351
|
Abstract
PURPOSE OF REVIEW Apolipoprotein M is a recently described apolipoprotein predominantly associated with high-density lipoprotein, but also found in chylomicrons, very low-density lipoproteins, and low-density lipoprotein. The purpose is to review recent information on the unusual structural properties of apolipoprotein M and its possible role in formation of pre-beta high-density lipoprotein and reverse cholesterol metabolism. RECENT FINDINGS Apolipoprotein M is a lipocalin having a coffee filter-like structure with a hydrophobic ligand-binding pocket. Mature apolipoprotein M retains its signal peptide, which serves as a hydrophobic anchor. In mice, silencing of expression in the liver with siRNA led to disappearance of pre-beta high-density lipoprotein and appearance of unusually large high-density lipoproteins. This suggests that apolipoprotein M is important for the formation of pre-beta high-density lipoprotein and reverse cholesterol transport. In accordance with this idea, hepatic overexpression of apolipoprotein M with an adenovirus in low-density lipoprotein-receptor deficient mice led to an approximately 70% reduction of atherosclerosis. In addition to the liver, apolipoprotein M is also expressed in the kidney. Kidney-derived apolipoprotein M binds to megalin, a member of the low-density lipoprotein-receptor family, which interacts with many lipocalins in renal tubuli. Apolipoprotein M is excreted in the urine of mice with a kidney-specific megalin deficiency but not in the urine of normal mice, suggesting megalin-mediated uptake of apolipoprotein M in the tubular epithelium of normal mice. SUMMARY Apolipoprotein M is a novel apolipoprotein with unusual structural features that appears to play important roles in high-density lipoprotein metabolism and prevention of atherosclerosis.
Collapse
Affiliation(s)
- Björn Dahlbäck
- Department of Laboratory Medicine, Clinical Chemistry, Lund University, Wallenberg Laboratory, University Hospital, Malmo, Sweden.
| | | |
Collapse
|
352
|
Jaffer FA, Nahrendorf M, Sosnovik D, Kelly KA, Aikawa E, Weissleder R. Cellular Imaging of Inflammation in Atherosclerosis Using Magnetofluorescent Nanomaterials. Mol Imaging 2006. [DOI: 10.2310/7290.2006.00009] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
353
|
Pande AN, Kohler RH, Aikawa E, Weissleder R, Jaffer FA. Detection of macrophage activity in atherosclerosis in vivo using multichannel, high-resolution laser scanning fluorescence microscopy. JOURNAL OF BIOMEDICAL OPTICS 2006; 11:021009. [PMID: 16674184 DOI: 10.1117/1.2186337] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Molecular and cellular mechanisms of atherogenesis and its treatment are largely being unraveled by in vitro techniques. We describe methodology to directly image macrophage cell activity in vivo in a murine model of atherosclerosis using laser scanning fluorescence microscopy (LSFM) and a macrophage-targeted, near-infrared fluorescent (NIRF) magnetofluorescent nanoparticle (MFNP). Atherosclerotic apolipoprotein E deficient (apoE -/-) mice (n=10) are injected with MFNP or 0.9% saline, and wild-type mice (n=4) are injected with MFNP as additional controls. After 24 h, common carotid arteries are surgically exposed and prepared for LSFM. Multichannel LSFM of MFNP-enhanced carotid atheroma (5x5-microm in-plane resolution) shows a strong focal NIRF signal, with a plaque target-to-background ratio of 3.9+/-1.8. Minimal NIRF signal is observed in control mice. Spectrally resolved indocyanine green (ICG) fluorescence angiograms confirm the intravascular location of atheroma. On ex vivo fluorescence reflectance imaging, greater NIRF plaque signal is seen in apoE -/- MFNP mice compared to controls (p<0.01). The NIRF signal correlates well with immunostained macrophages, both by stained surface area (r=0.77) and macrophage number (r=0.86). The validated experimental methodology thus establishes a platform for investigating macrophage activity in atherosclerosis in vivo, and has implications for the detection of clinical vulnerable plaques.
Collapse
Affiliation(s)
- Ashvin N Pande
- Massachusetts General Hospital, Harvard Medical School, Center for Molecular Imaging Research, Charlestown, Massachusetts 02129, USA
| | | | | | | | | |
Collapse
|
354
|
Ding H, Hashem M, Wiehler WB, Lau W, Martin J, Reid J, Triggle C. Endothelial dysfunction in the streptozotocin-induced diabetic apoE-deficient mouse. Br J Pharmacol 2005; 146:1110-8. [PMID: 16231005 PMCID: PMC1751246 DOI: 10.1038/sj.bjp.0706417] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 09/01/2005] [Accepted: 09/07/2005] [Indexed: 11/08/2022] Open
Abstract
Endothelial dysfunction plays a role in the development of atherosclerosis and diabetes-associated vascular disease and, in the streptozotocin (STZ)-induced apoE-deficient diabetic mouse, we report that, when compared to the citrate (CIT)-treated nondiabetic apoE-deficient control, acetylcholine (Ach)-mediated endothelium-dependent relaxation was reduced in the small mesenteric arteries (SMA) and the plaque-prone regions of the aorta from the STZ-diabetic mouse. In the SMA the component of Ach-mediated relaxation that was attributed to nitric oxide (NO) from STZ-treated diabetic apoE-deficient mice was enhanced; however, the endothelium-derived hyperpolarizing factor (EDHF)-mediated component was reduced. The EDHF component was assessed by determining the component of the Ach-mediated response that was resistant to the combination of the NO synthase (NOS) inhibitor Nomega-nitro-L-arginine methyl ester, cyclooxygenase inhibitor, indomethacin, and soluble guanylate cyclase inhibitor, ODQ, and inhibited by the combination of the intermediate conductance KCa (IKCa) inhibitor TRAM-34 and the small-conductance KCa (SKCa) inhibitor apamin. Endothelial NOS was increased but SK2, SK3 and connexin (Cx) 37 mRNA expressions were significantly (P<0.05) decreased in the SMA from STZ-treated apoE-deficient mice compared to the CIT-treated controls. There was no difference in the IKCa expression or in Cx 40, 43 and 45 mRNA levels between STZ- and CIT-treated mice. The microvasculature of STZ-induced apoE-deficient mice developed endothelial dysfunction, which may be linked to a decrease in the contribution of the EDHF component due to a decrease in SK2 and 3 and Cx 37 expression.
Collapse
Affiliation(s)
- Hong Ding
- School of Medical Sciences, RMIT University, Bundoora West Campus, Bundoora, Victoria 3083, Australia.
| | | | | | | | | | | | | |
Collapse
|
355
|
Pontén A, Folestad EB, Pietras K, Eriksson U. Platelet-Derived Growth Factor D Induces Cardiac Fibrosis and Proliferation of Vascular Smooth Muscle Cells in Heart-Specific Transgenic Mice. Circ Res 2005; 97:1036-45. [PMID: 16224065 DOI: 10.1161/01.res.0000190590.31545.d4] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Platelet-derived growth factor (PDGF)-D is a member of the PDGF/vascular endothelial growth factor family that activates PDGF receptor β (PDGFR-β). We show that PDGF-D is highly expressed in the myocardium throughout development and adulthood, as well as by arterial vascular smooth muscle cells (vSMCs). To obtain further knowledge regarding the in vivo response to PDGF-D, we generated transgenic mice overexpressing the active core domain of PDGF-D in the heart. Transgenic PDGF-D stimulates proliferation of cardiac interstitial fibroblasts and arterial vSMCs. This results in cardiac fibrosis followed by dilated cardiomyopathy and subsequent cardiac failure. Transgenic mice also display vascular remodeling, including dilation of vessels, increased density of SMC-coated vessels, and proliferation of vSMCs, leading to a thickening of tunica media. The thickening of arterial walls is a unique feature of PDGF-D, because this is not seen when PDGF-C is overexpressed in the heart. These results show that PDGF-D, via PDGFR-β signaling, is a potent modulator of both vascular and connective tissue growth and may provide both paracrine and autocrine stimulation of PDGFR-β. Our data raise the possibility that this growth factor may be involved in cardiac fibrosis and atherosclerosis.
Collapse
Affiliation(s)
- Annica Pontén
- Ludwig Institute for Cancer Research, S-17177 Stockholm, Sweden
| | | | | | | |
Collapse
|
356
|
Hanniman EA, Lambert G, McCarthy TC, Sinal CJ. Loss of functional farnesoid X receptor increases atherosclerotic lesions in apolipoprotein E-deficient mice. J Lipid Res 2005; 46:2595-604. [PMID: 16186601 DOI: 10.1194/jlr.m500390-jlr200] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The farnesoid X receptor (FXR) is a bile acid-activated transcription factor that regulates the expression of genes critical for bile acid and lipid homeostasis. This study was undertaken to investigate the pathological consequences of the loss of FXR function on the risk and severity of atherosclerosis. For this purpose, FXR-deficient (FXR-/-) mice were crossed with apolipoprotein E-deficient (ApoE-/-) mice to generate FXR-/- ApoE-/- mice. Challenging these mice with a high-fat, high-cholesterol (HF/HC) diet resulted in reduced weight gain and decreased survival compared with wild-type, FXR-/-, and ApoE-/- mice. FXR-/- ApoE-/- mice also had the highest total plasma lipids and the most atherogenic lipoprotein profile. Livers from FXR-/- and FXR-/- ApoE-/- mice exhibited marked lipid accumulation, focal necrosis (accompanied by increased levels of plasma aspartate aminotransferase), and increased inflammatory gene expression. Measurement of en face lesion area of HF/HC-challenged mice revealed that although FXR-/- mice did not develop atherosclerosis, FXR-/- ApoE-/- mice had approximately double the lesion area compared with ApoE-/- mice. In conclusion, loss of FXR function is associated with decreased survival, increased severity of defects in lipid metabolism, and more extensive aortic plaque formation in a mouse model of atherosclerotic disease.
Collapse
Affiliation(s)
- Elyisha A Hanniman
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
357
|
Mayr M, Chung YL, Mayr U, Yin X, Ly L, Troy H, Fredericks S, Hu Y, Griffiths JR, Xu Q. Proteomic and metabolomic analyses of atherosclerotic vessels from apolipoprotein E-deficient mice reveal alterations in inflammation, oxidative stress, and energy metabolism. Arterioscler Thromb Vasc Biol 2005; 25:2135-42. [PMID: 16123314 DOI: 10.1161/01.atv.0000183928.25844.f6] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Proteomics and metabolomics are emerging technologies to study molecular mechanisms of diseases. We applied these techniques to identify protein and metabolite changes in vessels of apolipoprotein E(-/-) mice on normal chow diet. METHODS AND RESULTS Using 2-dimensional gel electrophoresis and mass spectrometry, we identified 79 protein species that were altered during various stages of atherogenesis. Immunoglobulin deposition, redox imbalance, and impaired energy metabolism preceded lesion formation in apolipoprotein E(-/-) mice. Oxidative stress in the vasculature was reflected by the oxidation status of 1-Cys peroxiredoxin and correlated to the extent of lesion formation in 12-month-old apolipoprotein E(-/-) mice. Nuclear magnetic resonance spectroscopy revealed a decline in alanine and a depletion of the adenosine nucleotide pool in vessels of 10-week-old apolipoprotein E(-/-) mice. Attenuation of lesion formation was associated with alterations of NADPH generating malic enzyme, which provides reducing equivalents for lipid synthesis and glutathione recycling, and successful replenishment of the vascular energy pool. CONCLUSIONS Our study provides the most comprehensive dataset of protein and metabolite changes during atherogenesis published so far and highlights potential associations of immune-inflammatory responses, oxidative stress, and energy metabolism.
Collapse
Affiliation(s)
- Manuel Mayr
- Department of Cardiac and Vascular Sciences, St George's University of London, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
358
|
Wang X, Ishimori N, Korstanje R, Rollins J, Paigen B. Identifying novel genes for atherosclerosis through mouse-human comparative genetics. Am J Hum Genet 2005; 77:1-15. [PMID: 15931593 PMCID: PMC1226181 DOI: 10.1086/431656] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 05/04/2005] [Indexed: 12/15/2022] Open
Abstract
Susceptibility to atherosclerosis is determined by both environmental and genetic factors. Its genetic determinants have been studied by use of quantitative-trait-locus (QTL) analysis. So far, 21 atherosclerosis QTLs have been identified in the mouse: 7 in a high-fat-diet model only, 9 in a sensitized model (apolipoprotein E- or LDL [low-density lipoprotein] receptor-deficient mice) only, and 5 in both models, suggesting that different gene sets operate in each model and that a subset operates in both. Among the 27 human atherosclerosis QTLs reported, 17 (63%) are located in regions homologous (concordant) to mouse QTLs, suggesting that these mouse and human atherosclerosis QTLs have the same underlying genes. Therefore, genes regulating human atherosclerosis will be found most efficiently by first finding their orthologs in concordant mouse QTLs. Novel mouse QTL genes will be found most efficiently by using a combination of the following strategies: identifying QTLs in new crosses performed with previously unused parental strains; inducing mutations in large-scale, high-throughput mutagenesis screens; and using new genomic and bioinformatics tools. Once QTL genes are identified in mice, they can be tested in human association studies for their relevance in human atherosclerotic disease.
Collapse
|
359
|
|
360
|
Egan KM, Wang M, Fries S, Lucitt MB, Zukas AM, Puré E, Lawson JA, FitzGerald GA. Cyclooxygenases, Thromboxane, and Atherosclerosis. Circulation 2005; 111:334-42. [PMID: 15655126 DOI: 10.1161/01.cir.0000153386.95356.78] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Antagonism or deletion of the receptor (the TP) for the cyclooxygenase (COX) product thromboxane (Tx)A
2
, retards atherogenesis in apolipoprotein E knockout (ApoE KO) mice. Although inhibition or deletion of COX-1 retards atherogenesis in ApoE and LDL receptor (LDLR) KOs, the role of COX-2 in atherogenesis remains controversial. Other products of COX-2, such as prostaglandin (PG) I
2
and PGE
2
, may both promote inflammation and restrain the effects of TxA
2
. Thus, combination with a TP antagonist might reveal an antiinflammatory effect of a COX-2 inhibitor in this disease. We addressed this issue and the role of TxA
2
in the promotion and regression of diffuse, established atherosclerosis in Apobec-1/LDLR double KOs (DKOs).
Methods and Results—
TP antagonism with S18886, but not combined inhibition of COX-1 and COX-2 with indomethacin or selective inhibition of COX-2 with Merck Frosst (MF) tricyclic, retards significantly atherogenesis in DKOs. Although indomethacin depressed urinary excretion of major metabolites of both TxA
2
, 2,3-dinor TxB
2
(Tx-M), and PGI
2
, 2,3-dinor 6-keto PGF
1α
(PGI-M), only PGI-M was depressed by the COX-2 inhibitor. None of the treatments modified significantly the increase in lipid peroxidation during atherogenesis, reflected by urinary 8,12-iso-iPF
2α
-VI. Combination with the COX-2 inhibitor failed to augment the impact of TP antagonism alone on lesion area. Rather, analysis of plaque morphology reflected changes consistent with destabilization of the lesion coincident with augmented formation of TxA
2
. Despite a marked effect on disease progression, TP antagonism failed to induce regression of established atherosclerotic disease in this model.
Conclusions—
TP antagonism is more effective than combined inhibition of COX-1 and COX-2 in retarding atherogenesis in Apobec-1/LDLR DKO mice, which perhaps reflects activation of the receptor by multiple ligands during disease initiation and early progression. Despite early intervention, selective inhibition of COX-2, alone or in combination with a TP antagonist, failed to modify disease progression but may undermine plaque stability when combined with the antagonist. TP antagonism failed to induce regression of established atherosclerotic disease. TP ligands, including COX-1 (but not COX-2)–derived TxA
2
, promote initiation and early progression of atherogenesis in Apobec-1/LDLR DKOs but appear unimportant in the maintenance of established disease.
Collapse
Affiliation(s)
- Karine M Egan
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
361
|
Sukhova GK, Wang B, Libby P, Pan JH, Zhang Y, Grubb A, Fang K, Chapman HA, Shi GP. Cystatin C deficiency increases elastic lamina degradation and aortic dilatation in apolipoprotein E-null mice. Circ Res 2005; 96:368-75. [PMID: 15653570 DOI: 10.1161/01.res.0000155964.34150.f7] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The pathogenesis of atherosclerosis and abdominal aortic aneurysm involves substantial proteolysis of the arterial extracellular matrix. The lysosomal cysteine proteases can exert potent elastolytic and collagenolytic activity. Human atherosclerotic plaques have increased cysteine protease content and decreased levels of the endogenous inhibitor cystatin C, suggesting an imbalance that would favor matrix degradation in the arterial wall. This study tested directly the hypothesis that impaired expression of cystatin C alters arterial structure. Cystatin C-deficient mice (Cyst C-/-) were crossbred with apolipoprotein E-deficient mice (ApoE-/-) to generate cystatin C and apolipoprotein E-double deficient mice (Cyst C-/-ApoE-/-). After 12 weeks on an atherogenic diet, cystatin C deficiency yielded significantly increased tunica media elastic lamina fragmentation, decreased medial size, and increased smooth muscle cell and collagen content in aortic lesions of ApoE-/- mice. Cyst C-/-ApoE-/- mice also showed dilated thoracic and abdominal aortae compared with control ApoE-/- mice, although atheroma lesion size, intimal macrophage accumulation, and lipid core size did not differ between these mice. These findings demonstrate directly the importance of cysteine protease/protease inhibitor balance in dysregulated arterial integrity and remodeling during experimental atherogenesis.
Collapse
MESH Headings
- Animals
- Aorta, Abdominal/chemistry
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aorta, Thoracic/chemistry
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Arteriosclerosis/etiology
- Arteriosclerosis/genetics
- Basement Membrane/metabolism
- Cell Proliferation
- Cells, Cultured
- Collagen/metabolism
- Cystatin C
- Cystatins/deficiency
- Cysteine Endopeptidases/metabolism
- Dilatation, Pathologic/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Mice, Mutant Strains
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Tunica Intima/metabolism
- Tunica Intima/pathology
- Tunica Media/pathology
Collapse
Affiliation(s)
- Galina K Sukhova
- Donald W. Reynolds Cardiovascular Clinical Research Center, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, Mass, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
362
|
Wouters K, Shiri-Sverdlov R, van Gorp PJ, van Bilsen M, Hofker MH. Understanding hyperlipidemia and atherosclerosis: lessons from genetically modified apoe and ldlr mice. Clin Chem Lab Med 2005; 43:470-9. [PMID: 15899668 DOI: 10.1515/cclm.2005.085] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractHyperlipidemia is the most important risk factor for atherosclerosis, which is the major cause of cardiovascular disease. The etiology of hyperlipidemia and atherosclerosis is complex and governed by multiple interacting genes. However, mutations in two genes have been shown to be directly involved, i.e., the low-density lipoprotein receptor (LDLR) and apolipoprotein E (ApoE). Genetically modified mouse models have been instrumental in elucidating the underlying molecular mechanisms in lipid metabolism. In this review, we focus on the use of two of the most widely used mouse models, ApoE- and LDLR-deficient mice. After almost a decade of applications, it is clear that each model has unique strengths and drawbacks when carrying out studies of the role of additional genes and environmental factors such as nutrition and lipid-lowering drugs. Importantly, we elaborate on mice expressing mutant forms of APOE, including the
Collapse
Affiliation(s)
- Kristiaan Wouters
- Department of Molecular Genetics, Universiteit Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
363
|
Frank PG, Lisanti MP. Caveolin-1 and caveolae in atherosclerosis: differential roles in fatty streak formation and neointimal hyperplasia. Curr Opin Lipidol 2004; 15:523-9. [PMID: 15361787 DOI: 10.1097/00041433-200410000-00005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Caveolae are 50-100 nm cell surface plasma membrane invaginations observed in terminally differentiated cells. They are characterized by the presence of the protein marker caveolin-1. Caveolae and caveolin-1 are present in almost every cell type that has been implicated in the development of an atheroma. These include endothelial cells, macrophages, and smooth muscle cells. Caveolae and caveolin-1 are involved in regulating several signal transduction pathways and processes that play an important role in atherosclerosis. RECENT FINDINGS Several recent studies using genetically engineered mice (Cav-1 (-/-) null animals) have now clearly demonstrated a role for caveolin-1 and caveolae in the development of atherosclerosis. In fact, they suggest a rather complex one, either proatherogenic or antiatherogenic, depending on the cell type examined. For example, in endothelial cells, caveolin-1 and caveolae may play a proatherogenic role by promoting the transcytosis of LDL-cholesterol particles from the blood to the sub-endothelial space. In contrast, in smooth muscle cells, the ability of caveolin-1 to negatively regulate cell proliferation (neointimal hyperplasia) may have an antiatherogenic effect. SUMMARY Caveolin-1 and caveolae play an important role in several steps involved in the initiation of an atheroma. Development of new drugs that regulate caveolin-1 expression may be important in the prevention or treatment of atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Philippe G Frank
- Department of Molecular Pharmacology and the Albert Einstein Diabetes Research and Training Center (DRTC), and Department of Urology, Albert Einstein College of Medicine, The Bronx, New York 10461, USA.
| | | |
Collapse
|