared the directDIA with other MS-based quantification techniques for metaproteomics on simulated microbial communities and feces samples spiked with bacteria with known ratios, demonstrating the superior performance of directDIA by a comprehensive consideration of proteome coverage in identification as well as accuracy and precision in quantification. We characterized human GM in two cohorts of clinical fecal samples of pancreatic cancer (PC) and mild cognitive impairment (MCI). About 70,000 microbial proteins were quantified in each cohort and annotated to profile the taxonomic and functional characteristics of GM in different diseases. Our work demonstrated the utility of directDIA in quantitative metaproteomics for investigating intestinal microbiota and its related disease pathogenesis.
Collapse
Affiliation(s)
- Jinzhi Zhao
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, 200000, Shanghai, China
| | - Yi Yang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, 200000, Shanghai, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 311200, Hangzhou, China
| | - Hua Xu
- Department of Core Facility of Basic Medical Sciences, and Department of Psychiatry of Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Jianxujie Zheng
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, 200000, Shanghai, China
| | - Chengpin Shen
- Shanghai Omicsolution Co., Ltd, 201100, Shanghai, China
| | - Tian Chen
- Changhai Hospital, The Naval Military Medical University, 200433, Shanghai, China
| | - Tao Wang
- Department of Core Facility of Basic Medical Sciences, and Department of Psychiatry of Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Bing Wang
- College of Food Science and Technology, Shanghai Ocean University, 201306, Shanghai, China
| | - Jia Yi
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, 200000, Shanghai, China
| | - Dan Zhao
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, 200000, Shanghai, China
| | - Enhui Wu
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, 200000, Shanghai, China
| | - Qin Qin
- Changhai Hospital, The Naval Military Medical University, 200433, Shanghai, China.
| | - Li Xia
- Department of Core Facility of Basic Medical Sciences, and Department of Psychiatry of Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China.
| | - Liang Qiao
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, 200000, Shanghai, China.
| |
Collapse
|
384
|
Charles A, Thomas RM. The Influence of the microbiome on the innate immune microenvironment of solid tumors. Neoplasia 2023; 37:100878. [PMID: 36696837 PMCID: PMC9879786 DOI: 10.1016/j.neo.2023.100878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/17/2023] [Indexed: 01/24/2023]
Abstract
Cancer remains a leading cause of death despite many advances in medical and surgical therapy. In recent decades, the investigation for novel therapeutic strategies with greater efficacy and reduced side effects has led to a deeper understanding of the relationship between the microbiome and the immune system in the context of cancer. The ability of the immune system to detect and kill cancer is now recognized to be greatly influenced by the microbial ecosystem of the host. While most of these studies, as well as currently used immunotherapeutics, focus on the adaptive immune system, this minimizes the impact of the innate immune system in cancer surveillance and its regulation by the host microbiome. In this review, known influences of the microbiome on the innate immune cells in the tumor microenvironment will be discussed in the context of individual innate immune cells. Current and needed areas of investigation will highlight the field and its potential impact in the clinical treatment of solid malignancies.
Collapse
Affiliation(s)
- Angel Charles
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Ryan M. Thomas
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA,Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA,Corresponding author at: University of Florida, Department of Surgery, PO Box 100109, Gainesville, FL 32610, USA
| |
Collapse
|
385
|
Lehman N, Kowalska W, Zarobkiewicz M, Mazurek M, Mrozowska K, Bojarska-Junak A, Rola R. Pro- vs. Anti-Inflammatory Features of Monocyte Subsets in Glioma Patients. Int J Mol Sci 2023; 24:1879. [PMID: 36768201 PMCID: PMC9915868 DOI: 10.3390/ijms24031879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Monocytes constitute a heterogenous group of antigen-presenting cells that can be subdivided based on CD14, CD16 and SLAN expression. This division reflects the functional diversity of cells that may play different roles in a variety of pathologies including gliomas. In the current study, the three monocyte subpopulations: classical (CD14+ CD16+ SLAN-), intermediate (CD14dim CD16+ SLAN-) and non-classical (CD14low/- CD16+ SLAN+) in glioma patients' peripheral blood were analysed with flow cytometry. The immune checkpoint molecule (PD-1, PD-L1, SIRPalpha, TIM-3) expression along with pro- and anti-inflammatory cytokines (TNF, IL-12, TGF-beta, IL-10) were assessed. The significant overproduction of anti-inflammatory cytokines by intermediate monocytes was observed. Additionally, SLAN-positive cells overexpressed IL-12 and TNF when compared to the other two groups of monocytes. In conclusion, these results show the presence of different profiles of glioma patient monocytes depending on CD14, CD16 and SLAN expression. The bifold function of monocyte subpopulations might be an additional obstacle to the effectiveness of possible immunotherapies.
Collapse
Affiliation(s)
- Natalia Lehman
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland
- Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, 20-093 Lublin, Poland
| | - Wioleta Kowalska
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Michał Zarobkiewicz
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Marek Mazurek
- Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, 20-093 Lublin, Poland
| | - Karolina Mrozowska
- Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, 20-093 Lublin, Poland
| | | | - Radosław Rola
- Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
386
|
Xue C, Chu Q, Zheng Q, Yuan X, Su Y, Bao Z, Lu J, Li L. Current understanding of the intratumoral microbiome in various tumors. Cell Rep Med 2023; 4:100884. [PMID: 36652905 PMCID: PMC9873978 DOI: 10.1016/j.xcrm.2022.100884] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/18/2022] [Accepted: 12/13/2022] [Indexed: 01/19/2023]
Abstract
It is estimated that in the future, the number of new cancer cases worldwide will exceed the 19.3 million recorded in 2020, and the number of deaths will exceed 10 million. Cancer remains the leading cause of human mortality and lagging socioeconomic development. Intratumoral microbes have been revealed to exist in many cancer types, including pancreatic, colorectal, liver, esophageal, breast, and lung cancers. Intratumoral microorganisms affect not only the host immune system, but also the effectiveness of tumor chemotherapy. This review concentrates on the characteristics and roles of intratumoral microbes in various tumors. In addition, the potential of therapies targeting intratumoral microbes, as well as the main challenges currently delaying these therapies, are explored. Furthermore, we briefly summarize existing technical methods used to characterize intratumoral microbes. We hope to provide ideas for exploring intratumoral microbes as potential biomarkers and targets for tumor diagnosis, treatment, and prognostication.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuanshuai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
387
|
Yang L, Li A, Wang Y, Zhang Y. Intratumoral microbiota: roles in cancer initiation, development and therapeutic efficacy. Signal Transduct Target Ther 2023; 8:35. [PMID: 36646684 PMCID: PMC9842669 DOI: 10.1038/s41392-022-01304-4] [Citation(s) in RCA: 163] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/31/2022] [Accepted: 12/26/2022] [Indexed: 01/18/2023] Open
Abstract
Microorganisms, including bacteria, viruses, fungi, and other eukaryotes, play critical roles in human health. An altered microbiome can be associated with complex diseases. Intratumoral microbial components are found in multiple tumor tissues and are closely correlated with cancer initiation and development and therapy efficacy. The intratumoral microbiota may contribute to promotion of the initiation and progression of cancers by DNA mutations, activating carcinogenic pathways, promoting chronic inflammation, complement system, and initiating metastasis. Moreover, the intratumoral microbiota may not only enhance antitumor immunity via mechanisms including STING signaling activation, T and NK cell activation, TLS production, and intratumoral microbiota-derived antigen presenting, but also decrease antitumor immune responses and promote cancer progression through pathways including upregulation of ROS, promoting an anti-inflammatory environment, T cell inactivation, and immunosuppression. The effect of intratumoral microbiota on antitumor immunity is dependent on microbiota composition, crosstalk between microbiota and the cancer, and status of cancers. The intratumoral microbiota may regulate cancer cell physiology and the immune response by different signaling pathways, including ROS, β-catenin, TLR, ERK, NF-κB, and STING, among others. These viewpoints may help identify the microbiota as diagnosis or prognosis evaluation of cancers, and as new therapeutic strategy and potential therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Li Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, P.R. China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450052, China.
| | - Aitian Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ying Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, P.R. China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450052, China.
| |
Collapse
|
388
|
Abstract
Striving to optimize surgical outcomes, the Enhanced Recovery After Surgery (ERAS) pathway mitigates patients' stress through the implementation of evidence-based practices during the pre-, intra-, and postoperative periods. Intestinal flora is a sophisticated ecosystem integrating with the host and the external environment, which serves as a mediator in diverse interventions of ERAS to regulate human metabolism and inflammation. This review linked gut microbes and their metabolites with ERAS interventions, offering novel high-quality investigative proponents for ERAS. ERAS could alter the composition and function of intestinal flora in patients by alleviating various perioperative stress responses. Modifying gut flora through multiple modalities, such as diet and nutrition, to accelerate recovery might be a complementary approach when exploring novel ERAS initiatives. Meanwhile, the pandemic of COVID-19 and the availability of promising qualitative evidence created both challenges and opportunities for the establishment of ERAS mode.
Collapse
|
389
|
Spiliopoulou P, Vornicova O, Genta S, Spreafico A. Shaping the Future of Immunotherapy Targets and Biomarkers in Melanoma and Non-Melanoma Cutaneous Cancers. Int J Mol Sci 2023; 24:1294. [PMID: 36674809 PMCID: PMC9862040 DOI: 10.3390/ijms24021294] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Recent advances in treating cutaneous melanoma have resulted in impressive patient survival gains. Refinement of disease staging and accurate patient risk classification have significantly improved our prognostic knowledge and ability to accurately stratify treatment. Undoubtedly, the most important step towards optimizing patient outcomes has been the advent of cancer immunotherapy, in the form of immune checkpoint inhibition (ICI). Immunotherapy has established its cardinal role in the management of both early and late-stage melanoma. Through leveraging outcomes in melanoma, immunotherapy has also extended its benefit to other types of skin cancers. In this review, we endeavor to summarize the current role of immunotherapy in melanoma and non-melanoma skin cancers, highlight the most pertinent immunotherapy-related molecular biomarkers, and lastly, shed light on future research directions.
Collapse
Affiliation(s)
- Pavlina Spiliopoulou
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Olga Vornicova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Mount Sinai Hospital, University Health Network, Toronto, ON M5G 1X5, Canada
| | - Sofia Genta
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Anna Spreafico
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| |
Collapse
|
390
|
Nista EC, Del Gaudio A, Del Vecchio LE, Mezza T, Pignataro G, Piccioni A, Gasbarrini A, Franceschi F, Candelli M. Pancreatic Cancer Resistance to Treatment: The Role of Microbiota. Biomedicines 2023; 11:157. [PMID: 36672664 PMCID: PMC9856157 DOI: 10.3390/biomedicines11010157] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Pancreatic cancer (PC) is an aggressive malignancy and the fourth leading cause of cancer death in the United States and Europe. It is estimated that PC will be the second leading cause of cancer death by 2030. In addition to late diagnosis, treatment resistance is a major cause of shortened survival in pancreatic cancer. In this context, there is growing evidence that microbes play a regulatory role, particularly in therapy resistance and in creating a microenvironment in the tumor, that favors cancer progression. The presence of certain bacteria belonging to the gamma-proteobacteria or mycoplasmas appears to be associated with both pharmacokinetic and pharmacodynamic changes. Recent evidence suggests that the microbiota may also play a role in resistance mechanisms to immunotherapy and radiotherapy. However, the interactions between microbiota and therapy are bilateral and modulate therapy tolerance. Future perspectives are increasingly focused on elucidating the role of the microbiota in tumorigenesis and processes of therapy resistance, and a better understanding of these mechanisms may provide important opportunities to improve survival in these patients.
Collapse
Affiliation(s)
- Enrico Celestino Nista
- Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Angelo Del Gaudio
- Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Livio Enrico Del Vecchio
- Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Teresa Mezza
- Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giulia Pignataro
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Andrea Piccioni
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesco Franceschi
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marcello Candelli
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
391
|
Pirini F, Cortesi M, Tumedei MM, Zanoni M, Ravaioli S, Bravaccini S. Tumor resident microbiota and response to therapies: An insight on tissue bacterial microbiota. Front Cell Dev Biol 2023; 10:1048360. [PMID: 36684442 PMCID: PMC9845623 DOI: 10.3389/fcell.2022.1048360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
The role of the intestinal microbiota in the promotion, progression, and response to therapies is gaining importance, but recent studies confirm the presence of microbiota also in the tumor, thus becoming a component of the tumor microenvironment. There is not much knowledge on the characteristics and mechanisms of action of the tumor resident microbiota, but there are already indications of its involvement in conditioning the response to therapies. In this review, we discuss recent publications on the interaction between microbiota and anticancer treatments, mechanisms of resistance and possible strategies for manipulating the microbiota that could improve treatments in a personalized medicine perspective.
Collapse
|
392
|
Ding H, Yang Q, Mao Y, Qin D, Yao Z, Wang R, Qin T, Li S. Serum Amyloid a Predicts Prognosis and Chemotherapy Efficacy in Patients with Advanced Pancreatic Cancer. J Inflamm Res 2023; 16:1297-1310. [PMID: 36998322 PMCID: PMC10045337 DOI: 10.2147/jir.s404900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/10/2023] [Indexed: 04/01/2023] Open
Abstract
Purpose There is an urgent need to discover a predictive biomarker to help patients with advanced pancreatic cancer (APC) choose appropriate chemotherapy regimens. This study aimed to determine whether baseline serum amyloid A (SAA) levels were associated with overall survival (OS), progression-free survival (PFS), and treatment response in patients with APC received chemotherapy. Patients and Methods This retrospective study included 268 patients with APC who received first-line chemotherapy at the Sun Yat-Sen University Cancer Center between January 2017 and December 2021. We examined the effect of baseline SAA on OS, PFS and chemotherapy response. The X-Tile program was used to determine the critical value for optimizing the significance of segmentation between Kaplan-Meier survival curves. The Kaplan-Meier curves and Cox regression analyses were used to analyze OS and PFS. Results The best cut-off value of baseline SAA levels for OS stratification was 8.2 mg/L. Multivariate analyses showed that SAA was an independent predictor of OS (Hazard Ratio (HR) = 1.694, 95% Confidence Interval (CI) = 1.247-2.301, p = 0.001) and PFS (HR = 1.555, 95% CI = 1.152-2.098, p = 0.004). Low SAA was associated with longer OS (median, 15.7 months vs 10.0 months, p < 0.001) and PFS (median, 7.6 months vs 4.8 months, p < 0.001). The patients with a low SAA who received mFOLFIRINOX had longer OS (median, 28.5 months vs 15.1 months, p = 0.019) and PFS (median, 12.0 months vs 7.4 months, p = 0.035) than those who received nab-paclitaxel plus gemcitabine (AG) or SOXIRI, whereas there was no significant difference among the three chemotherapy regimens in patients with a high SAA. Conclusion Owing to the rapid and simple analysis of peripheral blood, baseline SAA might be a useful clinical biomarker, not only as a prognostic biomarker for patients with APC, but also as a guide for the selection of chemotherapy regimens.
Collapse
Affiliation(s)
- Honglu Ding
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Qiuxia Yang
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yize Mao
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Dailei Qin
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zehui Yao
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Ruiqi Wang
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Tao Qin
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shengping Li
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Correspondence: Shengping Li, Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road E, Guangzhou, Guangdong, 510060, People’s Republic of China, Tel +86- 020-87341843, Email
| |
Collapse
|
393
|
Liu J, Lin H, Cao M, Lin T, Lin A, Xu W, Wang H, He J, Li Y, Tang H, Zhang B. Shifts and importance of viable bacteria in treatment of DSS-induced ulcerative colitis mice with FMT. Front Cell Infect Microbiol 2023; 13:1124256. [PMID: 36814445 PMCID: PMC9939747 DOI: 10.3389/fcimb.2023.1124256] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Background and Aims Ulcerative colitis (UC) has become a global public health concern, and is in urgent need of novel therapies. Fecal microbiota transplantation (FMT) targeting gut microbiota has recently been applied to the treatment of UC. Despite its recent successes, it is still largely unknown how FMT functionally modulates the gut microbiota and improves the disease. Methods We prospectively collected fecal samples from the 40 mice (30 mice for dextran sulfate sodium (DSS)-induced, 10 for controls), followed by Propidium monoazide treatment for 16S rRNA gene sequencing. These 30 mice were divided equally into 3 groups, which were transplanted with original donor microbiota (DO), inactivated donor microbiota (DI) and saline, respectively. Subsequently, we used 16S rRNA gene sequencing to analyze the viable gut bacteria of ulcerative colitis (UC) mice and histological analysis to evaluate the effects of fecal microbiota transplantation (FMT) with viable microbiota. Results We demonstrated that the community structure of viable bacteria was significantly different from fecal bacteria based on total DNA. Furthermore, the intestinal viable microbiota and colonic mucosal structure of mice were significantly changed by DSS induction. The histological analysis showed that only the mice treated with original donor microbiota group (HF) achieved a significant improvement. Compared with inactivated donor microbiota group (IF) and saline (NF), Lactobacillus and Halomonas were significantly enriched in the HF group. Conclusion We inferred that only live bacteria from human donor reversed the histopathology and symptoms of UC in mice and altered the gut microbiota. The activity of gut microbiota in donor samples should be considered in FMT and that detailed analysis of viable microbiota is essential to understand the mechanisms by which FMT produces therapeutic effects in the future.
Collapse
Affiliation(s)
- Jinglong Liu
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Hao Lin
- Center for Microecological Medical Technology, Xiamen Institute of Union Respiratory Health, Xiamen, China
| | - Man Cao
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Tan Lin
- Center for Microecological Medical Technology, Xiamen Institute of Union Respiratory Health, Xiamen, China
| | - Aiqiang Lin
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Wei Xu
- Center for Microecological Medical Technology, Xiamen Institute of Union Respiratory Health, Xiamen, China
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Han Wang
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Jianquan He
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Yuantao Li
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
- *Correspondence: Yuantao Li, ; Hailing Tang, ; Bangzhou Zhang,
| | - Hailing Tang
- Division of Gastroenterology, Xi’an Central Hospital, Xi’an, China
- *Correspondence: Yuantao Li, ; Hailing Tang, ; Bangzhou Zhang,
| | - Bangzhou Zhang
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- *Correspondence: Yuantao Li, ; Hailing Tang, ; Bangzhou Zhang,
| |
Collapse
|
394
|
Senturk ZN, Akdag I, Deniz B, Sayi-Yazgan A. Pancreatic cancer: Emerging field of regulatory B-cell-targeted immunotherapies. Front Immunol 2023; 14:1152551. [PMID: 37033931 PMCID: PMC10076755 DOI: 10.3389/fimmu.2023.1152551] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, is characterized by a high mortality rate and poor prognosis. Current treatments for PDAC, are ineffective due to a prominent immunosuppressive PDAC tumor microenvironment (TME). Although B lymphocytes are highly infiltrated into PDAC, the importance of B lymphocytes in tumorigenesis is largely neglected. B cells play a dual role in the PDAC tumor microenvironment, acting as either anti-tumorigenic or pro-tumorigenic depending on where they are localized. Tumor-infiltrating B cells, which reside in ectopic lymph nodes, namely tertiary lymphoid structures (TLS), produce anti-tumor antibodies and present tumor antigens to T cells to contribute to cancer immunosurveillance. Alternatively, regulatory B cells (Bregs), dispersed inside the TME, contribute to the dampening of anti-tumor immune responses by secreting anti-inflammatory cytokines (IL-10 and IL-35), which promote tumor growth and metastasis. Determining the role of Bregs in the PDAC microenvironment is thus becoming increasingly attractive for developing novel immunotherapeutic approaches. In this minireview, we shed light on the emerging role of B cells in PDAC development and progression, with an emphasis on regulatory B cells (Bregs). Furthermore, we discussed the potential link of Bregs to immunotherapies in PDAC. These current findings will help us in understanding the full potential of B cells in immunotherapy.
Collapse
|
395
|
Zhang S, Zhang S, Ma X, Zhan J, Pan C, Zhang H, Xie X, Wen J, Xie X. Intratumoral microbiome impacts immune infiltrates in tumor microenvironment and predicts prognosis in esophageal squamous cell carcinoma patients. Front Cell Infect Microbiol 2023; 13:1165790. [PMID: 37180444 PMCID: PMC10174428 DOI: 10.3389/fcimb.2023.1165790] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Background Different intratumoral microbiotaexist in different tumors and play a crucial function in carcinogenesis. However, whether they impact clinical outcomes in esophageal squamous cell carcinoma (ESCC) and their mechanism remain unclear. Methods 16S rDNA amplicon sequencing was performed on surgically resected samples from 98 ESCC patients to analyze intratumoral microbiome abundance and composition. Multiplex fluorescent immunohistochemistry staining was used to profile the phenotypes of immune infiltrates in the tumor microenvironment (TME). Results Patients with higher intratumoral Shannon index had significantly worse surgical outcomes. When patients were divided into short-term survivors and long-term survivors based on the median survival time, both intratumoral alpha-diversity and beta-diversity were found to be significantly inconsistent, and the relative abundance of Lactobacillus and Leptotrichia emerged as the two microorganisms that probably influenced the survival of ESCC patients. Only Lactobacillus in ESCC was validated to significantly worsen patients' prognoses and to be positively correlated with the Shannon index. Multivariate analysis revealed that the intratumoral Shannon index, the relative abundance of Lactobacillus, and the pathologic tumor-node-metastasis (pTNM) stage were independently associated with patients' overall survival. Furthermore, the relative abundance of both Lactobacillus and Shannon index was positively correlated with the proportions of PD-L1+ epithelial cells (ECs) and tumor-associated macrophages (TAMs). The Shannon index was negatively correlated with the proportions of natural killer (NK) cells in the TME. Conclusions A high abundance of intratumoral Lactobacillus and bacterial alpha-diversity was associated with the formation of the immunosuppressive TME and predicted poor long-term survival in ESCC patients.
Collapse
Affiliation(s)
- Shuyue Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuishen Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaofan Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Zhan
- Department of Cardiothoracic Surgery, the First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chuqing Pan
- Department of Intern Medicine, Zhuhai People's Hospital, Zhuhai, China
| | - Huizhong Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiuying Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Jing Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
- *Correspondence: Xuan Xie, ; Jing Wen,
| | - Xuan Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xuan Xie, ; Jing Wen,
| |
Collapse
|
396
|
Shim JA, Ryu JH, Jo Y, Hong C. The role of gut microbiota in T cell immunity and immune mediated disorders. Int J Biol Sci 2023; 19:1178-1191. [PMID: 36923929 PMCID: PMC10008692 DOI: 10.7150/ijbs.79430] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/23/2023] [Indexed: 03/14/2023] Open
Abstract
Gut microbiota was only considered as a commensal organism that aids in digestion, but recent studies revealed that the microbiome play a critical role in both physiological and pathological immune system. The gut microbiome composition is altered by environmental factors such as diet and hygiene, and the alteration affects immune cells, especially T cells. Advanced genomic techniques in microbiome research defined that specific microbes regulate T cell responses and the pathogenesis of immune-mediated disorders. Here, we review features of specific microbes-T cell crosstalk and relationship between the microbes and immunopathogenesis of diseases including in cancers, autoimmune disorders and allergic inflammations. We also discuss the limitations of current experimental animal models, cutting-edge developments and current challenges to overcome in the field, and the possibility of considering gut microbiome in the development of new drug.
Collapse
Affiliation(s)
- Ju A Shim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Jeong Ha Ryu
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea.,PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Yuna Jo
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Changwan Hong
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea.,PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| |
Collapse
|
397
|
Shi Y, Zhang L, Do KA, Jenq R, Peterson CB. Sparse tree-based clustering of microbiome data to characterize microbiome heterogeneity in pancreatic cancer. J R Stat Soc Ser C Appl Stat 2023; 72:20-36. [PMID: 37034187 PMCID: PMC10077950 DOI: 10.1093/jrsssc/qlac002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
There is a keen interest in characterizing variation in the microbiome across cancer patients, given increasing evidence of its important role in determining treatment outcomes. Here our goal is to discover subgroups of patients with similar microbiome profiles. We propose a novel unsupervised clustering approach in the Bayesian framework that innovates over existing model-based clustering approaches, such as the Dirichlet multinomial mixture model, in three key respects: we incorporate feature selection, learn the appropriate number of clusters from the data, and integrate information on the tree structure relating the observed features. We compare the performance of our proposed method to existing methods on simulated data designed to mimic real microbiome data. We then illustrate results obtained for our motivating data set, a clinical study aimed at characterizing the tumor microbiome of pancreatic cancer patients.
Collapse
Affiliation(s)
- Yushu Shi
- Department of Statistics, University of Missouri, Columbia, Columbia, MO, USA
| | - Liangliang Zhang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christine B Peterson
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
398
|
Wang G, He X, Wang Q. Intratumoral bacteria are an important "accomplice" in tumor development and metastasis. Biochim Biophys Acta Rev Cancer 2023; 1878:188846. [PMID: 36496095 DOI: 10.1016/j.bbcan.2022.188846] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/09/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
As emerging tumor components, intratumoral bacteria have been found in many solid tumors. Several studies have demonstrated that different cancer subtypes have distinct microbial compositions, and mechanistic studies have shown that intratumoral bacteria may promote cancer initiation and progression through DNA damage, epigenetic modification, inflammatory responses, modulation of host immunity and activation of oncogenes or oncogenic pathways. Moreover, intratumoral bacteria have been shown to modulate tumor metastasis and chemotherapy response. A better understanding of the tumor microenvironment and its associated microbiota will facilitate the design of new metabolically engineered species, opening up a new era of intratumoral bacteria-based cancer therapy. However, many questions remain to be resolved, such as where intratumoral bacteria originate and whether there is a direct causal relationship between intratumoral bacteria and tumor susceptibility. In addition, suitable preclinical models and more advanced detection techniques are crucial for studying the biological functions of intratumoral bacteria. In this review, we summarize the complicated role of intratumoral bacteria in the regulation of cancer development and metastasis and discuss their carcinogenic mechanisms and potential therapeutic aspects.
Collapse
Affiliation(s)
- Gang Wang
- Department of General Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China; Department of General Surgery, The 74th Group Army Hospital, Guangzhou 510318, China
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an 710032, Shaanxi, China.
| | - Qian Wang
- Department of General Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
399
|
Perry LM, Cruz SM, Kleber KT, Judge SJ, Darrow MA, Jones LB, Basmaci UN, Joshi N, Settles ML, Durbin-Johnson BP, Gingrich AA, Monjazeb AM, Carr-Ascher J, Thorpe SW, Murphy WJ, Eisen JA, Canter RJ. Human soft tissue sarcomas harbor an intratumoral viral microbiome which is linked with natural killer cell infiltrate and prognosis. J Immunother Cancer 2023; 11:e004285. [PMID: 36599469 PMCID: PMC9815021 DOI: 10.1136/jitc-2021-004285] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Groundbreaking studies have linked the gut microbiome with immune homeostasis and antitumor immune responses. Mounting evidence has also demonstrated an intratumoral microbiome, including in soft tissue sarcomas (STS), although detailed characterization of the STS intratumoral microbiome is limited. We sought to characterize the intratumoral microbiome in patients with STS undergoing preoperative radiotherapy and surgery, hypothesizing the presence of a distinct intratumoral microbiome with potentially clinically significant microbial signatures. METHODS We prospectively obtained tumor and stool samples from adult patients with non-metastatic STS using a strict sterile collection protocol to minimize contamination. Metagenomic classification was used to estimate abundance using genus and species taxonomic levels across all classified organisms, and data were analyzed with respect to clinicopathologic factors. RESULTS Fifteen patients were enrolled. Most tumors were located at an extremity (67%) and were histologic grade 3 (87%). 40% were well-differentiated/dedifferentiated liposarcoma histology. With a median follow-up of 24 months, 4 (27%) patients developed metastases, and 3 (20%) died. Despite overwhelming human DNA (>99%) intratumorally, we detected a small but consistent proportion of bacterial DNA (0.02-0.03%) in all tumors, including Proteobacteria, Bacteroidetes, and Firmicutes, as well as viral species. In the tumor microenvironment, we observed a strong positive correlation between viral relative abundance and natural killer (NK) infiltration, and higher NK infiltration was associated with superior metastasis-free and overall survival by immunohistochemical, flow cytometry, and multiplex immunofluorescence analyses. CONCLUSIONS We prospectively demonstrate the presence of a distinct and measurable intratumoral microbiome in patients with STS at multiple time points. Our data suggest that the STS tumor microbiome has prognostic significance with viral relative abundance associated with NK infiltration and oncologic outcome. Additional studies are warranted to further assess the clinical impact of these findings.
Collapse
Affiliation(s)
- Lauren M Perry
- Surgery, University of California Davis, Sacramento, California, USA
| | - Sylvia M Cruz
- Surgery, University of California Davis, Sacramento, California, USA
| | - Kara T Kleber
- Surgery, University of California Davis, Sacramento, California, USA
| | - Sean J Judge
- Surgery, University of California Davis, Sacramento, California, USA
| | - Morgan A Darrow
- Pathology and Laboratory Medicine, University of California Davis, Sacramento, California, USA
| | - Louis B Jones
- Orthopedics, Baylor Scott & White Health, Dallas, TX, Usa
| | - Ugur N Basmaci
- Surgery, University of California Davis, Sacramento, California, USA
| | - Nikhil Joshi
- Bioinformatics Core, University of California Davis Genome Center, Davis, California, USA
| | - Matthew L Settles
- Bioinformatics Core, University of California Davis Genome Center, Davis, California, USA
| | | | - Alicia A Gingrich
- Surgery, University of California Davis, Sacramento, California, USA
| | - Arta Monir Monjazeb
- Radiation Oncology, University of California Davis, Sacramento, California, USA
| | - Janai Carr-Ascher
- Medicine, University of California Davis, Sacramento, California, USA
| | - Steve W Thorpe
- Orthopedic Surgery, University of California Davis, Sacramento, California, USA
| | - William J Murphy
- Medicine, University of California Davis, Sacramento, California, USA
- Dermatology, University of California Davis, Davis, California, USA
| | - Jonathan A Eisen
- Medical Microbiology and Immunology, University of California Davis, Davis, California, USA
| | - Robert J Canter
- Surgery, University of California Davis, Sacramento, California, USA
| |
Collapse
|
400
|
Zhu Z, Cai J, Hou W, Xu K, Wu X, Song Y, Bai C, Mo YY, Zhang Z. Microbiome and spatially resolved metabolomics analysis reveal the anticancer role of gut Akkermansia muciniphila by crosstalk with intratumoral microbiota and reprogramming tumoral metabolism in mice. Gut Microbes 2023; 15:2166700. [PMID: 36740846 PMCID: PMC9904296 DOI: 10.1080/19490976.2023.2166700] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although gut microbiota has been linked to cancer, little is known about the crosstalk between gut- and intratumoral-microbiomes. The goal of this study was to determine whether gut Akkermansia muciniphila (Akk) is involved in the regulation of intratumoral microbiome and metabolic contexture, leading to an anticancer effect on lung cancer. We evaluated the effects of gut endogenous or gavaged exogenous Akk on the tumorigenesis using the Lewis lung cancer mouse model. Feces, blood, and tumor tissue samples were collected for 16S rDNA sequencing. We then conducted spatially resolved metabolomics profiling to discover cancer metabolites in situ directly and to characterize the overall Akk-regulated metabolic features, followed by the correlation analysis of intratumoral bacteria with metabolic network. Our results showed that both endogenous and exogenous gavaged Akk significantly inhibited tumorigenesis. Moreover, we detected increased Akk abundance in blood circulation or tumor tissue by 16S rDNA sequencing in the Akk gavaged mice, compared with the control mice. Of great interest, gavaged Akk may migrate into tumor tissue and influence the composition of intratumoral microbiome. Spatially resolved metabolomics analysis revealed that the gut-derived Akk was able to regulate tumor metabolic pathways, from metabolites to enzymes. Finally, our study identified a significant correlation between the gut Akk-regulated intratumoral bacteria and metabolic network. Together, gut-derived Akk may migrate into blood circulation, and subsequently colonize into lung cancer tissue, which contributes to the suppression of tumorigenesis by influencing tumoral symbiotic microbiome and reprogramming tumoral metabolism, although more studies are needed.
Collapse
Affiliation(s)
- Zhuxian Zhu
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China,CONTACT Yin-Yuan MoInstitute of Clinical Medicine, Zhejiang Provincial People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jixu Cai
- Department of Emergency Medicine, Tongji University School of Medicine, Shanghai, China
| | - Weiwei Hou
- Department of Clinical Laboratory, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ke Xu
- Department of General Medicine, Tongji University School of Medicine, Shanghai, China
| | - Xuxiao Wu
- Department of Emergency Medicine, Tongji University School of Medicine, Shanghai, China
| | - Yuanlin Song
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunxue Bai
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yin-Yuan Mo
- Institute of Clinical Medicine, Zhejiang Provincial People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ziqiang Zhang
- Department of Infectious Disease, Tongji Hospital, Tongji University School of Medicine, Shanghai, China,Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China,Ziqiang Zhang Department of Infectious Disease, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|