351
|
Sharma N, Silarski M, Chhokar J, Czerwinski E, Curceanu C, Dulski K, Farbaniec K, Gajos A, Del Grande R, Gorgol M, Hiesmayr BC, Jasinska B, Kacprzak K, Kaplon L, Kisielewska D, Klimaszewski K, Korcyl G, Kowalski P, Krawczyk N, Krzemien W, Kozik T, Kubicz E, Mohammed M, Niedzwiecki S, Palka M, Pawlik-Niedzwiecka M, Raczynski L, Raj J, Sharma S, Shivani S, Shopa RY, Skurzok M, Wislicki W, Zgardzinska B, Moskal P. Hit-Time and Hit-Position Reconstruction in Strips of Plastic Scintillators Using Multithreshold Readouts. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2020.2990621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
352
|
Watson CC, Hu J, Zhou C. Double Scatter Simulation for More Accurate Image Reconstruction in Positron Emission Tomography. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2020.2990335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
353
|
Du J, Bai X, Cherry SR. A depth-encoding PET detector for high resolution PET using 1 mm SiPMs. Phys Med Biol 2020; 65:165011. [PMID: 32580180 DOI: 10.1088/1361-6560/ab9fc9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A dual-ended readout PET detector based on two Hamamatsu 16 × 16 arrays of 1 × 1 mm2 SiPMs coupled to both ends of a 25 × 25 array of 0.69 × 0.69 × 20 mm3 polished LYSOs was evaluated in terms of flood histogram, energy resolution, timing resolution, and DOI resolution. The SiPM arrays have a pitch size of 1.2 mm. Each SiPM pixel has an active area of 1 × 1 mm2, and was fabricated using 15 μm microcells. The LYSO array has a pitch size of 0.75 mm, and the crystals are separated using Toray reflector with a thickness of 50 μm. The flood histogram and energy resolution were measured at different overvoltages (ranging from 1.5 to 7.0 V, in 0.5 V steps) and at four different temperatures (-7, 0, 10 and 20 °C). The timing resolution and DOI resolution were obtained at the optimal overvoltage for the flood histogram and at each different temperature. Overall, the results show better performance was obtained at lower temperatures, and that the optimal overvoltage decreased at higher temperatures. The optimal overvoltage was 5.0 V (corresponding to a bias voltage of 68.5 V) in order to achieve the highest quality flood histogram at 0 °C. Under these conditions, the flood histogram quality, energy resolution, timing resolution, and DOI resolution were 3.26 ± 0.65, 18.4 ± 4.5%, 1.70 ± 0.12 ns and 2.22 ± 0.19 mm, respectively. The flood histograms and energy resolution were also obtained at different activities. The results show that better flood histogram and energy resolution were obtained at lower activity, however all the crystals can be resolved at an event rate of over 210 k cps, indicating the DOI detector module can be used both for high resolution human brain PET and small animal PET applications.
Collapse
Affiliation(s)
- Junwei Du
- Department of Biomedical Engineering, University of California-Davis, One Shields Avenue, Davis, CA 95616 United States of America
| | | | | |
Collapse
|
354
|
Qiu L, Li X, Lv G, Seimbille Y, Li K, Peng Y, Liu Q, Xie M, Lin J. Radiofluorinated Smart Probes for Noninvasive PET Imaging of Legumain Activity in Living Subjects. Anal Chem 2020; 92:11627-11634. [PMID: 32867490 DOI: 10.1021/acs.analchem.0c01253] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Overexpression of legumain is closely associated with tumor proliferation, invasion, and metastasis. Because of its intrinsic properties, such as high sensitivity and resolution, positron emission tomography (PET) has become an effective imaging technique for early diagnosis, treatment response prediction, and monitoring. Herein, two legumain-targeting radiofluorinated smart probes (18F-2 and 18F-3) as well as a control probe (18F-1) were specifically designed for PET imaging of legumain activity in tumors. 18F-1, 18F-2, and 18F-3 were obtained with high radiochemical yield (RCY > 60%) and radiochemical purity (RCP > 99%) using a convenient "one-step" 18F-labeling method. The probes 18F-2 and 18F-3 exhibited high response to legumain activity and reductive environment and revealed comparable uptake in HCT116 cells (4.22% ± 0.14% and 4.64% ± 0.32% for 18F-2 and 18F-3, respectively; 8.46% ± 0.33% and 9.05% ± 0.24% for co-treatment of 18F-2 + 2 and 18F-3 + 3 at 1 h), while the control probe 18F-1 showed no response. PET imaging of tumor-bearing mice showed that the co-injection strategy (18F-2 + 2 and 18F-3 + 3) resulted in higher tumor uptake (3.57% ± 0.37% and 3.72% ± 0.19% ID/g at 10 min, respectively) than the single injection strategy (2.59% ± 0.19% and 2.60% ± 0.46% ID/g for 18F-2 and 18F-3, respectively). In addition, introduction of the trimeric histidine-glutamate (HEHEHE) tag to 18F-3 reduced the liver uptake by almost two-fold without any noticeable effect on the tumor uptake. All the results indicate that 18F-3 holds great potential applications in clinics for sensitive and specific PET imaging of legumain activity in tumors.
Collapse
Affiliation(s)
- Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xi Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Gaochao Lv
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yann Seimbille
- Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.,Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T2A3, Canada
| | - Ke Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Ying Peng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Qingzhu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Minhao Xie
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
355
|
Abstract
The primary aim of the Guangzhou Twin Eye Study (GTES) is to explore the impact that genes and environmental influences have on common eye diseases. Since 2006, approximately 1300 pairs of twins, aged 7-15 years, were enrolled at baseline. Progressive phenotypes, such as cycloplegic refraction, axial length, height and weight, have been collected annually. Nonprogressive phenotypes such as parental refraction, corneal thickness, fundus photo, intraocular pressure and DNA were collected once at baseline. We are collaborating with fellow international twin researchers and psychologists to further explore links with general medical conditions. In this article, we review the history, major findings and future research directions for the GTES.
Collapse
|
356
|
|
357
|
Yeo SK, Shepelytskyi Y, Grynko V, Albert MS. Molecular Imaging of Fluorinated Probes for Tau Protein and Amyloid-β Detection. Molecules 2020; 25:molecules25153413. [PMID: 32731418 PMCID: PMC7435578 DOI: 10.3390/molecules25153413] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia and results in progressive neurodegeneration. The incidence rate of AD is increasing, creating a major public health issue. AD is characterized by neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein and senile plaques composed of amyloid-β (Aβ). Currently, a definitive diagnosis of AD is accomplished post-mortem. Thus, the use of molecular probes that are able to selectively bind to NFTs or Aβ can be valuable tools for the accurate and early diagnosis of AD. The aim of this review is to summarize and highlight fluorinated molecular probes that can be used for molecular imaging to detect either NFTs or Aβ. Specifically, fluorinated molecular probes used in conjunction with 19F MRI, PET, and fluorescence imaging will be explored.
Collapse
Affiliation(s)
- Sarah K. Yeo
- Biology Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
| | - Yurii Shepelytskyi
- Chemistry and Materials Science Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (Y.S.); (V.G.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Vira Grynko
- Chemistry and Materials Science Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (Y.S.); (V.G.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Mitchell S. Albert
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
- Northern Ontario School of Medicine, Thunder Bay, ON P7B 5E1, Canada
- Correspondence: ; Tel.: +1-807-355-9191
| |
Collapse
|
358
|
Mohseni YR, Tung SL, Dudreuilh C, Lechler RI, Fruhwirth GO, Lombardi G. The Future of Regulatory T Cell Therapy: Promises and Challenges of Implementing CAR Technology. Front Immunol 2020; 11:1608. [PMID: 32793236 PMCID: PMC7393941 DOI: 10.3389/fimmu.2020.01608] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022] Open
Abstract
Cell therapy with polyclonal regulatory T cells (Tregs) has been translated into the clinic and is currently being tested in transplant recipients and patients suffering from autoimmune diseases. Moreover, building on animal models, it has been widely reported that antigen-specific Tregs are functionally superior to polyclonal Tregs. Among various options to confer target specificity to Tregs, genetic engineering is a particularly timely one as has been demonstrated in the treatment of hematological malignancies where it is in routine clinical use. Genetic engineering can be exploited to express chimeric antigen receptors (CAR) in Tregs, and this has been successfully demonstrated to be robust in preclinical studies across various animal disease models. However, there are several caveats and a number of strategies should be considered to further improve on targeting, efficacy and to understand the in vivo distribution and fate of CAR-Tregs. Here, we review the differing approaches to confer antigen specificity to Tregs with emphasis on CAR-Tregs. This includes an overview and discussion of the various approaches to improve CAR-Treg specificity and therapeutic efficacy as well as addressing potential safety concerns. We also discuss different imaging approaches to understand the in vivo biodistribution of administered Tregs. Preclinical research as well as suitability of methodologies for clinical translation are discussed.
Collapse
MESH Headings
- Animals
- Antigens/immunology
- Bioengineering
- Humans
- Immunomodulation
- Immunotherapy, Adoptive/methods
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- T-Cell Antigen Receptor Specificity
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Treatment Outcome
Collapse
Affiliation(s)
- Yasmin R. Mohseni
- Peter Gorer Department of Immunobiology, MRC Centre for Transplantation, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| | - Sim L. Tung
- Peter Gorer Department of Immunobiology, MRC Centre for Transplantation, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| | - Caroline Dudreuilh
- Peter Gorer Department of Immunobiology, MRC Centre for Transplantation, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| | - Robert I. Lechler
- Peter Gorer Department of Immunobiology, MRC Centre for Transplantation, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| | - Gilbert O. Fruhwirth
- Imaging Therapies and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, MRC Centre for Transplantation, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| |
Collapse
|
359
|
Yoshida E, Tashima H, Akamatsu G, Iwao Y, Takahashi M, Yamashita T, Yamaya T. 245 ps-TOF brain-dedicated PET prototype with a hemispherical detector arrangement. ACTA ACUST UNITED AC 2020; 65:145008. [DOI: 10.1088/1361-6560/ab8c91] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
360
|
Lechermann LM, Manavaki R, Attili B, Lau D, Jarvis LB, Fryer TD, Bird N, Aloj L, Patel N, Basu B, Cleveland M, Aigbirhio FI, Jones JL, Gallagher FA. Detection limit of 89Zr-labeled T cells for cellular tracking: an in vitro imaging approach using clinical PET/CT and PET/MRI. EJNMMI Res 2020; 10:82. [PMID: 32666311 PMCID: PMC7360010 DOI: 10.1186/s13550-020-00667-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Tracking cells in vivo using imaging can provide non-invasive information to understand the pharmacology, efficacy, and safety of novel cell therapies. Zirconium-89 (t1/2 = 78.4 h) has recently been used to synthesize [89Zr]Zr(oxinate)4 for cell tracking using positron emission tomography (PET). This work presents an in vitro approach to estimate the detection limit for in vivo PET imaging of Jurkat T cells directly labeled with [89Zr]Zr(oxinate)4 utilizing clinical PET/CT and PET/MRI. METHODS Jurkat T cells were labeled with varying concentrations of [89Zr]Zr(oxinate)4 to generate different cell-specific activities (0.43-31.91 kBq/106 cells). Different concentrations of labeled cell suspensions (104, 105, and 106 cells) were seeded on 6-well plates and into a 3 × 3 cubic-well plate with 1 cm3 cubic wells as a gel matrix. Plates were imaged on clinical PET/CT and PET/MRI scanners for 30 min. The total activity in each well was determined by drawing volumes of interest over each well on PET images. The total cell-associated activity was measured using a well counter and correlated with imaging data. Simulations for non-specific signal were performed to model the effect of non-specific radioactivity on detection. RESULTS Using this in vitro model, the lowest cell number that could be visualized on 6-well plate images was 6.8 × 104, when the specific activity was 27.8 kBq/106 cells. For the 3 × 3 cubic-well, a plate of 3.3 × 104 cells could be detected on images with a specific activity of 15.4 kBq/106 cells. CONCLUSION The results show the feasibility of detecting [89Zr]Zr(oxinate)4-labeled Jurkat T cells on clinical PET systems. The results provide a best-case scenario, as in vivo detection using PET/CT or PET/MRI will be affected by cell number, specific activity per cell, the density of cells within the target volume, and non-specific signal. This work has important implications for cell labeling studies in patients, particularly when using radiosensitive cells (e.g., T cells), which require detection of low cell numbers while minimizing radiation dose per cell.
Collapse
Affiliation(s)
- Laura M Lechermann
- Department of Radiology, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| | - Roido Manavaki
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Bala Attili
- Department of Radiology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Doreen Lau
- Department of Radiology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Lorna B Jarvis
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Tim D Fryer
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Nick Bird
- Department of Nuclear Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Luigi Aloj
- Department of Radiology, University of Cambridge, Cambridge, UK
- Department of Nuclear Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Neel Patel
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Bristi Basu
- Department of Oncology, University of Cambridge, Cambridge, UK
| | | | - Franklin I Aigbirhio
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Joanne L Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
361
|
Jain P, Chaney AM, Carlson ML, Jackson IM, Rao A, James ML. Neuroinflammation PET Imaging: Current Opinion and Future Directions. J Nucl Med 2020; 61:1107-1112. [PMID: 32620705 DOI: 10.2967/jnumed.119.229443] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation is a key pathologic hallmark of numerous neurologic diseases, however, its exact role in vivo is yet to be fully understood. PET imaging enables investigation, quantification, and tracking of different neuroinflammation biomarkers in living subjects longitudinally. One such biomarker that has been imaged extensively using PET is translocator protein 18 kDa (TSPO). Although imaging TSPO has yielded valuable clinical data linking neuroinflammation to various neurodegenerative diseases, considerable limitations of TSPO PET have prompted identification of other more cell-specific and functionally relevant biomarkers. This review analyzes the clinical potential of available and emerging PET biomarkers of innate and adaptive immune responses, with mention of exciting future directions for the field.
Collapse
Affiliation(s)
- Poorva Jain
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, California
| | - Aisling M Chaney
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, California
| | - Mackenzie L Carlson
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, California.,Department of Bioengineering, Stanford University, Stanford, California; and
| | - Isaac M Jackson
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, California
| | - Anoushka Rao
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, California
| | - Michelle L James
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, California .,Department of Neurology and Neurological Sciences, Stanford University, Stanford, California
| |
Collapse
|
362
|
|
363
|
Moskal P, Kisielewska D, Y Shopa R, Bura Z, Chhokar J, Curceanu C, Czerwiński E, Dadgar M, Dulski K, Gajewski J, Gajos A, Gorgol M, Del Grande R, C Hiesmayr B, Jasińska B, Kacprzak K, Kamińska A, Kapłon Ł, Karimi H, Korcyl G, Kowalski P, Krawczyk N, Krzemień W, Kozik T, Kubicz E, Małczak P, Mohammed M, Niedźwiecki S, Pałka M, Pawlik-Niedźwiecka M, Pędziwiatr M, Raczyński L, Raj J, Ruciński A, Sharma S, Shivani S, Silarski M, Skurzok M, Stępień EŁ, Vandenberghe S, Wiślicki W, Zgardzińska B. Performance assessment of the 2 γpositronium imaging with the total-body PET scanners. EJNMMI Phys 2020; 7:44. [PMID: 32607664 PMCID: PMC7326848 DOI: 10.1186/s40658-020-00307-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 05/17/2020] [Indexed: 02/01/2023] Open
Abstract
Purpose In living organisms, the positron-electron annihilation (occurring during the PET imaging) proceeds in about 30% via creation of a metastable ortho-positronium atom. In the tissue, due to the pick-off and conversion processes, over 98% of ortho-positronia annihilate into two 511 keV photons. In this article, we assess the feasibility for reconstruction of the mean ortho-positronium lifetime image based on annihilations into two photons. The main objectives of this work include the (i) estimation of the sensitivity of the total-body PET scanners for the ortho-positronium mean lifetime imaging using 2γ annihilations and (ii) estimation of the spatial and time resolution of the ortho-positronium image as a function of the coincidence resolving time (CRT) of the scanner. Methods Simulations are conducted assuming that radiopharmaceutical is labeled with 44Sc isotope emitting one positron and one prompt gamma. The image is reconstructed on the basis of triple coincidence events. The ortho-positronium lifetime spectrum is determined for each voxel of the image. Calculations were performed for cases of total-body detectors build of (i) LYSO scintillators as used in the EXPLORER PET and (ii) plastic scintillators as anticipated for the cost-effective total-body J-PET scanner. To assess the spatial and time resolution, the four cases were considered assuming that CRT is equal to 500 ps, 140 ps, 50 ps, and 10 ps. Results The estimated total-body PET sensitivity for the registration and selection of image forming triple coincidences (2γ+γprompt) is larger by a factor of 13.5 (for LYSO PET) and by factor of 5.2 (for plastic PET) with respect to the sensitivity for the standard 2γ imaging by LYSO PET scanners with AFOV = 20 cm. The spatial resolution of the ortho-positronium image is comparable with the resolution achievable when using TOF-FBP algorithms already for CRT = 50 ps. For the 20-min scan, the resolution better than 20 ps is expected for the mean ortho-positronium lifetime image determination. Conclusions Ortho-positronium mean lifetime imaging based on the annihilations into two photons and prompt gamma is shown to be feasible with the advent of the high sensitivity total-body PET systems and time resolution of the order of tens of picoseconds.
Collapse
Affiliation(s)
- P Moskal
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland.
| | - D Kisielewska
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland.
| | - R Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, 05-400, Poland
| | - Z Bura
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - J Chhokar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - C Curceanu
- INFN, Laboratori Nazionali di Frascati, Frascati, 00044, Italy
| | - E Czerwiński
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - M Dadgar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - K Dulski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - J Gajewski
- Institute of Nuclear Physics PAN, Cracow, Poland
| | - A Gajos
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - M Gorgol
- Institute of Physics, Maria Curie-Skłodowska University, Lublin, 20-031, Poland
| | - R Del Grande
- INFN, Laboratori Nazionali di Frascati, Frascati, 00044, Italy
| | - B C Hiesmayr
- Faculty of Physics, University of Vienna, Vienna, 1090, Austria
| | - B Jasińska
- Institute of Physics, Maria Curie-Skłodowska University, Lublin, 20-031, Poland
| | - K Kacprzak
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - A Kamińska
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - Ł Kapłon
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - H Karimi
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - G Korcyl
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - P Kowalski
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, 05-400, Poland
| | - N Krawczyk
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - W Krzemień
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, 05-400, Poland
| | - T Kozik
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - E Kubicz
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - P Małczak
- 2nd Department of General Surgery, Jagiellonian University Medical College, Cracow, Poland
| | - M Mohammed
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland.,Department of Physics, College of Education for Pure Sciences, University of Mosul, Mosul, Iraq
| | - Sz Niedźwiecki
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - M Pałka
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - M Pawlik-Niedźwiecka
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - M Pędziwiatr
- 2nd Department of General Surgery, Jagiellonian University Medical College, Cracow, Poland
| | - L Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, 05-400, Poland
| | - J Raj
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - A Ruciński
- Institute of Nuclear Physics PAN, Cracow, Poland
| | - S Sharma
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - S Shivani
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - M Silarski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - M Skurzok
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland.,INFN, Laboratori Nazionali di Frascati, Frascati, 00044, Italy
| | - E Ł Stępień
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - S Vandenberghe
- Department of Electronics and Information Systems, MEDISIP, Ghent University-IBiTech, De Pintelaan 185 block B, Ghent, B-9000, Belgium
| | - W Wiślicki
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, 05-400, Poland
| | - B Zgardzińska
- Institute of Physics, Maria Curie-Skłodowska University, Lublin, 20-031, Poland
| |
Collapse
|
364
|
Carminati M, Fiorini C. Challenges for Microelectronics in Non-Invasive Medical Diagnostics. SENSORS 2020; 20:s20133636. [PMID: 32610430 PMCID: PMC7374509 DOI: 10.3390/s20133636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/17/2020] [Accepted: 06/25/2020] [Indexed: 01/03/2023]
Abstract
Microelectronics is emerging, sometimes with changing fortunes, as a key enabling technology in diagnostics. This paper reviews some recent results and technical challenges which still need to be addressed in terms of the design of CMOS analog application specific integrated circuits (ASICs) and their integration in the surrounding systems, in order to consolidate this technological paradigm. Open issues are discussed from two, apparently distant but complementary, points of view: micro-analytical devices, combining microfluidics with affinity bio-sensing, and gamma cameras for simultaneous multi-modal imaging, namely scintigraphy and magnetic resonance imaging (MRI). The role of integrated circuits is central in both application domains. In portable analytical platforms, ASICs offer miniaturization and tackle the noise/power dissipation trade-off. The integration of CMOS chips with microfluidics poses multiple open technological issues. In multi-modal imaging, now that the compatibility of the acquisition chains (thousands of Silicon Photo-Multipliers channels) of gamma detectors with Tesla-level magnetic fields has been demonstrated, other development directions, enabled by microelectronics, can be envisioned in particular for single-photon emission tomography (SPECT): a faster and simplified operation, for instance, to allow transportable applications (bed-side) and hardware pre-processing that reduces the number of output signals and the image reconstruction time.
Collapse
Affiliation(s)
- Marco Carminati
- Politecnico di Milano, Dipartimento di Elettronica Informazione e Bioingegneria, 20133 Milano, Italy;
- Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133 Milano, Italy
- Correspondence:
| | - Carlo Fiorini
- Politecnico di Milano, Dipartimento di Elettronica Informazione e Bioingegneria, 20133 Milano, Italy;
- Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133 Milano, Italy
| |
Collapse
|
365
|
Patrick PS, Kolluri KK, Zaw Thin M, Edwards A, Sage EK, Sanderson T, Weil BD, Dickson JC, Lythgoe MF, Lowdell M, Janes SM, Kalber TL. Lung delivery of MSCs expressing anti-cancer protein TRAIL visualised with 89Zr-oxine PET-CT. Stem Cell Res Ther 2020; 11:256. [PMID: 32586403 PMCID: PMC7318529 DOI: 10.1186/s13287-020-01770-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/01/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND MSCTRAIL is a cell-based therapy consisting of human allogeneic umbilical cord-derived MSCs genetically modified to express the anti-cancer protein TRAIL. Though cell-based therapies are typically designed with a target tissue in mind, delivery is rarely assessed due to a lack of translatable non-invasive imaging approaches. In this preclinical study, we demonstrate 89Zr-oxine labelling and PET-CT imaging as a potential clinical solution for non-invasively tracking MSCTRAIL biodistribution. Future implementation of this technique should improve our understanding of MSCTRAIL during its evaluation as a therapy for metastatic lung adenocarcinoma. METHODS MSCTRAIL were radiolabelled with 89Zr-oxine and assayed for viability, phenotype, and therapeutic efficacy post-labelling. PET-CT imaging of 89Zr-oxine-labelled MSCTRAIL was performed in a mouse model of lung cancer following intravenous injection, and biodistribution was confirmed ex vivo. RESULTS MSCTRAIL retained the therapeutic efficacy and MSC phenotype in vitro at labelling amounts up to and above those required for clinical imaging. The effect of 89Zr-oxine labelling on cell proliferation rate was amount- and time-dependent. PET-CT imaging showed delivery of MSCTRAIL to the lungs in a mouse model of lung cancer up to 1 week post-injection, validated by in vivo bioluminescence imaging, autoradiography, and fluorescence imaging on tissue sections. CONCLUSIONS 89Zr-oxine labelling and PET-CT imaging present a potential method of evaluating the biodistribution of new cell therapies in patients, including MSCTRAIL. This offers to improve understanding of cell therapies, including mechanism of action, migration dynamics, and inter-patient variability.
Collapse
Affiliation(s)
- P Stephen Patrick
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK.
| | - Krishna K Kolluri
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - May Zaw Thin
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Adam Edwards
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Elizabeth K Sage
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Tom Sanderson
- Institute of Nuclear Medicine, University College London, London, UK
| | - Benjamin D Weil
- Centre for Cell, Gene & Tissue Therapeutics, Royal Free Hospital, London, UK
| | - John C Dickson
- Institute of Nuclear Medicine, University College London, London, UK
| | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Mark Lowdell
- Centre for Cell, Gene & Tissue Therapeutics, Royal Free Hospital, London, UK
- Department of Haematology, Cancer Institute, University College London, London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Tammy L Kalber
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK.
| |
Collapse
|
366
|
Lasnon C, Coudrais N, Houdu B, Nganoa C, Salomon T, Enilorac B, Aide N. How fast can we scan patients with modern (digital) PET/CT systems? Eur J Radiol 2020; 129:109144. [PMID: 32593080 DOI: 10.1016/j.ejrad.2020.109144] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/13/2020] [Accepted: 06/16/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE To seek for the minimal duration per bed position with a digital PET system without compromising image quality and lesion detection in patients requiring fast 18F-FDG PET imaging. MATERIALS AND METHODS 19 cancer patients experiencing pain or dyspnea and 9 pediatric patients were scanned on a Vereos system. List mode data were reconstructed with decreasing time frame down to 10 s per bed position. Noise was evaluated in the liver, blood pool and muscle, and using target-to-background ratios. Five PET readers recorded image quality, number of clinically relevant foci and of involved anatomical sites in reconstructions ranging from 60 to 10 s per bed position, compared to the standard 90 s reconstruction. RESULTS The following reconstructions, which harboured a noise not significantly higher than that of the standard reconstruction, were selected for clinical evaluation: 1iterations/10 subsets/20sec (1i10 s20sec), 1i10 s30sec, and 2i10 sPSF60sec. Only the 60 s per bed acquisition displayed similar target-to-background ratios compared to the standard reconstruction, but mean ratios were still higher than 2.0 for the 30 s reconstruction. Inter-rater agreement for the number of involved anatomical sites and detected lesion was good or almost perfect (Kappa: 0.64-0.91) for all acquisitions. In particular, kappa for the 30 s per bed acquisition was 0.78 and 0.91 for lesion and anatomical sites number, respectively. Intra-rater agreement was also excellent for the 30 s reconstruction (kappa = 0.72). Median estimated total PET acquisition time for the 1i10 s30sec, and the standard reconstruction were 4 and 12 min, respectively. CONCLUSIONS Fast imaging is feasible with state-of-the-art PET systems. Acquisitions of 30 s per bed position are feasible with the Vereos system, requiring optimization of reconstruction parameters.
Collapse
Affiliation(s)
- Charline Lasnon
- Centre François Baclesse, Nuclear Medicine Department, Caen, France; INSERM ANTICIPE, Normandie University, Caen, France
| | | | - Benjamin Houdu
- CHU de Caen, Nuclear Medicine Department, Caen, France; Normandie University, France
| | | | | | | | - Nicolas Aide
- CHU de Caen, Nuclear Medicine Department, Caen, France; INSERM ANTICIPE, Normandie University, Caen, France; Normandie University, France.
| |
Collapse
|
367
|
Suchacki KJ, Tavares AAS, Mattiucci D, Scheller EL, Papanastasiou G, Gray C, Sinton MC, Ramage LE, McDougald WA, Lovdel A, Sulston RJ, Thomas BJ, Nicholson BM, Drake AJ, Alcaide-Corral CJ, Said D, Poloni A, Cinti S, Macpherson GJ, Dweck MR, Andrews JPM, Williams MC, Wallace RJ, van Beek EJR, MacDougald OA, Morton NM, Stimson RH, Cawthorn WP. Bone marrow adipose tissue is a unique adipose subtype with distinct roles in glucose homeostasis. Nat Commun 2020; 11:3097. [PMID: 32555194 PMCID: PMC7303125 DOI: 10.1038/s41467-020-16878-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 05/29/2020] [Indexed: 12/30/2022] Open
Abstract
Bone marrow adipose tissue (BMAT) comprises >10% of total adipose mass, yet unlike white or brown adipose tissues (WAT or BAT) its metabolic functions remain unclear. Herein, we address this critical gap in knowledge. Our transcriptomic analyses revealed that BMAT is distinct from WAT and BAT, with altered glucose metabolism and decreased insulin responsiveness. We therefore tested these functions in mice and humans using positron emission tomography-computed tomography (PET/CT) with 18F-fluorodeoxyglucose. This revealed that BMAT resists insulin- and cold-stimulated glucose uptake, while further in vivo studies showed that, compared to WAT, BMAT resists insulin-stimulated Akt phosphorylation. Thus, BMAT is functionally distinct from WAT and BAT. However, in humans basal glucose uptake in BMAT is greater than in axial bones or subcutaneous WAT and can be greater than that in skeletal muscle, underscoring the potential of BMAT to influence systemic glucose homeostasis. These PET/CT studies characterise BMAT function in vivo, establish new methods for BMAT analysis, and identify BMAT as a distinct, major adipose tissue subtype.
Collapse
Affiliation(s)
- Karla J Suchacki
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Adriana A S Tavares
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Domenico Mattiucci
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
- Dipartimento di Scienze Cliniche e Molecolari, Clinica di Ematologia, Università Politecnica delle Marche, Ancona, Italy
| | - Erica L Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, MO, USA
| | | | - Calum Gray
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Matthew C Sinton
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Lynne E Ramage
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Wendy A McDougald
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Andrea Lovdel
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Richard J Sulston
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Benjamin J Thomas
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Bonnie M Nicholson
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Amanda J Drake
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Carlos J Alcaide-Corral
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Diana Said
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Antonella Poloni
- Dipartimento di Scienze Cliniche e Molecolari, Clinica di Ematologia, Università Politecnica delle Marche, Ancona, Italy
| | - Saverio Cinti
- Dipartimento di Scienze Cliniche e Molecolari, Clinica di Ematologia, Università Politecnica delle Marche, Ancona, Italy
- Dipartimento di Medicina Sperimentale e Clinica, Center of Obesity, Università Politecnica delle Marche, Ancona, Italy
| | - Gavin J Macpherson
- Department of Orthopaedic Surgery, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Marc R Dweck
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Jack P M Andrews
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Michelle C Williams
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Robert J Wallace
- Department of Orthopaedics, The University of Edinburgh, Edinburgh, UK
| | | | - Ormond A MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas M Morton
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Roland H Stimson
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - William P Cawthorn
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
368
|
Beyer T, Bidaut L, Dickson J, Kachelriess M, Kiessling F, Leitgeb R, Ma J, Shiyam Sundar LK, Theek B, Mawlawi O. What scans we will read: imaging instrumentation trends in clinical oncology. Cancer Imaging 2020; 20:38. [PMID: 32517801 PMCID: PMC7285725 DOI: 10.1186/s40644-020-00312-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
Oncological diseases account for a significant portion of the burden on public healthcare systems with associated costs driven primarily by complex and long-lasting therapies. Through the visualization of patient-specific morphology and functional-molecular pathways, cancerous tissue can be detected and characterized non-invasively, so as to provide referring oncologists with essential information to support therapy management decisions. Following the onset of stand-alone anatomical and functional imaging, we witness a push towards integrating molecular image information through various methods, including anato-metabolic imaging (e.g., PET/CT), advanced MRI, optical or ultrasound imaging.This perspective paper highlights a number of key technological and methodological advances in imaging instrumentation related to anatomical, functional, molecular medicine and hybrid imaging, that is understood as the hardware-based combination of complementary anatomical and molecular imaging. These include novel detector technologies for ionizing radiation used in CT and nuclear medicine imaging, and novel system developments in MRI and optical as well as opto-acoustic imaging. We will also highlight new data processing methods for improved non-invasive tissue characterization. Following a general introduction to the role of imaging in oncology patient management we introduce imaging methods with well-defined clinical applications and potential for clinical translation. For each modality, we report first on the status quo and, then point to perceived technological and methodological advances in a subsequent status go section. Considering the breadth and dynamics of these developments, this perspective ends with a critical reflection on where the authors, with the majority of them being imaging experts with a background in physics and engineering, believe imaging methods will be in a few years from now.Overall, methodological and technological medical imaging advances are geared towards increased image contrast, the derivation of reproducible quantitative parameters, an increase in volume sensitivity and a reduction in overall examination time. To ensure full translation to the clinic, this progress in technologies and instrumentation is complemented by advances in relevant acquisition and image-processing protocols and improved data analysis. To this end, we should accept diagnostic images as "data", and - through the wider adoption of advanced analysis, including machine learning approaches and a "big data" concept - move to the next stage of non-invasive tumour phenotyping. The scans we will be reading in 10 years from now will likely be composed of highly diverse multi-dimensional data from multiple sources, which mandate the use of advanced and interactive visualization and analysis platforms powered by Artificial Intelligence (AI) for real-time data handling by cross-specialty clinical experts with a domain knowledge that will need to go beyond that of plain imaging.
Collapse
Affiliation(s)
- Thomas Beyer
- QIMP Team, Centre for Medical Physics and Biomedical Engineering, Medical University Vienna, Währinger Gürtel 18-20/4L, 1090, Vienna, Austria.
| | - Luc Bidaut
- College of Science, University of Lincoln, Lincoln, UK
| | - John Dickson
- Institute of Nuclear Medicine, University College London Hospital, London, UK
| | - Marc Kachelriess
- Division of X-ray imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, DE, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074, Aachen, DE, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Am Fallturm 1, 28359, Bremen, DE, Germany
| | - Rainer Leitgeb
- Centre for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, AT, Austria
| | - Jingfei Ma
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lalith Kumar Shiyam Sundar
- QIMP Team, Centre for Medical Physics and Biomedical Engineering, Medical University Vienna, Währinger Gürtel 18-20/4L, 1090, Vienna, Austria
| | - Benjamin Theek
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074, Aachen, DE, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Am Fallturm 1, 28359, Bremen, DE, Germany
| | - Osama Mawlawi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
369
|
Ashmore-Harris C, Iafrate M, Saleem A, Fruhwirth GO. Non-invasive Reporter Gene Imaging of Cell Therapies, including T Cells and Stem Cells. Mol Ther 2020; 28:1392-1416. [PMID: 32243834 PMCID: PMC7264441 DOI: 10.1016/j.ymthe.2020.03.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/15/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Cell therapies represent a rapidly emerging class of new therapeutics. They are intended and developed for the treatment of some of the most prevalent human diseases, including cancer, diabetes, and for regenerative medicine. Currently, they are largely developed without precise assessment of their in vivo distribution, efficacy, or survival either clinically or preclinically. However, it would be highly beneficial for both preclinical cell therapy development and subsequent clinical use to assess these parameters in situ to enable enhancements in efficacy, applicability, and safety. Molecular imaging can be exploited to track cells non-invasively on the whole-body level and can enable monitoring for prolonged periods in a manner compatible with rapidly expanding cell types. In this review, we explain how in vivo imaging can aid the development and clinical translation of cell-based therapeutics. We describe the underlying principles governing non-invasive in vivo long-term cell tracking in the preclinical and clinical settings, including available imaging technologies, reporter genes, and imaging agents as well as pitfalls related to experimental design. Our emphasis is on adoptively transferred T cell and stem cell therapies.
Collapse
Affiliation(s)
- Candice Ashmore-Harris
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK; Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, King's College London, London SE1 9RT, UK
| | - Madeleine Iafrate
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Adeel Saleem
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK; Department of Haematological Medicine, King's College Hospital, London SE5 9RS, UK
| | - Gilbert O Fruhwirth
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.
| |
Collapse
|
370
|
Schmall JP, Surti S, Otero HJ, Servaes S, Karp JS, States LJ. Investigating Low-Dose Image Quality in Whole-Body Pediatric 18F-FDG Scans Using Time-of-Flight PET/MRI. J Nucl Med 2020; 62:123-130. [DOI: 10.2967/jnumed.119.240127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022] Open
|
371
|
Vaz SC, Oliveira F, Herrmann K, Veit-Haibach P. Nuclear medicine and molecular imaging advances in the 21st century. Br J Radiol 2020; 93:20200095. [PMID: 32401541 PMCID: PMC10993229 DOI: 10.1259/bjr.20200095] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Currently, Nuclear Medicine has a clearly defined role in clinical practice due to its usefulness in many medical disciplines. It provides relevant diagnostic and therapeutic options leading to patients' healthcare and quality of life improvement. During the first two decades of the 21stt century, the number of Nuclear Medicine procedures increased considerably.Clinical and research advances in Nuclear Medicine and Molecular Imaging have been based on developments in radiopharmaceuticals and equipment, namely, the introduction of multimodality imaging. In addition, new therapeutic applications of radiopharmaceuticals, mainly in oncology, are underway.This review will focus on radiopharmaceuticals for positron emission tomography (PET), in particular, those labeled with Fluorine-18 and Gallium-68. Multimodality as a key player in clinical practice led to the development of new detector technology and combined efforts to improve resolution. The concept of dual probe (a single molecule labeled with a radionuclide for single photon emission computed tomography)/positron emission tomography and a light emitter for optical imaging) is gaining increasing acceptance, especially in minimally invasive radioguided surgery. The expansion of theranostics, using the same molecule for diagnosis (γ or positron emitter) and therapy (β minus or α emitter) is reshaping personalized medicine.Upcoming research and development efforts will lead to an even wider array of indications for Nuclear Medicine both in diagnosis and treatment.
Collapse
Affiliation(s)
- Sofia C. Vaz
- Nuclear Medicine - Radiopharmacology, Champalimaud Centre for
the Unknown, Champalimaud Foundation,
Lisbon, Portugal
| | - Francisco Oliveira
- Nuclear Medicine - Radiopharmacology, Champalimaud Centre for
the Unknown, Champalimaud Foundation,
Lisbon, Portugal
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen,
University of Duisburg-Essen,
Essen, Germany
| | | |
Collapse
|
372
|
Feng HT, Zou S, Chen M, Xiong F, Lee MH, Fang L, Tang BZ. Tuning Push–Pull Electronic Effects of AIEgens to Boost the Theranostic Efficacy for Colon Cancer. J Am Chem Soc 2020; 142:11442-11450. [DOI: 10.1021/jacs.0c02434] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hai-Tao Feng
- Baoji AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Institute for Advanced Study, Department of Chemical and Biomedical Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | - Ming Chen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Institute for Advanced Study, Department of Chemical and Biomedical Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Feng Xiong
- Shenzhen Jinyu Biotechnology Co., Ltd., B1203 Compass Life Science Park, Julongshan B Road, Shenzhen 518118, China
| | | | | | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Institute for Advanced Study, Department of Chemical and Biomedical Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
373
|
Vandenberghe S, Moskal P, Karp JS. State of the art in total body PET. EJNMMI Phys 2020; 7:35. [PMID: 32451783 PMCID: PMC7248164 DOI: 10.1186/s40658-020-00290-2] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 03/25/2020] [Indexed: 12/29/2022] Open
Abstract
The idea of a very sensitive positron emission tomography (PET) system covering a large portion of the body of a patient already dates back to the early 1990s. In the period 2000-2010, only some prototypes with long axial field of view (FOV) have been built, which never resulted in systems used for clinical research. One of the reasons was the limitations in the available detector technology, which did not yet have sufficient energy resolution, timing resolution or countrate capabilities for fully exploiting the benefits of a long axial FOV design. PET was also not yet as widespread as it is today: the growth in oncology, which has become the major application of PET, appeared only after the introduction of PET-CT (early 2000).The detector technology used in most clinical PET systems today has a combination of good energy and timing resolution with higher countrate capabilities and has now been used since more than a decade to build time-of-flight (TOF) PET systems with fully 3D acquisitions. Based on this technology, one can construct total body PET systems and the remaining challenges (data handling, fast image reconstruction, detector cooling) are mostly related to engineering. The direct benefits of long axial FOV systems are mostly related to the higher sensitivity. For single organ imaging, the gain is close to the point source sensitivity which increases linearly with the axial length until it is limited by solid angle and attenuation of the body. The gains for single organ (compared to a fully 3D PET 20-cm axial FOV) are limited to a factor 3-4. But for long objects (like body scans), it increases quadratically with scanner length and factors of 10-40 × higher sensitivity are predicted for the long axial FOV scanner. This application of PET has seen a major increase (mostly in oncology) during the last 2 decades and is now the main type of study in a PET centre. As the technology is available and the full body concept also seems to match with existing applications, the old concept of a total body PET scanner is seeing a clear revival. Several research groups are working on this concept and after showing the potential via extensive simulations; construction of these systems has started about 2 years ago. In the first phase, two PET systems with long axial FOV suitable for large animal imaging were constructed to explore the potential in more experimental settings. Recently, the first completed total body PET systems for human use, a 70-cm-long system, called PennPET Explorer, and a 2-m-long system, called uExplorer, have become reality and first clinical studies have been shown. These results illustrate the large potential of this concept with regard to low-dose imaging, faster scanning, whole-body dynamic imaging and follow-up of tracers over longer periods. This large range of possible technical improvements seems to have the potential to change the current clinical routine and to expand the number of clinical applications of molecular imaging. The J-PET prototype is a prototype system with a long axial FOV built from axially arranged plastic scintillator strips.This paper gives an overview of the recent technical developments with regard to PET scanners with a long axial FOV covering at least the majority of the body (so called total body PET systems). After explaining the benefits and challenges of total body PET systems, the different total body PET system designs proposed for large animal and clinical imaging are described in detail. The axial length is one of the major factors determining the total cost of the system, but there are also other options in detector technology, design and processing for reducing the cost these systems. The limitations and advantages of different designs for research and clinical use are discussed taking into account potential applications and the increased cost of these systems.
Collapse
Affiliation(s)
- Stefaan Vandenberghe
- Department of Electronics and Information Systems, MEDISIP, Ghent University-IBiTech, De Pintelaan 185 block B, Ghent, B-9000 Belgium
| | - Pawel Moskal
- Institute of Physics, Jagiellonian University, Krakow, Poland
| | - Joel S. Karp
- Department of Radiology, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
374
|
Zhang YQ, Hu PC, Wu RZ, Gu YS, Chen SG, Yu HJ, Wang XQ, Song J, Shi HC. The image quality, lesion detectability, and acquisition time of 18F-FDG total-body PET/CT in oncological patients. Eur J Nucl Med Mol Imaging 2020; 47:2507-2515. [DOI: 10.1007/s00259-020-04823-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/08/2020] [Indexed: 01/14/2023]
|
375
|
Noortman WA, Vriens D, Grootjans W, Tao Q, de Geus-Oei LF, Van Velden FH. Nuclear medicine radiomics in precision medicine: why we can't do without artificial intelligence. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:278-290. [PMID: 32397702 DOI: 10.23736/s1824-4785.20.03263-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, radiomics, defined as the extraction of large amounts of quantitative features from medical images, has gained emerging interest. Radiomics consists of the extraction of handcrafted features combined with sophisticated statistical methods or machine learning algorithms for modelling, or deep learning algorithms that both learn features from raw data and perform modelling. These features have the potential to serve as non-invasive biomarkers for tumor characterization, prognostic stratification and response prediction, thereby contributing to precision medicine. However, especially in nuclear medicine, variable results are obtained when using radiomics for these purposes. Individual studies show promising results, but due to small numbers of patients per study and little standardization, it is difficult to compare and validate results on other datasets. This review describes the radiomic pipeline, its applications and the increasing role of artificial intelligence within the field. Furthermore, the challenges that need to be overcome to achieve clinical translation are discussed, so that, eventually, radiomics, combined with clinical data and other biomarkers, can contribute to precision medicine, by providing the right treatment to the right patient, with the right dose, at the right time.
Collapse
Affiliation(s)
- Wyanne A Noortman
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands - .,Biomedical Photonic Imaging Group, University of Twente, Enschede, the Netherlands -
| | - Dennis Vriens
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Willem Grootjans
- Department of Radiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Qian Tao
- Division of Image Processing (LKEB), Department of Radiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Lioe-Fee de Geus-Oei
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands.,Biomedical Photonic Imaging Group, University of Twente, Enschede, the Netherlands
| | - Floris H Van Velden
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| |
Collapse
|
376
|
Schmitzer B, Schafers KP, Wirth B. Dynamic Cell Imaging in PET With Optimal Transport Regularization. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:1626-1635. [PMID: 31751230 DOI: 10.1109/tmi.2019.2953773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We propose a novel dynamic image reconstruction method from PET listmode data that could be particularly suited to tracking single or small numbers of cells. In contrast to conventional PET reconstruction our method combines the information from all detected events not only to reconstruct the dynamic evolution of the radionuclide distribution, but also to improve the reconstruction at each single time point by enforcing temporal consistency. This is achieved via optimal transport regularization where in principle, among all possible temporally evolving radionuclide distributions consistent with the PET measurement, the one is chosen with least kinetic motion energy. The reconstruction is found by convex optimization so that there is no dependence on the initialization of the method. We study its behaviour on simulated data of a human PET system and demonstrate its robustness even in settings with very low radioactivity. In contrast to previously reported cell tracking algorithms, our technique is oblivious to the number of tracked cells. Without any additional complexity one or multiple cells can be reconstructed, and the model automatically determines the number of particles. For instance, four radiolabelled cells moving at a velocity of 3.1 mm/s and a PET recorded count rate of 1.1 cps (for each cell) could be simultaneously tracked with a tracking accuracy of 5.3 mm inside a simulated human body.
Collapse
|
377
|
Carminati M, D'Adda I, Morahan AJ, Erlandsson K, Nagy K, Czeller M, Tolgyesi B, Nyitrai Z, Savi A, van Mullekom P, Hutton BF, Fiorini C. Clinical SiPM-Based MRI-Compatible SPECT: Preliminary Characterization. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2019.2951355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
378
|
Enríquez-Mier-Y-Terán FE, Ortega-Galindo AS, Murrieta-Rodríguez T, Rodríguez-Villafuerte M, Martínez-Dávalos A, Alva-Sánchez H. Coincidence energy spectra due to the intrinsic radioactivity of LYSO scintillation crystals. EJNMMI Phys 2020; 7:21. [PMID: 32297045 PMCID: PMC7160222 DOI: 10.1186/s40658-020-00291-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/26/2020] [Indexed: 11/10/2022] Open
Abstract
Background Lutetium oxyorthosilicate or lutetium yttrium oxyorthosilicate (LYSO) scintillation crystals used in most current PET scanner detectors contain 176Lu, which decays by beta emission to excited states of 176Hf accompanied by the emission of prompt gamma rays or internal conversion electrons. This intrinsic radioactivity can be self-detected in singles mode as a constant background signal that has an energy spectrum whose structure has been explained previously. In this work, we studied the energy spectrum due to the intrinsic radioactivity of LYSO scintillation crystals of two opposing detectors working in coincidence mode. The investigation included experimental data, Monte Carlo simulations and an analytical model. Results The structure of the energy spectrum was completely understood and is the result of the self-detection of beta particles from 176Lu in one crystal and the detection of one or more prompt gamma rays detected in coincidence by the opposing crystal. The most probable coincidence detection involves the gamma rays of 202 and 307 keV, which result in two narrow photopeaks, superimposed on a continuous energy distribution due to the beta particle energy deposition. The relative intensities of the gamma ray peaks depend on crystal size and detector separation distance, as is explained by the analytical model and verified through the Monte Carlo simulations and experiments. Conclusions The analytical model used in this work accurately explains the general features of the coincidence energy spectrum due to the presence of 176Lu in the scintillation crystals, as observed experimentally and with Monte Carlo simulations. This work will be useful to those research studies aimed at using the intrinsic radioactivity of LYSO crystals for transmission scans and detector calibration in coincidence mode.
Collapse
Affiliation(s)
| | | | - Tirso Murrieta-Rodríguez
- Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, 01000, Mexico City, Mexico
| | | | - Arnulfo Martínez-Dávalos
- Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, 01000, Mexico City, Mexico
| | - Héctor Alva-Sánchez
- Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, 01000, Mexico City, Mexico.
| |
Collapse
|
379
|
Iafrate M, Fruhwirth GO. How Non-invasive in vivo Cell Tracking Supports the Development and Translation of Cancer Immunotherapies. Front Physiol 2020; 11:154. [PMID: 32327996 PMCID: PMC7152671 DOI: 10.3389/fphys.2020.00154] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/12/2020] [Indexed: 12/26/2022] Open
Abstract
Immunotherapy is a relatively new treatment regimen for cancer, and it is based on the modulation of the immune system to battle cancer. Immunotherapies can be classified as either molecular or cell-based immunotherapies, and both types have demonstrated promising results in a growing number of cancers. Indeed, several immunotherapies representing both classes are already approved for clinical use in oncology. While spectacular treatment successes have been reported, particularly for so-called immune checkpoint inhibitors and certain cell-based immunotherapies, they have also been accompanied by a variety of severe, sometimes life-threatening side effects. Furthermore, not all patients respond to immunotherapy. Hence, there is the need for more research to render these promising therapeutics more efficacious, more widely applicable, and safer to use. Whole-body in vivo imaging technologies that can interrogate cancers and/or immunotherapies are highly beneficial tools for immunotherapy development and translation to the clinic. In this review, we explain how in vivo imaging can aid the development of molecular and cell-based anti-cancer immunotherapies. We describe the principles of imaging host T-cells and adoptively transferred therapeutic T-cells as well as the value of traceable cancer cell models in immunotherapy development. Our emphasis is on in vivo cell tracking methodology, including important aspects and caveats specific to immunotherapies. We discuss a variety of associated experimental design aspects including parameters such as cell type, observation times/intervals, and detection sensitivity. The focus is on non-invasive 3D cell tracking on the whole-body level including aspects relevant for both preclinical experimentation and clinical translatability of the underlying methodologies.
Collapse
Affiliation(s)
| | - Gilbert O. Fruhwirth
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
380
|
Nishizawa S, Kojima S, Okada H, Shinke T, Torizuka T, Teramukai S, Fukushima M. Ten-year prospective evaluation of whole-body cancer screening with multiple modalities including [ 18F]fluorodeoxyglucose positron emission tomography in a healthy population. Ann Nucl Med 2020; 34:358-368. [PMID: 32200511 DOI: 10.1007/s12149-020-01456-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/03/2020] [Indexed: 01/20/2023]
Abstract
PURPOSE To prospectively evaluate the value of whole-body cancer screening with multiple modalities including FDG-PET in a healthy population. METHODS The study was conducted in 1197 healthy individuals aged ≥ 35 years at enrollment between August 2003 and July 2004. All participants were scheduled to receive annual whole-body cancer screening five times (screening period) with subsequent long-term follow-up (follow-up period). The endpoints of the study were definitive cancer diagnosis, cancer-related death, and all-cause death. RESULTS The follow-up rate was 99.8% for the screening period and 96.2% for the follow-up period. Forty-five cancers were confirmed during the screening period (August 2003 to July 2009), and 37 of the 45 were detected by the screening. Fourteen of the 45 were PET positive. Sixteen, 5, 4, 9 and 11 cancers were confirmed after the first, the second, the third, the fourth, and the fifth (took 2 years) screening, respectively. Eight participants died, of whom five died of cancer. The rate of cancer incidence (per 100,000) of 628.7 (95% confidence interval [CI] 445.0-812.4) was significantly high, and the rates of cancer mortality and all-cause mortality of 69.9 (95% CI 8.6-131.1) and 111.8 (95% CI 34.3-189.2), respectively, were significantly low, compared with the corresponding rates of 379.3, 138.2 and 354.2, respectively, in the age-rank- and sex-matched general population. During the follow-up period (August 2009 to July 2013), 37 cancers were confirmed and 30 of the 37 were detected. Seven participants died, of whom three died of cancer. The rate of cancer incidence was 809.6 (95% CI 548.7-1070.5). The rates of cancer mortality and all-cause mortality of 65.6 (95% CI 0-139.9) and 153.2 (95% CI 39.7-266.6), respectively, were significantly low compared with 190.1 and 462.3, respectively, in the general population. CONCLUSION Cancer detection by PET alone was limited. While the high cancer incidence was attributed to the extensive screening, the low cancer and all-cause mortality may indicate the potential value of this type of cancer screening. Cancer incidence increases with aging and it has been shown that continuous screening may reduce the risk caused by the cancer progression.
Collapse
Affiliation(s)
- Sadahiko Nishizawa
- Hamamatsu Medical Imaging Center, Hamamatsu Medical Photonics Foundation, 5000 Hirakuchi, Hamakita-ku, Hamamatsu, Shizuoka, 434-0041, Japan.
| | - Shinsuke Kojima
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation, 1-5-4 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Hiroyuki Okada
- Hamamatsu Medical Imaging Center, Hamamatsu Medical Photonics Foundation, 5000 Hirakuchi, Hamakita-ku, Hamamatsu, Shizuoka, 434-0041, Japan.,Department of Business Accelerator, Global Strategic Challenge Center, Hamamatsu Photonics K.K, 5000 Hirakuchi, Hamakita-ku, Hamamatsu, Shizuoka, 434-8601, Japan
| | - Tomomi Shinke
- Department of Business Accelerator, Global Strategic Challenge Center, Hamamatsu Photonics K.K, 5000 Hirakuchi, Hamakita-ku, Hamamatsu, Shizuoka, 434-8601, Japan
| | - Tatsuo Torizuka
- Hamamatsu Medical Imaging Center, Hamamatsu Medical Photonics Foundation, 5000 Hirakuchi, Hamakita-ku, Hamamatsu, Shizuoka, 434-0041, Japan
| | - Satoshi Teramukai
- Department of Biostatistics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Masanori Fukushima
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation, 1-5-4 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| |
Collapse
|
381
|
Consuegra D, Korpar S, Križan P, Pestotnik R, Razdevšek G, Dolenec R. Simulation study to improve the performance of a whole-body PbF 2 Cherenkov TOF-PET scanner. Phys Med Biol 2020; 65:055013. [PMID: 31978910 DOI: 10.1088/1361-6560/ab6f97] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Using Cherenkov radiation in positron emission tomography (PET) has the potential to improve the time of flight (TOF) resolution and reduce the cost of detectors. In previous studies promising TOF results were achieved when lead fluoride (PbF2) crystals were used instead of a scintillator. In this work, a whole-body PbF2 Cherenkov TOF-PET scanner was simulated and optimized. Different configurations of the PbF2 crystals and their surface treatment were considered. Also evaluated was the influence of the crystal-photodetector coupling and of the detection efficiency of the photodetectors. Of special interest is a whole-body PbF2 Cherenkov TOF-PET scanner with a multi-layer detector, which improves the time resolution and reduces the parallax error, without compromising the detection efficiency. Images of a phantom were reconstructed for different configurations of the simulated whole-body PbF2 Cherenkov TOF-PET scanner and the quality of images was compared to that of a whole-body TOF-PET scanner with standard LSO scintillators. The TOF resolution of the whole-body PbF2 Cherenkov TOF-PET scanner with a multi-layer detector was 143 ps FWHM, out of which the fundamental limitation due to light production and transportation was only 22 ps FWHM.
Collapse
Affiliation(s)
- Dania Consuegra
- Jožef Stefan Institute, Ljubljana, Slovenia. Author to whom any correspondence should be addressed
| | | | | | | | | | | |
Collapse
|
382
|
Rosenkrans ZT, Cai W. Total-Body PET Imaging for up to 30 Days After Injection of 89Zr-Labeled Antibodies. J Nucl Med 2020; 61:451-452. [PMID: 31806778 PMCID: PMC7067521 DOI: 10.2967/jnumed.119.236166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/02/2019] [Indexed: 01/02/2023] Open
Affiliation(s)
- Zachary T. Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Weibo Cai
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin; and .,Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
383
|
Sanaat A, Arabi H, Reza Ay M, Zaidi H. Novel preclinical PET geometrical concept using a monolithic scintillator crystal offering concurrent enhancement in spatial resolution and detection sensitivity: a simulation study. ACTA ACUST UNITED AC 2020; 65:045013. [DOI: 10.1088/1361-6560/ab63ef] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
384
|
Pruis IJ, van Dongen GAMS, Veldhuijzen van Zanten SEM. The Added Value of Diagnostic and Theranostic PET Imaging for the Treatment of CNS Tumors. Int J Mol Sci 2020; 21:E1029. [PMID: 32033160 PMCID: PMC7037158 DOI: 10.3390/ijms21031029] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/27/2020] [Accepted: 02/01/2020] [Indexed: 12/11/2022] Open
Abstract
This review highlights the added value of PET imaging in Central Nervous System (CNS) tumors, which is a tool that has rapidly evolved from a merely diagnostic setting to multimodal molecular diagnostics and the guidance of targeted therapy. PET is the method of choice for studying target expression and target binding behind the assumedly intact blood-brain barrier. Today, a variety of diagnostic PET tracers can be used for the primary staging of CNS tumors and to determine the effect of therapy. Additionally, theranostic PET tracers are increasingly used in the context of pharmaceutical and radiopharmaceutical drug development and application. In this approach, a single targeted drug is used for PET diagnosis, upon the coupling of a PET radionuclide, as well as for targeted (nuclide) therapy. Theranostic PET tracers have the potential to serve as a non-invasive whole body navigator in the selection of the most effective drug candidates and their most optimal dose and administration route, together with the potential to serve as a predictive biomarker in the selection of patients who are most likely to benefit from treatment. PET imaging supports the transition from trial and error medicine to predictive, preventive, and personalized medicine, hopefully leading to improved quality of life for patients and more cost-effective care.
Collapse
Affiliation(s)
- Ilanah J. Pruis
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands;
| | - Guus A. M. S. van Dongen
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Sophie E. M. Veldhuijzen van Zanten
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands;
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Department of Pediatrics, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
385
|
Hernández Lozano I, Langer O. Use of imaging to assess the activity of hepatic transporters. Expert Opin Drug Metab Toxicol 2020; 16:149-164. [PMID: 31951754 PMCID: PMC7055509 DOI: 10.1080/17425255.2020.1718107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022]
Abstract
Introduction: Membrane transporters of the SLC and ABC families are abundantly expressed in the liver, where they control the transfer of drugs/drug metabolites across the sinusoidal and canalicular hepatocyte membranes and play a pivotal role in hepatic drug clearance. Noninvasive imaging methods, such as PET, SPECT or MRI, allow for measuring the activity of hepatic transporters in vivo, provided that suitable transporter imaging probes are available.Areas covered: We give an overview of the working principles of imaging-based assessment of hepatic transporter activity. We discuss different currently available PET/SPECT radiotracers and MRI contrast agents and their applications to measure hepatic transporter activity in health and disease. We cover mathematical modeling approaches to obtain quantitative parameters of transporter activity and provide a critical assessment of methodological limitations and challenges associated with this approach.Expert opinion: PET in combination with pharmacokinetic modeling can be potentially applied in drug development to study the distribution of new drug candidates to the liver and their clearance mechanisms. This approach bears potential to mechanistically assess transporter-mediated drug-drug interactions, to assess the influence of disease on hepatic drug disposition and to validate and refine currently available in vitro-in vivo extrapolation methods to predict hepatic clearance of drugs.
Collapse
Affiliation(s)
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| |
Collapse
|
386
|
Cheng L, Ma T, Zhang X, Peng Q, Liu Y, Qi J. Maximum likelihood activity and attenuation estimation using both emission and transmission data with application to utilization of Lu‐176 background radiation in TOF PET. Med Phys 2020; 47:1067-1082. [DOI: 10.1002/mp.13989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/30/2019] [Accepted: 12/09/2019] [Indexed: 11/08/2022] Open
Affiliation(s)
- Li Cheng
- Department of Biomedical Engineering University of California‐Davis Davis CA 95616USA
- Department of Engineering Physics Tsinghua University Beijing 100084China
| | - Tianyu Ma
- Department of Engineering Physics Tsinghua University Beijing 100084China
| | - Xuezhu Zhang
- Department of Biomedical Engineering University of California‐Davis Davis CA 95616USA
| | - Qiyu Peng
- Structural Biology and Imaging Department Lawrence Berkeley National Laboratory Berkeley CA 94720USA
| | - Yaqiang Liu
- Department of Engineering Physics Tsinghua University Beijing 100084China
| | - Jinyi Qi
- Department of Biomedical Engineering University of California‐Davis Davis CA 95616USA
| |
Collapse
|
387
|
Moghadam N, Arpin L, Espagnet R, Bouchard J, Viscogliosi N, Lecomte R, Fontaine R. Performance investigation of LabPET II detector technology in an MRI-like environment. Phys Med Biol 2020; 65:035001. [PMID: 31726447 DOI: 10.1088/1361-6560/ab57e0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The EMI-compatibility of the LabPET II detection module (DM) to develop a high-resolution simultaneous PET/MRI system is investigated. The experimental set-up evaluates the performance of two LabPET II DMs in close proximity to RF coils excited at three different frequencies mimicking the electromagnetic environments of 3 T, 7 T, and 9.4 T MRI scanners. A gradient coil, with switching frequency from 10 kHz to 100 kHz, also surrounds one of the DMs to investigate the effects of the gradient field on the individual detector performance, such as the baseline of the DC-voltage and noise level along with both the energy and coincidence time resolutions. Measurements demonstrate a position shift of the energy photopeaks (⩽9%) and a slight deterioration of the energy and coincidence time resolutions in the presence of electromagnetic interferences from the gradient and RF coils. The electromagnetic interferences cause an average degradation of up to ~50% of the energy resolution (in time-over-threshold spectra) and up to 18% of the timing resolution. Based on these results, a modified version of the DM, including a composite shielding as well as an improved heat pipe-based cooling mechanism, capable of stabilizing the temperature of the DM at ~40 °C, is proposed and investigated. This shielded version shows no evidence of performance degradation inside an MRI-like environment. The experimental results demonstrate that a properly shielded version of the LabPET II DM is a viable candidate for an MR-compatible PET scanner.
Collapse
Affiliation(s)
- Narjes Moghadam
- Groupe de Recherche en Appareillage Médical de Sherbrooke (GRAMS), Department of Electrical and Computer Engineering, Interdisciplinary Institute for Technological Innovation (3IT), Université de Sherbrooke, Sherbrooke, Québec, Canada.,Author to whom any correspondence should be addressed
| | - Louis Arpin
- Imaging, Research and Technology (IR&T), Sherbrooke, Québec, Canada
| | - Romain Espagnet
- Groupe de Recherche en Appareillage Médical de Sherbrooke (GRAMS), Department of Electrical and Computer Engineering, Interdisciplinary Institute for Technological Innovation (3IT), Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jonathan Bouchard
- Groupe de Recherche en Appareillage Médical de Sherbrooke (GRAMS), Department of Electrical and Computer Engineering, Interdisciplinary Institute for Technological Innovation (3IT), Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Nicolas Viscogliosi
- Groupe de Recherche en Appareillage Médical de Sherbrooke (GRAMS), Department of Electrical and Computer Engineering, Interdisciplinary Institute for Technological Innovation (3IT), Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Roger Lecomte
- Department of Nuclear Medicine and Radiobiology, Sherbrooke Molecular Imaging Center (CIMS), Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Réjean Fontaine
- Groupe de Recherche en Appareillage Médical de Sherbrooke (GRAMS), Department of Electrical and Computer Engineering, Interdisciplinary Institute for Technological Innovation (3IT), Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
388
|
Viswanath V, Daube Witherspoon ME, Karp JS, Surti S. Numerical observer study of lesion detectability for a long axial field-of-view whole-body PET imager using the PennPET Explorer. Phys Med Biol 2020; 65:035002. [PMID: 31816616 PMCID: PMC7261597 DOI: 10.1088/1361-6560/ab6011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This work uses lesion detectability to characterize the performance of long axial field of view (AFOV) PET scanners which have increased sensitivity compared to clinical scanners. Studies were performed using the PennPET Explorer, a 70 cm long AFOV scanner built at the University of Pennsylvania, for small lesions distributed in a uniform water-filled cylinder (simulations and measurements), an anthropomorphic torso phantom (measurement), and a human subject (measurement). The lesion localization and detection task was quantified numerically using a generalized scan statistics methodology. Detectability was studied as a function of background activity distribution, scan duration for a single bed position, and axial location of the lesions. For the cylindrical phantom, the areas under the localization receiver operating curve (ALROCs) of lesions placed at various axial locations in the scanner were greater than 0.8-a value considered to be clinically acceptable (i.e. 80% probability of detecting lesion)-for scan times of 60 s or longer for standard-of-care (SoC) clinical dose levels. 10 mm diameter lesions placed in the anthropomorphic phantom and human subject resulted in ALROCs of 0.8 or greater for scan times longer than 30 s in the lung region and 60 s in the liver region, also for SoC doses. ALROC results from all three activity distributions show similar trends as a function of counts detected per axial location. These results will be used to guide decisions on imaging parameters, such as scan time and patient dose, when imaging patients in a single bed position on long AFOV systems and can also be applied to clinical scanners with consideration of the sensitivity differences.
Collapse
Affiliation(s)
- Varsha Viswanath
- Department of BioEngineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, United States of America. Author to whom any correspondence should be addressed
| | | | | | | |
Collapse
|
389
|
Wilson KJ, Alabd R, Abolhasan M, Franklin DR, Safavi-Naeini M. Localisation of the Lines of Response in a Continuous Cylindrical Shell PET Scanner. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:4844-4850. [PMID: 31946946 DOI: 10.1109/embc.2019.8856676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This work presents a technique for localising the endpoints of the lines of response in a PET scanner based on a continuous cylindrical shell scintillator. The technique is demonstrated by applying it to a simulation of a sensitivity-optimised continuous cylindrical shell PET system using two novel scintillator materials - a transparent ceramic garnet, GLuGAG:Ce, and a LuF3:Ce-polystyrene nanocomposite. Error distributions for the endpoints of the lines of response in the axial, tangential and radial dimension as well as overall endpoint spatial error are calculated for three source positions; the resultant distribution of error in the placement of the lines of response is also estimated.
Collapse
|
390
|
Gong K, Berg E, Cherry SR, Qi J. Machine Learning in PET: from Photon Detection to Quantitative Image Reconstruction. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2020; 108:51-68. [PMID: 38045770 PMCID: PMC10691821 DOI: 10.1109/jproc.2019.2936809] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Machine learning has found unique applications in nuclear medicine from photon detection to quantitative image reconstruction. While there have been impressive strides in detector development for time-of-flight positron emission tomography, most detectors still make use of simple signal processing methods to extract the time and position information from the detector signals. Now with the availability of fast waveform digitizers, machine learning techniques have been applied to estimate the position and arrival time of high-energy photons. In quantitative image reconstruction, machine learning has been used to estimate various corrections factors, including scattered events and attenuation images, as well as to reduce statistical noise in reconstructed images. Here machine learning either provides a faster alternative to an existing time-consuming computation, such as in the case of scatter estimation, or creates a data-driven approach to map an implicitly defined function, such as in the case of estimating the attenuation map for PET/MR scans. In this article, we will review the abovementioned applications of machine learning in nuclear medicine.
Collapse
Affiliation(s)
- Kuang Gong
- Department of Biomedical Engineering, University of California, Davis, CA, USA and is now with Massachusetts General Hospital, Boston, MA, USA
| | - Eric Berg
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Simon R. Cherry
- Department of Biomedical Engineering and Department of Radiology, University of California, Davis, CA, USA
| | - Jinyi Qi
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| |
Collapse
|
391
|
|
392
|
Pérez-Medina C, Teunissen AJ, Kluza E, Mulder WJ, van der Meel R. Nuclear imaging approaches facilitating nanomedicine translation. Adv Drug Deliv Rev 2020; 154-155:123-141. [PMID: 32721459 DOI: 10.1016/j.addr.2020.07.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/08/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
Nanomedicine approaches can effectively modulate the biodistribution and bioavailability of therapeutic agents, improving their therapeutic index. However, despite the ever-increasing amount of literature reporting on preclinical nanomedicine, the number of nanotherapeutics receiving FDA approval remains relatively low. Several barriers exist that hamper the effective preclinical evaluation and clinical translation of nanotherapeutics. Key barriers include insufficient understanding of nanomedicines' in vivo behavior, inadequate translation from murine models to larger animals, and a lack of patient stratification strategies. Integrating quantitative non-invasive imaging techniques in nanomedicine development offers attractive possibilities to address these issues. Among the available imaging techniques, nuclear imaging by positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are highly attractive in this context owing to their quantitative nature and uncontested sensitivity. In basic and translational research, nuclear imaging techniques can provide critical quantitative information about pharmacokinetic parameters, biodistribution profiles or target site accumulation of nanocarriers and their associated payload. During clinical evaluation, nuclear imaging can be used to select patients amenable to nanomedicine treatment. Here, we review how nuclear imaging-based approaches are increasingly being integrated into nanomedicine development and discuss future developments that will accelerate their clinical translation.
Collapse
|
393
|
Sánchez-Roa PM, Rees JI, Bartley L, Marshall C. Systemic atherosclerotic plaque vulnerability in patients with Coronary Artery Disease with a single Whole Body FDG PET-CT scan. ASIA OCEANIA JOURNAL OF NUCLEAR MEDICINE & BIOLOGY 2020; 8:18-26. [PMID: 32064279 PMCID: PMC6994774 DOI: 10.22038/aojnmb.2019.40696.1273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Cardiovascular disease is a leading cause of morbimortality with over half cardiovascular events occurring in the asymptomatic population by traditional risk stratification. This preliminary study aimed to evaluate systemic plaque vulnerability in patients with prior Coronary Artery Disease (CAD) with a single Whole Body [FDG] PET-CT scan in terms of plaque inflammation and calcifications. METHODS Twenty-two patients referred for oncological evaluation and with prior history of advanced CAD or age and gender matched controls without cardiovascular disease, underwent a Whole Body PET-CT scan 90 min after injection of 18F-FDG. A total of 975 transaxial PET images were retrospectively analysed to assess plaque inflammation using a standardized method of analysis with averaged Target-to-Background Ratios (TBRs) at different levels, in the thoracic and abdominal aorta, carotids, LAD, common iliac and femoral arteries, and were correlated with calcium scores from the CT images. RESULTS TBRs from the thoracic aorta were higher in male patients than controls (1.49±0.11, p<0.05) and a gradient was observed (ascending > descending > aortic arch), and were also higher in the carotids in female patients (1.43±0.07) versus controls (p<0.05). A tendency for higher levels of plaque inflammation in the abdominal aorta was noted in all groups, but no significant FDG uptake was found either in the iliac or femoral arteries in any group. Plaque inflammation was also higher in the LAD in males but with large variations. Higher levels of calcifications were noted in the LAD, infra-renal abdominal aorta and common iliac arteries, but without significant correlation with plaque inflammation except sporadic overlapping. CONCLUSION Patients with advanced CAD are at risk for vulnerable inflamed atheromas in other territories such as the thoracic aorta and carotid arteries, underpinning the systemic nature of the atherosclerotic disease. Coexistence with calcifications is rare, suggesting a different functional status of the plaques and different stages of the disease. Evaluation of subclinical systemic plaque vulnerability in CAD with a Whole Body [FDG] PET-CT scan is feasible and a potentially useful biomarker to assess subclinical vascular risk for risk stratification and treatment optimization, but further studies are needed.
Collapse
Affiliation(s)
- Patricia M. Sánchez-Roa
- Wales Research and Diagnostic Positron Emission Tomography Imaging Centre (PETIC), University Hospital of Wales, Cardiff University, Cardiff, Wales, UK
- Severnside Alliance for Translational Research, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - John I. Rees
- Wales Research and Diagnostic Positron Emission Tomography Imaging Centre (PETIC), University Hospital of Wales, Cardiff University, Cardiff, Wales, UK
- Department of Radiology, University Hospital of Wales, Cardiff, Wales, UK
| | - Lee Bartley
- Wales Research and Diagnostic Positron Emission Tomography Imaging Centre (PETIC), University Hospital of Wales, Cardiff University, Cardiff, Wales, UK
- Department of Radiology, University Hospital of Wales, Cardiff, Wales, UK
| | - Christopher Marshall
- Wales Research and Diagnostic Positron Emission Tomography Imaging Centre (PETIC), University Hospital of Wales, Cardiff University, Cardiff, Wales, UK
| |
Collapse
|
394
|
Abstract
SPECT and PET are nuclear tomographic imaging modalities that visualize functional information based on the accumulation of radioactive tracer molecules. However, SPECT and PET lack anatomical information, which has motivated their combination with an anatomical imaging modality such as CT or MRI. This chapter begins with an overview over the fundamental physics of SPECT and PET followed by a presentation of the respective detector technologies, including detection requirements, principles and different detector concepts. The reader is subsequently provided with an introduction into hybrid imaging concepts, before a dedicated section presents the challenges that arise when hybridizing SPECT or PET with MRI, namely, mutual distortions of the different electromagnetic fields in MRI on the nuclear imaging system and vice versa. The chapter closes with an overview about current hybrid imaging systems of both clinical and preclinical kind. Finally, future developments in hybrid SPECT and PET technology are discussed.
Collapse
Affiliation(s)
- Teresa Nolte
- Physics of Molecular Imaging Systems, Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Nicolas Gross-Weege
- Physics of Molecular Imaging Systems, Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Volkmar Schulz
- Physics of Molecular Imaging Systems, Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany.
- Hyperion Hybrid Imaging Systems GmbH, Aachen, Germany.
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany.
| |
Collapse
|
395
|
Physics, Instrumentation, and Radiation Safety and Regulations. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
396
|
Adams H, van de Garde EMW, van Moorsel CHM, Vugts DJ, van Dongen GAMS, Grutters JC, Keijsers RG. [ 89Zr]Zr-rituximab PET/CT activity in patients with therapy refractory interstitial pneumonitis: a feasibility study. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2019; 9:296-308. [PMID: 31976159 PMCID: PMC6971479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Recent studies on immune-mediated inflammatory lung diseases show encouraging treatment results with rituximab, a monoclonal antibody (mAb) against CD20-expressing B lymphocytes. The present pilot study aimed to explore the possibility to image CD20-expression in the lungs as future early predictor of treatment response. We describe a series of 10 patients with therapy refractory interstitial pneumonitis who were treated with rituximab (1000 mg at day 0 and day 14) and underwent PET/CT after the administration of [89Zr]Zr-N-suc-DFO-rituximab abbreviated as [89Zr]Zr-rituximab. [89Zr]-rituximab PET/CT of the chest was performed on day 3 and 6. [89Zr]Zr-rituximab PET/CT showed visual and quantifiable increased pulmonary activity in four patients. Other patients demonstrated no increased activity in the lungs. One patient developed a severe allergic reaction during infusion of the first 10% unlabeled rituximab after which rituximab infusion was ceased. Subsequent administration of [89Zr]Zr-rituximab, however, did not result in any adverse reaction. This patient demonstrated the highest uptake of [89Zr]Zr-rituximab in mediastinal lymph nodes and lung parenchyma compared to the other 9 patients who did receive the full dose rituximab before [89Zr]Zr-rituximab. This pilot study demonstrates that [89Zr]Zr-rituximab PET/CT imaging in patients with therapy refractory interstitial pneumonitis is feasible and shows lung-specific uptake in some patients. Further research with larger sample size should establish if the [89Zr]Zr-rituximab uptake correlates with treatment response to rituximab. The higher uptake in the absence of a full 1000 mg rituximab preload may suggest that future studies should consider [89Zr]Zr-rituximab imaging at low mAb dose before treatment with rituximab.
Collapse
Affiliation(s)
- Human Adams
- Department of Pulmonology, ILD Center of Excellence, St. Antonius HospitalNieuwegein, The Netherlands
- Department of Nuclear Medicine, Green Heart HospitalThe Netherlands
| | | | - Coline HM van Moorsel
- Department of Pulmonology, ILD Center of Excellence, St. Antonius HospitalNieuwegein, The Netherlands
| | - Danielle J Vugts
- Department of Radiology and Nuclear Medicine, VU University Medical CenterAmsterdam, The Netherlands
| | - Guus AMS van Dongen
- Department of Radiology and Nuclear Medicine, VU University Medical CenterAmsterdam, The Netherlands
| | - Jan C Grutters
- Department of Pulmonology, ILD Center of Excellence, St. Antonius HospitalNieuwegein, The Netherlands
- Division of Heart & Lung, University Medical Center UtrechtUtrecht, The Netherlands
| | - Ruth G Keijsers
- Department of Nuclear Medicine, St. Antonius HospitalNieuwegein, The Netherlands
| |
Collapse
|
397
|
Fischer A, Patel NM, Volkmann ER. Interstitial Lung Disease in Systemic Sclerosis: Focus on Early Detection and Intervention. Open Access Rheumatol 2019; 11:283-307. [PMID: 31849543 PMCID: PMC6910104 DOI: 10.2147/oarrr.s226695] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/09/2019] [Indexed: 12/11/2022] Open
Abstract
Systemic sclerosis (SSc) is a progressive and often devastating disease characterized by autoimmune dysfunction, vasculopathy, and fibrosis. Interstitial lung disease (ILD) is identified in the majority of patients with SSc and is the leading cause of SSc-related mortality. Although clinical manifestations and ILD severity vary among patients, lung function typically declines to the greatest extent during the first 3-4 years after disease onset. We aim to provide an overview of SSc-associated ILD (SSc-ILD) with a focus on current and emerging tools for early diagnosis of ILD and current and novel treatments under investigation. Early detection of ILD provides the opportunity for early therapeutic intervention, which could improve patient outcomes. Thoracic high-resolution computed tomography is the most effective method of identifying ILD in patients with SSc; it enables detection of mild lung abnormalities and plays an important role in monitoring disease progression. Cyclophosphamide and mycophenolate mofetil are the most commonly prescribed treatments for SSc-ILD. Recently, nintedanib (an antifibrotic) was approved by the Food and Drug Administration for patients with SSc-ILD; it is indicated for slowing the rate of decline in pulmonary function. However, there is a need for additional effective and well-tolerated disease-modifying therapy. Ongoing studies are evaluating other antifibrotics and novel agents. We envision that early detection of lung involvement, combined with the emergence and integration of novel therapies, will lead to improved outcomes in patients with SSc-ILD.
Collapse
Affiliation(s)
- Aryeh Fischer
- Division of Rheumatology, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Denver, CO, USA
| | - Nina M Patel
- Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Elizabeth R Volkmann
- Division of Rheumatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
398
|
Whiteley W, Gregor J. CNN-based PET sinogram repair to mitigate defective block detectors. Phys Med Biol 2019; 64:235017. [PMID: 31569075 DOI: 10.1088/1361-6560/ab4919] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Positron emission tomography (PET) scanners continue to increase sensitivity and axial coverage by adding an ever expanding array of block detectors. As they age, one or more block detectors may lose sensitivity due to a malfunction or component failure. The sinogram data missing as a result thereof can lead to artifacts and other image degradations. We propose to mitigate the effects of malfunctioning block detectors by carrying out sinogram repair using a deep convolutional neural network. Experiments using whole-body patient studies with varying amounts of raw data removed are used to show that the neural network significantly outperforms previously published methods with respect to normalized mean squared error for raw sinograms, a multi-scale structural similarity measure for reconstructed images and with regard to quantitative accuracy.
Collapse
Affiliation(s)
- William Whiteley
- The University of Tennessee, Knoxville, TN, United States of America, 37996. Siemens Medical Solutions USA Inc., Knoxville, TN, United States of America, 37932. Author to whom any correspondence should be addressed
| | | |
Collapse
|
399
|
MacAskill MG, Newby DE, Tavares AAS. Frontiers in positron emission tomography imaging of the vulnerable atherosclerotic plaque. Cardiovasc Res 2019; 115:1952-1962. [PMID: 31233100 PMCID: PMC6872971 DOI: 10.1093/cvr/cvz162] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/16/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
Rupture of vulnerable atherosclerotic plaques leading to an atherothrombotic event is the primary driver of myocardial infarction and stroke. The ability to detect non-invasively the presence and evolution of vulnerable plaques could have a huge impact on the future identification and management of atherosclerotic cardiovascular disease. Positron emission tomography (PET) imaging with an appropriate radiotracer has the potential to achieve this goal. This review will discuss the biological hallmarks of plaque vulnerability before going on to evaluate and to present PET imaging approaches which target these processes. The focus of this review will be on techniques beyond [18F]FDG imaging, some of which are clinically advanced, and others which are on the horizon. As inflammation is the primary driving force behind atherosclerotic plaque development, we will predominantly focus on approaches which either directly, or indirectly, target this process.
Collapse
Affiliation(s)
- Mark G MacAskill
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - David E Newby
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Adriana A S Tavares
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
400
|
Abstract
Molecular imaging is an emerging technology that enables the noninvasive visualization, characterization, and quantification of molecular events within living subjects. Positron emission tomography (PET) is a clinically available molecular imaging tool with significant potential to study pathogenesis of infections in humans. Molecular imaging is an emerging technology that enables the noninvasive visualization, characterization, and quantification of molecular events within living subjects. Positron emission tomography (PET) is a clinically available molecular imaging tool with significant potential to study pathogenesis of infections in humans. PET enables dynamic assessment of infectious processes within the same subject with high temporal and spatial resolution and obviates the need for invasive tissue sampling, which is difficult in patients and generally limited to a single time point, even in animal models. This review presents current state-of-the-art concepts on the application of molecular imaging for infectious diseases and details how PET imaging can facilitate novel insights into infectious processes, ongoing development of pathogen-specific imaging, and simultaneous in situ measurements of intralesional antimicrobial pharmacokinetics in multiple compartments, including privileged sites. Finally, the potential clinical applications of this promising technology are also discussed.
Collapse
|