351
|
Reiter M, Tichopad A, Riedmaier I, Pfaffl MW, Meyer HH. Monitoring gene expression in muscle tissue of macaca fascicularis under the influence of testosterone and SARM. Horm Mol Biol Clin Investig 2010; 1:73-9. [DOI: 10.1515/hmbci.2010.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 07/20/2009] [Indexed: 12/29/2022]
Abstract
AbstractThe focus of this study was to evaluate data on the gene expression profiles induced by testosterone and a selective androgen receptor modulator (SARM, TAP Pharmaceutical Products Inc., Lake Forest, IL, USA) in androgen sensitive muscle tissue to obtain a better understanding on the molecular mechanisms of action and to identify biomarkers for SARM function in primate organs. A total of 24 male cyomolgus monkeys were divided into four groups: testosterone group, SARM1 group, SARM10 group, and control group, each consisting of six animals. The testosterone group was treated i.m. with 3.0 mg/kg Testostoviron
Collapse
|
352
|
Karavirta L, Häkkinen A, Sillanpää E, García-López D, Kauhanen A, Haapasaari A, Alen M, Pakarinen A, Kraemer WJ, Izquierdo M, Gorostiaga E, Häkkinen K. Effects of combined endurance and strength training on muscle strength, power and hypertrophy in 40-67-year-old men. Scand J Med Sci Sports 2009; 21:402-11. [PMID: 20030775 DOI: 10.1111/j.1600-0838.2009.01059.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Both strength and endurance training have several positive effects on aging muscle and physical performance of middle-aged and older adults, but their combination may compromise optimal adaptation. This study examined the possible interference of combined strength and endurance training on neuromuscular performance and skeletal muscle hypertrophy in previously untrained 40-67-year-old men. Maximal strength and muscle activation in the upper and lower extremities, maximal concentric power, aerobic capacity and muscle fiber size and distribution in the vastus lateralis muscle were measured before and after a 21-week training period. Ninety-six men [mean age 56 (SD 7) years] completed high-intensity strength training (S) twice a week, endurance training (E) twice a week, combined training (SE) four times per week or served as controls (C). SE and S led to similar gains in one repetition maximum strength of the lower extremities [22 (9)% and 21 (8)%, P<0.001], whereas E and C showed minor changes. Cross-sectional area of type II muscle fibers only increased in S [26 (22)%, P=0.002], while SE showed an inconsistent, non-significant change [8 (35)%, P=0.73]. Combined training may interfere with muscle hypertrophy in aging men, despite similar gains in maximal strength between the strength and the combined training groups.
Collapse
Affiliation(s)
- L Karavirta
- Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
353
|
Abstract
Neuromuscular control strategies might change with age and predispose the elderly to knee-joint injury. The purposes of this study were to determine whether long latency responses (LLRs), muscle-activation patterns, and movement accuracy differ between the young and elderly during a novel single-limb-squat (SLS) task. Ten young and 10 elderly participants performed a series of resistive SLSs (approximately 0-30 degrees) while matching a computer-generated sinusoidal target. The SLS device provided a 16% body-weight resistance to knee movement. Both young and elderly showed significant overshoot error when the knee was perturbed (p < .05). Accuracy ofthe tracking taskwas similar between the young and elderly (p = .34), but the elderly required more muscle activity than the younger participants (p < .05). The elderly group had larger LLRs than the younger group (p < .05). These results support the hypothesis that neuromuscular control of the knee changes with age and might contribute to injury.
Collapse
|
354
|
The use of omic technologies for biomarker development to trace functions of anabolic agents. J Chromatogr A 2009; 1216:8192-9. [DOI: 10.1016/j.chroma.2009.01.094] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 01/27/2009] [Accepted: 01/30/2009] [Indexed: 12/25/2022]
|
355
|
Kemmler W, V Stengel S, Mayer S, Niedermayer M, Hentschke C, Kalender WA. [Effect of whole body vibration on the neuromuscular performance of females 65 years and older. One-year results of the controlled randomized ELVIS study]. Z Gerontol Geriatr 2009; 43:125-32. [PMID: 19789832 DOI: 10.1007/s00391-009-0074-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 06/23/2009] [Indexed: 12/31/2022]
Abstract
Sarcopenia is linked to an increased risk of morbidity and mortality in the aging. Whole body vibration (WBV) exercises are currently discussed as a "gentle" alternative to conventional exercises to improve muscle mass. The present study scrutinized whether a multipurpose (exercise) training program using WBV can improve muscle mass and neuromuscular capacity, while lowering fall risk. A total of 151 postmenopausal women were randomized into three groups: exercise group (TG), exercise group with vibration (VTG), and fitness control group (CG). The TG group participated in an exercise program including leg strengthening training twice a week over 12 months, while the VTG carried out an identical program with the leg exercises performed under WBV. Despite a positive trend regarding lean body mass in the two exercise groups, there was no difference between groups. Both exercise groups showed a significant increase (vs. KG) in trunk strength. An improvement in both exercise groups was also measured with respect to leg strength, but only the VTG showed significant differences compared to the CG. In addition, a significant lower risk of falls compared with the CG was evident only in VTG.
Collapse
Affiliation(s)
- W Kemmler
- Institut für Medizinische Physik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 91, 91052, Erlangen, Deutschland.
| | | | | | | | | | | |
Collapse
|
356
|
Slieker-ten Hove MCP, Pool-Goudzwaard AL, Eijkemans MJC, Steegers-Theunissen RPM, Burger CW, Vierhout ME. Pelvic floor muscle function in a general female population in relation with age and parity and the relation between voluntary and involuntary contractions of the pelvic floor musculature. Int Urogynecol J 2009; 20:1497-504. [PMID: 19756345 PMCID: PMC2834770 DOI: 10.1007/s00192-009-0978-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 07/27/2009] [Indexed: 11/22/2022]
Abstract
Introduction and hypothesis The objective of this study is to describe pelvic floor muscle function (PFMF) in relation to age and parity in a general female population and to test whether strength/endurance measurements represent all functions of the pelvic floor musculature. Methods A cross-sectional study was performed on 95% of the women aged 45–85 years from a small Dutch town. Validated questionnaires were used to obtain general information, and vaginal examination to test PFMF was performed on 649 women. Chi-square tests were used to analyse the relation between PFMF versus age and parity. Analysis of variance was used to compare muscle strength and endurance to the other PFMF items. Results Response rate to the questionnaire was 62.7% (1,869/2,979). PFM strength and endurance are not positively associated with the effective involuntary muscle contractions during coughing. Conclusions Voluntary muscle contractions decreased with age, but there was no relation with parity. Muscle strength and endurance measurements alone are not sensitive enough to determine PFMF.
Collapse
|
357
|
Neptune RR, McGowan CP, Fiandt JM. The Influence of Muscle Physiology and Advanced Technology on Sports Performance. Annu Rev Biomed Eng 2009; 11:81-107. [DOI: 10.1146/annurev-bioeng-061008-124941] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Richard R. Neptune
- Department of Mechanical Engineering, The University of Texas, Austin, Texas 78712;
| | - Craig P. McGowan
- Department of Mechanical Engineering, The University of Texas, Austin, Texas 78712;
| | - John M. Fiandt
- Department of Mechanical Engineering, The University of Texas, Austin, Texas 78712;
| |
Collapse
|
358
|
Paterson DH, Jones GR, Rice CL. [Aging and physical activity data on which to base recommendations for exercise in older adults]. Appl Physiol Nutr Metab 2009; 32 Suppl 2F:S75-S171. [PMID: 19377547 DOI: 10.1139/h07-165] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An abundance of epidemiological research confirms the benefits of physical activity in reducing risk of various age-related morbidities and all-cause mortality. Analysis of the literature focusing on key exercise variables (e.g., intensity, type, and volume) suggests that the requisite beneficial amount of activity is that which engenders improved cardiorespiratory fitness, strength, power, and, indirectly, balance. Age-related declines in these components are such that physical limitations impinge on functional activities of daily living. However, an exercise programme can minimize declines, thus preventing older adults (age 65+ years) from crossing functional thresholds of inability. Cross-sectional and longitudinal data demonstrate that cardiorespiratory fitness is associated with functional capacity and independence; strength and, importantly, power are related to performance and activities of daily living; and balance-mobility in combination with power are important factors in preventing falls. Exercise interventions have documented that older adults can adapt physiologically to exercise training, with gains in functional capacities. The few studies that have explored minimal or optimal activity requirements suggest that a threshold (intensity) within the moderately vigorous domain is needed to achieve and preserve related health benefits. Thus, physical activity and (or) exercise prescriptions should emphasize activities of the specificity and type to improve components related to the maintenance of functional capacity and independence; these will also delay morbidity and mortality. An appropriate recommendation for older adults includes moderately vigorous cardiorespiratory activities (e.g., brisk walking), strength and (or) power training for maintenance of muscle mass and specific muscle-group performance, as well as "balance-mobility practice" and flexibility (stretching) exercise as needed.
Collapse
Affiliation(s)
- Donald H Paterson
- Centre canadien pour l'activité et le vieillissement, Université Western Ontario, 1490, rue Richmond N., Londres, ON N6G 2M3, Canada.
| | | | | |
Collapse
|
359
|
Riedmaier I, Tichopad A, Reiter M, Pfaffl MW, Meyer HHD. Influence of testosterone and a novel SARM on gene expression in whole blood of Macaca fascicularis. J Steroid Biochem Mol Biol 2009; 114:167-73. [PMID: 19429447 DOI: 10.1016/j.jsbmb.2009.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 01/26/2009] [Accepted: 01/28/2009] [Indexed: 11/23/2022]
Abstract
Anabolic hormones, including testosterone, have been suggested as a therapy for aging-related conditions, such as osteoporosis and sarcopenia. These therapies are sometimes associated with severe androgenic side effects. A promising alternative to testosterone replacement therapy are selective androgen receptor modulators (SARMs). SARMs have the potential to mimic the desirable central and peripheral androgenic anabolic effects of testosterone without having its side effects. In this study we evaluated the effects of LGD2941, in comparison to testosterone, on mRNA expression of selected target genes in whole blood in an non-human model. The regulated genes can act as potential blood biomarker candidates in future studies with AR ligands. Cynomolgus monkeys (Macaca fascicularis) were treated either with testosterone or LGD2941 for 90 days in order to compare their effects on mRNA expression in blood. Blood samples were taken before SARM application, on day 16 and on day 90 of treatment. Gene expression of 37 candidate genes was measured using quantitative real-time RT-PCR (qRT-PCR) technology. Our study shows that both testosterone and LGD2941 influence mRNA expression of 6 selected genes out of 37 in whole blood. The apoptosis regulators CD30L, Fas, TNFR1 and TNFR2 and the interleukins IL-12B and IL-15 showed significant changes in gene expression between control and the treatment groups and represent potential biomarkers for androgen receptor ligands in whole blood.
Collapse
Affiliation(s)
- Irmgard Riedmaier
- Physiology Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, Freising, Germany.
| | | | | | | | | |
Collapse
|
360
|
Malatesta M, Perdoni F, Muller S, Zancanaro C, Pellicciari C. Nuclei of aged myofibres undergo structural and functional changes suggesting impairment in RNA processing. Eur J Histochem 2009; 53:e12. [PMID: 19683983 PMCID: PMC3167280 DOI: 10.4081/ejh.2009.e12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2009] [Indexed: 12/25/2022] Open
Abstract
Advancing adult age is associated with a progressive decrease in skeletal muscle mass, strength and quality known as sarcopenia. The mechanisms underlying age-related skeletal muscle wasting and weakness are manifold and still remain to be fully elucidated. Despite the increasing evidence that the progress of muscle diseases leading to muscle atrophy/dystrophy may be related to defective RNA processing, no data on the morpho-functional features of skeletal muscle nuclei in sarcopenia are available at present. In this view, we have investigated, by combining morphometry and immunocytochemistry at light and electron microscopy, the fine structure of myonuclei as well as the distribution and amount of RNA processing factors in skeletal myofibres of biceps brachii and quadriceps femoris from adult and old rats. Results demonstrate that the myonuclei of aged type II fibres show an increased amount of condensed chromatin and lower amounts of phosphorylated polymerase II and DNA/RNA hybrid molecules, clearly indicating a decrease in pre-mRNA transcription rate compared to adult animals. In addition, myonuclei of aged fibres show decreased amounts of nucleoplasmic splicing factors and an accumulation of cleavage factors, polyadenilated RNA and perichromatin granules, suggesting a reduction in the processing and transport rate of premRNA. During ageing, it seems therefore that in rat myonuclei the entire production chain of mRNA, from synthesis to cytoplasmic export, is less efficient. This failure likely contributes to the reduced responsiveness of muscle cells to anabolic stimuli in the elderly.
Collapse
Affiliation(s)
- M Malatesta
- Dipartimento di Scienze Morfologico-Biomediche, Sezione di Anatomia e Istologia, University of Verona, Italy.
| | | | | | | | | |
Collapse
|
361
|
Abstract
Abstract
With increasing age, it appears that masters athletes competing in anaerobic events (10–100 s) decline linearly in performance until 70 years of age, after which the rate of decline appears to accelerate. This decline in performance appears strongly related to a decreased anaerobic work capacity, which has been observed in both sedentary and well-trained older individuals. Previously, a number of factors have been suggested to influence anaerobic work capacity including gender, muscle mass, muscle fiber type, muscle fiber size, muscle architecture and strength, substrate availability, efficiency of metabolic pathways, accumulation of reaction products, aerobic energy contribution, heredity, and physical training. The effects of sedentary aging on these factors have been widely discussed within literature. Less data are available on the changes in these factors in masters athletes who have continued to train at high intensities with the aim of participating in competition. The available research has reported that these masters athletes still demonstrate age-related changes in these factors. Specifically, it appears that morphological (decreased muscle mass, type II muscle fiber atrophy), muscle contractile property (decreased rate of force development), and biochemical changes (changes in enzyme activity, decreased lactate production) may explain the decreased anaerobic performance in masters athletes. However, the reduction in anaerobic work capacity and subsequent performance may largely be the result of physiological changes that are an inevitable result of the aging process, although their effects may be minimized by continuing specific high-intensity resistance or sprint training.
Collapse
|
362
|
Ma J, Zeng F, Ho WT, Teng L, Li Q, Fu X, Zhao ZJ. Characterization and functional studies of a FYVE domain-containing phosphatase in C. elegans. J Cell Biochem 2008; 104:1843-52. [PMID: 18393358 DOI: 10.1002/jcb.21752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The myotubularin (MTM) enzymes are phosphatidylinositol 3-phosphate (PI3P) and phosphatidylinositol 3,5-bisphosphate phosphatases. Mutation of MTM1, the founder member of this family, is responsible for X-linked myotubular myopathy in humans. Here, we have isolated and characterized a Caenorhabditis elegans homology of the enzymes designated ceMTM3. ceMTM3 preferably dephosphorylates PI3P and contains a FYVE lipid-binding domain at its C-terminus which binds PI3P. Immunoblotting analyses revealed that the enzyme is expressed during the early development and adulthood of the animal. Immunofluorescent staining revealed predominant expression of the enzyme in eggs and muscles. Knockdown of the enzyme by using feeding-based RNA interference resulted in an increased level of PI3P and caused severe impairment of body movement of the worms at their post-reproductive ages and significantly shortened their lifespan. This study thus reveals an important role of the MTM phosphatases in maintaining muscle function, which may have clinical implications in prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Junfeng Ma
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | |
Collapse
|
363
|
Boonen S, Dejaeger E, Vanderschueren D, Venken K, Bogaerts A, Verschueren S, Milisen K. Osteoporosis and osteoporotic fracture occurrence and prevention in the elderly: a geriatric perspective. Best Pract Res Clin Endocrinol Metab 2008; 22:765-85. [PMID: 19028356 DOI: 10.1016/j.beem.2008.07.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Age is a major determinant of osteoporosis, but the elderly are rarely assessed and often remain untreated for this condition. Falls, co-morbidities and co-medications compound the risk of fracture in senile osteoporosis. The prevalence of osteoporosis is expected to increase with increasing life expectancy, and the associated fractures - particularly hip fractures - will lead to significant demands on health resources. Treatment of senile osteoporosis can include pharmacological and non-pharmacological intervention. Calcium and vitamin D dietary supplementation is a relatively low-cost way of reducing the risk of fracture. Pharmacological interventions with risedronate, zoledronic acid, or teriparatide have been shown to reduce vertebral fracture risk in osteoporosis patients over the age of 75. Zoledronic acid has been shown to reduce fracture risk in frail patients with recent hip fracture. In the oldest old (patients over 80), strontium ranelate is the first agent with documented anti-fracture efficacy for both non-vertebral and vertebral fracture and documented sustained efficacy over 5 years. Falls prevention is an essential component of any strategy for decreasing fracture risk in old age. Currently, senile osteoporosis is under-diagnosed and under-treated, but age should not be a barrier to intervention.
Collapse
Affiliation(s)
- Steven Boonen
- Leuven University Centre for Metabolic Bone Disease and Division of Geriatric Medicine, UZ Leuven campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
364
|
Suppression of the aging-associated decline in physical performance by a combination of resveratrol intake and habitual exercise in senescence-accelerated mice. Biogerontology 2008; 10:423-34. [PMID: 18830683 DOI: 10.1007/s10522-008-9177-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 09/01/2008] [Indexed: 10/21/2022]
Abstract
The decline in physical performance with increasing age is a crucial problem in our aging society. We examined the effects of resveratrol, a natural polyphenolic compound present in grapes, in combination with habitual exercise on the aging-associated decline in physical performance in senescence-accelerated prone mice (SAMP1). The endurance capacity of SAMP1 mice undergoing an exercise regimen (SAMP1-Ex) decreased over 12 weeks whereas that of SAMP1 mice fed 0.2% (w/w) resveratrol along with exercise (SAMP1-ExRes) remained significantly higher. In the SAMP1-ExRes group, there was a significant increase in oxygen consumption and skeletal muscle mRNA levels of mitochondrial function-related enzymes. These results suggest that the intake of resveratrol, together with habitual exercise, is beneficial for suppressing the aging-related decline in physical performance and that these effects are attributable, at least in part, to improved mitochondrial function in skeletal muscle.
Collapse
|
365
|
O’Connell K, Doran P, Gannon J, Ohlendieck K. Lectin-based proteomic profiling of aged skeletal muscle: Decreased pyruvate kinase isozyme M1 exhibits drastically increased levels of N-glycosylation. Eur J Cell Biol 2008; 87:793-805. [DOI: 10.1016/j.ejcb.2008.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 04/10/2008] [Accepted: 04/21/2008] [Indexed: 12/24/2022] Open
|
366
|
Kaeding TS. [Sarcopenia and whole body vibration training: an overview]. Z Gerontol Geriatr 2008; 42:88-92. [PMID: 18726053 DOI: 10.1007/s00391-008-0565-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 06/09/2008] [Indexed: 01/08/2023]
Abstract
The loss of muscle mass, muscle strength and muscle endurance-capability in the elderly is summarized under the term 'sarcopenia'. This phenomenon is widespread in the older population and is a large financial burden for the health system. As a consequence of sarcopenia, functional and metabolic consequences occur. These among other things are associated with a loss of the independent lifestyle and the appearance of various age-related chronic diseases. An intervention with whole body vibration training can increase muscle strength, especially in older people with a low level of muscle strength, similar to resistance training. A strength increase is mainly attributed to improved inter- and intramuscular coordination. A muscle hypertrophy is also possibly realizable with people with low base level. A low injury-risk and the only rare appearance of side-effects makes whole body vibration training an interesting preventive intervention for older people.
Collapse
Affiliation(s)
- T S Kaeding
- Institut für Sportwissenschaften, J.W. Goethe-Universität Frankfurt a.M., Embsen/Oerzen, Germany.
| |
Collapse
|
367
|
Youmans SR, Youmans GL, Stierwalt JAG. Differences in tongue strength across age and gender: is there a diminished strength reserve? Dysphagia 2008; 24:57-65. [PMID: 18690406 DOI: 10.1007/s00455-008-9171-2] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 05/01/2008] [Indexed: 11/25/2022]
Abstract
Maximum tongue strength was investigated and compared to mean swallowing pressure elicited by the anterior tongue to calculate the percentage of maximum tongue strength used during swallowing in 96 participants with normal swallowing, divided into three 20-year age groups. The purposes of this investigation were to investigate normal swallowing physiology and to determine whether tongue strength reserves diminished according to age or gender. The results of the study yielded significant maximum tongue strength differences between the youngest and oldest and middle and oldest age groups; the oldest group had the weakest tongues. Mean swallowing pressure did not differ based on age, but women were found to have significantly higher pressures than men. The percentage of maximum tongue strength used during swallowing did not vary as a function of age, but women used a significantly higher percentage of tongue strength to swallow than men. Based on the results, it appears that a diminishing strength reserve does not exist based on age, but it does exist based on gender. Specifically, it appears that women have a reduced tongue strength reserve compared to men. Clinical implications are discussed.
Collapse
Affiliation(s)
- Scott R Youmans
- Department of Communication Sciences and Disorders, Long Island University, Brooklyn Campus, Brooklyn, NY 11201-5372, USA.
| | | | | |
Collapse
|
368
|
Chapman DW, Newton M, McGuigan MR, Nosaka K. Comparison between old and young men for responses to fast velocity maximal lengthening contractions of the elbow flexors. Eur J Appl Physiol 2008; 104:531-9. [DOI: 10.1007/s00421-008-0806-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2008] [Indexed: 10/21/2022]
|
369
|
Léger B, Derave W, De Bock K, Hespel P, Russell AP. Human sarcopenia reveals an increase in SOCS-3 and myostatin and a reduced efficiency of Akt phosphorylation. Rejuvenation Res 2008; 11:163-175B. [PMID: 18240972 DOI: 10.1089/rej.2007.0588] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Age-related skeletal muscle sarcopenia is linked with increases in falls, fractures, and death and therefore has important socioeconomic consequences. The molecular mechanisms controlling age-related muscle loss in humans are not well understood, but are likely to involve multiple signaling pathways. This study investigated the regulation of several genes and proteins involved in the activation of key signaling pathways promoting muscle hypertrophy, including GH/STAT5, IGF-1/Akt/GSK-3beta/4E-BP1, and muscle atrophy, including TNFalpha/SOCS-3 and Akt/FKHR/atrogene, in muscle biopsies from 13 young (20 +/- 0.2 years) and 16 older (70 +/- 0.3 years) males. In the older males compared to the young subjects, muscle fiber cross-sectional area was reduced by 40-45% in the type II muscle fibers. TNFalpha and SOCS-3 were increased by 2.8 and 1.5 fold, respectively. Growth hormone receptor protein (GHR) and IGF-1 mRNA were decreased by 45%. Total Akt, but not phosphorylated Akt, was increased by 2.5 fold, which corresponded to a 30% reduction in the efficiency of Akt phosphorylation in the older subjects. Phosphorylated and total GSK-3beta were increased by 1.5 and 1.8 fold, respectively, while 4E-BP1 levels were not changed. Nuclear FKHR and FKHRL1 were decreased by 73 and 50%, respectively, with no changes in their atrophy target genes, atrogin-1 and MuRF1. Myostatin mRNA and protein levels were significantly elevated by 2 and 1.4 fold. Human sarcopenia may be linked to a reduction in the activity or sensitivity of anabolic signaling proteins such as GHR, IGF-1, and Akt. TNFalpha, SOCS-3, and myostatin are potential candidates influencing this anabolic perturbation.
Collapse
Affiliation(s)
- Bertrand Léger
- Clinique romande de réadaptation SuvaCare, Sion, Switzerland
| | | | | | | | | |
Collapse
|
370
|
Chilibeck PD, Cornish SM. Effect of estrogenic compounds (estrogen or phytoestrogens) combined with exercise on bone and muscle mass in older individuals. Appl Physiol Nutr Metab 2008; 33:200-12. [PMID: 18347673 DOI: 10.1139/h07-140] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exercise has a beneficial effect on bone, possibly by stimulating estrogen receptor alpha. Because estrogen up-regulates this receptor, estrogen therapy combined with exercise training may be optimal for increasing bone mineral density. Studies combining estrogen therapy and exercise training in postmenopausal women show mixed results, but indicate that the combination of interventions may be more effective for increasing bone mass than either intervention alone. Plant-like estrogens (i.e phytoestrogens such as soy isoflavones) may act as weak estrogen agonists or antagonists, have small beneficial effects on bone, and may interact with exercise for increasing bone mineral density. Phytoestrogen derived from flaxseed (flax lignans) has not been evaluated as extensively as soy isoflavones and thus its effect on bone is difficult to determine. Estrogen or soy isoflavones given to postmenopausal women results in a small increase in lean tissue mass that may be mediated through estrogen receptor alpha on muscle or through decreased inflammation.
Collapse
Affiliation(s)
- Philip D Chilibeck
- College of Kinesiology, University of Saskatchewan, 87 Campus Dr., Saskatoon, SK S7N 5B2.
| | | |
Collapse
|
371
|
Antagonist mechanical contribution to resultant maximal torque at the ankle joint in young and older men. J Electromyogr Kinesiol 2008; 19:e123-31. [PMID: 18164627 DOI: 10.1016/j.jelekin.2007.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 11/09/2007] [Accepted: 11/09/2007] [Indexed: 11/22/2022] Open
Abstract
A recorded muscular torque at one joint is a resultant torque corresponding to the participation of both agonist and antagonist muscles. This study aimed to examine the effect of aging on the mechanical contributions of both plantar- and dorsi-flexors to the resultant maximal voluntary contraction (MVC) torques exerted at the ankle joint, in dorsi-flexion (DF) and plantar-flexion (PF). The estimation of isometric agonist and antagonist torques by means of an EMG biofeedback technique was made with nine young (mean age 24 years) and nine older (mean age 80 years) men. While there was a non-significant age-related decline in the measured resultant DF MVC torque (-15%; p=0.06), there was a clear decrease in the estimated agonist MVC torque exerted by the dorsi-flexors (-39%; p=0.001). The DF-to-PF resultant MVC torque ratio was significantly lower in young than in older men (0.25 vs. 0.31; p=0.006), whereas the DF-to-PF agonist MVC torque ratio was no longer different between the two populations (0.38 vs. 0.35; p>0.05). Thus, agonist MVC torques in PF and DF would be similarly affected by aging, which could not be deduced when only resultant torques were examined.
Collapse
|
372
|
Chevan J. Demographic Determinants of Participation in Strength Training Activities Among U.S. Adults. J Strength Cond Res 2008; 22:553-8. [DOI: 10.1519/jsc.0b013e3181636bee] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
373
|
Age influences the early events of skeletal muscle regeneration: studies of whole muscle grafts transplanted between young (8 weeks) and old (13-21 months) mice. Exp Gerontol 2008; 43:550-62. [PMID: 18364250 DOI: 10.1016/j.exger.2008.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 02/06/2008] [Accepted: 02/07/2008] [Indexed: 12/11/2022]
Abstract
Injured skeletal muscle generally regenerates less efficiently with age, but little is understood about the effects of ageing on the very early inflammatory and neovascular events in the muscle repair process. This study used a total of 174 whole muscle grafts transplanted within and between young and old mice to analyse the effects of ageing on the early inflammatory response in two strains of mice (BALB/c and SJL/J). There was a very slight delay in the early inflammatory response, and in the appearance of myotubes at day 4 in BALB/c muscle grafted into an old host environment (implicating systemic events). In SJL/J mice, the initial speed of the inflammatory response was slightly delayed with old muscle grafts regardless of host age (implicating muscle-derived factors), while an old host environment transiently affected myogenesis (myotube formation). The slight delays in inflammatory and neovascular responses in old mice did not dramatically impact on the overall formation of new muscle. The neovascular response to injured young and old muscle tissue was further analysed using the corneal micropocket assay. This showed a very clear 1-2 day delay in angiogenesis induced by old versus young BALB/c muscle tissue implanted into the young rat cornea, indicating that new blood vessel formation is at least partly determined by muscle-derived factors. Taken together these results indicate that, while there are slight age-associated delays in inflammation and neovascularisation in response to injured muscle, there is no detrimental effect on myogenesis in the mouse model used in this study.
Collapse
|
374
|
Muscle-Specific PPARbeta/delta Agonism May Provide Synergistic Benefits with Life Style Modifications. PPAR Res 2008; 2007:30578. [PMID: 18274626 PMCID: PMC2220041 DOI: 10.1155/2007/30578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/08/2007] [Accepted: 11/13/2007] [Indexed: 11/26/2022] Open
Abstract
Peroxisome proliferator-activated receptor β/δ
(PPARβ/δ)
has emerged as a powerful metabolic regulator in diverse tissues
including fat, skeletal muscle, and the heart. It is now
established that activation of
PPARβ/δ
promotes fatty acid oxidation in several tissues, such as skeletal
muscle and adipose tissue. In muscle,
PPARβ/δ
appears to act as a central regulator of fatty acid catabolism.
PPARβ/δ contents are increased in muscle during physiological situations
such as physical exercise or long-term fasting, characterized by
increased fatty acid oxidation. Targeted expression of an
activated form of PPARβ/δ
in skeletal muscle induces a switch to form increased numbers of
type I muscle fibers resembling the fiber type transition by
endurance training. Activation of
PPARβ/δ
also enhances mitochondrial capacity and fat oxidation in the
skeletal muscle that resembles the effect of regular exercise.
Therefore, it is hypothesized that muscle-specific
PPARβ/δ
agonists could be a key strategy to support the poor
cardiorespiratory fitness associated with metabolic disorders.
Collapse
|
375
|
Candow DG, Chilibeck PD. Timing of creatine or protein supplementation and resistance training in the elderly. Appl Physiol Nutr Metab 2008; 33:184-90. [DOI: 10.1139/h07-139] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle loss with age has a negative effect on strength and functional independence. Age-related loss of muscle is the result of decreased muscle fiber number and size, which are functions of altered hormonal status, physical inactivity, and variations in nutritional intake. Resistance training has a positive effect on muscle mass and strength in the elderly. Studies of protein or creatine supplementation for increasing muscle mass and strength in older individuals are equivocal. The timing of nutritional supplementation may be more important than the absolute daily intake of supplements. Protein or creatine ingestion proximate to resistance-training sessions may be more beneficial for increasing muscle mass and strength than ingestion of protein or creatine at other times of the day, possibly because of increased blood flow and therefore increased transport of amino acids and creatine to skeletal muscle.
Collapse
Affiliation(s)
- Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S 0A2
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B2
| | - Philip D. Chilibeck
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S 0A2
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B2
| |
Collapse
|
376
|
Laroche DP, Knight CA, Dickie JL, Lussier M, Roy SJ. Explosive force and fractionated reaction time in elderly low- and high-active women. Med Sci Sports Exerc 2007; 39:1659-65. [PMID: 17805100 DOI: 10.1249/mss.0b013e318074ccd9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The purpose of this study was to determine whether muscle power, activation time, and neuromuscular stimulation are related to physical activity patterns in older women. METHODS Forty women (65-84 yr) were assigned to high-active (HA) and low-active (LA) groups on the basis of a historical activity questionnaire, and then they performed a series of maximal, voluntary, isometric knee extensions in a visually cued RT task. Fractionated RT measures were taken using three landmarks in the data: the presentation of the visual stimulus, the beginning of the EMG burst, and the initiation of force development. The rate and magnitude of neural stimulation were taken from surface EMG. RESULTS Peak torque was 15% greater, rate of torque development was 26% greater, motor time was 17% shorter, rate of EMG rise was 25% faster, and onset EMG magnitude was 15% greater in HA than in LA subjects (P<0.05). CONCLUSION These results indicate that older women with a history of vigorous activity can generate greater force, power, and motor output in comparison with their less active peers. The lower-body mass index of the HA subjects and 310% greater volume of physical activity are likely to account for the enhanced neuromuscular function seen. It is plausible that in addition to aging, physical inactivity is responsible for a large portion of the loss of neuromuscular function seen in older adults.
Collapse
Affiliation(s)
- Dain P Laroche
- Department of Environmental and Health Sciences, Johnson State College, Johnson, VT, USA.
| | | | | | | | | |
Collapse
|
377
|
Kerr A, Rafferty D, Moffat F, Morlan G. Specificity of recumbent cycling as a training modality for the functional movements; sit-to-stand and step-up. Clin Biomech (Bristol, Avon) 2007; 22:1104-11. [PMID: 17854957 DOI: 10.1016/j.clinbiomech.2007.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 06/01/2007] [Accepted: 06/12/2007] [Indexed: 02/07/2023]
Abstract
BACKGROUND The principle of specificity in muscle training requires the training mode to reflect the desired outcome. The observed similarity of lower limb movements during recumbent cycling to the functional movements sit-to-stand and step-up presents the possibility of using recumbent cycling in a rehabilitation context. This may reduce the need to practice the actual task which in some, less able, patients may be labour intensive and patient fatiguing. To date no studies have compared recumbent cycling to these functional movements. This study therefore aimed to compare the lower limb kinematics and muscle activity between recumbent cycling and both sit-to-stand and step-up movements. METHODS Electromyographic and kinematic signals from 12 young (mean age 42.1 years) healthy participants were collected during the performance of three activities: (1) cycling at 60 rpm, (2) sit-to-stand and (3) a single step-up. Only the extension phase of each movement was compared. FINDINGS Although the results demonstrated differences in joint movement and muscle activation, e.g., greater gastrocnemius activity during recumbent cycling (P<0.00), knee range of motion and average root mean square activity for rectus femoris, biceps femoris and the sum of the average activity for five muscles recorded showed no difference (P>0.05) suggesting that there was sufficient agreement to support the use of recumbent cycling as a specific training modality for the sit-to-stand and step-up movements. This finding may have positive implications for the rehabilitation of a wide range of patients in the early stages of rehabilitation.
Collapse
Affiliation(s)
- A Kerr
- School of Health and Social Care, Govan Mbeki Building, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, UK.
| | | | | | | |
Collapse
|
378
|
Paterson DH, Jones GR, Rice CL. Ageing and physical activity: evidence to develop exercise recommendations for older adultsThis article is part of a supplement entitled Advancing physical activity measurement and guidelines in Canada: a scientific review and evidence-based foundation for the future of Canadian physical activity guidelines co-published by Applied Physiology, Nutrition, and Metabolism and the Canadian Journal of Public Health. It may be cited as Appl. Physiol. Nutr. Metab. 32(Suppl. 2E) or as Can. J. Public Health 98(Suppl. 2). Appl Physiol Nutr Metab 2007. [DOI: 10.1139/h07-111] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An abundance of epidemiological research confirms the benefits of physical activity in reducing risk of various age-related morbidities and all-cause mortality. Analysis of the literature focusing on key exercise variables (e.g., intensity, type, and volume) suggests that the requisite beneficial amount of activity is that which engenders improved cardiorespiratory fitness, strength, power, and, indirectly, balance. Age-related declines in these components are such that physical limitations impinge on functional activities of daily living. However, an exercise programme can minimize declines, thus preventing older adults (age 65+ years) from crossing functional thresholds of inability. Cross-sectional and longitudinal data demonstrate that cardiorespiratory fitness is associated with functional capacity and independence; strength and, importantly, power are related to performance and activities of daily living; and balance-mobility in combination with power are important factors in preventing falls. Exercise interventions have documented that older adults can adapt physiologically to exercise training, with gains in functional capacities. The few studies that have explored minimal or optimal activity requirements suggest that a threshold (intensity) within the moderately vigorous domain is needed to achieve and preserve related health benefits. Thus, physical activity and (or) exercise prescriptions should emphasize activities of the specificity and type to improve components related to the maintenance of functional capacity and independence; these will also delay morbidity and mortality. An appropriate recommendation for older adults includes moderately vigorous cardiorespiratory activities (e.g., brisk walking), strength and (or) power training for maintenance of muscle mass and specific muscle-group performance, as well as “balance-mobility practice” and flexibility (stretching) exercise as needed.
Collapse
Affiliation(s)
- Donald H. Paterson
- Canadian Centre for Activity and Aging, University of Western Ontario, 1490 Richmond Street N., London, ON N6G 2M3, Canada
- School of Kinesiology, Faculty of Health Sciences, Room 411B, Health Sciences Building, University of Western Ontario, London, ON N6A 5B9, Canada
- Occupational Therapy, Faculty of Health Sciences, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Gareth R. Jones
- Canadian Centre for Activity and Aging, University of Western Ontario, 1490 Richmond Street N., London, ON N6G 2M3, Canada
- School of Kinesiology, Faculty of Health Sciences, Room 411B, Health Sciences Building, University of Western Ontario, London, ON N6A 5B9, Canada
- Occupational Therapy, Faculty of Health Sciences, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Charles L. Rice
- Canadian Centre for Activity and Aging, University of Western Ontario, 1490 Richmond Street N., London, ON N6G 2M3, Canada
- School of Kinesiology, Faculty of Health Sciences, Room 411B, Health Sciences Building, University of Western Ontario, London, ON N6A 5B9, Canada
- Occupational Therapy, Faculty of Health Sciences, University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
379
|
Wouters EF, Celis MP, Breyer MK, Rutten EP, Graat-Verboom L, Spruit MA. Co-morbid manifestations in COPD. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.rmedu.2007.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
380
|
Piotrkiewicz M, Kudina L, Mierzejewska J, Jakubiec M, Hausmanowa-Petrusewicz I. Age-related change in duration of afterhyperpolarization of human motoneurones. J Physiol 2007; 585:483-90. [PMID: 17932149 DOI: 10.1113/jphysiol.2007.142356] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Motor unit (MU) potentials were recorded from brachial biceps of healthy subjects aged 5.5-79 years. The subjects were subdivided into young (5.5-19 year) and adult (37.5-79 year) groups, between which single MU discharge characteristics were compared. Firing rates were in the ranges of 8.3-21.7 s(-1) (mean 12.87 s(-1)) and 5.9-18.7 s(-1) (mean 11.08 s(-1)) for young and adult groups, respectively. Standard deviations (s.d.) of interspike intervals (ISIs) were in the range 4.84-11.57 ms (mean 8.39 ms) for the young group and 4.26-12.23 ms (mean 7.76 ms) for the adult group. Both differences were statistically significant (P < 0.001). Special attention was paid to the previously developed method of ISI variability analysis, which enabled the comparison of MUs with respect to afterhyperpolarization (AHP) duration of their motoneurones (MNs). The results show that AHP duration increases gradually with increasing age, which is in line with the transformation of muscle properties towards a slower phenotype. This transformation seems to be a continuous process, covering the entire lifespan of a human being, from childhood to senescence. The results presented here are significant for their insight into the ageing process of the neuromuscular system. The age-related change in AHP duration has not been investigated previously in human studies and has been met with ambiguous results in animal studies.
Collapse
Affiliation(s)
- M Piotrkiewicz
- Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4, Trojdena Str., Warsaw, Poland.
| | | | | | | | | |
Collapse
|
381
|
Bogaerts A, Delecluse C, Claessens AL, Coudyzer W, Boonen S, Verschueren SMP. Impact of whole-body vibration training versus fitness training on muscle strength and muscle mass in older men: a 1-year randomized controlled trial. J Gerontol A Biol Sci Med Sci 2007; 62:630-5. [PMID: 17595419 DOI: 10.1093/gerona/62.6.630] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND This randomized controlled study investigated the effects of 1-year whole-body vibration (WBV) training on isometric and explosive muscle strength and muscle mass in community-dwelling men older than 60 years. METHODS Muscle characteristics of the WBV group (n = 31, 67.3 +/- 0.7 years) were compared with those of a fitness (FIT) group (n = 30, 67.4 +/- 0.8 years) and a control (CON) group (n = 36, 68.6 +/- 0.9 years). Isometric strength of the knee extensors was measured using an isokinetic dynamometer, explosive muscle strength was assessed using a counter movement jump, and muscle mass of the upper leg was determined by computed tomography. RESULTS Isometric muscle strength, explosive muscle strength, and muscle mass increased significantly in the WBV group (9.8%, 10.9%, and 3.4%, respectively) and in the FIT group (13.1%, 9.8%, and 3.8%, respectively) with the training effects not significantly different between the groups. No significant changes in any parameter were found in the CON group. CONCLUSION WBV training is as efficient as a fitness program to increase isometric and explosive knee extension strength and muscle mass of the upper leg in community-dwelling older men. These findings suggest that WBV training has potential to prevent or reverse the age-related loss in skeletal muscle mass, referred to as sarcopenia.
Collapse
Affiliation(s)
- An Bogaerts
- Division of Musculoskeletal Rehabilitation, Katholieke Universiteit Leuven, Tervuursevest 101, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
382
|
Sano R, Tanaka E, Korfage JAM, Langenbach GEJ, Kawai N, van Eijden TMGJ, Tanne K. Heterogeneity of fiber characteristics in the rat masseter and digastric muscles. J Anat 2007; 211:464-70. [PMID: 17692082 PMCID: PMC2375825 DOI: 10.1111/j.1469-7580.2007.00783.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The functional requirements in muscle use are related to the fiber type composition of the muscles and the cross-sectional area of the individual fibers. We investigated the heterogeneity in the fiber type composition and fiber cross-sectional area in two muscles with an opposing function, namely the digastric and masseter muscles (n = 5 for each muscle) of adult male rats, by means of immunohistochemical staining according to their myosin heavy chain (MyHC) content. The digastric and masseter muscles were taken from Wistar strain male rats 10 weeks old. In the masseter six predefined sample locations were examined; in the digastric four. Most regions showed dominant proportions of type IIA and IIX fibers. However, both muscles also revealed a regional heterogeneity in their fiber type distribution. In the digastric, type I fibers were detected only at the central and deep areas of the anterior and posterior belly, respectively. Meanwhile, the peripheral area of the anterior belly contained a higher proportion of type IIB fibers. In the masseter, the type I fibers were absent. In the superficial masseter the distribution of IIA and IIB fibers was significantly different between the superior and inferior regions. In the deep masseter, regional differences were observed among all four examined areas, of which the posterolateral region contained the highest proportion of type IIB fibers. The cross-sectional areas of type IIB fibers were always the largest, followed by the type IIX and IIA fibers. Only a few differences in cross-sectional area of corresponding fiber types were detected between the various sites. In conclusion, the masseter and digastric muscles showed an obvious heterogeneity of fiber type composition and fiber cross-sectional area. Their heterogeneity reflects the complex role of the both muscles during function. This detailed description of the fiber type composition can serve as a reference for future studies examining the muscular adaptations after the onset of various diseases in the masticatory system.
Collapse
Affiliation(s)
- R Sano
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan.
| | | | | | | | | | | | | |
Collapse
|
383
|
A role for Insulin-like growth factor 2 in specification of the fast skeletal muscle fibre. BMC DEVELOPMENTAL BIOLOGY 2007; 7:65. [PMID: 17559643 PMCID: PMC1906852 DOI: 10.1186/1471-213x-7-65] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 06/08/2007] [Indexed: 01/11/2023]
Abstract
Background Fibre type specification is a poorly understood process beginning in embryogenesis in which skeletal muscle myotubes switch myosin-type to establish fast, slow and mixed fibre muscle groups with distinct function. Growth factors are required to establish slow fibres; it is unknown how fast twitch fibres are specified. Igf-2 is an embryonically expressed growth factor with established in vitro roles in skeletal muscle. Its localisation and role in embryonic muscle differentiation had not been established. Results Between E11.5 and E15.5 fast Myosin (FMyHC) localises to secondary myotubes evenly distributed throughout the embryonic musculature and gradually increasing in number so that by E15.5 around half contain FMyHC. The Igf-2 pattern closely correlates with FMyHC from E13.5 and peaks at E15.5 when over 90% of FMyHC+ myotubes also contain Igf-2. Igf-2 lags FMyHC and it is absent from muscle myotubes until E13.5. Igf-2 strongly down-regulates by E17.5. A striking feature of the FMyHC pattern is its increased heterogeneity and attenuation in many fibres from E15.5 to day one after birth (P1). Transgenic mice (MIG) which express Igf-2 in all of their myotubes, have increased FMyHC staining, a higher proportion of FMyHC+ myotubes and loose their FMyHC staining heterogeneity. In Igf-2 deficient mice (MatDi) FMyHC+ myotubes are reduced to 60% of WT by E15.5. In vitro, MIG induces a 50% excess of FMyHC+ and a 30% reduction of SMHyC+ myotubes in C2 cells which can be reversed by Igf-2-targeted ShRNA resulting in 50% reduction of FMyHC. Total number of myotubes was not affected. Conclusion In WT embryos the appearance of Igf-2 in embryonic myotubes lags FMyHC, but by E15.5 around 45% of secondary myotubes contain both proteins. Forced expression of Igf-2 into all myotubes causes an excess, and absence of Igf-2 suppresses, the FMyHC+ myotube component in both embryonic muscle and differentiated myoblasts. Igf-2 is thus required, not for initiating secondary myotube differentiation, but for establishing the correct proportion of FMyHC+ myotubes during fibre type specification (E15.5 - P1). Since specific loss of FMyHC fibres is associated with many skeletal muscle pathologies these data have important medical implications.
Collapse
|
384
|
Kolovou GD, Anagnostopoulou KK, Salpea KD, Mikhailidis DP. The Prevalence of Metabolic Syndrome in Various Populations. Am J Med Sci 2007; 333:362-71. [PMID: 17570989 DOI: 10.1097/maj.0b013e318065c3a1] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The insulin resistance/metabolic syndrome is characterized by the variable co-existence of hyperinsulinemia, obesity, dyslipidemia (small dense low-density lipoprotein, hypertriglyceridemia, and decreased high-density lipoprotein cholesterol), and hypertension. The pathogenesis of the syndrome has multiple origins. However, obesity and sedentary lifestyle coupled with diet and still largely unknown genetic factors clearly interact to produce the syndrome. This multifactorial and complex trait of metabolic syndrome leads to increased risk of cardiovascular disease. The scope of this review is to examine the differences in prevalence of the metabolic syndrome in various groups (eg, according to age, sex, ethnicity, social status, or presence of obesity) that could help with the better understanding of the pathogenesis of this syndrome. This review also considers the impact of metabolic syndrome on cardiovascular disease.
Collapse
|
385
|
Yamaguchi T, Arai H, Katayama N, Ishikawa T, Kikumoto K, Atomi Y. Age-Related Increase of Insoluble, Phosphorylated Small Heat Shock Proteins in Human Skeletal Muscle. J Gerontol A Biol Sci Med Sci 2007; 62:481-9. [PMID: 17522351 DOI: 10.1093/gerona/62.5.481] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Among mammalian heat shock proteins (Hsps), small Hsps (sHsps) are constitutively expressed in skeletal muscles. We investigated age-related changes of phosphorylation and cellular distribution of representative sHsps (Hsp27 and alphaB-crystallin) in human vastus lateralis muscle under resting conditions. We also examined upstream kinases which may be responsible for phosphorylation of sHsps, namely p38 mitogen-activated protein kinase (MAPK), MAPK-activated protein kinase-2, and extracellular signal-regulated kinase-1/2. The study groups consisted of nine young (15-38 years old) and nine aged (51-79 years old) patients who underwent orthopedic surgery. sHsps protein levels were higher in the insoluble fraction of aged muscles. The phosphorylated states of sHsps were enhanced in both the soluble and insoluble fraction of aged patients. The phosphorylated form of each upstream kinase was elevated in aged patients. Ubiquitinated proteins accumulated in the insoluble fractions of aged muscles. Aging mechanisms may affect the activation process of MAPKs, and the phosphorylation and accumulation of sHsps.
Collapse
Affiliation(s)
- Tetsuo Yamaguchi
- Department of Life Sciences, The Graduate School of Arts and Sciences, The University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
386
|
Abstract
Innovative noninvasive methods open a new window on the cell in vivo. This window reveals that the tempo of mitochondrial dysfunction with age varies among muscles and in proportion to Type II muscle fiber content. Exercise training can reverse age-related dysfunction, thereby providing an intervention to slow the pace of aging and disability in the elderly.
Collapse
Affiliation(s)
- Kevin E Conley
- Department of Radiology, University of Washington Medical Center, Seattle, WA 98195-7115, USA.
| | | | | | | |
Collapse
|
387
|
Lavender AP, Nosaka K. Changes in markers of muscle damage of middle-aged and young men following eccentric exercise of the elbow flexors. J Sci Med Sport 2007; 11:124-31. [PMID: 17350334 DOI: 10.1016/j.jsams.2006.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 10/16/2006] [Accepted: 11/14/2006] [Indexed: 11/21/2022]
Abstract
It is well documented that unaccustomed eccentric exercise induces muscle damage, but the responses of middle-aged individuals to a bout of eccentric exercise have not been reported. The purpose of this study was to compare changes in indirect markers of muscle damage following eccentric exercise of the elbow flexors between 12 young (age: 19.4+/-0.4 years, height: 173.5+/-2.0cm, body mass: 65.8+/-3.5kg) and 12 middle-aged men (48.0+/-2.1 years, 169.5+/-1.7cm, 67.3+/-1.6kg). It was hypothesized that middle-aged men would be more susceptible to muscle damage than young men. All subjects performed six sets of five eccentric actions of the elbow flexors using a dumbbell of 40% of maximal isometric strength (MVC). Changes in MVC, elbow joint angles and range of motion, upper arm circumference, plasma creatine kinase activity and myoglobin concentration, and muscle soreness before, immediately after, and 1, 2, 3, and 4 days after exercise were compared between the young and middle-aged groups by a two-way repeated measures ANOVA. All criterion measures changed significantly (P<0.05) after exercise, but no significant differences in the changes in the measures except for muscle soreness were evident between groups. Development of muscle soreness after exercise was significantly (P<0.05) lower (approximately a half of the value) for the middle-aged group compared with the young group. These results did not support the hypothesis that middle-aged men would be more susceptible to muscle damage than young men.
Collapse
Affiliation(s)
- Andrew P Lavender
- School of Molecular and Biomedical Science, The University of Adelaide, South Australia, Adelaide, Australia
| | | |
Collapse
|
388
|
Benelli P, Ditroilo M, Forte R, De Vito G, Stocchi V. Assessment of post-competition peak blood lactate in male and female master swimmers aged 40-79 years and its relationship with swimming performance. Eur J Appl Physiol 2007; 99:685-93. [PMID: 17277939 DOI: 10.1007/s00421-006-0334-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2006] [Indexed: 12/25/2022]
Abstract
The main purpose of this study was to measure the post-competition blood lactate concentration ([La](b)) in master swimmers of both sexes aged between 40 and 79 years in order to relate it to age and swimming performance. One hundred and eight swimmers participating in the World Master Championships were assessed for [La](b) and the average rate of lactate accumulation (La'; mmol l(-1) s(-1)) was calculated. In addition, 77 of them were also tested for anthropometric measures. When the subjects were divided into 10-year age groups, males exhibited higher [La](b) than women (factorial ANOVA, P < 0.01) and a steeper decline with ageing than female subjects. Overall, mean values (SD) of [La](b) were 10.8 (2.8), 10.3 (2.0), 10.3 (1.9), 8.9 (3.2) mmol l(-1) in women, and 14.2 (2.5), 12.4 (2.5), 11.0 (1.6), 8.2 (2.0) mmol l(-1) in men for, respectively, 40-49, 50-59, 60-69, 70-79 years' age groups. When, however, [La](b) values were normalised for a "speed index", which takes into account swimming speed as a percentage of world record, these sex-related differences, although still present, were considerably attenuated. Furthermore, the differences in La' between males and females were larger in the 40-49 age group (0.34 vs 0.20 mmol l(-1) s(-1) for 50-m distance) than in the 70-79 age group (0.12 vs 0.14 mmol l(-1) s(-1) for 50-m distance). Different physiological factors, supported by the considered anthropometric measurements, are suggested to explain the results.
Collapse
Affiliation(s)
- Piero Benelli
- Istituto di Ricerca sull'Attività Motoria, Università degli Studi di Urbino Carlo Bo, Via I Maggetti, 26/2, 61029, Urbino, Italy
| | | | | | | | | |
Collapse
|
389
|
Aging thyroarytenoid and limb skeletal muscle: lessons in contrast. J Voice 2007; 22:430-50. [PMID: 17241767 DOI: 10.1016/j.jvoice.2006.11.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 11/29/2006] [Indexed: 01/07/2023]
Abstract
Voice production is vital throughout life because it allows for the communication of basic needs as well as the pursuit and enjoyment of social encounters. Unfortunately, for many older individuals the ability to produce voice is altered. Structural and functional declines in the neuromuscular system occur with aging and likely contribute to the modification of voice. One specific target of the aging process is the thyroarytenoid (TA) muscle, the primary muscle of voice production. The objectives of this overview article are to (1) share current findings related to the aging of limb skeletal muscle, (2) identify age-related morphological and physiological features of TA muscle, (3) compare and contrast age-related changes in TA with those in limb skeletal muscle, and (4) describe therapies for reversing sarcopenia in limb muscle and consider the applicability of these therapies for addressing vocal fold atrophy and age-related voice changes. The article shares current knowledge from the basic sciences related to skeletal muscle aging and compares/contrasts typical muscle aging to TA aging. Current evidence suggests that (1) the TA muscle undergoes notable remodeling with age, (2) aging of the TA is multifactorial, resulting from a myriad of neurologic, metabolic, and hormonal changes, many of which are distinct from the age-related processes of typical limb skeletal muscle, (3) investigation of the aging of the TA and its role in the aging of voice is in its infancy, and (4) potential behavioral and nonbehavioral therapies for reversing aging of the TA must be further examined.
Collapse
|
390
|
Conley KE, Amara CE, Jubrias SA, Marcinek DJ. Mitochondrial function, fibre types and ageing: new insights from human muscle in vivo. Exp Physiol 2006; 92:333-9. [PMID: 17170059 DOI: 10.1113/expphysiol.2006.034330] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mitochondrial changes are at the centre of a wide range of maladies, including diabetes, neurodegeneration and ageing-related dysfunctions. Here we describe innovative optical and magnetic resonance spectroscopic methods that non-invasively measure key mitochondrial fluxes, ATP synthesis and O(2) uptake, to permit the determination of mitochondrial coupling efficiency in vivo (P/O: half the ratio of ATP flux to O(2) uptake). Three new insights result. First, mitochondrial coupling can be measured in vivo with the rigor of a biochemical determination and provides a gold standard to define well-coupled mitochondria (P/O approximately 2.5). Second, mitochondrial coupling differs substantially among muscles in healthy adults, from values reflective of well-coupled oxidative phosphorylation in a hand muscle (P/O = 2.7) to mild uncoupling in a leg muscle (P/O = 2.0). Third, these coupling differences have an important impact on cell ageing. We found substantial uncoupling and loss of cellular [ATP] in a hand muscle indicative of mitochondrial dysfunction with age. In contrast, stable mitochondrial function was found in a leg muscle, which supports the notion that mild uncoupling is protective against mitochondrial damage with age. Thus, greater mitochondrial dysfunction is evident in muscles with higher type II muscle fibre content, which may be at the root of the preferential loss of type II fibres found in the elderly. Our results demonstrate that mitochondrial function and the tempo of ageing varies among human muscles in the same individual. These technical advances, in combination with the range of mitochondrial properties available in human muscles, provide an ideal system for studying mitochondrial function in normal tissue and the link between mitochondrial defects and cell pathology in disease.
Collapse
Affiliation(s)
- Kevin E Conley
- Department of Radiology, Box 357115, University of Washington Medical Center, Seattle, WA 98195-7115, USA.
| | | | | | | |
Collapse
|
391
|
Voermans NC, Schelhaas HJ, Munneke M, Zwarts MJ. Dissociated small hand muscle atrophy in aging: the 'senile hand' is a split hand. Eur J Neurol 2006; 13:1381-4. [PMID: 17116225 DOI: 10.1111/j.1468-1331.2006.01477.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The term 'split hand' refers to a pattern of dissociated atrophy of hand muscles and was first described in ALS. We hypothesize that this phenomenon also occurs in 'normal' aging. We investigated healthy subjects of different ages and found a progressive dissociation in atrophy of the hand muscles, as measured with compound muscle action potential amplitudes, with increasing age. Different possible causes of this progressive dissociation are discussed. It might be related to preferential use of thenar muscles in humans, which render these muscles and their motor neurons more susceptible to oxidative stress. In addition, a difference in intrinsic susceptibility to oxidative stress might be involved. The relation between normal age-related muscle loss (sarcopenia) and the pathologic loss in motor neuron disease is discussed.
Collapse
Affiliation(s)
- N C Voermans
- Neuromuscular Centre Nijmegen, Institute of Neurology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
392
|
Boonyarom O, Inui K. Atrophy and hypertrophy of skeletal muscles: structural and functional aspects. Acta Physiol (Oxf) 2006; 188:77-89. [PMID: 16948795 DOI: 10.1111/j.1748-1716.2006.01613.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review summarizes current information on structural and functional changes that occur during muscle atrophy and hypertrophy. Most published studies consider an increase in total mass of a muscle as hypertrophy, whereas a decrease in total mass of a muscle is referred to as atrophy. In hypertrophy, the rate of synthesis is much higher than the rate of degradation of muscle contractile proteins, leading to an increase in the size or volume of an organ due to enlargement of existing cells. When a muscle remains in disuse for a long period, the rate of degradation of contractile proteins becomes greater than the rate of replacement, resulting in muscle atrophy. This defect may occur as a result of lack of nutrition, loss of nerve supply, micro-gravity, ageing, systemic disease, prolonged immobilization or disuse. An understanding of the specific modifications that occur during muscle atrophy and hypertrophy may facilitate the development of novel techniques, as well as new therapies for affected muscles.
Collapse
Affiliation(s)
- O Boonyarom
- Department of Physical Therapy, Naresuan University, Phitsanulok, Thailand.
| | | |
Collapse
|
393
|
Woodhouse LJ, Mukherjee A, Shalet SM, Ezzat S. The influence of growth hormone status on physical impairments, functional limitations, and health-related quality of life in adults. Endocr Rev 2006; 27:287-317. [PMID: 16543384 DOI: 10.1210/er.2004-0022] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The availability of recombinant human GH and somatostatin analogs has resulted in widespread treatment for adults with GH deficiency (GHD) and those with GH excess (acromegaly). Despite being at opposite ends of the spectrum in terms of their GH/IGF-I axis, both of these populations experience overlapping somatic impairments. Adults with untreated GHD have low circulating levels of IGF-I that manifest as altered body composition with increased fat and reduced lean body and skeletal muscle mass. At the other end of the spectrum, adults with GH excess, who have elevated levels of IGF-I, also have altered body composition. Impairments that result from disorders of either GHD or GH excess are both associated with increased functional limitations, such as reduced ability to walk quickly for prolonged periods, and poorer health-related quality of life (HR-QoL). Adults with untreated GHD and GH excess both commonly complain of excessive fatigue that seems to be associated more with impaired aerobic than muscular performance. Several studies have documented that administration of GH or somatostatin analogs to adults with GHD or GH excess, respectively, ameliorates abnormal biochemical profile and the associated somatic impairments. However, whether these improvements translate into improved physical function in adults with GHD or GH excess remains largely unknown, and their impact on HR-QoL controversial. Review of placebo-controlled trials to date suggests that GH and somatostatin analogs have greater effects on gas exchange and aerobic performance than as anabolic agents on skeletal muscle mass and function. Future investigations should include dose-response studies to establish the optimal combination of pharmacological agents plus exercise required to improve not only biochemical markers but also physical function and HR-QoL in adults with GHD or GH excess.
Collapse
Affiliation(s)
- Linda J Woodhouse
- School of Rehabilitation Science, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
394
|
Kosek DJ, Kim JS, Petrella JK, Cross JM, Bamman MM. Efficacy of 3 days/wk resistance training on myofiber hypertrophy and myogenic mechanisms in young vs. older adults. J Appl Physiol (1985) 2006; 101:531-44. [PMID: 16614355 DOI: 10.1152/japplphysiol.01474.2005] [Citation(s) in RCA: 346] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Resistance training (RT) has shown the most promise in reducing/reversing effects of sarcopenia, although the optimum regime specific for older adults remains unclear. We hypothesized myofiber hypertrophy resulting from frequent (3 days/wk, 16 wk) RT would be impaired in older (O; 60-75 yr; 12 women, 13 men), sarcopenic adults compared with young (Y; 20-35 yr; 11 women, 13 men) due to slowed repair/regeneration processes. Myofiber-type distribution and cross-sectional area (CSA) were determined at 0 and 16 wk. Transcript and protein levels of myogenic regulatory factors (MRFs) were assessed as markers of regeneration at 0 and 24 h postexercise, and after 16 wk. Only Y increased type I CSA 18% (P < 0.001). O showed smaller type IIa (-16%) and type IIx (-24%) myofibers before training (P < 0.05), with differences most notable in women. Both age groups increased type IIa (O, 16%; Y, 25%) and mean type II (O, 23%; Y, 32%) size (P < 0.05). Growth was generally most favorable in young men. Percent change scores on fiber size revealed an age x gender interaction for type I fibers (P < 0.05) as growth among Y (25%) exceeded that of O (4%) men. Myogenin and myogenic differentiation factor D (MyoD) mRNAs increased (P < 0.05) in Y and O, whereas myogenic factor (myf)-5 mRNA increased in Y only (P < 0.05). Myf-6 protein increased (P < 0.05) in both Y and O. The results generally support our hypothesis as 3 days/wk training led to more robust hypertrophy in Y vs. O, particularly among men. However, this differential hypertrophy adaptation was not explained by age variation in MRF expression.
Collapse
Affiliation(s)
- David J Kosek
- UAB Dept. of Physiology and Biophysics, Muscle Research Laboratory, GRECC/11G VA Medical Center, 1530 3rd Ave., South Birmingham, AL 35294-0001, USA
| | | | | | | | | |
Collapse
|
395
|
Fraysse B, Desaphy JF, Rolland JF, Pierno S, Liantonio A, Giannuzzi V, Camerino C, Didonna MP, Cocchi D, De Luca A, Conte Camerino D. Fiber type-related changes in rat skeletal muscle calcium homeostasis during aging and restoration by growth hormone. Neurobiol Dis 2006; 21:372-80. [PMID: 16153853 DOI: 10.1016/j.nbd.2005.07.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Accepted: 07/29/2005] [Indexed: 01/06/2023] Open
Abstract
The mechanisms by which aging induces muscle impairment are not well understood yet. We studied the impact of aging on Ca2+ homeostasis in the slow-twitch soleus and the fast-twitch extensor digitorum longus (EDL) muscles of aged rats by using the fura-2 fluorescent probe. In both muscles aging increases the resting cytosolic calcium concentration ([Ca2+]i). This effect was independent on calcium influx since a reduced resting permeability of sarcolemma to divalent cations was observed in aged muscles likely due to a reduced activity of leak channels. Importantly the effects of aging on resting [Ca2+]i, fiber diameter, mechanical threshold and sarcolemmal resting conductances were less pronounced in the soleus muscle, suggesting that muscle impairment may be less dependent on [Ca2+]i in the slow-twitch muscle. The treatment of aged rats with growth hormone restored the resting [Ca2+]i toward adult values in both muscles. Thus, an increase of resting [Ca2+]i may contribute to muscle weakness associated with aging and may be considered for developing new therapeutic strategies in the elderly.
Collapse
Affiliation(s)
- Bodvael Fraysse
- Division of Pharmacology, Department of Pharmaco-Biology, Faculty of Pharmacy, University of Bari, Bari I-70125, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
396
|
Karjalainen J, Tikkanen H, Hernelahti M, Kujala UM. Muscle fiber-type distribution predicts weight gain and unfavorable left ventricular geometry: a 19 year follow-up study. BMC Cardiovasc Disord 2006; 6:2. [PMID: 16403232 PMCID: PMC1382267 DOI: 10.1186/1471-2261-6-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 01/10/2006] [Indexed: 01/20/2023] Open
Abstract
Background Skeletal muscle consists of type-I (slow-twitch) and type-II (fast-twitch) fibers, with proportions highly variable between individuals and mostly determined by genetic factors. Cross-sectional studies have associated low percentage of type-I fibers (type-I%) with many cardiovascular risk factors. Methods We investigated whether baseline type-I% predicts left ventricular (LV) structure and function at 19-year follow-up, and if so, which are the strongest mediating factors. At baseline in 1984 muscle fiber-type distribution (by actomyosin ATPase staining) was studied in 63 healthy men (aged 32–58 years). The follow-up in 2003 included echocardiography, measurement of obesity related variables, physical activity and blood pressure. Results In the 40 men not using cardiovascular drugs at follow-up, low type-I% predicted higher heart rate, blood pressure, and LV fractional shortening suggesting increased sympathetic tone. Low type-I% predicted smaller LV chamber diameters (P ≤ 0.009) and greater relative wall thickness (P = 0.034) without increase in LV mass (concentric remodeling). This was explained by the association of type-I% with obesity related variables. Type-I% was an independent predictor of follow-up body fat percentage, waist/hip ratio, weight gain in adulthood, and physical activity (in all P ≤ 0.001). After including these risk factors in the regression models, weight gain was the strongest predictor of LV geometry explaining 64% of the variation in LV end-diastolic diameter, 72% in end-systolic diameter, and 53% in relative wall thickness. Conclusion Low type-I% predicts obesity and weight gain especially in the mid-abdomen, and consequently unfavourable LV geometry indicating increased cardiovascular risk.
Collapse
Affiliation(s)
- Jouko Karjalainen
- Unit for Sports and Exercise Medicine, University of Helsinki, Finland
- Central Military Hospital, Helsinki, Finland
| | - Heikki Tikkanen
- Unit for Sports and Exercise Medicine, University of Helsinki, Finland
| | - Miika Hernelahti
- Unit for Sports and Exercise Medicine, University of Helsinki, Finland
| | - Urho M Kujala
- Department of Health Sciences, Faculty of Sport and Health Sciences, University of Jyväskylä, Finland
| |
Collapse
|
397
|
van Wessel T, Langenbach GEJ, Korfage JAM, Brugman P, Kawai N, Tanaka E, van Eijden TMGJ. Fibre-type composition of rabbit jaw muscles is related to their daily activity. Eur J Neurosci 2005; 22:2783-91. [PMID: 16324112 DOI: 10.1111/j.1460-9568.2005.04466.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Skeletal muscles contain a mixture of fibres with different contractile properties, such as maximum force, contraction velocity and fatigability. Muscles adapt to altered functional demands, for example, by changing their fibre-type composition. This fibre-type composition can be changed by the frequency, duration and presumably the intensity of activation. The aim of this study was to analyse the relationship between the spontaneous daily muscle activation and fibre-type composition in rabbit jaw muscles. Using radio-telemetry combined with electromyography, the daily activity of five jaw muscles was characterized in terms of the total duration of muscle activity (duty time) and the number of activity bursts. Fibre-type composition of the muscles was classified by analysing the myosin heavy chain content of the fibres. The amount of slow-type fibres was positively correlated to the duty time and the number of bursts only for activations exceeding 20-30% of the maximum activity per day. Furthermore, cross-sectional areas of the slow-type fibres were positively correlated to the duty time for activations exceeding 30% of the maximum activity. The present data indicate that the amount of activation above a threshold (> 30% peak activity) is important for determining the fibre-type composition and cross-sectional area of slow-type fibres of a muscle. Activation above this threshold occurred only around 2% of the time in the jaw muscles, suggesting that contractile properties of muscle fibres are maintained by a relatively small number of powerful contractions per day.
Collapse
Affiliation(s)
- T van Wessel
- Department of Functional Anatomy, Academic Centre for Dentistry Amsterdam, Universiteit van Amsterdam and Vrije Universiteit, Meibergdreef 15, 1105 AZ, Amsterdam, Netherlands.
| | | | | | | | | | | | | |
Collapse
|
398
|
Kostka T. Quadriceps maximal power and optimal shortening velocity in 335 men aged 23-88 years. Eur J Appl Physiol 2005; 95:140-5. [PMID: 16032419 DOI: 10.1007/s00421-005-1390-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2005] [Indexed: 12/25/2022]
Abstract
The ability to develop adequate quadriceps muscle power may be highly predictive of subsequent disability among older persons. Rate as well as quantitative (sarcopenia) and qualitative (among other slowing of muscles) contributors to that age-related power decline are poorly known. The relationship of quadriceps maximal short-term power (P(max)) and corresponding optimal shortening velocity (upsilon(opt)) with age was assessed in 335 healthy men aged 23-88 years. The P(max) and upsilon(opt) were measured on a friction loaded non-isokinetic cycle ergometer. Anthropometric dimensions were used to estimate lean thigh volume (LTVest) and quadriceps mass. The decline in P(max) across the adult life span (10.7% per decade) was greater than the usually reported decrease in maximal muscle strength. Power decreased already after the fourth decade. Both muscle mass (4.1% decline for LTVest or 3.4% for quadriceps mass per decade) and upsilon(opt) (6.6% decline per decade) contributed to the decrease in power. Age contributed to the variability in P(max) independently to the LTVest/quadriceps mass and upsilon(opt). The age-related decrease pattern of P(max) reflects both stabilization (or even increase) of anthropometric measures (LTVest or quadriceps mass) from youth to middleage and systematic decline of upsilon(opt) already from the thirties. This implicates more focus on velocity-orientated training as a means of enhancing leg power and improving functional status.
Collapse
Affiliation(s)
- Tomasz Kostka
- Department of Preventive Medicine, WHO Collaborating Center for Noncommunicable Diseases Prevention and Control, Medical University of Lodz, Poland.
| |
Collapse
|
399
|
Croley AN, Zwetsloot KA, Westerkamp LM, Ryan NA, Pendergast AM, Hickner RC, Pofahl WE, Gavin TP. Lower capillarization, VEGF protein, and VEGF mRNA response to acute exercise in the vastus lateralis muscle of aged vs. young women. J Appl Physiol (1985) 2005; 99:1872-9. [PMID: 16024519 DOI: 10.1152/japplphysiol.00498.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In humans, the majority of studies demonstrate an age-associated reduction in the number of capillaries surrounding skeletal muscle fibers; however, recent reports in rats suggest that muscle capillarization is well maintained with advanced age. In sedentary and trained men, aging lowers the number of capillaries surrounding type II, but not type I, skeletal muscle fibers. The fiber type-specific effect of aging on muscle capillarization is unknown in women. Vascular endothelial growth factor (VEGF) is important in the basal maintenance of skeletal muscle capillarization, and lower VEGF expression is associated with increased age in nonskeletal muscle tissue of women. Compared with young women (YW), we hypothesized that aged women (AW) would demonstrate 1) lower muscle capillarization in a fiber type-specific manner and 2) lower VEGF and VEGF receptor expression at rest and in response to acute exercise. Nine sedentary AW (70 + 8 yr) and 11 YW (22 + 3 yr) had vastus lateralis muscle biopsies obtained before and at 4 h after a submaximal exercise bout for the measurement of morphometry and VEGF and VEGF receptor expression. In AW compared with YW, muscle capillary contacts were lower overall (YW: 2.36 + 0.32 capillaries; AW: 2.08 + 0.17 capillaries), specifically in type II (YW: 2.37 + 0.39 capillaries; AW: 1.91 + 0.36 capillaries) but not type I fibers (YW: 2.36 + 0.34 capillaries; AW: 2.26 + 0.24 capillaries). Muscle VEGF protein was 35% lower at rest, and the exercise-induced increase in VEGF mRNA was 50% lower in AW compared with YW. There was no effect of age on VEGF receptor expression. These results provide evidence that, in the vastus lateralis of women, 1) capillarization surrounding type II muscle fibers is lower in AW compared with YW and 2) resting VEGF protein and the VEGF mRNA response to exercise are lower in AW compared with YW.
Collapse
Affiliation(s)
- Andrea N Croley
- Department of Exercise and Sport Science, East Carolina University, Greenville, NC 27858, USA
| | | | | | | | | | | | | | | |
Collapse
|
400
|
Siu PM, Alway SE. Age-related apoptotic responses to stretch-induced hypertrophy in quail slow-tonic skeletal muscle. Am J Physiol Cell Physiol 2005; 289:C1105-13. [PMID: 15972839 DOI: 10.1152/ajpcell.00154.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the present study, we examined the responses of apoptosis and apoptotic regulatory factors to muscle hypertrophy induced by stretch overload in quail slow-tonic muscles. The wings from one side of young and aged Japanese quails were loaded by attaching a tube weight corresponding to 12% of the bird's body weight for 7 or 21 days. Muscle from the contralateral side served as the intraanimal control. Relative to the intraanimal contralateral control side, the muscle wet weight increased by 96% in young birds, whereas the muscle weight gain in aged birds was not significant after 7 days of loading. After 21 days of loading, muscle weight significantly increased by 179% and 102% in young and aged birds, respectively. Heat shock protein (HSP)72 and HSP27 protein contents in the loaded sides were higher than on the control sides exclusively in young birds after 7 days of loading. Compared with the contralateral control muscle, the extent of apoptotic DNA fragmentation and the total cytosolic apoptosis-inducing factor protein content were reduced in all loaded muscles except for the 7-day-loaded muscles from the aged birds. Bax protein content was diminished in the loaded muscle relative to the control side from all groups, whereas Bcl-2 protein content was reduced in the young and aged muscles after 21 days of loading. The total cytosolic cytochrome c protein content was decreased and the X chromosome-linked inhibitor of apoptosis protein content was elevated in 7- and 21-day-loaded muscles relative to the intraanimal control muscle from young birds. Furthermore, after 7 days of loading the muscles of aged birds, H(2)O(2) content and the total cytosolic protein content of second mitochondrial activator of caspases/direct inhibitor of apoptosis-binding protein with low isoelectric point were elevated compared with the intraanimal control side. These data suggest that stretch overload-induced muscle hypertrophy is associated with changes in apoptosis in slow-tonic skeletal muscle. Moreover, discrepant apoptotic responses to muscle overload in young and aged muscles may account in part for the age-related decline in the capability for muscle hypertrophy.
Collapse
Affiliation(s)
- Parco M Siu
- Division of Exercise Physiology, School of Medicine, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506-9227, USA
| | | |
Collapse
|