351
|
Larrivée B, Freitas C, Suchting S, Brunet I, Eichmann A. Guidance of vascular development: lessons from the nervous system. Circ Res 2009; 104:428-41. [PMID: 19246687 DOI: 10.1161/circresaha.108.188144] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The vascular system of vertebrates consists of an organized, branched network of arteries, veins, and capillaries that penetrates all the tissues of the body. One of the most striking features of the vascular system is that its branching pattern is highly stereotyped, with major and secondary branches forming at specific sites and developing highly conserved organ-specific vascular patterns. The factors controlling vascular patterning are not yet completely understood. Recent studies have highlighted the anatomic and structural similarities between blood vessels and nerves. The 2 networks are often aligned, with nerve fibers and blood vessels following parallel routes. Furthermore, both systems require precise control over their guidance and growth. Several molecules with attractive and repulsive properties have been found to modulate the proper guidance of both nerves and blood vessels. These include the Semaphorins, the Slits, and the Netrins and their receptors. In this review, we describe the molecular mechanisms by which blood vessels and axons achieve proper path finding and the molecular cues that are involved in their guidance.
Collapse
Affiliation(s)
- Bruno Larrivée
- Institut National de la Santé et de la Recherche Médicale, U833 and Collège de France, Paris, France
| | | | | | | | | |
Collapse
|
352
|
Abstract
Fibronectin is an extracellular matrix protein found only in vertebrate organisms containing endothelium-lined vasculature and is required for cardiovascular development in fish and mice. Fibronectin and its splice variants containing EIIIA and EIIIB domains are highly upregulated around newly developing vasculature during embryogenesis and in pathological conditions including atherosclerosis, cardiac hypertrophy, and tumorigenesis. However, their molecular roles in these processes are not entirely understood. We review genetic studies examining functions of fibronectin and its splice variants during embryonic cardiovascular development, and discuss potential roles of fibronectin in vascular disease and tumor angiogenesis.
Collapse
Affiliation(s)
- Sophie Astrof
- Greenberg Division of Cardiology, Department of Medicine, Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA, tel: 01-212-746-7654, fax: 01-212-746-6669,
| | - Richard O. Hynes
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139 USA, tel: 01-617-253-6422, fax: 01-617-253-8357,
| |
Collapse
|
353
|
Lomelí H, Starling C, Gridley T. Epiblast-specific Snai1 deletion results in embryonic lethality due to multiple vascular defects. BMC Res Notes 2009; 2:22. [PMID: 19284699 PMCID: PMC2650704 DOI: 10.1186/1756-0500-2-22] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Accepted: 02/06/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Members of the Snail gene family, which encode zinc finger proteins that function as transcriptional repressors, play essential roles during embryonic development in vertebrates. Mouse embryos with conditional deletion of the Snail1 (Snai1) gene in the epiblast, but not in most extraembryonic membranes, exhibit defects in left-right asymmetry specification and migration of mesoderm cells through the posterior primitive streak. Here we describe phenotypic defects that result in death of the mutant embryos by 9.5 days of gestation. FINDINGS Endothelial cells differentiated in epiblast-specific Snai1-deficient embryos, but formation of an interconnected vascular network was abnormal. To determine whether the observed vascular defects were dependent on disruption of blood flow, we analyzed vascular remodeling in cultured allantois explants from the mutant embryos. Similar vascular defects were observed in the mutant allantois explants. CONCLUSION These studies demonstrate that lethality in the Snai1-conditional mutant embryos is caused by multiple defects in the cardiovascular system.
Collapse
Affiliation(s)
- Hilda Lomelí
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma deMéxico, Cuernavaca, Morelos, México.
| | | | | |
Collapse
|
354
|
Boulday G, Blécon A, Petit N, Chareyre F, Garcia LA, Niwa-Kawakita M, Giovannini M, Tournier-Lasserve E. Tissue-specific conditional CCM2 knockout mice establish the essential role of endothelial CCM2 in angiogenesis: implications for human cerebral cavernous malformations. Dis Model Mech 2009; 2:168-77. [PMID: 19259391 DOI: 10.1242/dmm.001263] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 12/10/2008] [Indexed: 11/20/2022] Open
Abstract
Cerebral cavernous malformations (CCM) are vascular malformations of the brain that lead to cerebral hemorrhages. In 20% of CCM patients, this results from an autosomal dominant condition caused by loss-of-function mutations in one of the three CCM genes. High expression levels of the CCM genes in the neuroepithelium indicate that CCM lesions might be caused by a loss of function of these genes in neural cells rather than in vascular cells. However, their in vivo function, particularly during cerebral angiogenesis, is totally unknown. We developed mice with constitutive and tissue-specific CCM2 deletions to investigate CCM2 function in vivo. Constitutive deletion of CCM2 leads to early embryonic death. Deletion of CCM2 from neuroglial precursor cells does not lead to cerebrovascular defects, whereas CCM2 is required in endothelial cells for proper vascular development. Deletion of CCM2 from endothelial cells severely affects angiogenesis, leading to morphogenic defects in the major arterial and venous blood vessels and in the heart, and results in embryonic lethality at mid-gestation. These findings establish the essential role of endothelial CCM2 for proper vascular development and strongly suggest that the endothelial cell is the primary target in the cascade of events leading from CCM2 mutations to CCM cerebrovascular lesions.
Collapse
|
355
|
Phng LK, Gerhardt H. Angiogenesis: A Team Effort Coordinated by Notch. Dev Cell 2009; 16:196-208. [DOI: 10.1016/j.devcel.2009.01.015] [Citation(s) in RCA: 612] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 01/29/2009] [Accepted: 01/24/2009] [Indexed: 01/22/2023]
|
356
|
Davies PF. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. NATURE CLINICAL PRACTICE. CARDIOVASCULAR MEDICINE 2009; 6:16-26. [PMID: 19029993 PMCID: PMC2851404 DOI: 10.1038/ncpcardio1397] [Citation(s) in RCA: 841] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 10/01/2008] [Indexed: 02/07/2023]
Abstract
Endothelium lining the cardiovascular system is highly sensitive to hemodynamic shear stresses that act at the vessel luminal surface in the direction of blood flow. Physiological variations of shear stress regulate acute changes in vascular diameter and when sustained induce slow, adaptive, structural-wall remodeling. Both processes are endothelium-dependent and are systemically and regionally compromised by hyperlipidemia, hypertension, diabetes and inflammatory disorders. Shear stress spans a range of spatiotemporal scales and contributes to regional and focal heterogeneity of endothelial gene expression, which is important in vascular pathology. Regions of flow disturbances near arterial branches, bifurcations and curvatures result in complex spatiotemporal shear stresses and their characteristics can predict atherosclerosis susceptibility. Changes in local artery geometry during atherogenesis further modify shear stress characteristics at the endothelium. Intravascular devices can also influence flow-mediated endothelial responses. Endothelial flow-induced responses include a cell-signaling repertoire, collectively known as mechanotransduction, that ranges from instantaneous ion fluxes and biochemical pathways to gene and protein expression. A spatially decentralized mechanism of endothelial mechanotransduction is dominant, in which deformation at the cell surface induced by shear stress is transmitted as cytoskeletal tension changes to sites that are mechanically coupled to the cytoskeleton. A single shear stress mechanotransducer is unlikely to exist; rather, mechanotransduction occurs at multiple subcellular locations.
Collapse
Affiliation(s)
- Peter F Davies
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Institute for Medicine and Engineering, 1010 Vagelos Laboratories, 3340 Smith Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
357
|
Abstract
Forces that are associated with blood flow are major determinants of vascular morphogenesis and physiology. Blood flow is crucial for blood vessel development during embryogenesis and for regulation of vessel diameter in adult life. It is also a key factor in atherosclerosis, which, despite the systemic nature of major risk factors, occurs mainly in regions of arteries that experience disturbances in fluid flow. Recent data have highlighted the potential endothelial mechanotransducers that might mediate responses to blood flow, the effects of atheroprotective rather than atherogenic flow, the mechanisms that contribute to the progression of the disease and how systemic factors interact with flow patterns to cause atherosclerosis.
Collapse
Affiliation(s)
| | - Martin A. Schwartz
- Department of Microbiology, University of Virginia
- Robert M. Berne Cardiovascular Research Center, Mellon Prostate Cancer Research Center and Departments of Cell Biology and Biomedical Engineering, University of Virginia. Charlottesville VA 22908
| |
Collapse
|
358
|
Tirziu D, Simons M. Endothelium as master regulator of organ development and growth. Vascul Pharmacol 2009; 50:1-7. [PMID: 18804188 PMCID: PMC2630387 DOI: 10.1016/j.vph.2008.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 08/20/2008] [Accepted: 08/21/2008] [Indexed: 01/11/2023]
Abstract
Development of the vasculature is one of the earliest events during embryogenesis, preceding organ formation. Organogenesis requires a complex set of paracrine signals between the vasculature and the developing nonvascular tissues to support differentiation and organ growth. However, the role of endothelium in controlling organ growth and, ultimately, size is little-understood. In this review, we summarize new data regarding the endothelium function in order to provide a more comprehensive understanding of the communication between the endothelium and the organ's tissue.
Collapse
Affiliation(s)
- Daniela Tirziu
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | | |
Collapse
|
359
|
Larin KV, Larina IV, Liebling M, Dickinson ME. Live Imaging of Early Developmental Processes in Mammalian Embryos with Optical Coherence Tomography. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2009; 2:253-259. [PMID: 20582330 PMCID: PMC2891056 DOI: 10.1142/s1793545809000619] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Early embryonic imaging of cardiovascular development in mammalian models requires a method that can penetrate through and distinguish the many tissue layers with high spatial and temporal resolution. In this paper we evaluate the capability of Optical Coherence Tomography (OCT) technique for structural 3D embryonic imaging in mouse embryos at different stages of the developmental process ranging from 7.5 dpc up to 10.5 dpc. Obtained results suggest that the collected data is suitable for quantitative and qualitative measurements to assess cardiovascular function in mouse models, which is likely to expand our knowledge of the complexity of the embryonic heart, and its development into an adult heart.
Collapse
Affiliation(s)
- Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Irina V. Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Michael Liebling
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, USA
| | - Mary E. Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
360
|
McKeown CR, Nowak RB, Moyer J, Sussman MA, Fowler VM. Tropomodulin1 is required in the heart but not the yolk sac for mouse embryonic development. Circ Res 2008; 103:1241-8. [PMID: 18927466 PMCID: PMC2744601 DOI: 10.1161/circresaha.108.178749] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tropomodulin (Tmod)1 caps the pointed ends of actin filaments in sarcomeres of striated muscle myofibrils and in the erythrocyte membrane skeleton. Targeted deletion of mouse Tmod1 leads to defects in cardiac development, fragility of primitive erythroid cells, and an absence of yolk sac vasculogenesis, followed by embryonic lethality at embryonic day 9.5. The Tmod1-null embryonic hearts do not undergo looping morphogenesis and the cardiomyocytes fail to assemble striated myofibrils with regulated F-actin lengths. To test whether embryonic lethality of Tmod1 nulls results from defects in cardiac myofibrillogenesis and development or from erythroid cell fragility and subsequent defects in yolk sac vasculogenesis, we expressed Tmod1 specifically in the myocardium of the Tmod1-null mice under the control of the alpha-myosin heavy chain promoter Tg(alphaMHC-Tmod1). In contrast to Tmod1-null embryos, which fail to undergo cardiac looping and have defective yolk sac vasculogenesis, both cardiac and yolk sac morphology of Tmod1(-/-Tg(alphaMHC-Tmod1)) embryos are normal at embryonic day 9.5. Tmod1(-/-Tg(alphaMHC-Tmod1)) embryos develop into viable and fertile mice, indicating that expression of Tmod1 in the heart is sufficient to rescue the Tmod1-null embryonic defects. Thus, although loss of Tmod1 results in myriad defects and embryonic lethality, the Tmod1(-/-) primary defect is in the myocardium. Moreover, Tmod1 is not required in erythrocytes for viability, nor do the Tmod1(-/-) fragile primitive erythroid cells affect cardiac development, yolk sac vasculogenesis, or viability in the mouse.
Collapse
Affiliation(s)
| | | | | | - Mark A. Sussman
- San Diego State University, Department of Biology and SDSU Heart Institute
| | - Velia M. Fowler
- San Diego State University, Department of Biology and SDSU Heart Institute
| |
Collapse
|
361
|
Jin SW, Patterson C. The opening act: vasculogenesis and the origins of circulation. Arterioscler Thromb Vasc Biol 2008; 29:623-9. [PMID: 19008532 DOI: 10.1161/atvbaha.107.161539] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previous studies on cellular and molecular mechanisms that regulate vascular development identified key signaling pathways and transcription factors. These findings supported the notion that the formation of vasculature is predominantly regulated by genetic programs, which is generally accepted. However, recent progress in understanding nongenetic factors that can modify the preprogrammed genetic mechanisms added another layer of complexity to our current understanding of vascular development. Here, we briefly summarize historic viewpoints and evolutionary perspectives on vascular development. We also review the cellular and molecular mechanisms that govern the emergence of the endothelial lineage and the subsequent process of vasculogenesis during development, with an emphasis on vascular endothelial growth factor and angiopoietin signaling cascades. Finally, we discuss epigenetic factors such as hemodynamic forces and hypoxic responses that can modulate and override the predetermined genetic mechanisms of vascular development.
Collapse
Affiliation(s)
- Suk-Won Jin
- Carolina Cardiovascular Biology Center, University of North Carolina, Chapel Hill, NC 27599-7126, USA
| | | |
Collapse
|
362
|
Larina IV, Sudheendran N, Ghosn M, Jiang J, Cable A, Larin KV, Dickinson ME. Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:060506. [PMID: 19123647 DOI: 10.1117/1.3046716] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Studying hemodynamic changes during early mammalian embryonic development is critical for further advances in prevention, diagnostics, and treatment of congenital cardiovascular (CV) birth defects and diseases. Doppler optical coherence tomography (OCT) has been shown to provide sensitive measurements of blood flow in avian and amphibian embryos. We combined Doppler swept-source optical coherence tomography (DSS-OCT) and live mouse embryo culture to analyze blood flow dynamics in early embryos. SS-OCT structural imaging was used for the reconstruction of embryo morphology and the orientation of blood vessels, which is required for calculating flow velocity from the Doppler measurements. Spatially and temporally resolved blood flow profiles are presented for the dorsal aorta and a yolk sac vessel in a 9.5-day embryo. We demonstrate that DSS-OCT can be successfully used for structural analysis and spatially and temporally resolved hemodynamic measurements in developing early mammalian embryos.
Collapse
Affiliation(s)
- Irina V Larina
- Baylor College of Medicine, Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77584, USA
| | | | | | | | | | | | | |
Collapse
|
363
|
The development of the heart and microcirculation: role of shear stress. Med Biol Eng Comput 2008; 46:479-84. [PMID: 18228072 PMCID: PMC2329736 DOI: 10.1007/s11517-008-0304-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 01/10/2008] [Indexed: 12/24/2022]
Abstract
It is evident that hemodynamic factors have a dominant function already during early cardiogenesis. Flow and ensuing shear stress are sensed by endothelial cells by, ciliary modified, cytoskeletal deformation which then activates a number of subcellular structures and molecules. Shear stress dependent changes mostly converge towards NF kappa B signaling and DNA binding, thereby altering metabolic paths and influencing differentiation of the cells. Geometry of the vascular system heavily affects the flow and shear patterns, as is the case in the adult vasculature where atheroprone areas nicely coincide with the frequency of the primary cilium as shear stress sensor.
Collapse
|
364
|
|
365
|
Cell signaling directing the formation and function of hemogenic endothelium during murine embryogenesis. Blood 2008; 112:3194-204. [PMID: 18684862 DOI: 10.1182/blood-2008-02-139055] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During developmental hematopoiesis, multilineage hematopoietic progenitors are thought to derive from a subset of vascular endothelium. Herein, we define the phenotype of such hemogenic endothelial cells and demonstrate, on a clonal level, that they exhibit multilineage hematopoietic potential. Furthermore, we have begun to define the molecular signals that regulate their development. We found that the formation of yolk sac hemogenic endothelium and its hematopoietic potential were significantly impaired in the absence of retinoic acid (RA) signaling, and could be restored in RA-deficient (Raldh2(-/-)) embryos by provision of exogenous RA in utero. Thus, we identify a novel, critical role for RA signaling in the development of hemogenic endothelium that contributes to definitive hematopoiesis.
Collapse
|
366
|
Walls JR, Coultas L, Rossant J, Henkelman RM. Three-dimensional analysis of vascular development in the mouse embryo. PLoS One 2008; 3:e2853. [PMID: 18682734 PMCID: PMC2478714 DOI: 10.1371/journal.pone.0002853] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 06/11/2008] [Indexed: 02/07/2023] Open
Abstract
Key vasculogenic (de-novo vessel forming) and angiogenic (vessel remodelling) events occur in the mouse embryo between embryonic days (E) 8.0 and 10.0 of gestation, during which time the vasculature develops from a simple circulatory loop into a complex, fine structured, three-dimensional organ. Interpretation of vascular phenotypes exhibited by signalling pathway mutants has historically been hindered by an inability to comprehensively image the normal sequence of events that shape the basic architecture of the early mouse vascular system. We have employed Optical Projection Tomography (OPT) using frequency distance relationship (FDR)-based deconvolution to image embryos immunostained with the endothelial specific marker PECAM-1 to create a high resolution, three-dimensional atlas of mouse vascular development between E8.0 and E10.0 (5 to 30 somites). Analysis of the atlas has provided significant new information regarding normal development of intersomitic vessels, the perineural vascular plexus, the cephalic plexus and vessels connecting the embryonic and extraembryonic circulation. We describe examples of vascular remodelling that provide new insight into the mechanisms of sprouting angiogenesis, vascular guidance cues and artery/vein identity that directly relate to phenotypes observed in mouse mutants affecting vascular development between E8.0 and E10.0. This atlas is freely available at http://www.mouseimaging.ca/research/mouse_atlas.html and will serve as a platform to provide insight into normal and abnormal vascular development.
Collapse
Affiliation(s)
- Johnathon R. Walls
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto Centre for Phenogenomics, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Leigh Coultas
- Hospital for Sick Children Research Institute, Developmental and Stem Cell Biology Program, Toronto, Ontario, Canada
| | - Janet Rossant
- Hospital for Sick Children Research Institute, Developmental and Stem Cell Biology Program, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - R. Mark Henkelman
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto Centre for Phenogenomics, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
367
|
He C, Hu H, Braren R, Fong SY, Trumpp A, Carlson TR, Wang RA. c-myc in the hematopoietic lineage is crucial for its angiogenic function in the mouse embryo. Development 2008; 135:2467-77. [PMID: 18550710 PMCID: PMC2597486 DOI: 10.1242/dev.020131] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The c-myc proto-oncogene, which is crucial for the progression of many human cancers, has been implicated in key cellular processes in diverse cell types, including endothelial cells that line the blood vessels and are critical for angiogenesis. The de novo differentiation of endothelial cells is known as vasculogenesis, whereas the growth of new blood vessels from pre-existing vessels is known as angiogenesis. To ascertain the function of c-myc in vascular development, we deleted c-myc in selected cell lineages. Embryos lacking c-myc in endothelial and hematopoietic lineages phenocopied those lacking c-myc in the entire embryo proper. At embryonic day (E) 10.5, both mutant embryos were grossly normal, had initiated primitive hematopoiesis, and both survived until E11.5-12.5, longer than the complete null. However, they progressively developed defective hematopoiesis and angiogenesis. The majority of embryos lacking c-myc specifically in hematopoietic cells phenocopied those lacking c-myc in endothelial and hematopoietic lineages, with impaired definitive hematopoiesis as well as angiogenic remodeling. c-myc is required for embryonic hematopoietic stem cell differentiation, through a cell-autonomous mechanism. Surprisingly, c-myc is not required for vasculogenesis in the embryo. c-myc deletion in endothelial cells does not abrogate endothelial proliferation, survival, migration or capillary formation. Embryos lacking c-myc in a majority of endothelial cells can survive beyond E12.5. Our findings reveal that hematopoiesis is a major function of c-myc in embryos and support the notion that c-myc functions in selected cell lineages rather than in a ubiquitous manner in mammalian development.
Collapse
Affiliation(s)
- Chen He
- Pacific Vascular Research Laboratory, Division of Vascular Surgery, Departments of Surgery and Anatomy, University of California, San Francisco, CA 94143
| | - Huiqing Hu
- Pacific Vascular Research Laboratory, Division of Vascular Surgery, Departments of Surgery and Anatomy, University of California, San Francisco, CA 94143
| | - Rickmer Braren
- Pacific Vascular Research Laboratory, Division of Vascular Surgery, Departments of Surgery and Anatomy, University of California, San Francisco, CA 94143
| | - Shun-Yin Fong
- Pacific Vascular Research Laboratory, Division of Vascular Surgery, Departments of Surgery and Anatomy, University of California, San Francisco, CA 94143
| | - Andreas Trumpp
- Genetics and Stem Cell Laboratory, Swiss Institute for Experimental Cancer Research, Ch. des Boveresses 155, CH-1066, Epalinges, Switzerland Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, CH-1015 Lausanne, Switzerland
| | - Timothy R. Carlson
- Pacific Vascular Research Laboratory, Division of Vascular Surgery, Departments of Surgery and Anatomy, University of California, San Francisco, CA 94143
| | - Rong A. Wang
- Pacific Vascular Research Laboratory, Division of Vascular Surgery, Departments of Surgery and Anatomy, University of California, San Francisco, CA 94143
| |
Collapse
|
368
|
Abstract
Mechanical forces participate in morphogenesis from the level of individual cells to whole organism patterning. This article reviews recent research that has identified specific roles for mechanical forces in important developmental events. One well defined example is that dynein-driven cilia create fluid flow that determines left-right patterning in the early mammalian embryo. Fluid flow is also important for vasculogenesis, and evidence suggests that fluid shear stress rather than fluid transport is primarily required for remodeling the early vasculature. Contraction of the actin cytoskeleton, driven by nonmuscle myosins and regulated by the Rho family GTPases, is a recurring mechanism for controlling morphogenesis throughout development, from gastrulation to cardiogenesis. Finally, novel experimental approaches suggest critical roles for the actin cytoskeleton and the mechanical environment in determining differentiation of mesenchymal stem cells. Insights into the mechanisms linking mechanical forces to cell and tissue differentiation pathways are important for understanding many congenital diseases and for developing regenerative medicine strategies.
Collapse
Affiliation(s)
- Parth Patwari
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
369
|
Jones EAV, Yuan L, Breant C, Watts RJ, Eichmann A. Separating genetic and hemodynamic defects in neuropilin 1 knockout embryos. Development 2008; 135:2479-88. [PMID: 18550715 DOI: 10.1242/dev.014902] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Targeted inactivation of genes involved in murine cardiovascular development frequently leads to abnormalities in blood flow. As blood fluid dynamics play a crucial role in shaping vessel morphology, the presence of flow defects generally prohibits the precise assignment of the role of the mutated gene product in the vasculature. In this study, we show how to distinguish between genetic defects caused by targeted inactivation of the neuropilin 1 (Nrp1) receptor and hemodynamic defects occurring in homozygous knockout embryos. Our analysis of a Nrp1 null allele bred onto a C57BL/6 background shows that vessel remodeling defects occur concomitantly with the onset of blood flow and cause death of homozygous mutants at E10.5. Using mouse embryo culture, we establish that hemodynamic defects are already present at E8.5 and continuous circulation is never established in homozygous mutants. The geometry of yolk sac blood vessels is altered and remodeling into yolk sac arteries and veins does not occur. To separate flow-induced deficiencies from those caused by the Nrp1 mutation, we arrested blood flow in cultured wild-type and mutant embryos and followed their vascular development. We find that loss of Nrp1 function rather than flow induces the altered geometry of the capillary plexus. Endothelial cell migration, but not replication, is altered in Nrp1 mutants. Gene expression analysis of endothelial cells isolated from freshly dissected wild-type and mutants and after culture in no-flow conditions showed down-regulation of the arterial marker genes connexin 40 and ephrin B2 related to the loss of Nrp1 function. This method allows genetic defects caused by loss-of-function of a gene important for cardiovascular development to be isolated even in the presence of hemodynamic defects.
Collapse
|
370
|
Abstract
PURPOSE OF REVIEW The present study review examines the current understanding of the ontogeny of erythropoiesis with a focus on the emergence of the embryonic (primitive) erythroid lineage and on the similarities and differences between the primitive and the fetal/adult (definitive) forms of erythroid cell maturation. RECENT FINDINGS Primitive erythroid precursors in the mouse embryo and cultured in vitro from human embryonic stem cells undergo 'maturational' globin switching as they differentiate terminally. The appearance of a transient population of primitive 'pyrenocytes' (extruded nuclei) in the fetal bloodstream indicates that primitive erythroblasts enucleate by nuclear extrusion. In-vitro differentiation of human embryonic stem cells recapitulates hematopoietic ontogeny reminiscent of the murine yolk sac, including overlapping waves of hemangioblast, primitive, erythroid, and definitive erythroid progenitors. Definitive erythroid potential in zebrafish embryos, like that in mice, initially arises prior to, and independent of, hematopoietic stem cell emergence in the region of the aorta. Maturation of definitive erythroid cells within macrophage islands promotes erythroblast-erythroblast and erythroblast-stromal interactions that regulate red cell output. SUMMARY The study of embryonic development in several different model systems, as well as in cultured human embryonic stem cells, continues to provide important insights into the ontogeny of erythropoiesis. Contrasting the similarities and differences between primitive and definitive erythropoiesis will lead to an improved understanding of erythroblast maturation and the terminal steps of erythroid differentiation.
Collapse
|
371
|
Extracellular matrix mediates a molecular balance between vascular morphogenesis and regression. Curr Opin Hematol 2008; 15:197-203. [PMID: 18391785 DOI: 10.1097/moh.0b013e3282fcc321] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW We discuss very recent studies that address the critical role of extracellular matrix in controlling the balance between vascular morphogenesis and regression. Much of this work suggests that a balance mechanism exists for controlling the extent of tissue vascularization involving downstream signaling events regulating endothelial cell behaviors in relation to their interactions with extracellular matrix molecules. RECENT FINDINGS Endothelial gene expression changes and signaling lead to events that not only stimulate vascular morphogenesis but also suppress mechanisms mediated through pro-regression factors such as Rho kinase. At the same time, vascular networks are susceptible to regression mediated by factors such as matrix metalloproteinase-1, matrix metalloproteinase-10, thrombospondin-1, extracellular matrix matricryptic fragments and angiopoietin-2. Pericyte recruitment to such vascular tubes can prevent regression events by delivering molecules such as tissue inhibitor of metalloproteinase-3 and angiopoietin-1 that promote vascular stabilization by decreasing tube susceptibility to these regression stimuli. SUMMARY Extracellular matrix-derived signals lead to critical morphologic changes mediated through cytoskeletal rearrangements that control the shape, function and signaling events in endothelial cell-lined vessels regulating tube formation, remodeling, stabilization and regression. These signals control both vascular morphogenic and regression events, and thus a molecular balance exists to control the extent and function of vascular tube networks within tissues.
Collapse
|
372
|
Teichert AM, Scott JA, Robb GB, Zhou YQ, Zhu SN, Lem M, Keightley A, Steer BM, Schuh AC, Adamson SL, Cybulsky MI, Marsden PA. Endothelial nitric oxide synthase gene expression during murine embryogenesis: commencement of expression in the embryo occurs with the establishment of a unidirectional circulatory system. Circ Res 2008; 103:24-33. [PMID: 18556578 DOI: 10.1161/circresaha.107.168567] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To elucidate the role of endothelial NO synthase (eNOS)-derived NO during mammalian embryogenesis, we assessed the expression of the eNOS gene during development. Using transgenic eNOS promoter/reporter mice (with beta-galactosidase and green fluorescent protein reporters), in situ cRNA hybridization, and immunohistochemistry to assess transcription, steady-state mRNA levels, and protein expression, respectively, we noted that eNOS expression in the developing cardiovascular system was highly restricted to endothelial cells of medium- and large-sized arteries and the endocardium. The onset of transcription of the native eNOS gene and reporters coincided with the establishment of robust, unidirectional blood flow at embryonic day 9.5, as assessed by Doppler ultrasound biomicroscopy. Interestingly, reporter transgene expression and native eNOS mRNA were also observed in discrete regions of the developing skeletal musculature and the apical ectodermal ridge of developing limbs, suggesting a role for eNOS-derived NO in limb development. In vitro studies of promoter/reporter constructs indicated that similar eNOS promoter regions operate in both embryonic skeletal muscle and vascular endothelial cells. In summary, transcriptional activity of the eNOS gene in the murine circulatory system occurred following the establishment of embryonic blood flow. Thus, the eNOS gene is a late-onset gene in endothelial ontogeny.
Collapse
Affiliation(s)
- Anouk-Martine Teichert
- Renal Division and Department of Medicine, St. Michael's Hospital, Department of Medicine, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
373
|
Graupera M, Guillermet-Guibert J, Foukas LC, Phng LK, Cain RJ, Salpekar A, Pearce W, Meek S, Millan J, Cutillas PR, Smith AJH, Ridley AJ, Ruhrberg C, Gerhardt H, Vanhaesebroeck B. Angiogenesis selectively requires the p110alpha isoform of PI3K to control endothelial cell migration. Nature 2008; 453:662-6. [PMID: 18449193 DOI: 10.1038/nature06892] [Citation(s) in RCA: 430] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 03/05/2008] [Indexed: 12/24/2022]
Abstract
Phosphoinositide 3-kinases (PI3Ks) signal downstream of multiple cell-surface receptor types. Class IA PI3K isoforms couple to tyrosine kinases and consist of a p110 catalytic subunit (p110alpha, p110beta or p110delta), constitutively bound to one of five distinct p85 regulatory subunits. PI3Ks have been implicated in angiogenesis, but little is known about potential selectivity among the PI3K isoforms and their mechanism of action in endothelial cells during angiogenesis in vivo. Here we show that only p110alpha activity is essential for vascular development. Ubiquitous or endothelial cell-specific inactivation of p110alpha led to embryonic lethality at mid-gestation because of severe defects in angiogenic sprouting and vascular remodelling. p110alpha exerts this critical endothelial cell-autonomous function by regulating endothelial cell migration through the small GTPase RhoA. p110alpha activity is particularly high in endothelial cells and preferentially induced by tyrosine kinase ligands (such as vascular endothelial growth factor (VEGF)-A). In contrast, p110beta in endothelial cells signals downstream of G-protein-coupled receptor (GPCR) ligands such as SDF-1alpha, whereas p110delta is expressed at low level and contributes only minimally to PI3K activity in endothelial cells. These results provide the first in vivo evidence for p110-isoform selectivity in endothelial PI3K signalling during angiogenesis.
Collapse
Affiliation(s)
- Mariona Graupera
- Centre for Cell Signalling, Institute of Cancer, Queen Mary, University of London, Charterhouse Square, London EC1M 6BQ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
374
|
Abstract
Red cells are required not only for adult well-being but also for survival and growth of the mammalian embryo beyond early postimplantation stages of development. The embryo's first "primitive" erythroid cells, derived from a transient wave of committed progenitors, emerge from the yolk sac as immature precursors and differentiate as a semisynchronous cohort in the bloodstream. Surprisingly, this maturational process in the mammalian embryo is characterized by globin gene switching and ultimately by enucleation. The yolk sac also synthesizes a second transient wave of "definitive" erythroid progenitors that enter the bloodstream and seed the liver of the fetus. At the same time, hematopoietic stem cells within the embryo also seed the liver and are the presumed source of long-term erythroid potential. Fetal definitive erythroid precursors mature in macrophage islands within the liver, enucleate, and enter the bloodstream as erythrocytes. Toward the end of gestation, definitive erythropoiesis shifts to its final location, the bone marrow. It has recently been recognized that the yolk sac-derived primitive and fetal definitive erythroid lineages, like their adult definitive erythroid counterpart, are each hierarchically associated with the megakaryocyte lineage. Continued comparative studies of primitive and definitive erythropoiesis in mammalian and nonmammalian embryos will lead to an improved understanding of terminal erythroid maturation and globin gene regulation.
Collapse
Affiliation(s)
- Kathleen McGrath
- Department of Pediatrics, Center for Pediatric Biomedical Research, University of Rochester, Rochester, New York 14642, USA
| | | |
Collapse
|