351
|
Pakulska MM, Ballios BG, Shoichet MS. Injectable hydrogels for central nervous system therapy. Biomed Mater 2012; 7:024101. [PMID: 22456684 DOI: 10.1088/1748-6041/7/2/024101] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diseases and injuries of the central nervous system (CNS) including those in the brain, spinal cord and retina are devastating because the CNS has limited intrinsic regenerative capacity and currently available therapies are unable to provide significant functional recovery. Several promising therapies have been identified with the goal of restoring at least some of this lost function and include neuroprotective agents to stop or slow cellular degeneration, neurotrophic factors to stimulate cellular growth, neutralizing molecules to overcome the inhibitory environment at the site of injury, and stem cell transplant strategies to replace lost tissue. The delivery of these therapies to the CNS is a challenge because the blood-brain barrier limits the diffusion of molecules into the brain by traditional oral or intravenous routes. Injectable hydrogels have the capacity to overcome the challenges associated with drug delivery to the CNS, by providing a minimally invasive, localized, void-filling platform for therapeutic use. Small molecule or protein drugs can be distributed throughout the hydrogel which then acts as a depot for their sustained release at the injury site. For cell delivery, the hydrogel can reduce cell aggregation and provide an adhesive matrix for improved cell survival and integration. Additionally, by choosing a biodegradable or bioresorbable hydrogel material, the system will eventually be eliminated from the body. This review discusses both natural and synthetic injectable hydrogel materials that have been used for drug or cell delivery to the CNS including hyaluronan, methylcellulose, chitosan, poly(N-isopropylacrylamide) and Matrigel.
Collapse
Affiliation(s)
- Malgosia M Pakulska
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | | | | |
Collapse
|
352
|
Promissory futures and possible pasts: The dynamics of contemporary expectations in regenerative medicine. BIOSOCIETIES 2012. [DOI: 10.1057/biosoc.2011.24] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
353
|
Totonelli G, Maghsoudlou P, Garriboli M, Riegler J, Orlando G, Burns AJ, Sebire NJ, Smith VV, Fishman JM, Ghionzoli M, Turmaine M, Birchall MA, Atala A, Soker S, Lythgoe MF, Seifalian A, Pierro A, Eaton S, De Coppi P. A rat decellularized small bowel scaffold that preserves villus-crypt architecture for intestinal regeneration. Biomaterials 2012; 33:3401-10. [PMID: 22305104 PMCID: PMC4022101 DOI: 10.1016/j.biomaterials.2012.01.012] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 01/05/2012] [Indexed: 12/20/2022]
Abstract
Management of intestinal failure remains a clinical challenge and total parenteral nutrition, intestinal elongation and/or transplantation are partial solutions. In this study, using a detergent-enzymatic treatment (DET), we optimize in rats a new protocol that creates a natural intestinal scaffold, as a base for developing functional intestinal tissue. After 1 cycle of DET, histological examination and SEM and TEM analyses showed removal of cellular elements with preservation of the native architecture and connective tissue components. Maintenance of biomechanical, adhesion and angiogenic properties were also demonstrated strengthen the idea that matrices obtained using DET may represent a valid support for intestinal regeneration.
Collapse
Affiliation(s)
- Giorgia Totonelli
- Surgery Unit, Institute of Child Health and Great Ormond Street Hospital, University College London, London WC1N 1EH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
354
|
Experimental heterogeneity and standardisation: Stem cell products and the clinical trial process. BIOSOCIETIES 2011. [DOI: 10.1057/biosoc.2011.17] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
355
|
|
356
|
Abstract
This overview traces the history of regenerative medicine pertinent to organ transplantation, illustrates potential clinical applications reported to date, and highlights progress achieved in the field of complex modular organ engineering. Regenerative medicine can now produce relatively simple tissues such as skin, bladders, vessels, urethras, and upper airways, whereas engineering or generation of complex modular organs remains a major challenge. Ex vivo organ engineering may benefit from complementary investigations in the fields of developmental biology and stem cells and transplantation before its full potential can be realized.
Collapse
|
357
|
Mason C, Brindley DA, Culme-Seymour EJ, Davie NL. Cell therapy industry: billion dollar global business with unlimited potential. Regen Med 2011; 6:265-72. [DOI: 10.2217/rme.11.28] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
358
|
Simpson HD, Giacomantonio CE, Goodhill GJ. Computational modeling of neuronal map development: insights into disease. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.11.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study of the formation of neuronal maps in the brain has greatly increased our understanding of how the brain develops and, in some cases, regenerates. Computational modeling of neuronal map development has been invaluable in integrating complex biological phenomena and synthesizing them into quantitative and predictive frameworks. These models allow us to investigate how neuronal map development is perturbed under conditions of altered development, disease and regeneration. In this article, we use examples of activity-dependent and activity-independent models of retinotopic map formation to illustrate how they can aid our understanding of developmental and acquired disease processes. We note that fully extending these models to specific clinically relevant problems is a largely unexplored domain and suggest future work in this direction. We argue that this type of modeling will be necessary in furthering our understanding of the pathophysiology of neurological diseases and in developing treatments for them. Furthermore, we discuss how the nature of computational and theoretical approaches uniquely places them to bridge the gap between the bench and the clinic.
Collapse
Affiliation(s)
- Hugh D Simpson
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Clare E Giacomantonio
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Geoffrey J Goodhill
- School of Mathematics & Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
359
|
Organ engineering based on decellularized matrix scaffolds. Trends Mol Med 2011; 17:424-32. [PMID: 21514224 DOI: 10.1016/j.molmed.2011.03.005] [Citation(s) in RCA: 331] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 03/20/2011] [Accepted: 03/22/2011] [Indexed: 12/16/2022]
Abstract
End-organ failure is one of the major healthcare challenges in the Western world. Yet, donor organ shortage and the need for immunosuppression limit the impact of transplantation. The regeneration of whole organs could theoretically overcome these hurdles. Early milestones have been met by combining stem and progenitor cells with increasingly complex scaffold materials and culture conditions. Because the native extracellular matrix (ECM) guides organ development, repair and physiologic regeneration, it provides a promising alternative to synthetic scaffolds and a foundation for regenerative efforts. Perfusion decellularization is a novel technology that generates native ECM scaffolds with intact 3D anatomical architecture and vasculature. This review summarizes achievements to date and discusses the role of native ECM scaffolds in organ regeneration.
Collapse
|
360
|
Dahl SL, Blum JL, Niklason LE. Bioengineered Vascular Grafts: Can We Make Them Off-the-Shelf? Trends Cardiovasc Med 2011; 21:83-9. [DOI: 10.1016/j.tcm.2012.03.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
361
|
Messenger MP, Tomlins PE. Regenerative medicine: a snapshot of the current regulatory environment and standards. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:H10-H17. [PMID: 21433095 DOI: 10.1002/adma.201100254] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Affiliation(s)
- Michael P Messenger
- Clinical and Biomedical Proteomics Group, Cancer Research UK Centre, Leeds Institute of Molecular Medicine, St James's University Hospital, UK.
| | | |
Collapse
|
362
|
Rickert D. Polymeric implant materials for the reconstruction of tracheal and pharyngeal mucosal defects in head and neck surgery. GMS CURRENT TOPICS IN OTORHINOLARYNGOLOGY, HEAD AND NECK SURGERY 2011; 8:Doc06. [PMID: 22073099 PMCID: PMC3199816 DOI: 10.3205/cto000058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The existing therapeutical options for the tracheal and pharyngeal reconstruction by use of implant materials are described. Inspite of a multitude of options and the availability of very different materials none of these methods applied for tracheal reconstruction were successfully introduced into the clinical routine. Essential problems are insufficiencies of anastomoses, stenoses, lack of mucociliary clearance and vascularisation. The advances in Tissue Engineering (TE) offer new therapeutical options also in the field of the reconstructive surgery of the trachea. In pharyngeal reconstruction far reaching developments cannot be recognized at the moment which would allow to give a prognosis of their success in clinical application. A new polymeric implant material consisting of multiblock copolymers was applied in our own work which was regarded as a promising material for the reconstruction of the upper aerodigestive tract (ADT) due to its physicochemical characteristics. In order to test this material for applications in the ADT under extreme chemical, enzymatical, bacterial and mechanical conditions we applied it for the reconstruction of a complete defect of the gastric wall in an animal model. In none of the animals tested either gastrointestinal complications or negative systemic events occurred, however, there was a multilayered regeneration of the gastric wall implying a regular structured mucosa. In future the advanced stem cell technology will allow further progress in the reconstruction of different kind of tissues also in the field of head and neck surgery following the principles of Tissue Engineering.
Collapse
Affiliation(s)
- Dorothee Rickert
- University Hospital and Ambulance for Ear, Nose and Throat Diseases, Ulm, Germany
| |
Collapse
|
363
|
Ratcliffe E, Thomas RJ, Williams DJ. Current understanding and challenges in bioprocessing of stem cell-based therapies for regenerative medicine. Br Med Bull 2011; 100:137-55. [PMID: 21852279 DOI: 10.1093/bmb/ldr037] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND A novel manufacturing industry is emerging to translate unique cellular therapy bioprocesses to robust, scaled manufacturing production for successful clinical translation. SOURCE OF DATA This review summarizes key translational issues, and current and future perspectives to improve translation of cell-based therapy bioprocessing, based on literature search and author research. AREAS OF AGREEMENT It is widely recognized that cell-based therapies could revolutionize health care for a range of diseases, and that there are gaps in the overarching framework and technologies to generate clinical success. AREAS OF CONTROVERSY There is limited understanding of how to fulfil requirements as regulatory and manufacturing guidelines are incomplete and few have achieved commercialization. GROWING POINTS Recent developments are encouraging adoption of automation and quality engineering approaches for bioprocessing of cell-based therapies. AREAS TIMELY FOR DEVELOPING RESEARCH Include technology development to improve the cost and purity of manufacture and final product quality.
Collapse
Affiliation(s)
- Elizabeth Ratcliffe
- Centre for Biological Engineering, Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, LE11 3TU, UK.
| | | | | |
Collapse
|
364
|
Jungebluth P, Macchiarini P. Stem cell-based therapy and regenerative approaches to diseases of the respiratory system. Br Med Bull 2011; 99:169-87. [PMID: 21725086 DOI: 10.1093/bmb/ldr028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Despite treatment advances in many diseases of the respiratory system, outcome remains poor. SOURCES OF DATA This systematic review (PubMed and Ovid) 'analyses stem cell (SC)-based therapy and regenerative medicine (RM) approaches as potential novel strategies for diseases of the respiratory system. Current preclinical research and ongoing clinical trials are presented and their potential clinical impact and routine application discussed. AREAS OF AGREEMENT These approaches may represent a promising alternative therapy for otherwise irreversible respiratory diseases. Several experimental and initial clinical data now exist. AREAS OF CONTROVERSY Type of SC, limits of tissue engineering, route of delivery, cell behaviour (differentiation, growth, co-stimulation or immunomodulation) and interaction with the human microenvironment upon implantation. GROWING POINTS Investigating underlying pathways and mechanisms. Evaluating gene, epigenetic and protein regulation. Interaction with the environment under diseased and healthy conditions. Detecting approaches with significant scientific and clinical impact. AREAS TIMELY FOR DEVELOPING RESEARCH The potential capacity of SC-based therapy and RM should be carefully investigated before their translation into clinical practice.
Collapse
Affiliation(s)
- Philipp Jungebluth
- Advanced Center for Translational REGenerative Medicine, Karolinska Institutet, Alfred Nobel Allé 8, Huddinge S-14186, Stockholm
| | | |
Collapse
|
365
|
Polymer Scaffolds for Bone Tissue Regeneration. ACTIVE IMPLANTS AND SCAFFOLDS FOR TISSUE REGENERATION 2011. [DOI: 10.1007/8415_2010_59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
366
|
Hanson SE, Gutowski KA, Hematti P. Clinical applications of mesenchymal stem cells in soft tissue augmentation. Aesthet Surg J 2010; 30:838-42. [PMID: 21131458 DOI: 10.1177/1090820x10386364] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Based on a variety of preclinical studies showing that mesenchymal stem cells (MSC) play a significant role in tissue repair and homeostasis, MSC have rapidly moved into a phase of clinical trials investigating their efficacy as a cell-based therapeutic modality for a diverse group of applications. An emerging body of evidence shows that in addition to being a progenitor cell population with self-renewing and multipotent differentiation capabilities, MSC have unique immunomodulatory properties, making them even more attractive for regenerative medicine. Emerging discoveries in stem cell biology have revealed a multitude of mechanisms through which MSC could potentially augment the current techniques in aesthetic surgery. In this article, the authors review the clinical advances in cell-based therapies relevant to aesthetic surgery, including tissue augmentation, rejuvenation, and regeneration.
Collapse
Affiliation(s)
- Summer E Hanson
- Division of Plastic and Reconstructive Surgery, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin, USA.
| | | | | |
Collapse
|
367
|
Hanson S, Thibeault SL, Hematti P. Clinical applications of mesenchymal stem cells in laryngotracheal reconstruction. Curr Stem Cell Res Ther 2010; 5:268-72. [PMID: 19951250 DOI: 10.2174/157488810791824449] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 11/19/2009] [Indexed: 01/06/2023]
Abstract
During the past several years, mesenchymal stem cells (MSCs) derived from adult tissue have rapidly moved from in vitro and animal studies into clinical trials as a therapeutic modality for a diverse group of clinical applications, including head and neck reconstruction. For many diseases, cell therapy could affect the underlying pathophysiologic processes through multiple pathways providing an advantage over current treatment modalities. There is an emerging body of evidence that MSCs have unique immunomodulatory properties in addition to the ability to differentiate into multiple tissue lineages which make them even more attractive for regenerative medicine. A variety of pre-clinical and clinical studies have shown that MSCs may have a useful role in tissue repair as well as engineering strategies in head and neck reconstructive surgery. Clinically, this has ranged from injection laryngoplasty to the implantation of a tracheal construct seeded with MSC-derived chondrocytes. Recent advances in stem cell immunobiology can offer insight to the multiple mechanisms through which MSCs could affect underlying pathophysiologic processes ranging from vocal fold scarring to composite tissue defects. Thorough evaluation of the current literature is necessary in understanding how MSCs could potentially revolutionize our approach to head and neck defects. The purpose of this review is to highlight the advances in MSC-based therapies in head and neck surgery, specifically laryngotracheal reconstruction. The clinical role of tissue-derived MSCs, though not well understood, holds promise for many therapeutic applications in regenerative medicine and reconstruction.
Collapse
Affiliation(s)
- Summer Hanson
- Division of Plastic and Reconstructive Surgery, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53792, USA
| | | | | |
Collapse
|
368
|
Jin G, Prabhakaran MP, Liao S, Ramakrishna S. Photosensitive materials and potential of photocurrent mediated tissue regeneration. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2010; 102:93-101. [PMID: 20951603 DOI: 10.1016/j.jphotobiol.2010.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Accepted: 09/22/2010] [Indexed: 10/19/2022]
Abstract
Photocurrent therapy with participation of light and electrical stimulations could be an innovative and promising approach in regenerative medicine, especially for skin and nerve regeneration. Photocurrent is generated when light irradiates on a photosensitive device, and with more and more types of photosensitive materials being synthesized, photocurrent could be applied for enhanced regeneration of tissue. Photosensitive scaffolds such as composite poly (3-hexylthiophene)/polycaprolactone (P3HT/PCL) nanofibers are fabricated by electrospinning process in our lab for skin regeneration in presence of applied photocurrent. This review article discuss on the various in vitro, in vivo and clinical studies that utilized the principle of 'electrotherapy' and 'phototherapy' for regenerative medicine and evaluates the potential application of photocurrent in regenerative medicine. We conclude that photocurrent therapy will play an important role in regenerative medicine.
Collapse
Affiliation(s)
- Guorui Jin
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | | | | | | |
Collapse
|
369
|
Boyd AR, Burke GA, Meenan BJ. Monitoring cellular behaviour using Raman spectroscopy for tissue engineering and regenerative medicine applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:2317-2324. [PMID: 20020185 DOI: 10.1007/s10856-009-3965-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 12/02/2009] [Indexed: 05/27/2023]
Abstract
Raman spectroscopy has been used to determine the chemical composition of materials for over 70 years. Recent spectacular advances in laser and CCD camera technology creating instruments with higher sensitivity and lower cost have initiated a strong resurgence in the technique, ranging from fundamental research to process control methodology. One such area of increased potential is in tissue engineering and regenerative medicine (TERM), where autologous cell culture, stem cell biology and growth of human cells on biomaterial scaffolds are of high importance. Traditional techniques for the in vitro analysis of biochemical cell processes involves cell techniques such as fixation, lysis or the use of radioactive or chemical labels which are time consuming and can involve the perpetuation of artefacts. Several studies have already shown the potential of Raman spectroscopy to provide useful information on key biochemical markers within cells, however, many of these studies have utilised micro- or confocal Raman to do this, which are not suited to the rapid and non-invasive monitoring of cells. For this study a versatile fit-for-purpose Raman spectrometer was used, employing a macro-sampling optical platform (laser spot size 100 mum at focus on the sample) to discriminate between different TERM relevant cell types and viable and non-viable cells. The results clearly show that the technique is capable of obtaining Raman spectra from live cells in a non-destructive, rapid and non-invasive manner, however, in these experiments it was not possible to discriminate between different cell lines. Despite this, notable differences were observed in the spectra obtained from viable and non-viable cells, showing significant changes in the spectral profiles of protein, DNA/RNA and lipid cell constituents after cell death. It is evident that the method employed here shows significant potential for further utilisation in TERM, providing data directly from live cells that fits within a quality assurance framework and provides the opportunity to analyse cells in a non-destructive manner.
Collapse
Affiliation(s)
- A R Boyd
- School of Engineering, Nanotechnology, University of Ulster at Jordanstown, Newtownabbey, Co. Antrim, Northern Ireland, UK.
| | | | | |
Collapse
|
370
|
Abstract
Heart failure affects more than 10% of the Australian population over age 65, and the ageing population will ensure continued growth of this significant problem. There are various treatment options available, but the growing field of regenerative therapy offers promise to restore or replace tissue lost in those with either congenital or acquired cardiac defects. Stem cells have many potential properties, but they need multiple discussed qualities to succeed in this field such as ease of harvest and multiplication, and most importantly minimal ethical concerns. There are multiple cell types available and one of the challenges will be to find the most appropriate cell type for cardiac regeneration. Cardiac tissue engineering is being explored using both in vitro and in vivo techniques. In vitro methods are primarily limited in terms of the vascularisation and size of the construct. In vivo engineered constructs overcome these limitations in early models, but they are still not ready for human trials. This review aims to provide the reader with an outline of the cell-based and tissue engineering therapies currently being used and developed for cardiac regeneration, as well as some insight into the potential problems that may hamper its progress in the future.
Collapse
|
371
|
Mason C, Manzotti E. Regenerative medicine cell therapies: numbers of units manufactured and patients treated between 1988 and 2010. Regen Med 2010; 5:307-13. [DOI: 10.2217/rme.10.37] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Chris Mason
- Advanced Centre for Biochemical Engineering, University College London, Roberts Building, Torrington Place, London, WC1E 7JE, UK
| | - Elisa Manzotti
- Future Medicine Ltd, Unitec House, 2 Albert Place, Finchley Central, London, N3 1QB, UK
| |
Collapse
|
372
|
Abstract
Regenerative medicine offers new tools with which to tackle disorders for which there is currently no good therapeutic option. The trachea is an ideal organ in which to explore the clinical potential of tissue engineering because severe large airway disease is poorly managed by conventional treatments, and the success of a graft is determined only by its ability to conduct air lifelong: that is, whether it can become a sustainable biological conduit. We define the component parts of tissue engineering and review the experimental methods used to produce airway implants to date, including a recent successful, first-in-man experience.
Collapse
|
373
|
Brindley D, Davie N. Regenerative medicine through a crisis: social perception and the financial reality. Rejuvenation Res 2010; 12:455-61. [PMID: 20041739 DOI: 10.1089/rej.2009.0981] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this perspective piece is to highlight how the "social perception" and "financial reality" of regenerative medicine may act to hinder its evolution into the principal health-care option for the future. We also consider the role of the consumer and the need for increased public awareness. Furthermore, we consider the effects of the changing social attitudes toward the field, as well as taking into account the influence of current and future political thinking. From a financial viewpoint, we analyze the compatibility of the current venture capital model with regenerative medicine start-ups and explore approaches to ensure sufficient funding and support throughout all stages of product development, for example, the modularization of funding.
Collapse
Affiliation(s)
- David Brindley
- Department of Biochemical Engineering University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| | | |
Collapse
|
374
|
Abstract
This report presents the recommendations to the ISSCR leadership from the industry panel session at the 2009 annual conference. The seven recommendations address core issues essential for the promotion of stem cell and regenerative medicine translation and commercialization.
Collapse
Affiliation(s)
- Chris Mason
- Advanced Centre for Biochemical Engineering, University College London, London, UK.
| |
Collapse
|
375
|
Mason C, Manzotti E. Regen: the industry responsible for cell-based therapies. Regen Med 2009; 4:783-5. [DOI: 10.2217/rme.09.72] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Chris Mason
- Advanced Centre for Biochemical Engineering, University College London, Roberts Building, Torrington Place, London, WC1E 7JE, UK
| | - Elisa Manzotti
- Future Medicine Ltd, Unitec House, 2 Albert Place, Finchley Central, London, N3 1QB, UK
| |
Collapse
|
376
|
Plagnol AC, Rowley E, Martin P, Livesey F. Industry perceptions of barriers to commercialization of regenerative medicine products in the UK. Regen Med 2009; 4:549-59. [PMID: 19580404 DOI: 10.2217/rme.09.21] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIMS Regenerative medicine is an emerging field with the potential to provide widespread improvement in healthcare and patient wellbeing via the delivery of therapies that can restore, regenerate or repair damaged tissue. As an industry, it could significantly contribute to economic growth if products are successfully commercialized. However, to date, relatively few products have reached the market owing to a variety of barriers, including a lack of funding and regulatory hurdles. The present study analyzes industry perceptions of the barriers to commercialization that currently impede the success of the regenerative medicine industry in the UK. MATERIALS & METHODS The analysis is based on 20 interviews with leading industrialists in the field. RESULTS The study revealed that scientific research in regenerative medicine is thriving in the UK. Unfortunately, lack of access to capital, regulatory hurdles, lack of clinical evidence leading to problems with reimbursement, as well as the culture of the NHS do not provide a good environment for the commercialization of regenerative medicine products. CONCLUSION Policy interventions, including increased translational government funding, a change in NHS and NICE organization and policies, and regulatory clarity, would likely improve the general outcomes for the regenerative medicine industry in the UK.
Collapse
Affiliation(s)
- Anke C Plagnol
- Faculty of Politics, Psychology, Sociology & International Studies, University of Cambridge, Cambridge, CB2 3RQ, UK
| | | | | | | |
Collapse
|
377
|
Abstract
Ion implantation, a common technology in semiconductor processing, has been applied to biomaterials since the 1960s. Using energetic ion bombardment, a general term which includes conventional ion implantation plasma immersion ion implantation (PIII) and ion beam assisted thin film deposition, functionalization of surfaces is possible. By varying and adjusting the process parameters, several surface properties can be attuned simultaneously. Extensive research details improvements in the biocompatibility, mainly by reducing corrosion rates and increasing wear resistance after surface modification. Recently, enhanced bioactivity strongly correlated with the surface topography and less with the surface chemistry has been reported, with an increased roughness on the nanometer scale induced by self-organisation processes during ion bombardment leading to faster cellular adhesion processes.
Collapse
|
378
|
Affiliation(s)
- Chris Mason
- Advanced Centre for Biochemical Engineering, University College London, Roberts Building, Torrington Place, London, WC1E 7JE, UK
| | - Elisa Manzotti
- Future Medicine Ltd, Unitec House, 2 Albert Place, Finchley Central, London, N3 1QB, UK
| |
Collapse
|
379
|
|
380
|
Mason C, Manzotti E. Revolutionary therapies for diabetes – catalysts for change. Regen Med 2009; 4:143-6. [DOI: 10.2217/17460751.4.2.143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Chris Mason
- Advanced Centre for Biochemical Engineering, University College London, Roberts Building, Torrington Place, London, WC1E 7JE, UK
| | - Elisa Manzotti
- Future Medicine Ltd, Unitec House, 2 Albert Place, Finchley Central, London, N3 1QB, UK
| |
Collapse
|
381
|
|
382
|
Mason C, Dunnill P. The strong financial case for regenerative medicine and the regen industry. Regen Med 2008; 3:351-63. [PMID: 18462058 DOI: 10.2217/17460751.3.3.351] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although the therapeutic promise of regenerative medicine is immensely exciting, the cost of product development, and particularly of clinical trials, for the more demanding applications will be high. For this reason it is vital for scientists and start-ups who wish to see their ideas implemented to be able to convince established major pharmaceutical or device companies with the necessary 'deep pockets' that the expenditure can yield an appropriate return. It also means that governments and health insurance companies must see a gain in funding regenerative medicine for patients. To address this issue the costs of five major medical conditions that could benefit from regenerative medicine have been defined for the USA as an illustration. This choice of country was made as potentially the largest initial market and one where the billing system for healthcare allows access to individual direct and some indirect costs. The data are complemented by a number of relevant examples of costs per quality-adjusted life year to indicate where current treatment methods are weak or strong. Finally, the relationship of the nascent regen* industry to the pharma and medical device sectors is summarized to assess the challenge of encouraging their involvement.
Collapse
Affiliation(s)
- Chris Mason
- Advanced Centre for Biochemical Engineering, University College London, London, WCIE 7JE, UK.
| | | |
Collapse
|
383
|
Trends in biomaterials research: An analysis of the scientific programme of the World Biomaterials Congress 2008. Biomaterials 2008; 29:3047-52. [PMID: 18462790 DOI: 10.1016/j.biomaterials.2008.04.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 04/21/2008] [Indexed: 11/22/2022]
|
384
|
A paradigm shift in endodontic management of immature teeth: conservation of stem cells for regeneration. J Dent 2008; 36:379-86. [PMID: 18420332 DOI: 10.1016/j.jdent.2008.03.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 03/04/2008] [Accepted: 03/04/2008] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE This article will review the new concept of regenerative endodontics in the management of immature permanent teeth. The potential role of stem cells to regenerate immature permanent teeth after conservative treatment will be discussed. DATA AND SOURCES Two sets of data source are focused in this review: (i) the characterization of various dental stem cells discovered since 2000 and (ii) recent clinical case reports showing that after conservative treatment, severely infected immature teeth with periradicular periodontitis and abscess can undergo healing and apexogenesis or maturogenesis. RESULTS A new protocol of treating endodontically involved immature permanent teeth based on published articles to date is summarized in the review. The key procedures of the protocol are (1) minimal or no instrumentation of the canal while relying on a gentle but thorough irrigation of the canal system, (2) the disinfection is augmented with intra-canal medication of a triple-antibiotic paste between appointments, and (3) the treated tooth is sealed with mineral trioxide aggregate (MTA) and glass ionomer/resin cement at the completion of the treatment. Periodical follow-ups will take place to observe any continued maturation of the root. CONCLUSION While more clinical research is needed, regenerative endodontics promotes a paradigm shift in treating endodontically involved immature permanent teeth from performing apexification procedures to conserving any dental stem cells that might remain in the disinfected viable tissues to allow tissue regeneration and repair to achieve apexogenesis/maturogenesis.
Collapse
|