351
|
Menet JS, Rodriguez J, Abruzzi KC, Rosbash M. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. eLife 2012; 1:e00011. [PMID: 23150795 PMCID: PMC3492862 DOI: 10.7554/elife.00011] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/16/2012] [Indexed: 12/22/2022] Open
Abstract
A substantial fraction of the metazoan transcriptome undergoes circadian oscillations in many cells and tissues. Based on the transcription feedback loops important for circadian timekeeping, it is commonly assumed that this mRNA cycling reflects widespread transcriptional regulation. To address this issue, we directly measured the circadian dynamics of mouse liver transcription using Nascent-Seq (genome-wide sequencing of nascent RNA). Although many genes are rhythmically transcribed, many rhythmic mRNAs manifest poor transcriptional rhythms, indicating a prominent contribution of post-transcriptional regulation to circadian mRNA expression. This analysis of rhythmic transcription also showed that the rhythmic DNA binding profile of the transcription factors CLOCK and BMAL1 does not determine the transcriptional phase of most target genes. This likely reflects gene-specific collaborations of CLK:BMAL1 with other transcription factors. These insights from Nascent-Seq indicate that it should have broad applicability to many other gene expression regulatory issues.DOI:http://dx.doi.org/10.7554/eLife.00011.001.
Collapse
Affiliation(s)
- Jerome S Menet
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, and Department of Biology Brandeis University, Waltham, United States
| | - Joseph Rodriguez
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, and Department of Biology Brandeis University, Waltham, United States
| | - Katharine C Abruzzi
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, and Department of Biology Brandeis University, Waltham, United States
| | - Michael Rosbash
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, and Department of Biology Brandeis University, Waltham, United States
| |
Collapse
|
352
|
Menet JS, Rodriguez J, Abruzzi KC, Rosbash M. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. eLife 2012; 1:e00011. [PMID: 23150795 DOI: 10.7554/elife.00011.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/16/2012] [Indexed: 05/26/2023] Open
Abstract
A substantial fraction of the metazoan transcriptome undergoes circadian oscillations in many cells and tissues. Based on the transcription feedback loops important for circadian timekeeping, it is commonly assumed that this mRNA cycling reflects widespread transcriptional regulation. To address this issue, we directly measured the circadian dynamics of mouse liver transcription using Nascent-Seq (genome-wide sequencing of nascent RNA). Although many genes are rhythmically transcribed, many rhythmic mRNAs manifest poor transcriptional rhythms, indicating a prominent contribution of post-transcriptional regulation to circadian mRNA expression. This analysis of rhythmic transcription also showed that the rhythmic DNA binding profile of the transcription factors CLOCK and BMAL1 does not determine the transcriptional phase of most target genes. This likely reflects gene-specific collaborations of CLK:BMAL1 with other transcription factors. These insights from Nascent-Seq indicate that it should have broad applicability to many other gene expression regulatory issues.DOI:http://dx.doi.org/10.7554/eLife.00011.001.
Collapse
Affiliation(s)
- Jerome S Menet
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, and Department of Biology Brandeis University , Waltham , United States
| | | | | | | |
Collapse
|
353
|
Korenčič A, Bordyugov G, Košir R, Rozman D, Goličnik M, Herzel H. The interplay of cis-regulatory elements rules circadian rhythms in mouse liver. PLoS One 2012; 7:e46835. [PMID: 23144788 PMCID: PMC3489864 DOI: 10.1371/journal.pone.0046835] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 09/05/2012] [Indexed: 01/08/2023] Open
Abstract
The mammalian circadian clock is driven by cell-autonomous transcriptional feedback loops that involve E-boxes, D-boxes, and ROR-elements. In peripheral organs, circadian rhythms are additionally affected by systemic factors. We show that intrinsic combinatorial gene regulation governs the liver clock. With a temporal resolution of 2 h, we measured the expression of 21 clock genes in mouse liver under constant darkness and equinoctial light-dark cycles. Based on these data and known transcription factor binding sites, we develop a six-variable gene regulatory network. The transcriptional feedback loops are represented by equations with time-delayed variables, which substantially simplifies modelling of intermediate protein dynamics. Our model accurately reproduces measured phases, amplitudes, and waveforms of clock genes. Analysis of the network reveals properties of the clock: overcritical delays generate oscillations; synergy of inhibition and activation enhances amplitudes; and combinatorial modulation of transcription controls the phases. The agreement of measurements and simulations suggests that the intrinsic gene regulatory network primarily determines the circadian clock in liver, whereas systemic cues such as light-dark cycles serve to fine-tune the rhythms.
Collapse
Affiliation(s)
- Anja Korenčič
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Grigory Bordyugov
- Institute for Theoretical Biology, Humboldt University, Berlin, Germany
| | - Rok Košir
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Center for Functional Genomics and Bio-Chips, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Center for Functional Genomics and Bio-Chips, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Goličnik
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Humboldt University, Berlin, Germany
| |
Collapse
|
354
|
Molusky MM, Ma D, Buelow K, Yin L, Lin JD. Peroxisomal localization and circadian regulation of ubiquitin-specific protease 2. PLoS One 2012; 7:e47970. [PMID: 23133608 PMCID: PMC3487853 DOI: 10.1371/journal.pone.0047970] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 09/20/2012] [Indexed: 11/18/2022] Open
Abstract
Temporal regulation of nutrient and energy metabolism is emerging as an important aspect of metabolic homeostasis. The regulatory network that integrates the timing cues and nutritional signals to drive diurnal metabolic rhythms remains poorly defined. The 45-kDa isoform of ubiquitin-specific protease 2 (USP2-45) is a deubiquitinase that regulates hepatic gluconeogenesis and glucose metabolism. In this study, we found that USP2-45 is localized to peroxisomes in hepatocytes through a canonical peroxisome-targeting motif at its C-terminus. Clustering analysis indicates that the expression of a subset of peroxisomal genes exhibits robust diurnal rhythm in the liver. Despite this, nuclear hormone receptor PPARα, a known regulator of peroxisome gene expression, does not induce USP2-45 in hepatocytes and is dispensible for its expression during starvation. In contrast, a functional liver clock is required for the proper nutritional and circadian regulation of USP2-45 expression. At the molecular level, transcriptional coactivators PGC-1α and PGC-1β and repressor E4BP4 exert opposing effects on USP2-45 promoter activity. These studies provide insights into the subcellular localization and transcriptional regulation of a clock-controlled deubiquitinase that regulates glucose metabolism.
Collapse
Affiliation(s)
- Matthew M. Molusky
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Di Ma
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Katie Buelow
- Department of Molecular & Integrative Physiology, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Lei Yin
- Department of Molecular & Integrative Physiology, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Jiandie D. Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
355
|
Stratmann M, Suter DM, Molina N, Naef F, Schibler U. Circadian Dbp transcription relies on highly dynamic BMAL1-CLOCK interaction with E boxes and requires the proteasome. Mol Cell 2012; 48:277-87. [PMID: 22981862 DOI: 10.1016/j.molcel.2012.08.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 05/08/2012] [Accepted: 08/07/2012] [Indexed: 10/27/2022]
Abstract
The transcription factors BMAL1 and CLOCK drive the circadian transcription of clock and clock-controlled genes, such as Dbp. To investigate the kinetics of BMAL1 binding to target genes in real time, we generated a cell line harboring tandem arrays of Dbp repeats and monitored the binding of a fluorescent BMAL1 fusion protein to these arrays by time-lapse microscopy. BMAL1 occupancy at the Dbp locus was highly circadian and strictly dependent on CLOCK. Moreover, BMAL1-CLOCK associations with Dbp were extremely unstable and displayed stochastic, proteasome-dependent fluctuations. Proteasome inhibition prolonged the residence time of BMAL1-CLOCK but resulted in an immediate attenuation of Dbp transcription. In cells harboring a single Dbp-luciferase reporter gene copy, this silencing was shown to be caused by a decrease in both the frequencies and sizes of transcriptional bursts. Thus, BMAL1 and CLOCK may act as Kamikaze activators, in that they are rapidly degraded once bound to Dbp chromatin.
Collapse
Affiliation(s)
- Markus Stratmann
- Department of Molecular Biology, Sciences III, University of Geneva, and National Centre of Competence in Research Frontiers in Genetics, 1211 Geneva, Switzerland
| | | | | | | | | |
Collapse
|
356
|
Koike N, Yoo SH, Huang HC, Kumar V, Lee C, Kim TK, Takahashi JS. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 2012; 338:349-54. [PMID: 22936566 PMCID: PMC3694775 DOI: 10.1126/science.1226339] [Citation(s) in RCA: 1090] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mammalian circadian clock involves a transcriptional feed back loop in which CLOCK and BMAL1 activate the Period and Cryptochrome genes, which then feedback and repress their own transcription. We have interrogated the transcriptional architecture of the circadian transcriptional regulatory loop on a genome scale in mouse liver and find a stereotyped, time-dependent pattern of transcription factor binding, RNA polymerase II (RNAPII) recruitment, RNA expression, and chromatin states. We find that the circadian transcriptional cycle of the clock consists of three distinct phases: a poised state, a coordinated de novo transcriptional activation state, and a repressed state. Only 22% of messenger RNA (mRNA) cycling genes are driven by de novo transcription, suggesting that both transcriptional and posttranscriptional mechanisms underlie the mammalian circadian clock. We also find that circadian modulation of RNAPII recruitment and chromatin remodeling occurs on a genome-wide scale far greater than that seen previously by gene expression profiling.
Collapse
Affiliation(s)
- Nobuya Koike
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111
| | - Seung-Hee Yoo
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111
| | - Hung-Chung Huang
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111
| | - Vivek Kumar
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111
| | - Choogon Lee
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306
| | - Tae-Kyung Kim
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111
| | - Joseph S. Takahashi
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111
- Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111
| |
Collapse
|
357
|
Affiliation(s)
- Colleen J. Doherty
- Center for Chronobiology, University of California, San Diego, La Jolla, CA 92093–0116, USA
| | - Steve A. Kay
- Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
358
|
Wu G, Zhu J, He F, Wang W, Hu S, Yu J. Gene and genome parameters of mammalian liver circadian genes (LCGs). PLoS One 2012; 7:e46961. [PMID: 23071677 PMCID: PMC3468600 DOI: 10.1371/journal.pone.0046961] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/07/2012] [Indexed: 11/19/2022] Open
Abstract
The mammalian circadian system controls various physiology processes and behavior responses by regulating thousands of circadian genes with rhythmic expressions. In this study, we redefined circadian-regulated genes based on published results in the mouse liver and compared them with other gene groups defined relative to circadian regulations, especially the non-circadian-regulated genes expressed in liver at multiple molecular levels from gene position to protein expression based on integrative analyses of different datasets from the literature. Based on the intra-tissue analysis, the liver circadian genes or LCGs show unique features when compared to other gene groups. First, LCGs in general have less neighboring genes and larger in both genomic and 3'-UTR lengths but shorter in CDS (coding sequence) lengths. Second, LCGs have higher mRNA and protein abundance, higher temporal expression variations, and shorter mRNA half-life. Third, more than 60% of LCGs form major co-expression clusters centered in four temporal windows: dawn, day, dusk, and night. In addition, larger and smaller LCGs are found mainly expressed in the day and night temporal windows, respectively, and we believe that LCGs are well-partitioned into the gene expression regulatory network that takes advantage of gene size, expression constraint, and chromosomal architecture. Based on inter-tissue analysis, more than half of LCGs are ubiquitously expressed in multiple tissues but only show rhythmical expression in one or limited number of tissues. LCGs show at least three-fold lower expression variations across the temporal windows than those among different tissues, and this observation suggests that temporal expression variations regulated by the circadian system is relatively subtle as compared with the tissue expression variations formed during development. Taken together, we suggest that the circadian system selects gene parameters in a cost effective way to improve tissue-specific functions by adapting temporal variations from the environment over evolutionary time scales.
Collapse
Affiliation(s)
- Gang Wu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Jiang Zhu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Fuhong He
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Weiwei Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
359
|
Bruce KD, Sihota KK, Byrne CD, Cagampang FR. The housekeeping gene YWHAZ remains stable in a model of developmentally primed non-alcoholic fatty liver disease. Liver Int 2012; 32:1315-21. [PMID: 22583519 DOI: 10.1111/j.1478-3231.2012.02813.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 04/03/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease in Western society. Comparative gene expression studies are beginning to elucidate the molecular mechanisms underlying NAFLD progression. We have previously shown that high fat diets during early life can prime non-alcoholic steatohepatitis (NASH) in adulthood, through lipogenesis gene elevation. To generate accurate results in such studies, appropriate housekeeping genes (HKG) which are unaffected by disease processes, are used for data normalisation. However, there is little existing data to show the effects of NAFLD on HKG expression. AIMS To identify the HKG in a mouse model of developmentally primed NAFLD and NASH, which maintains expression stability. METHODS We determined the expression stability of six candidates HKG (GAPDH, YWHAZ, B2M, EIF4A2, ACTB and CYC1) in a mouse model of developmentally primed NAFLD in both the day and night, using geNORM qBasePlus software. RESULTS HKG expression differed across dietary groups and time of day. In the majority of treatment groups and time points the most stable gene was YWHAZ. Following high fat diet interventions CYC1 became notably unstable. Overall the effect of NAFLD and NASH on HKG expression was to maintain stability of YWHAZ, but destabilise CYC1 and EIF4A2. CONCLUSIONS Our data clearly shows that HKG expression is affected by NAFLD severity and time of day sampling, highlighting the importance of suitable HKG gene selection. For comparative gene expression studies investigating NAFLD we would recommend use of YWHAZ as a robust, stably expressed HKG.
Collapse
Affiliation(s)
- Kimberley D Bruce
- Human Development and Health, Institute of Developmental Sciences, University of Southampton Faculty of Medicine, Southampton, UK.
| | | | | | | |
Collapse
|
360
|
Morf J, Rey G, Schneider K, Stratmann M, Fujita J, Naef F, Schibler U. Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally. Science 2012; 338:379-83. [PMID: 22923437 DOI: 10.1126/science.1217726] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In mammalian tissues, circadian gene expression can be driven by local oscillators or systemic signals controlled by the master pacemaker in the suprachiasmatic nucleus. We show that simulated body temperature cycles, but not peripheral oscillators, controlled the rhythmic expression of cold-inducible RNA-binding protein (CIRP) in cultured fibroblasts. In turn, loss-of-function experiments indicated that CIRP was required for high-amplitude circadian gene expression. The transcriptome-wide identification of CIRP-bound RNAs by a biotin-streptavidin-based cross-linking and immunoprecipitation (CLIP) procedure revealed several transcripts encoding circadian oscillator proteins, including CLOCK. Moreover, CLOCK accumulation was strongly reduced in CIRP-depleted fibroblasts. Because ectopic expression of CLOCK improved circadian gene expression in these cells, we surmise that CIRP confers robustness to circadian oscillators through regulation of CLOCK expression.
Collapse
Affiliation(s)
- Jörg Morf
- Department of Molecular Biology, University of Geneva, and National Centre of Competence in Research, Frontiers in Genetics, 30 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
361
|
Guo B, Chatterjee S, Li L, Kim JM, Lee J, Yechoor VK, Minze LJ, Hsueh W, Ma K. The clock gene, brain and muscle Arnt-like 1, regulates adipogenesis via Wnt signaling pathway. FASEB J 2012; 26:3453-63. [PMID: 22611086 PMCID: PMC6137895 DOI: 10.1096/fj.12-205781] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 05/01/2012] [Indexed: 12/22/2022]
Abstract
Circadian clocks in adipose tissue are known to regulate adipocyte biology. Although circadian dysregulation is associated with development of obesity, the underlying mechanism has not been established. Here we report that disruption of the clock gene, brain and muscle Arnt-like 1 (Bmal1), in mice led to increased adipogenesis, adipocyte hypertrophy, and obesity, compared to wild-type (WT) mice. This is due to its cell-autonomous effect, as Bmal1 deficiency in embryonic fibroblasts, as well as stable shRNA knockdown (KD) in 3T3-L1 preadipocyte and C3H10T1/2 mesenchymal stem cells, promoted adipogenic differentiation. We demonstrate that attenuation of Bmal1 function resulted in down-regulation of genes in the canonical Wnt pathway, known to suppress adipogenesis. Promoters of these genes (Wnt10a, β-catenin, Dishevelled2, TCF3) displayed Bmal1 occupancy, indicating direct circadian regulation by Bmal1. As a result, Wnt signaling activity was attenuated by Bmal1 KD and augmented by its overexpression. Furthermore, stabilizing β-catenin through Wnt ligand or GSK-3β inhibition achieved partial restoration of blunted Wnt activity and suppression of increased adipogenesis induced by Bmal1 KD. Taken together, our study demonstrates that Bmal1 is a critical negative regulator of adipocyte development through transcriptional control of components of the canonical Wnt signaling cascade, and provides a mechanistic link between circadian disruption and obesity.
Collapse
Affiliation(s)
- Bingyan Guo
- Center for Diabetes Research, Department of Medicine, The Methodist Hospital Research Institute, Houston, Texas, USA
- Department of Cardiovascular Medicine, Second Affiliated Hospital, Hebei Medical University, Shijiazhuang, Hebei, China; and
| | - Somik Chatterjee
- Center for Diabetes Research, Department of Medicine, The Methodist Hospital Research Institute, Houston, Texas, USA
| | - Lifei Li
- Center for Diabetes Research, Department of Medicine, The Methodist Hospital Research Institute, Houston, Texas, USA
| | - Ji M. Kim
- Center for Diabetes Research, Department of Medicine, The Methodist Hospital Research Institute, Houston, Texas, USA
| | - Jeongkyung Lee
- Diabetes and Endocrinology Research Center, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Vijay K. Yechoor
- Diabetes and Endocrinology Research Center, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Laurie J. Minze
- Center for Diabetes Research, Department of Medicine, The Methodist Hospital Research Institute, Houston, Texas, USA
| | - Willa Hsueh
- Center for Diabetes Research, Department of Medicine, The Methodist Hospital Research Institute, Houston, Texas, USA
| | - Ke Ma
- Center for Diabetes Research, Department of Medicine, The Methodist Hospital Research Institute, Houston, Texas, USA
| |
Collapse
|
362
|
Feng D, Lazar MA. Clocks, metabolism, and the epigenome. Mol Cell 2012; 47:158-67. [PMID: 22841001 PMCID: PMC3408602 DOI: 10.1016/j.molcel.2012.06.026] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/05/2012] [Accepted: 06/18/2012] [Indexed: 01/19/2023]
Abstract
Many behaviors and physiological activities in living organisms display circadian rhythms, allowing the organisms to anticipate and prepare for the diurnal changes in the living environment. In this way, metabolic processes are aligned with the periodic environmental changes and behavioral cycles, such as the sleep/wake and fasting/feeding cycles. Disturbances of this alignment significantly increase the risk of metabolic diseases. Meanwhile, the circadian clock receives signals from the environment and feedback from metabolic pathways, and adjusts its activity and function. Growing evidence connects the circadian clock with epigenomic regulators. Here we review the recent advances in understanding the crosstalk between the circadian clock and energy metabolism through epigenomic programming and transcriptional regulation.
Collapse
Affiliation(s)
- Dan Feng
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
363
|
Hughes ME, Hong HK, Chong JL, Indacochea AA, Lee SS, Han M, Takahashi JS, Hogenesch JB. Brain-specific rescue of Clock reveals system-driven transcriptional rhythms in peripheral tissue. PLoS Genet 2012; 8:e1002835. [PMID: 22844252 PMCID: PMC3405989 DOI: 10.1371/journal.pgen.1002835] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 05/29/2012] [Indexed: 11/17/2022] Open
Abstract
The circadian regulatory network is organized in a hierarchical fashion, with a central oscillator in the suprachiasmatic nuclei (SCN) orchestrating circadian oscillations in peripheral tissues. The nature of the relationship between central and peripheral oscillators, however, is poorly understood. We used the tetOFF expression system to specifically restore Clock function in the brains of Clock(Δ19) mice, which have compromised circadian clocks. Rescued mice showed normal locomotor rhythms in constant darkness, with activity period lengths approximating wildtype controls. We used microarray analysis to assess whether brain-specific rescue of circadian rhythmicity was sufficient to restore circadian transcriptional output in the liver. Compared to Clock mutants, Clock-rescue mice showed significantly larger numbers of cycling transcripts with appropriate phase and period lengths, including many components of the core circadian oscillator. This indicates that the SCN oscillator overcomes local circadian defects and signals directly to the molecular clock. Interestingly, the vast majority of core clock genes in liver were responsive to Clock expression in the SCN, suggesting that core clock genes in peripheral tissues are intrinsically sensitive to SCN cues. Nevertheless, most circadian output in the liver was absent or severely low-amplitude in Clock-rescue animals, demonstrating that the majority of peripheral transcriptional rhythms depend on a fully functional local circadian oscillator. We identified several new system-driven rhythmic genes in the liver, including Alas1 and Mfsd2. Finally, we show that 12-hour transcriptional rhythms (i.e., circadian "harmonics") are disrupted by Clock loss-of-function. Brain-specific rescue of Clock converted 12-hour rhythms into 24-hour rhythms, suggesting that signaling via the central circadian oscillator is required to generate one of the two daily peaks of expression. Based on these data, we conclude that 12-hour rhythms are driven by interactions between central and peripheral circadian oscillators.
Collapse
Affiliation(s)
- Michael E Hughes
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | | | |
Collapse
|
364
|
Wieland M, Fussenegger M. Engineering Molecular Circuits Using Synthetic Biology in Mammalian Cells. Annu Rev Chem Biomol Eng 2012; 3:209-34. [DOI: 10.1146/annurev-chembioeng-061010-114145] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Markus Wieland
- Department of Biosystems Science and Bioengineering, ETH Zurich, CH-4058 Basel, Switzerland; ,
| | - Martin Fussenegger
- Department of Biosystems Science and Bioengineering, ETH Zurich, CH-4058 Basel, Switzerland; ,
| |
Collapse
|
365
|
Circadian clock protein cryptochrome regulates the expression of proinflammatory cytokines. Proc Natl Acad Sci U S A 2012; 109:12662-7. [PMID: 22778400 DOI: 10.1073/pnas.1209965109] [Citation(s) in RCA: 325] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chronic sleep deprivation perturbs the circadian clock and increases susceptibility to diseases such as diabetes, obesity, and cancer. Increased inflammation is one of the common underlying mechanisms of these diseases, thus raising a hypothesis that circadian-oscillator components may regulate immune response. Here we show that absence of the core clock component protein cryptochrome (CRY) leads to constitutive elevation of proinflammatory cytokines in a cell-autonomous manner. We observed a constitutive NF-κB and protein kinase A (PKA) signaling activation in Cry1(-/-);Cry2(-/-) cells. We further demonstrate that increased phosphorylation of p65 at S276 residue in Cry1(-/-);Cry2(-/-) cells is due to increased PKA signaling activity, likely induced by a significantly high basal level of cAMP, which we detected in these cells. In addition, we report that CRY1 binds to adenylyl cyclase and limits cAMP production. Based on these data, we propose that absence of CRY protein(s) might release its (their) inhibition on cAMP production, resulting in elevated cAMP and increased PKA activation, subsequently leading to NF-κB activation through phosphorylation of p65 at S276. These results offer a mechanistic framework for understanding the link between circadian rhythm disruption and increased susceptibility to chronic inflammatory diseases.
Collapse
|
366
|
Ma D, Li S, Molusky MM, Lin JD. Circadian autophagy rhythm: a link between clock and metabolism? Trends Endocrinol Metab 2012; 23:319-25. [PMID: 22520961 PMCID: PMC3389582 DOI: 10.1016/j.tem.2012.03.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 03/15/2012] [Accepted: 03/19/2012] [Indexed: 12/13/2022]
Abstract
Nutrient and energy metabolism in mammals exhibits a strong diurnal rhythm that aligns with the body clock. Circadian regulation of metabolism is mediated through reciprocal signaling between the clock and metabolic regulatory networks. Recent work has demonstrated that autophagy is rhythmically activated in a clock-dependent manner. Because autophagy is a conserved biological process that contributes to nutrient and cellular homeostasis, its cyclic induction may provide a novel link between clock and metabolism. This review discusses the mechanisms underlying circadian autophagy regulation, the role of rhythmic autophagy in nutrient and energy metabolism, and its implications in physiology and metabolic disease.
Collapse
Affiliation(s)
- Di Ma
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
367
|
McGlincy NJ, Valomon A, Chesham JE, Maywood ES, Hastings MH, Ule J. Regulation of alternative splicing by the circadian clock and food related cues. Genome Biol 2012; 13:R54. [PMID: 22721557 PMCID: PMC3446320 DOI: 10.1186/gb-2012-13-6-r54] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 05/30/2012] [Accepted: 06/21/2012] [Indexed: 12/20/2022] Open
Abstract
Background The circadian clock orchestrates daily rhythms in metabolism, physiology and behaviour that allow organisms to anticipate regular changes in their environment, increasing their adaptation. Such circadian phenotypes are underpinned by daily rhythms in gene expression. Little is known, however, about the contribution of post-transcriptional processes, particularly alternative splicing. Results Using Affymetrix mouse exon-arrays, we identified exons with circadian alternative splicing in the liver. Validated circadian exons were regulated in a tissue-dependent manner and were present in genes with circadian transcript abundance. Furthermore, an analysis of circadian mutant Vipr2-/- mice revealed the existence of distinct physiological pathways controlling circadian alternative splicing and RNA binding protein expression, with contrasting dependence on Vipr2-mediated physiological signals. This view was corroborated by the analysis of the effect of fasting on circadian alternative splicing. Feeding is an important circadian stimulus, and we found that fasting both modulates hepatic circadian alternative splicing in an exon-dependent manner and changes the temporal relationship with transcript-level expression. Conclusions The circadian clock regulates alternative splicing in a manner that is both tissue-dependent and concurrent with circadian transcript abundance. This adds a novel temporal dimension to the regulation of mammalian alternative splicing. Moreover, our results demonstrate that circadian alternative splicing is regulated by the interaction between distinct physiological cues, and illustrates the capability of single genes to integrate circadian signals at different levels of regulation.
Collapse
|
368
|
Abstract
REV-ERB nuclear receptors have been believed to stabilize the circadian clock machinery through an accessory but dispensable feedback loop. Recent work now challenges this assumption by demonstrating that REV-ERBs are essential core clock components, in addition to serving as pivotal regulators of rhythmic metabolism.
Collapse
Affiliation(s)
- Markus Stratmann
- Department of Molecular Biology, Sciences III, University of Geneva, 1211 Geneva, Switzerland
| | | |
Collapse
|
369
|
Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 2012; 15:848-60. [PMID: 22608008 PMCID: PMC3491655 DOI: 10.1016/j.cmet.2012.04.019] [Citation(s) in RCA: 1424] [Impact Index Per Article: 109.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/18/2012] [Accepted: 04/25/2012] [Indexed: 01/09/2023]
Abstract
While diet-induced obesity has been exclusively attributed to increased caloric intake from fat, animals fed a high-fat diet (HFD) ad libitum (ad lib) eat frequently throughout day and night, disrupting the normal feeding cycle. To test whether obesity and metabolic diseases result from HFD or disruption of metabolic cycles, we subjected mice to either ad lib or time-restricted feeding (tRF) of a HFD for 8 hr per day. Mice under tRF consume equivalent calories from HFD as those with ad lib access yet are protected against obesity, hyperinsulinemia, hepatic steatosis, and inflammation and have improved motor coordination. The tRF regimen improved CREB, mTOR, and AMPK pathway function and oscillations of the circadian clock and their target genes' expression. These changes in catabolic and anabolic pathways altered liver metabolome and improved nutrient utilization and energy expenditure. We demonstrate in mice that tRF regimen is a nonpharmacological strategy against obesity and associated diseases.
Collapse
|
370
|
Stobbe MD, Houten SM, Kampen AHC, Wanders RJA, Moerland PD. Improving the description of metabolic networks: the TCA cycle as example. FASEB J 2012; 26:3625-36. [DOI: 10.1096/fj.11-203091] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Miranda D. Stobbe
- Bioinformatics LaboratoryUniversity of AmsterdamAmsterdamThe Netherlands
- Netherlands Bioinformatics CentreNijmegenThe Netherlands
| | - Sander M. Houten
- Laboratory Genetic Metabolic DiseasesAcademic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Antoine H. C. Kampen
- Bioinformatics LaboratoryUniversity of AmsterdamAmsterdamThe Netherlands
- Biosystems Data AnalysisSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
- Netherlands Consortium for Systems BiologyUniversity of AmsterdamAmsterdamThe Netherlands
- Netherlands Bioinformatics CentreNijmegenThe Netherlands
| | - Ronald J. A. Wanders
- Laboratory Genetic Metabolic DiseasesAcademic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Perry D. Moerland
- Bioinformatics LaboratoryUniversity of AmsterdamAmsterdamThe Netherlands
- Netherlands Bioinformatics CentreNijmegenThe Netherlands
| |
Collapse
|
371
|
Rakshit K, Krishnan N, Guzik EM, Pyza E, Giebultowicz JM. Effects of aging on the molecular circadian oscillations in Drosophila. Chronobiol Int 2012; 29:5-14. [PMID: 22217096 DOI: 10.3109/07420528.2011.635237] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Circadian clocks maintain temporal homeostasis by generating daily output rhythms in molecular, cellular, and physiological functions. Output rhythms, such as sleep/wake cycles and hormonal fluctuations, tend to deteriorate during aging in humans, rodents, and fruit flies. However, it is not clear whether this decay is caused by defects in the core transcriptional clock, or weakening of the clock-output pathways, or both. The authors monitored age-related changes in behavioral and molecular rhythms in Drosophila melanogaster. Aging was associated with disrupted rest/activity patterns and lengthening of the free-running period of the circadian locomotor activity rhythm. The expression of core clock genes was measured in heads and bodies of young, middle-aged, and old flies. Transcriptional oscillations of four clock genes, period, timeless, Par domain protein 1ϵ, and vrille, were significantly reduced in heads, but not in bodies, of aging flies. It was determined that reduced transcription of these genes was not caused by the deficient expression of their activators, encoded by Clock and cycle genes. Interestingly, transcriptional activation by CLOCK-CYCLE complexes was impaired despite reduced levels of the PERIOD repressor protein in old flies. These data suggest that aging alters the properties of the core transcriptional clock in flies such that both the positive and the negative limbs of the clock are attenuated.
Collapse
Affiliation(s)
- Kuntol Rakshit
- Department of Zoology, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | | | |
Collapse
|
372
|
Cho H, Zhao X, Hatori M, Yu RT, Barish GD, Lam MT, Chong LW, DiTacchio L, Atkins AR, Glass CK, Liddle C, Auwerx J, Downes M, Panda S, Evans RM. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 2012; 485:123-7. [PMID: 22460952 PMCID: PMC3367514 DOI: 10.1038/nature11048] [Citation(s) in RCA: 825] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 03/21/2012] [Indexed: 12/11/2022]
Abstract
The circadian clock acts at the genomic level to coordinate internal behavioural and physiological rhythms via the CLOCK-BMAL1 transcriptional heterodimer. Although the nuclear receptors REV-ERB-α and REV-ERB-β have been proposed to form an accessory feedback loop that contributes to clock function, their precise roles and importance remain unresolved. To establish their regulatory potential, we determined the genome-wide cis-acting targets (cistromes) of both REV-ERB isoforms in murine liver, which revealed shared recognition at over 50% of their total DNA binding sites and extensive overlap with the master circadian regulator BMAL1. Although REV-ERB-α has been shown to regulate Bmal1 expression directly, our cistromic analysis reveals a more profound connection between BMAL1 and the REV-ERB-α and REV-ERB-β genomic regulatory circuits than was previously suspected. Genes within the intersection of the BMAL1, REV-ERB-α and REV-ERB-β cistromes are highly enriched for both clock and metabolic functions. As predicted by the cistromic analysis, dual depletion of Rev-erb-α and Rev-erb-β function by creating double-knockout mice profoundly disrupted circadian expression of core circadian clock and lipid homeostatic gene networks. As a result, double-knockout mice show markedly altered circadian wheel-running behaviour and deregulated lipid metabolism. These data now unite REV-ERB-α and REV-ERB-β with PER, CRY and other components of the principal feedback loop that drives circadian expression and indicate a more integral mechanism for the coordination of circadian rhythm and metabolism.
Collapse
MESH Headings
- Animals
- Biological Clocks/drug effects
- Biological Clocks/genetics
- Circadian Rhythm/genetics
- Circadian Rhythm/physiology
- Cryptochromes/deficiency
- Cryptochromes/genetics
- Cryptochromes/metabolism
- Energy Metabolism/genetics
- Feedback, Physiological
- Gene Expression Regulation
- Gene Regulatory Networks/genetics
- Homeostasis/genetics
- Lipid Metabolism/genetics
- Liver/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Sequence Data
- Motor Activity/genetics
- Motor Activity/physiology
- Nuclear Receptor Subfamily 1, Group D, Member 1/deficiency
- Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Period Circadian Proteins/deficiency
- Period Circadian Proteins/genetics
- Period Circadian Proteins/metabolism
- Receptors, Cytoplasmic and Nuclear/deficiency
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Repressor Proteins/deficiency
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Transcriptome/genetics
Collapse
Affiliation(s)
- Han Cho
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Xuan Zhao
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Megumi Hatori
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Ruth T. Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Grant D. Barish
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Michael T. Lam
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0651, USA
| | - Ling-Wa Chong
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Luciano DiTacchio
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Annette R. Atkins
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Christopher K. Glass
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0651, USA
| | - Christopher Liddle
- The Storr Liver Unit, Westmead Millennium Institute and University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Johan Auwerx
- Ecole Polytechnique Fédérale in Lausanne, Lausanne, Switzerland
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Satchidananda Panda
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Ronald M. Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| |
Collapse
|
373
|
Blasco B, Chen JM, Hartkoorn R, Sala C, Uplekar S, Rougemont J, Pojer F, Cole ST. Virulence regulator EspR of Mycobacterium tuberculosis is a nucleoid-associated protein. PLoS Pathog 2012; 8:e1002621. [PMID: 22479184 PMCID: PMC3315491 DOI: 10.1371/journal.ppat.1002621] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/21/2012] [Indexed: 01/18/2023] Open
Abstract
The principal virulence determinant of Mycobacterium tuberculosis (Mtb), the ESX-1 protein secretion system, is positively controlled at the transcriptional level by EspR. Depletion of EspR reportedly affects a small number of genes, both positively or negatively, including a key ESX-1 component, the espACD operon. EspR is also thought to be an ESX-1 substrate. Using EspR-specific antibodies in ChIP-Seq experiments (chromatin immunoprecipitation followed by ultra-high throughput DNA sequencing) we show that EspR binds to at least 165 loci on the Mtb genome. Included in the EspR regulon are genes encoding not only EspA, but also EspR itself, the ESX-2 and ESX-5 systems, a host of diverse cell wall functions, such as production of the complex lipid PDIM (phenolthiocerol dimycocerosate) and the PE/PPE cell-surface proteins. EspR binding sites are not restricted to promoter regions and can be clustered. This suggests that rather than functioning as a classical regulatory protein EspR acts globally as a nucleoid-associated protein capable of long-range interactions consistent with a recently established structural model. EspR expression was shown to be growth phase-dependent, peaking in the stationary phase. Overexpression in Mtb strain H37Rv revealed that EspR influences target gene expression both positively or negatively leading to growth arrest. At no stage was EspR secreted into the culture filtrate. Thus, rather than serving as a specific activator of a virulence locus, EspR is a novel nucleoid-associated protein, with both architectural and regulatory roles, that impacts cell wall functions and pathogenesis through multiple genes.
Collapse
Affiliation(s)
- Benjamin Blasco
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jeffrey M. Chen
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ruben Hartkoorn
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Claudia Sala
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Swapna Uplekar
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jacques Rougemont
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Florence Pojer
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stewart T. Cole
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
374
|
Klf15 orchestrates circadian nitrogen homeostasis. Cell Metab 2012; 15:311-23. [PMID: 22405069 PMCID: PMC3299986 DOI: 10.1016/j.cmet.2012.01.020] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 10/10/2011] [Accepted: 01/27/2012] [Indexed: 01/08/2023]
Abstract
Diurnal variation in nitrogen homeostasis is observed across phylogeny. But whether these are endogenous rhythms, and if so, molecular mechanisms that link nitrogen homeostasis to the circadian clock remain unknown. Here, we provide evidence that a clock-dependent peripheral oscillator, Krüppel-like factor 15 transcriptionally coordinates rhythmic expression of multiple enzymes involved in mammalian nitrogen homeostasis. In particular, Krüppel-like factor 15-deficient mice exhibit no discernable amino acid rhythm, and the rhythmicity of ammonia to urea detoxification is impaired. Of the external cues, feeding plays a dominant role in modulating Krüppel-like factor 15 rhythm and nitrogen homeostasis. Further, when all behavioral, environmental and dietary cues were controlled in humans, nitrogen homeostasis exhibited an endogenous circadian rhythmicity. Thus, in mammals, nitrogen homeostasis exhibits circadian rhythmicity, and is orchestrated by Krüppel-like factor 15.
Collapse
|
375
|
Guillaumond F, Becquet D, Boyer B, Bosler O, Delaunay F, Franc JL, François-Bellan AM. DNA microarray analysis and functional profile of pituitary transcriptome under core-clock protein BMAL1 control. Chronobiol Int 2012; 29:103-30. [PMID: 22324551 DOI: 10.3109/07420528.2011.645707] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although it is known to contain five cell types that synthesize and release hormones with a circadian pattern, the pituitary gland is poorly characterized as a circadian oscillator. By a differential microarray analysis, 252 genes were found to be differentially expressed in pituitaries from Bmal1(-/-) knockout versus wild-type mice. By integrative analyses of the data set with the Annotation, Visualization, and Integrated Discovery (DAVID) Bioinformatics Resources annotation analysis system, pituitary genes with altered expression in Bmal1(-/-) mice were dispatched among functional categories. Clusters of genes related to signaling and rhythmic processes as well as transcription regulators, in general, were found enriched in the data set, as were pathways such as circadian rhythm, transforming growth factor β (TGFβ) signaling, valine, leucine, and isoleucine degradation, and peroxisome proliferator-activated receptor (PPAR) signaling pathways. Gene Ontology term overrepresentation analyses revealed significant enrichment for genes involved in 10 key biological processes. To determine whether genes with altered expression in Bmal1(-/-) mice were actually circadian genes, we further characterized in the mouse pituitary gland the daily pattern of some of these genes, including core-clock genes. Core-clock genes and genes selected from three identified overrepresented biological processes, namely, hormone metabolic process, regulation of transcription from RNA polymerase II promoter, and cell adhesion, displayed a rhythmic pattern. Given the enrichment in genes dedicated to cell adhesion and their daily changes in the pituitary, it is hypothesized that cell-cell interactions could be involved in the transmission of information between endocrine cells, allowing rhythmic hormone outputs to be controlled in a temporally precise manner.
Collapse
Affiliation(s)
- F Guillaumond
- Aix-Marseille University , INSERM-U624, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
376
|
Schmutz I, Albrecht U, Ripperger JA. The role of clock genes and rhythmicity in the liver. Mol Cell Endocrinol 2012; 349:38-44. [PMID: 21664421 DOI: 10.1016/j.mce.2011.05.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/29/2011] [Accepted: 05/13/2011] [Indexed: 02/08/2023]
Abstract
The liver is the important organ to maintain energy homeostasis of an organism. To achieve this, many biochemical reactions run in this organ in a rhythmic fashion. An elegant way to coordinate the temporal expression of genes for metabolic enzymes relies in the link to the circadian timing system. In this fashion not only a maximum of synchronization is achieved, but also anticipation of daily recurring events is possible. Here we will focus on the input and output pathways of the hepatic circadian oscillator and discuss the recently found flexibility of its circadian transcriptional networks.
Collapse
Affiliation(s)
- I Schmutz
- Department of Biology, Unit of Biochemistry, University of Fribourg, Fribourg, Switzerland
| | | | | |
Collapse
|
377
|
Abstract
In this issue of Genes & Development, Abruzzi et al. (pp. 2374-2386) use chromatin immunoprecipitation (ChIP) tiling array assays (ChIP-chip) to show that physical interactions between circadian (≅24-h) clock machineries and genomes are more widespread than previously thought and provide novel insights into how clocks drive daily rhythms in global gene expression.
Collapse
Affiliation(s)
- Isaac Edery
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
378
|
Abruzzi KC, Rodriguez J, Menet JS, Desrochers J, Zadina A, Luo W, Tkachev S, Rosbash M. Drosophila CLOCK target gene characterization: implications for circadian tissue-specific gene expression. Genes Dev 2011; 25:2374-86. [PMID: 22085964 DOI: 10.1101/gad.178079.111] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
CLOCK (CLK) is a master transcriptional regulator of the circadian clock in Drosophila. To identify CLK direct target genes and address circadian transcriptional regulation in Drosophila, we performed chromatin immunoprecipitation (ChIP) tiling array assays (ChIP-chip) with a number of circadian proteins. CLK binding cycles on at least 800 sites with maximal binding in the early night. The CLK partner protein CYCLE (CYC) is on most of these sites. The CLK/CYC heterodimer is joined 4-6 h later by the transcriptional repressor PERIOD (PER), indicating that the majority of CLK targets are regulated similarly to core circadian genes. About 30% of target genes also show cycling RNA polymerase II (Pol II) binding. Many of these generate cycling RNAs despite not being documented in prior RNA cycling studies. This is due in part to different RNA isoforms and to fly head tissue heterogeneity. CLK has specific targets in different tissues, implying that important CLK partner proteins and/or mechanisms contribute to gene-specific and tissue-specific regulation.
Collapse
Affiliation(s)
- Katharine Compton Abruzzi
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | | | | | | | | | |
Collapse
|
379
|
Miyazaki M, Schroder E, Edelmann SE, Hughes ME, Kornacker K, Balke CW, Esser KA. Age-associated disruption of molecular clock expression in skeletal muscle of the spontaneously hypertensive rat. PLoS One 2011; 6:e27168. [PMID: 22076133 PMCID: PMC3208587 DOI: 10.1371/journal.pone.0027168] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 10/11/2011] [Indexed: 12/17/2022] Open
Abstract
It is well known that spontaneously hypertensive rats (SHR) develop muscle pathologies with hypertension and heart failure, though the mechanism remains poorly understood. Woon et al. (2007) linked the circadian clock gene Bmal1 to hypertension and metabolic dysfunction in the SHR. Building on these findings, we compared the expression pattern of several core-clock genes in the gastrocnemius muscle of aged SHR (80 weeks; overt heart failure) compared to aged-matched control WKY strain. Heart failure was associated with marked effects on the expression of Bmal1, Clock and Rora in addition to several non-circadian genes important in regulating skeletal muscle phenotype including Mck, Ttn and Mef2c. We next performed circadian time-course collections at a young age (8 weeks; pre-hypertensive) and adult age (22 weeks; hypertensive) to determine if clock gene expression was disrupted in gastrocnemius, heart and liver tissues prior to or after the rats became hypertensive. We found that hypertensive/hypertrophic SHR showed a dampening of peak Bmal1 and Rev-erb expression in the liver, and the clock-controlled gene Pgc1α in the gastrocnemius. In addition, the core-clock gene Clock and the muscle-specific, clock-controlled gene Myod1, no longer maintained a circadian pattern of expression in gastrocnemius from the hypertensive SHR. These findings provide a framework to suggest a mechanism whereby chronic heart failure leads to skeletal muscle pathologies; prolonged dysregulation of the molecular clock in skeletal muscle results in altered Clock, Pgc1α and Myod1 expression which in turn leads to the mis-regulation of target genes important for mechanical and metabolic function of skeletal muscle.
Collapse
MESH Headings
- Age Factors
- Animals
- Blotting, Western
- CLOCK Proteins/genetics
- CLOCK Proteins/metabolism
- Circadian Clocks/physiology
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Developmental
- Heart/physiopathology
- Hypertension/physiopathology
- Liver/metabolism
- Liver/pathology
- Male
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- MyoD Protein/genetics
- MyoD Protein/metabolism
- Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
- RNA, Messenger/genetics
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Real-Time Polymerase Chain Reaction
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Mitsunori Miyazaki
- Department of Physiology, Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Elizabeth Schroder
- Department of Physiology, Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| | - Stephanie E. Edelmann
- Department of Physiology, Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Michael E. Hughes
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Karl Kornacker
- Division of Sensory Biophysics, Ohio State University, Columbus, Ohio, United States of America
| | - C. William Balke
- Clinical and Translational Science Institute and the Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Karyn A. Esser
- Department of Physiology, Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
380
|
Mongrain V, La Spada F, Curie T, Franken P. Sleep loss reduces the DNA-binding of BMAL1, CLOCK, and NPAS2 to specific clock genes in the mouse cerebral cortex. PLoS One 2011; 6:e26622. [PMID: 22039518 PMCID: PMC3200344 DOI: 10.1371/journal.pone.0026622] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 09/29/2011] [Indexed: 11/18/2022] Open
Abstract
We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD) could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory sequences of target clock genes in mice. Using chromatin immunoprecipitation (ChIP), we first showed that, as reported for the liver, DNA-binding of CLOCK and BMAL1 to target clock genes changes in function of time-of-day in the cerebral cortex. Tissue extracts were collected at ZT0 (light onset), -6, -12, and -18, and DNA enrichment of E-box or E'-box containing sequences was measured by qPCR. CLOCK and BMAL1 binding to Cry1, Dbp, Per1, and Per2 depended on time-of-day, with maximum values reached at around ZT6. We then observed that SD, performed between ZT0 and -6, significantly decreased DNA-binding of CLOCK and BMAL1 to Dbp, consistent with the observed decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was also decreased by SD, although SD is known to increase Per2 expression in the cortex. DNA-binding to Per1 and Cry1 was not affected by SD. Our results show that the sleep-wake history can affect the clock molecular machinery directly at the level of chromatin binding thereby altering the cortical expression of Dbp and Per2 and likely other targets. Although the precise dynamics of the relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive, the results also suggest that part of the reported circadian changes in DNA-binding of core clock components in tissues peripheral to the suprachiasmatic nuclei could, in fact, be sleep-wake driven.
Collapse
Affiliation(s)
- Valérie Mongrain
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Department of Psychiatry, Université de Montréal, Montréal, Canada
| | - Francesco La Spada
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Thomas Curie
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
381
|
|
382
|
Ramsey KM, Bass J. Circadian clocks in fuel harvesting and energy homeostasis. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2011; 76:63-72. [PMID: 21890641 PMCID: PMC3970906 DOI: 10.1101/sqb.2011.76.010546] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Circadian systems have evolved in plants, eubacteria, neurospora, and the metazoa as a mechanism to optimize energy acquisition and storage in synchrony with the rotation of the Earth on its axis. In plants, circadian clocks drive the expression of genes involved in oxygenic photosynthesis during the light and nitrogen fixation during the dark, repeating this cycle each day. In mammals, the core clock in the suprachiasmatic nucleus (SCN) functions to entrain extra-SCN and peripheral clocks to the light cycle, including regions central to energy homeostasis and sleep, as well as peripheral tissues involved in glucose and lipid metabolism. Tissue-specific gene targeting has shown a primary role of clock genes in endocrine pancreas insulin secretion, indicating that local clocks play a cell-autonomous role in organismal homeostasis. A present focus is to dissect the consequences of clock disruption on modulation of nuclear hormone receptor signaling and on posttranscriptional regulation of intermediary metabolism. Experimental genetic studies have pointed toward extensive interplay between circadian and metabolic systems and offer a means to dissect the impact of local tissue molecular clocks on fuel utilization across the sleep-wake cycle.
Collapse
Affiliation(s)
- K M Ramsey
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine and Department of Neurobiology and Physiology, Northwestern University, Chicago, Illinois 60611-3015, USA
| | | |
Collapse
|