351
|
Waespe N, Strebel S, Nava T, Uppugunduri CRS, Marino D, Mattiello V, Otth M, Gumy-Pause F, Von Bueren AO, Baleydier F, Mader L, Spoerri A, Kuehni CE, Ansari M. Cohort-based association study of germline genetic variants with acute and chronic health complications of childhood cancer and its treatment: Genetic Risks for Childhood Cancer Complications Switzerland (GECCOS) study protocol. BMJ Open 2022; 12:e052131. [PMID: 35074812 PMCID: PMC8788194 DOI: 10.1136/bmjopen-2021-052131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Childhood cancer and its treatment may lead to various health complications. Related impairment in quality of life, excess in deaths and accumulated healthcare costs are relevant. Genetic variations are suggested to contribute to the wide inter-individual variability of complications but have been used only rarely to risk-stratify treatment and follow-up care. This study aims to identify germline genetic variants associated with acute and late complications of childhood cancer. METHODS AND ANALYSIS The Genetic Risks for Childhood Cancer Complications Switzerland (GECCOS) study is a nationwide cohort study. Eligible are patients and survivors who were diagnosed with childhood cancers or Langerhans cell histiocytosis before age 21 years, were registered in the Swiss Childhood Cancer Registry (SCCR) since 1976 and have consented to the Paediatric Biobank for Research in Haematology and Oncology, Geneva, host of the national Germline DNA Biobank Switzerland for Childhood Cancer and Blood Disorders (BISKIDS).GECCOS uses demographic and clinical data from the SCCR and the associated Swiss Childhood Cancer Survivor Study. Clinical outcome data consists of organ function testing, health conditions diagnosed by physicians, second primary neoplasms and self-reported information from participants. Germline genetic samples and sequencing data are collected in BISKIDS. We will perform association analyses using primarily whole-exome or whole-genome sequencing to identify genetic variants associated with specified health conditions. We will use clustering and machine-learning techniques and assess multiple health conditions in different models. DISCUSSION GECCOS will improve knowledge of germline genetic variants associated with childhood cancer-associated health conditions and help to further individualise cancer treatment and follow-up care, potentially resulting in improved efficacy and reduced side effects. ETHICS AND DISSEMINATION The Geneva Cantonal Commission for Research Ethics has approved the GECCOS study.Research findings will be disseminated through national and international conferences, publications in peer-reviewed journals and in lay language online. TRIAL REGISTRATION NUMBER NCT04702321.
Collapse
Affiliation(s)
- Nicolas Waespe
- CANSEARCH Research Platform for Paediatric Oncology and Haematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Childhood Cancer Research Group, Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
- Division of Paediatric Oncology and Haematology, Department of Paediatrics, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Sven Strebel
- CANSEARCH Research Platform for Paediatric Oncology and Haematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Childhood Cancer Research Group, Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences (GHS), University of Bern, Bern, Switzerland
| | - Tiago Nava
- CANSEARCH Research Platform for Paediatric Oncology and Haematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Paediatric Oncology and Haematology, Department of Women, Children, and Adolescents, University Hospitals of Geneva, Geneve, Switzerland
| | - Chakradhara Rao S Uppugunduri
- CANSEARCH Research Platform for Paediatric Oncology and Haematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Denis Marino
- CANSEARCH Research Platform for Paediatric Oncology and Haematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Veneranda Mattiello
- CANSEARCH Research Platform for Paediatric Oncology and Haematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Paediatric Oncology and Haematology, Department of Women, Children, and Adolescents, University Hospitals of Geneva, Geneve, Switzerland
| | - Maria Otth
- Childhood Cancer Research Group, Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
- Division of Oncology-Hematology, Department of Pediatrics, Kantonsspital Aarau AG, Aarau, Switzerland
| | - Fabienne Gumy-Pause
- CANSEARCH Research Platform for Paediatric Oncology and Haematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Paediatric Oncology and Haematology, Department of Women, Children, and Adolescents, University Hospitals of Geneva, Geneve, Switzerland
| | - André O Von Bueren
- CANSEARCH Research Platform for Paediatric Oncology and Haematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Paediatric Oncology and Haematology, Department of Women, Children, and Adolescents, University Hospitals of Geneva, Geneve, Switzerland
| | - Frederic Baleydier
- CANSEARCH Research Platform for Paediatric Oncology and Haematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Paediatric Oncology and Haematology, Department of Women, Children, and Adolescents, University Hospitals of Geneva, Geneve, Switzerland
| | - Luzius Mader
- Childhood Cancer Research Group, Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Adrian Spoerri
- SwissRDL - Medical Registries and Data Linkage, Institute of Social and Preventive Medicine, Universitat Bern, Bern, Switzerland
| | - Claudia E Kuehni
- Childhood Cancer Research Group, Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Division of Paediatric Oncology and Haematology, Department of Paediatrics, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Marc Ansari
- CANSEARCH Research Platform for Paediatric Oncology and Haematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Paediatric Oncology and Haematology, Department of Women, Children, and Adolescents, University Hospitals of Geneva, Geneve, Switzerland
| |
Collapse
|
352
|
López Mendoza CM, Alcántara Quintana LE. Smart Drug Delivery Strategies for Cancer Therapy. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2021.753766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy is one of the most widely used strategies to fight cancer, although it has disadvantages such as accumulation in healthy organs and lack of specificity by cancer cells (non-targeted molecules), among others, resulting in adverse effects on patients that limit the dose or follow-up with the same. However, the treatment can also fail due to the resistance mechanisms that cancer cells have to these agents. Because of these limitations, smart drug delivery strategies have been developed to overcome treatment challenges. These smart drug strategies are made with the aim of passively or actively releasing the drug into the tumor environment, increasing the uptake of the chemotherapeutic agent by the cancer cells, thus reducing the adverse effects on other vital organs. Also, these strategies can be guided with molecules on their surface that interact with the tumor microenvironment or with specific receptors on the cancer cell membrane, thus conferring high affinity. This mini review summarizes advances in the development of drug delivery techniques for cancer treatment, including different smart nanocarriers with single or multifunctional stimuli responsiveness. At the same time, we highlight the toxicity and delivery of these strategies in in vivo models. Despite innovation in smart delivery techniques, there are still biodistribution and customization challenges to be overcome in future research.
Collapse
|
353
|
Malhotra S, Dumoga S, Mehta S, Rao EP, Mohanty S, Singh N. Engineering Cellular Membrane for Dual Mode Therapy Using NIR Responsive Photosensitizer and Reversible Topoisomerase Inhibition Activity. ACS APPLIED BIO MATERIALS 2022; 5:570-582. [PMID: 35040623 DOI: 10.1021/acsabm.1c01070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Extensive research over past few decades has highlighted the challenges of chemotherapy and prompted the need for multimodality therapy because chemotherapy alone cannot fully eradicate the tumor due to physiological barriers in its effective delivery and systemic side effects. It can be mitigated by adopting nanoparticles as more effective delivery method, but none of them completely prevents drug toxicities. Utilizing multiple therapeutic modes such as phototherapy that can act synergistically with chemotherapy in controlling tumor growth, while reducing the overall dosage, could become a preferred route for cancer management. Careful selection of nanoparticle system, which can simultaneously deliver both drug and photosensitizer, can significantly enhance the therapeutic outcome. Therefore, in this paper, we report development and potential of immune-compatible and long circulating nanoerythrosomes for enhancing the therapeutic potential of camptothecin and indocyanine green against murine cancer model. The RBCs membrane simultaneously loaded the nonpolar drug and amphiphilic photosensitizer in its lipid bilayer, which self-assembled to form stable nanoparticles. These nano constructs absorbed light in the near-infrared region and hence are suitable for targeting deep seated tissues. The dual chemo-phototherapy had great effect on cell viability and had therapeutic value.
Collapse
Affiliation(s)
- Sahil Malhotra
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shweta Dumoga
- Meerut Institute of Engineering and Technology, Meerut 250005, India
| | - Supriya Mehta
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - E Pranshu Rao
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sujata Mohanty
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.,Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
354
|
Milliron BJ, Packel L, Dychtwald D, Klobodu C, Pontiggia L, Ogbogu O, Barksdale B, Deutsch J. When Eating Becomes Torturous: Understanding Nutrition-Related Cancer Treatment Side Effects among Individuals with Cancer and Their Caregivers. Nutrients 2022; 14:nu14020356. [PMID: 35057538 PMCID: PMC8781744 DOI: 10.3390/nu14020356] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 11/24/2022] Open
Abstract
Individuals living with cancer often experience multiple nutrition-related side effects from cancer treatment, including changes in taste and smell, nausea, diarrhea, loss of appetite, and pain during eating. These side effects can profoundly impact nutritional status and quality of life. The purpose of this study was to explore experiences with nutrition-related cancer treatment side effects among cancer patients and their family caregivers, the way they manage such side effects, and the resulting changes in food preferences and behaviors. Structured surveys and in-depth interviews were conducted. Interviews focused on the presence and management of treatment side effects, how those changes influenced food preferences, and the extent to which they interfered with quality of life. Most patients (72%) reported treatment side effects; 61% reported that these side effects impacted their eating and drinking. Common side effects included fatigue (58%), dry mouth (30%), nausea (24%), constipation (20%) and diarrhea (20%). Six overarching qualitative themes were identified: Spiral of side effects; Pain of eating; Burden of eating; Loss of taste/change in taste; Symptom management; and Solutions. The authors conclude with implications for food and nutrition practice—moving beyond traditional recommendations of what to eat or avoid—to consider the overall patient and caregiver experience.
Collapse
Affiliation(s)
- Brandy-Joe Milliron
- Department of Nutrition Sciences, College of Nursing and Health Professions, Drexel University, 1601 Cherry Street, Philadelphia, PA 19102, USA; (D.D.); (C.K.)
- Department of Food and Hospitality Management, College of Nursing and Health Professions, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA;
- Correspondence:
| | - Lora Packel
- Department of Physical Therapy, University of the Sciences, 600 S. 43rd Street, Philadelphia, PA 19104, USA;
| | - Dan Dychtwald
- Department of Nutrition Sciences, College of Nursing and Health Professions, Drexel University, 1601 Cherry Street, Philadelphia, PA 19102, USA; (D.D.); (C.K.)
| | - Cynthia Klobodu
- Department of Nutrition Sciences, College of Nursing and Health Professions, Drexel University, 1601 Cherry Street, Philadelphia, PA 19102, USA; (D.D.); (C.K.)
| | - Laura Pontiggia
- Institute of Emerging Health Professions, Thomas Jefferson University, 901 Walnut Street, Philadelphia, PA 19107, USA;
| | - Ochi Ogbogu
- AstraZeneca Hope Lodge of the American Cancer Society, 110 W Laurel Ave., Cheltenham, PA 19012, USA; (O.O.); (B.B.)
| | - Byron Barksdale
- AstraZeneca Hope Lodge of the American Cancer Society, 110 W Laurel Ave., Cheltenham, PA 19012, USA; (O.O.); (B.B.)
| | - Jonathan Deutsch
- Department of Food and Hospitality Management, College of Nursing and Health Professions, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA;
| |
Collapse
|
355
|
Gharnas‐Ghamesh H, Masoumi M, Erfani‐Moghadam V. Synthesis of doxorubicin‐loaded
PBMA‐b‐POEGMA
micelles and assessment of its anticancer activity against breast cancer cells (4T1). J Appl Polym Sci 2022. [DOI: 10.1002/app.52162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hamideh Gharnas‐Ghamesh
- Department of Chemical Engineering, Ayatollah Amoli Branch Islamic Azad University Amol Iran
| | - Mojtaba Masoumi
- Department of Chemical Engineering, Ayatollah Amoli Branch Islamic Azad University Amol Iran
| | - Vahid Erfani‐Moghadam
- Medical Cellular and Molecular Research Center Golestan University of Medical Sciences Gorgan Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine Golestan University of Medical Sciences Gorgan Iran
| |
Collapse
|
356
|
Yee Kuen C, Masarudin MJ. Chitosan Nanoparticle-Based System: A New Insight into the Promising Controlled Release System for Lung Cancer Treatment. Molecules 2022; 27:473. [PMID: 35056788 PMCID: PMC8778092 DOI: 10.3390/molecules27020473] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer has been recognized as one of the most often diagnosed and perhaps most lethal cancer diseases worldwide. Conventional chemotherapy for lung cancer-related diseases has bumped into various limitations and challenges, including non-targeted drug delivery, short drug retention period, low therapeutic efficacy, and multidrug resistance (MDR). Chitosan (CS), a natural polymer derived from deacetylation of chitin, and comprised of arbitrarily distributed β-(1-4)-linked d-glucosamine (deacetylated unit) and N-acetyl-d-glucosamine (acetylated unit) that exhibits magnificent characteristics, including being mucoadhesive, biodegradable, and biocompatible, has emerged as an essential element for the development of a nano-particulate delivery vehicle. Additionally, the flexibility of CS structure due to the free protonable amino groups in the CS backbone has made it easy for the modification and functionalization of CS to be developed into a nanoparticle system with high adaptability in lung cancer treatment. In this review, the current state of chitosan nanoparticle (CNP) systems, including the advantages, challenges, and opportunities, will be discussed, followed by drug release mechanisms and mathematical kinetic models. Subsequently, various modification routes of CNP for improved and enhanced therapeutic efficacy, as well as other restrictions of conventional drug administration for lung cancer treatment, are covered.
Collapse
Affiliation(s)
- Cha Yee Kuen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- UPM-MAKNA Cancer Research Laboratory, Institute of Biosciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
357
|
Dadashpour M, Ganjibakhsh M, Mousazadeh H, Nejati K. Increased Pro-Apoptotic and Anti-Proliferative Activities of Simvastatin Encapsulated PCL-PEG Nanoparticles on Human Breast Cancer Adenocarcinoma Cells. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02217-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
358
|
Haider S, Penfornis P, Claudio PP, McChesney JD, Chittiboyina AG. Balancing the efficacy vs. the toxicity of promiscuous natural products: Paclitaxel-based acid-labile lipophilic prodrugs as promising chemotherapeutics. Eur J Med Chem 2022; 227:113891. [PMID: 34656042 DOI: 10.1016/j.ejmech.2021.113891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/14/2022]
Abstract
TumorSelect® is an anticancer technology that combines cytotoxics, nanotechnology, and knowledge of human physiology to develop innovative therapeutic interventions with minimal undesirable side effects commonly observed in conventional chemotherapy. Tumors have a voracious appetite for cholesterol which facilitates tumor growth and fuels their proliferation. We have transformed this need into a stealth delivery system to disguise and deliver anticancer drugs with the assistance of both the human body and the tumor cell. Several designer prodrugs are incorporated within pseudo-LDL nanoparticles, which carry them to tumor tissues, are taken up, internalized, transformed into active drugs, and inhibit cancer cell proliferation. Highly lipophilic prodrug conjugates of paclitaxel suitable for incorporation into the pseudo-LDL nanoparticles of the TumorSelect® delivery vehicle formulation were designed, synthesized, and evaluated in the panel of 24-h NCI-60 human tumor cell line screening to demonstrate the power of such an innovative approach. Taxane prodrugs, viz., ART-207 was synthesized by tethering paclitaxel to lipid moiety with the aid of a racemic solketal as a linker in cost-effective, simple, and straightforward synthetic transformations. In addition to the typical 24-h NCI screening protocol, these compounds were assessed for growth inhibition or killing of ovarian cell lines for 48 and 72h-time intervals and identified the long-lasting effectiveness of these lipophilic prodrugs. All possible, enantiomerically pure isomers of ART-207 were also synthesized, and cytotoxicities were biosimilar to racemic ART-207, suggesting that enantiopurity of linker has a negligible effect on cell proliferation. To substantiate further, ART-207 was evaluated for its in vivo tumor reduction efficacy by studying the xenograft model of ovarian cancer grown in SCID mice. Reduced weight loss (a measure of toxicity) in the ART-207 group was observed, even though it was dosed at 2.5x the paclitaxel equivalent of Abraxane®. As a result, our delineated approach is anticipated to improve patient quality of life, patient retention in treatment regimes, post-treatment rapid recovery, and overall patient compliance without compromising the efficacy of the cytotoxic promiscuous natural products.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/chemical synthesis
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Biological Products/chemical synthesis
- Biological Products/chemistry
- Biological Products/pharmacology
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Dose-Response Relationship, Drug
- Humans
- Hydrogen-Ion Concentration
- Mice
- Mice, Congenic
- Mice, Inbred NOD
- Mice, SCID
- Molecular Conformation
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Paclitaxel/chemical synthesis
- Paclitaxel/chemistry
- Paclitaxel/pharmacology
- Prodrugs/chemical synthesis
- Prodrugs/chemistry
- Prodrugs/pharmacology
- Structure-Activity Relationship
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Saqlain Haider
- National Center for Natural Products Research, University of Mississippi, University, MS, 38677, USA
| | - Patrice Penfornis
- National Center for Natural Products Research, University of Mississippi, University, MS, 38677, USA; Cancer Center and Research Institute, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, 39216, USA
| | - Pier Paolo Claudio
- National Center for Natural Products Research, University of Mississippi, University, MS, 38677, USA; Cancer Center and Research Institute, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, 39216, USA; Department of BioMolecular Sciences, University of Mississippi, University, MS, 38677, USA
| | | | - Amar G Chittiboyina
- National Center for Natural Products Research, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
359
|
Taleuzzaman M, Sartaz A, Alam MJ, Javed MN. Emergence of Advanced Manufacturing Techniques for Engineered Polymeric Systems in Cancer Treatment. ADVANCES IN CHEMICAL AND MATERIALS ENGINEERING 2022:152-172. [DOI: 10.4018/978-1-7998-9574-9.ch009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Clinical performances of chemotherapeutic drugs which are used to manage different stages of cancers are usually facing numerous pharmacological challenges such as tumor microenvironment, high dose requirements, poor selectivity towards cancer cells, life-threatening cytotoxicity, and frequent drug resistance incidences, in addition to pharmacotechnical issues such as poor aqueous solubility, uncontrolled drug-release, low stability, non-specific bio-distribution, and erratic bioavailability profiles. The chapter aims to provide a brief account of advancements made in nanotechnology-enabled manufacturing engineering tools for manipulating polymeric materials as efficient carriers so that loaded anti-cancer drugs would exhibit better therapeutic applications and optimized clinical significance in cancers.
Collapse
|
360
|
Wannapruk P, Deesrisak K, Roytrakul S, Tanyong D. Sesamin Acts as Anti-leukemic Compound Interacting with Novel Phosphoprotein Targets and Inducing Apoptosis in Leukemic Cells. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2022; 11:1-15. [PMID: 36397810 PMCID: PMC9653549 DOI: 10.22088/ijmcm.bums.11.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 01/25/2023]
Abstract
Leukemia is one of the high-incidence cancers that is characterized by an abnormal production of immature white blood cells. Subject to many reports on the side effects of conventional chemotherapy, herbs and natural compounds have been studied as an alternative medicine. In this study, sesamin, a lignan in sesame seed with pharmaceutical functions including anti-cancer, was chosen and treated with MOLT-4 and NB4 leukemic cell lines in various concentrations for 24 and 48 hours. The effect of sesamin on cell inhibition and expression levels of apoptotic genes in leukemic cell lines were investigated by MTT assay and real-time PCR, respectively. Moreover, apoptotic proteins were studied by mass spectrometry and bioinformatics tools to investigate the relation between sesamin and targeted proteins. Results showed that sesamin increased cell inhibition in both cell lines in dose- and time-dependent manner. Levels of caspase-3, -7, -8, and -9 gene expressions significantly increased, while BCL-2 decreased drastically in sesamin-treated cells. From bioinformatics study, PARP4, IPPK and caspase family proteins were found to be involved in sesamin that induced apoptosis in leukemic cells. Besides, doxorubicin, a chemotherapeutic drug, also shared the same protein targets as sesamin in apoptosis pathway. Sesamin demonstrates its potential to enhance cell inhibition and promotes cell apoptosis in both MOLT-4 and NB4 leukemic cell lines. This study will benefit the development of sesamin as an effective anti-leukemia drug in the future.
Collapse
Affiliation(s)
- Pattharin Wannapruk
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Thailand.
| | - Kamolchanok Deesrisak
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Thailand.
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand.
| | - Dalina Tanyong
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Thailand. ,Corresponding Author: Dalina Tanyong Address: Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Thailand. E-mail:
| |
Collapse
|
361
|
Ali AE, Elsherbiny DM, Azab SS, El-Demerdash E. The diuretic amiloride attenuates doxorubicin-induced chemobrain in rats: Behavioral and mechanistic study. Neurotoxicology 2022; 88:1-13. [PMID: 34656704 DOI: 10.1016/j.neuro.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/26/2022]
Abstract
Cognitive impairment or "chemobrain" is a troublesome adverse effect which had been increasingly reported by cancer patients after doxorubicin (DOX) chemotherapy. Notably, Hypertension, a very common comorbidity in cancer patients, could pose a greater risk for negative cognitive outcomes. Amiloride (AML) is an antihypertensive, potassium-sparing diuretic that has been proven to be neuroprotective in different experimental models; this can be attributed to its ability to inhibit different ion transporters such as Na+/H+ exchanger (NHE), which upon excessive activation can result in intracellular cationic overload, followed by oxidative damage and cellular death. Accordingly, this study was designed to investigate the potential neuroprotective effect of AML against DOX-induced chemobrain and to elucidate possible underlying mechanisms. Briefly, Histopathological examination and neurobehavioral testing (Morris water maze, Y maze and passive avoidance test) showed that AML co-treatment (10 mg/kg/day) markedly attenuated DOX (2 mg/kg/week)-induced neurodegeneration and memory impairment after 4 weeks of treatments. We found that DOX administration up-regulated NHE expression and increased lactic acid content in the hippocampus which were markedly opposed by AML. Moreover, AML mitigated DOX-induced neuroinflammation and decreased hippocampal tumor necrosis factor-α level, nuclear factor kappa-B, and cyclooxygenase-2 expression. Additionally, AML counteracted DOX-induced hippocampal oxidative stress as indicated by normalized malondialdehyde and glutathione levels. Furthermore, AML halted DOX-induced hippocampal apoptosis as evidenced by decreased caspase-3 activity and lower cytochrome c immunoexpression. Our results in addition to the previously reported antitumor effects of AML and its ability to mitigate cancer resistance to DOX therapy could point toward possible new repositioning scenarios of the diuretic AML especially regarding hypertensive cancer patients.
Collapse
Affiliation(s)
- Alaa Emam Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Doaa Mokhtar Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
362
|
Chemotherapeutic and Safety Profile of a Fraction from Mimosa caesalpiniifolia Stem Bark. JOURNAL OF ONCOLOGY 2021; 2021:9031975. [PMID: 34917149 PMCID: PMC8670915 DOI: 10.1155/2021/9031975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/22/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022]
Abstract
Mimosa caesalpiniifolia (Fabaceae) is used by Brazilian people to treat hypertension, bronchitis, and skin infections. Herein, we evaluated the antiproliferative action of the dichloromethane fraction from M. caesalpiniifolia (DFMC) stem bark on murine tumor cells and the in vivo toxicogenetic profile. Initially, the cytotoxic activity of DFMC on primary cultures of Sarcoma 180 (S180) cells by Alamar Blue, trypan, and cytokinesis block micronucleus (CBMN) assays was assessed after 72 h of exposure, followed by the treatment of S180-bearing Swiss mice for 7 days, physiological investigations, and DNA/chromosomal damage. DFMC and betulinic acid revealed similar in vitro antiproliferative action on S180 cells and induced a reduction in viable cells, induced a reduction in viable cells and caused the emergence of bridges, buds, and morphological features of apoptosis and necrosis. S180-transplanted mice treated with DFMC (50 and 100 mg/kg/day), a betulinic acid-rich dichloromethane, showed for the first time in vivo tumor growth reduction (64.8 and 80.0%) and poorer peri- and intratumor quantities of vessels. Such antiproliferative action was associated with detectible side effects (loss of weight, reduction of spleen, lymphocytopenia, and neutrophilia and increasing of GOT and micronucleus in bone marrow), but preclinical general anticancer properties of the DFMC were not threatened by toxicological effects, and these biomedical discoveries validate the ethnopharmacological reputation of Mimosa species as emerging phytotherapy sources of lead molecules.
Collapse
|
363
|
Mukhopadhyay D, Sano C, AlSawaftah N, El-Awady R, Husseini GA, Paul V. Ultrasound-Mediated Cancer Therapeutics Delivery using Micelles and Liposomes: A Review. Recent Pat Anticancer Drug Discov 2021; 16:498-520. [PMID: 34911412 DOI: 10.2174/1574892816666210706155110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/02/2021] [Accepted: 03/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Existing cancer treatment methods have many undesirable side effects that greatly reduce the quality of life of cancer patients. OBJECTIVE This review will focus on the use of ultrasound-responsive liposomes and polymeric micelles in cancer therapy. METHODS This review presents a survey of the literature regarding ultrasound-triggered micelles and liposomes using articles recently published in various journals, as well as some new patents in this field. RESULTS Nanoparticles have proven promising as cancer theranostic tools. Nanoparticles are selective in nature, have reduced toxicity, and controllable drug release patterns making them ideal carriers for anticancer drugs. Numerous nanocarriers have been designed to combat malignancies, including liposomes, micelles, dendrimers, solid nanoparticles, quantum dots, gold nanoparticles, and, more recently, metal-organic frameworks. The temporal and spatial release of therapeutic agents from these nanostructures can be controlled using internal and external triggers, including pH, enzymes, redox, temperature, magnetic and electromagnetic waves, and ultrasound. Ultrasound is an attractive modality because it is non-invasive, can be focused on the diseased site, and has a synergistic effect with anticancer drugs. CONCLUSION The functionalization of micellar and liposomal surfaces with targeting moieties and the use of ultrasound as a triggering mechanism can help improve the selectivity and enable the spatiotemporal control of drug release from nanocarriers.
Collapse
Affiliation(s)
- Debasmita Mukhopadhyay
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Catherine Sano
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Nour AlSawaftah
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Raafat El-Awady
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Ghaleb A Husseini
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Vinod Paul
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
364
|
Elkaeed EB, Salam HAAE, Sabt A, Al-Ansary GH, Eldehna WM. Recent Advancements in the Development of Anti-Breast Cancer Synthetic Small Molecules. Molecules 2021; 26:7611. [PMID: 34946704 PMCID: PMC8709016 DOI: 10.3390/molecules26247611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
Among all cancer types, breast cancer (BC) still stands as one of the most serious diseases responsible for a large number of cancer-associated deaths among women worldwide, and diagnosed cases are increasing year by year worldwide. For a very long time, hormonal therapy, surgery, chemotherapy, and radiotherapy were used for breast cancer treatment. However, these treatment approaches are becoming progressively futile because of multidrug resistance and serious side effects. Consequently, there is a pressing demand to develop more efficient and safer agents that can fight breast cancer belligerence and inhibit cancer cell proliferation, invasion and metastasis. Currently, there is an avalanche of newly designed and synthesized molecular entities targeting multiple types of breast cancer. This review highlights several important synthesized compounds with promising anti-BC activity that are categorized according to their chemical structures.
Collapse
Affiliation(s)
- Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah, Riyadh 13713, Saudi Arabia;
| | | | - Ahmed Sabt
- Chemistry of Natural Compounds Department, National Research Center, Dokki, Cairo 12622, Egypt;
| | - Ghada H. Al-Ansary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
365
|
Orabi MAA, Khalil HMA, Abouelela ME, Zaafar D, Ahmed YH, Naggar RA, Alyami HS, Abdel-Sattar ES, Matsunami K, Hamdan DI. Carissa macrocarpa Leaves Polar Fraction Ameliorates Doxorubicin-Induced Neurotoxicity in Rats via Downregulating the Oxidative Stress and Inflammatory Markers. Pharmaceuticals (Basel) 2021; 14:1305. [PMID: 34959705 PMCID: PMC8709457 DOI: 10.3390/ph14121305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022] Open
Abstract
Chemotherapeutic-related toxicity exacerbates the increasing death rate among cancer patients, necessitating greater efforts to find a speedy solution. An in vivo assessment of the protective effect of the C. macrocarpa leaves polar fraction of hydromethanolic extract against doxorubicin (Dox)-induced neurotoxicity was performed. Intriguingly, this fraction ameliorated Dox-induced cognitive dysfunction; reduced serum ROS and brain TNF-α levels, upregulated the brain nerve growth factor (NGF) levels, markedly reduced caspase-3 immunoexpression, and restored the histological architecture of the brain hippocampus. The in vivo study results were corroborated with a UPLC-ESI-MS/MS profiling that revealed the presence of a high percentage of the plant polyphenolics. Molecular modeling of several identified molecules in this fraction demonstrated a strong binding affinity of flavan-3-ol derivatives with TACE enzymes, in agreement with the experimental in vivo neuroprotective activity. In conclusion, the C. macrocarpa leaves polar fraction possesses neuroprotective activity that could have a promising role in ameliorating chemotherapeutic-induced side effects.
Collapse
Affiliation(s)
- Mohamed A. A. Orabi
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia;
| | - Heba M. A. Khalil
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mohamed E. Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-Branch, Assiut 71524, Egypt;
| | - Dalia Zaafar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Information and Technology, Cairo 11311, Egypt;
| | - Yasmine H. Ahmed
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Reham A. Naggar
- Department of pharmacology and Toxicology, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th October, Giza 12566, Egypt;
| | - Hamad S. Alyami
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia;
| | - El-Shaymaa Abdel-Sattar
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt;
| | - Katsuyoshi Matsunami
- Department of Pharmacognosy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan;
| | - Dalia I. Hamdan
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Shibin Elkom 32511, Egypt
| |
Collapse
|
366
|
Orabi MAA, Khalil HMA, Abouelela ME, Zaafar D, Ahmed YH, Naggar RA, Alyami HS, Abdel-Sattar ES, Matsunami K, Hamdan DI. Carissa macrocarpa Leaves Polar Fraction Ameliorates Doxorubicin-Induced Neurotoxicity in Rats via Downregulating the Oxidative Stress and Inflammatory Markers. Pharmaceuticals (Basel) 2021; 14:1305. [DOI: https:/doi.org/10.3390/ph14121305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Chemotherapeutic-related toxicity exacerbates the increasing death rate among cancer patients, necessitating greater efforts to find a speedy solution. An in vivo assessment of the protective effect of the C. macrocarpa leaves polar fraction of hydromethanolic extract against doxorubicin (Dox)-induced neurotoxicity was performed. Intriguingly, this fraction ameliorated Dox-induced cognitive dysfunction; reduced serum ROS and brain TNF-α levels, upregulated the brain nerve growth factor (NGF) levels, markedly reduced caspase-3 immunoexpression, and restored the histological architecture of the brain hippocampus. The in vivo study results were corroborated with a UPLC-ESI-MS/MS profiling that revealed the presence of a high percentage of the plant polyphenolics. Molecular modeling of several identified molecules in this fraction demonstrated a strong binding affinity of flavan-3-ol derivatives with TACE enzymes, in agreement with the experimental in vivo neuroprotective activity. In conclusion, the C. macrocarpa leaves polar fraction possesses neuroprotective activity that could have a promising role in ameliorating chemotherapeutic-induced side effects.
Collapse
Affiliation(s)
- Mohamed A. A. Orabi
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia
| | - Heba M. A. Khalil
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mohamed E. Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-Branch, Assiut 71524, Egypt
| | - Dalia Zaafar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Information and Technology, Cairo 11311, Egypt
| | - Yasmine H. Ahmed
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Reham A. Naggar
- Department of Pharmacology and Toxicology, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th October, Giza 12566, Egypt
| | - Hamad S. Alyami
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia
| | - El-Shaymaa Abdel-Sattar
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| | - Katsuyoshi Matsunami
- Department of Pharmacognosy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Dalia I. Hamdan
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Shibin Elkom 32511, Egypt
| |
Collapse
|
367
|
Orabi MAA, Khalil HMA, Abouelela ME, Zaafar D, Ahmed YH, Naggar RA, Alyami HS, Abdel-Sattar ES, Matsunami K, Hamdan DI. Carissa macrocarpa Leaves Polar Fraction Ameliorates Doxorubicin-Induced Neurotoxicity in Rats via Downregulating the Oxidative Stress and Inflammatory Markers. Pharmaceuticals (Basel) 2021. [DOI: https://doi.org/10.3390/ph14121305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chemotherapeutic-related toxicity exacerbates the increasing death rate among cancer patients, necessitating greater efforts to find a speedy solution. An in vivo assessment of the protective effect of the C. macrocarpa leaves polar fraction of hydromethanolic extract against doxorubicin (Dox)-induced neurotoxicity was performed. Intriguingly, this fraction ameliorated Dox-induced cognitive dysfunction; reduced serum ROS and brain TNF-α levels, upregulated the brain nerve growth factor (NGF) levels, markedly reduced caspase-3 immunoexpression, and restored the histological architecture of the brain hippocampus. The in vivo study results were corroborated with a UPLC-ESI-MS/MS profiling that revealed the presence of a high percentage of the plant polyphenolics. Molecular modeling of several identified molecules in this fraction demonstrated a strong binding affinity of flavan-3-ol derivatives with TACE enzymes, in agreement with the experimental in vivo neuroprotective activity. In conclusion, the C. macrocarpa leaves polar fraction possesses neuroprotective activity that could have a promising role in ameliorating chemotherapeutic-induced side effects.
Collapse
|
368
|
Barathan M, Zulpa AK, Mee Hoong S, Vellasamy KM, Vadivelu J. Synergistic effect of hyperforin and paclitaxel on growth inhibition, apoptotic mediator activation in MCF-7 human breast cancer cells. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2021. [DOI: 10.1080/16583655.2021.2010910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Muttiah Barathan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ahmad Khusairy Zulpa
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - See Mee Hoong
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kumutha Malar Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
369
|
Vavrová K, Indra R, Pompach P, Heger Z, Hodek P. The impact of individual human cytochrome P450 enzymes on oxidative metabolism of anticancer drug lenvatinib. Biomed Pharmacother 2021; 145:112391. [PMID: 34847475 DOI: 10.1016/j.biopha.2021.112391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 11/26/2022] Open
Abstract
Lenvatinib, a small molecule tyrosine kinase inhibitor (TKI), exhibits good inhibitory effect in several types of carcinomas. Specifically, it is the most effective TKI used for treatment of thyroid cancer. To extend pharmacokinetics data on this anticancer agent, we aimed to identify the metabolites of lenvatinib formed during in vitro incubation of lenvatinib with human hepatic microsomes or recombinant cytochromes P450 (CYPs) by using high performance liquid chromatography and mass spectrometry. The role of CYPs in the oxidation of lenvatinib was initially investigated in hepatic microsomes using specific CYP inhibitors. CYP-catalytic activities in each microsomal sample were correlated with the amounts of lenvatinib metabolites formed by these samples. Further, human recombinant CYPs were employed in the metabolic studies. Based on our data, lenvatinib is metabolized to O-desmethyl lenvatinib, N-descyclopropyl lenvatinib and lenvatinib N-oxide. In the presence of cytochrome b5, recombinant CYP3A4 was the most efficient to form these metabolites. In addition, CYP1A1 significantly contributes to the lenvatinib metabolism. It was even more efficient in forming of O-desmethyl lenvatinib than CYP3A4 in the absence of cytochrome b5. The present study indicates that further research focused on drug-drug interactions, in particular on CYP3A4 and CYP1A1 modulators, is needed. This will pave new avenues towards TKIs-mediated personalized therapy.
Collapse
Affiliation(s)
- Katarína Vavrová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 128 00 Prague 2, Czech Republic
| | - Radek Indra
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 128 00 Prague 2, Czech Republic.
| | - Petr Pompach
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 128 00 Prague 2, Czech Republic
| | - Zbyněk Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Petr Hodek
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 128 00 Prague 2, Czech Republic
| |
Collapse
|
370
|
Curcumin derivative ST09 modulates the miR-199a-5p/DDR1 axis and regulates proliferation and migration in ovarian cancer cells. Sci Rep 2021; 11:23025. [PMID: 34837026 PMCID: PMC8626492 DOI: 10.1038/s41598-021-02454-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/10/2021] [Indexed: 01/04/2023] Open
Abstract
Ovarian cancers are among the fatal malignancies affecting women globally, mainly due to their metastatic and chemoresistant nature. In this study, we report a potent curcumin derivative ST09 effective against ovarian cancers. Prior in-vitro studies with ST09 drug showed cytotoxicity in tumorigenic cells compared to normal cells and in-vivo, significant tumor reduction was observed with least systemic toxicity. ST09 induced cytotoxicity in the ovarian cancer cells triggering mitochondria-mediated intrinsic apoptotic pathway. Delving deeper to understand the underlying molecular mechanisms involved in ovarian cancer pathogenesis, we identified an inverse correlation of miR-199a-5p with DDR1, a collagen receptor with receptor tyrosine kinase activity. The ST09 treatment in ovarian cancer cell lines resulted in the deregulation of the miR-199a-5p/DDR1 axis, conferring tumor-suppressive functions. We established DDR1 to be a direct target of miR-199a-5p and that ST09-induced DDR1 loss in these ovarian cancer cells resulted in the inactivation of its downstream MMP activation, migration, EMT, and prosurvival NF-κB pathway. Overall this study demonstrates ST09, a potent drug candidate for ovarian cancer treatment which exhibits anti-invasive and migrastatic properties.
Collapse
|
371
|
Zehra S, Cirilli I, Silvestri S, Gómez-Ruiz S, Tabassum S, Arjmand F. Structure elucidation, in vitro binding studies and ROS-dependent anti-cancer activity of Cu(II) and Zn(II) phthaloylglycinate(phen) complexes against MDA-MB-231 cells. Metallomics 2021; 13:mfab064. [PMID: 34724067 DOI: 10.1093/mtomcs/mfab064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022]
Abstract
New mononuclear Cu(II) and Zn(II)-based complexes 1 [Cu(L)2(diimine)HOCH3] and 2 [Zn(L)2(diimine)] have been synthesized as anti-cancer chemotherapeutics targeted to tRNA. The structure elucidation of complexes 1 and 2 was carried out by spectroscopic and single X-ray diffraction studies. In vitro interaction studies of complexes 1 and 2 with ct-DNA/tRNA were performed by employing various biophysical techniques to evaluate and predict their interaction behavior and preferential selectivity at biomolecular therapeutic targets. The corroborative results of the interaction studies demonstrated that complexes 1 and 2 exhibited avid binding propensity via intercalative mode of binding toward ct-DNA/tRNA. Electrophoretic assay revealed that the complexes 1 and 2 were able to promote single- and double-strand cleavage of the plasmid DNA at low micromolar concentrations under physiological conditions in the absence of an additional oxidizing or reducing agent. RNA hydrolysis studies revealed that the complexes 1 and 2 could promote tRNA cleavage in a concentration and time-dependent manner. The cytotoxic potential of complexes 1 and 2 was evaluated against the MDA-MB-231 cell line, which showed that the complexes were able to inhibit the cell growth in a dose-dependent manner. The intracellular ROS production and mitochondrial superoxide anion assay revealed that the complexes 1 and 2 induce a dose-dependent activity, suggesting the involvement of ROS-mediated mitochondrial apoptotic pathway leading to cell death.
Collapse
Affiliation(s)
- Siffeen Zehra
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Ilenia Cirilli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
- School of Pharmacy, University of Camerino, Camerino (MC) 62032, Italy
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Santiago Gómez-Ruiz
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica,, E.S.C.E.T., Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain
| | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002, India
| |
Collapse
|
372
|
Morsy S, Hieu TH, Ghozy S, Tran L, Huy NT. Mortality in cancer patients with congenital anomalies across different age groups: trend analysis and prognostic risk factors.. [DOI: 10.1101/2021.11.20.21266629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
AbstractPurposeCongenital anomalies are one of the causes of the high mortality rate in children diagnosed with cancer. However, there is a gap of evidence of the rate of cancer mortality in older patients who had congenital anomalies. The study, therefore, aimed to investigate the epidemiology of cancer mortality in those patients.MethodsData were retrieved for patients with cancer and died due to congenital causes throughout 43 years from Surveillance, Epidemiology, and End Results program SEER. The age of patients was divided into nine groups each is formed of 10 years interval. Joinpoint analysis was used to calculate the trends of Cancer mortality and Cox proportional hazard ratio to identify the mortality risk factors.ResultsWe have included 2682 patients with death associated with congenital malformation. The mortality of cancer patients due to congenital anomalies greatly enhanced in the last years with the overall average annual percent was 3.8%. Interestingly, congenital anomalies had less mortality risk than other causes reported in SEER. Moreover, age, sex, radiation, chemotherapy, and behavior of tumor were significantly associated with higher survival in patients with congenital anomalies.ConclusionsCancer patients with congenital anomalies had less mortality risk than patients with other diseases reported in SEER. The mortality rates decreased recently, with the most mortality in the bone marrow and prostate tumors.Implications for Cancer SurvivorsCongenital anomalies are considered the least studied diseases in cancer patients. In this study, we studied how congenital anomalies did not increase the risk for cancer. However, our analysis implied the congenital anomalies in the male reproductive system were associated with the highest risk of cancer.
Collapse
|
373
|
Ahmad A, Saeed M, Ansari IA. Molecular insights on chemopreventive and anticancer potential of carvacrol: Implications from solid carcinomas. J Food Biochem 2021; 45:e14010. [PMID: 34796513 DOI: 10.1111/jfbc.14010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/29/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022]
Abstract
Globally, cancer is one of the deadliest diseases, estimated to cause 9.9 million deaths in 2020. Conventional cancer treatments commonly involve mono-chemotherapy or a combination of radiotherapy and mono-chemotherapy. However, the negative side effects of these approaches have been extensively reported and have prompted the search for new therapeutic drugs. Over the past few years, numerous dietary agents, medicinal plants, and their phytochemicals gained considerable therapeutic importance because of their anticancer, antiviral, anti-inflammatory, and antioxidant activities. Recent years have shown that essential oils possess therapeutic effects against numerous cancers. They are primarily used due to their lesser side effects than standard chemotherapeutic drugs. Carvacrol (CRV) is a phenolic monoterpenoid found in essential oils of oregano, thyme, pepperwort, wild bergamot, and other plants. Numerous anticancer reports of CRV substantiated that the main mechanistic action of CRV involves reduction in the viability of cancer cells and induction of apoptosis via both intrinsic and extrinsic pathways. CRV also obstructs the migration and invasion of cells leading to the suppressed proliferation rate. Furthermore, CRV mediates augmented ROS generation resulting in DNA damage and also halts the progression of cell cycle. Treatment of CRV modulates the expression of apoptotic proteins (Bax, Bad) and molecular targets of various signaling pathways (PI3K/AKT/mTOR, MAPKs, and Notch) in multiple solid carcinomas. Hence, this review aimed to acquire and disseminate the knowledge of chemopreventive and anticancer effects of CRV and the mechanisms of action already described for the compound against numerous cancers, including solid carcinomas, to guide future research. PRACTICAL APPLICATIONS: Development and formulation of phytocompound based anticancer drug agents to counteract the aftereffects of chemotherapeutic drugs is a propitious approach. CRV is a monoterpenoid consisting of a phenolic group obtained from the essential oils of oregano and thyme. These plants are being used as food flavoring spice and as fragrance ingredient in various cosmetic formulations. For the use of CRV as an efficient chemopreventive agent, different therapeutic interactions of CRV along with its targeted pathways and molecules, involved in the regulation of onset and progression of various types of solid carcinomas, need to be studied and explored thoroughly.
Collapse
Affiliation(s)
- Afza Ahmad
- Department of Biosciences, Integral University, Lucknow, India
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Irfan A Ansari
- Department of Biosciences, Integral University, Lucknow, India
| |
Collapse
|
374
|
Patel P, Shah J. Protective effects of hesperidin through attenuation of Ki67 expression against DMBA-induced breast cancer in female rats. Life Sci 2021; 285:119957. [PMID: 34530017 DOI: 10.1016/j.lfs.2021.119957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022]
Abstract
AIMS Doxorubicin (Dox) is routinely used for breast cancer treatment but toxicity and drug resistance limit its use. The objective of the study was to investigate the protective effects of hesperidin alone and in combination with doxorubicin against experimentally induced breast cancer in female rats. METHODS Breast cancer (BC) was induced by administration of 7,12-dimethylbenz(a)anthracene (DMBA) through subcutaneous injection into the 3rd right mammary gland of female Wistar rats. Hesperidin (Hes) pretreated groups were started with Hes (200 mg/kg) two weeks prior to DMBA induction. Animals were randomly divided into nine groups namely vehicle control, DMBA-induced, Dox 4 mg/kg, Dox 2 mg/kg, Hes (200 mg/kg), Hes (200 mg/kg) plus Dox 4 mg/kg treated groups and Hes pretreated groups treated with DMBA, Dox 4 mg/kg and Dox 2 mg/kg. KEY FINDINGS Hes pretreated groups showed reduced tumor occurrence, tumor volume and increased survival rate as compared to DMBA-induced group of animals. Hes pretreated animals treated with Dox 4 mg/kg and 2 mg/kg exhibited significant reduction in malondialdehyde and improvement in levels of glutathione and inflammatory markers like IL-6, TNF-α, NF-κB, IFN-γ as compared to Dox 4 mg/kg and 2 mg/kg treated animals. Histopathology and Ki67 expression depicted better control of tumor with Hes pretreatment groups as compared to DMBA-induced. Histopathology of vital organs of Hes pretreated groups treated with Dox revealed lesser toxicity than Dox treated groups. SIGNIFICANCE Hesperidin possesses protective effect against experimentally induced breast cancer in female rats that appears to be related to attenuation of Ki67 expression.
Collapse
Affiliation(s)
- Pankti Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Jigna Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India.
| |
Collapse
|
375
|
Raghu SV, Kudva AK, Rao S, Prasad K, Mudgal J, Baliga MS. Dietary agents in mitigating chemotherapy-related cognitive impairment (chemobrain or chemofog): first review addressing the benefits, gaps, challenges and ways forward. Food Funct 2021; 12:11132-11153. [PMID: 34704580 DOI: 10.1039/d1fo02391h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemobrain or chemofog is one of the important but less investigated side effects, where the cancer survivors treated with chemotherapy develop long-term cognitive impairments, affecting their quality of life. The biological mechanisms triggering the development of chemobrain are largely unknown. However, a literature study suggests the generation of free radicals, oxidative stress, inflammatory cytokines, epigenetic chromatin remodeling, decreased neurogenesis, secretion of brain-derived neurotropic factor (BDNF), dendritic branching, and neurotransmitter release to be the cumulative contributions to the ailment. Unfortunately, there is no means to prevent/mitigate the development and intensity of chemobrain. Given the lack of effective prevention strategies or treatments, preclinical studies have been underway to ascertain the usefulness of natural products in mitigating chemobrain in the recent past. Natural products used in diets have been shown to provide beneficial effects by inhibition of free radicals, oxidative stress, inflammatory processes, and/or concomitant upregulation of various cell survival proteins. For the first time, this review focuses on the published effects of astaxanthin, omega-3 fatty acids, ginsenoside, cotinine, resveratrol, polydatin, catechin, rutin, naringin, curcumin, dehydrozingerone, berberine, C-phycocyanin, the higher fungi Cordyceps militaris, thyme (Thymus vulgaris) and polyherbal formulation Mulmina™ in mitigating cognitive impairments in preclinical models of study, and also addresses their potential neuro-therapeutic mechanisms and applications in preventing/ameliorating chemobrain.
Collapse
Affiliation(s)
- Shamprasad Varija Raghu
- Neurogenetics Laboratory, Department of Applied Zoology, Mangalore University, Mangalagangotri, Karnataka 574199, India
| | - Avinash Kundadka Kudva
- Department of Biochemistry, Mangalore University, Mangalagangotri, Karnataka 574199, India
| | - Suresh Rao
- Radiation Oncology, Mangalore Institute of Oncology, Mangalore, Karnataka 575002, India
| | - Krishna Prasad
- Medical Oncology, Mangalore Institute of Oncology, Mangalore, Karnataka 575002, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | | |
Collapse
|
376
|
Yin LJ, Bin Ahmad Kamar AKD, Fung GT, Liang CT, Avupati VR. Review of anticancer potentials and structure-activity relationships (SAR) of rhodanine derivatives. Biomed Pharmacother 2021; 145:112406. [PMID: 34785416 DOI: 10.1016/j.biopha.2021.112406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/24/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
Rhodanine has been recognized as a privileged scaffold in medicinal chemistry due to its well-known ability to demonstrate a broad range of biological activities. The possibility of structural diversification has contributed to the significance of rhodanine structure in effective drug discovery and design. Many studies have confirmed the potential of rhodanine-derived compounds in the treatment of different types of cancer through the apoptosis induction mechanism. Furthermore, most of the rhodanine derivatives exhibited remarkable anticancer activity in the micromolar range while causing negligible cytotoxicity to normal cells. This review critically describes the anticancer activity profile of reported rhodanine compounds and the structure-activity relationships (SAR) to highlight the value of rhodanine as the core structure for future cancer drug development as well as to assist the researchers in rational drug design.
Collapse
Affiliation(s)
- Lim Ju Yin
- School of Pharmacy, International Medical University (IMU), Kuala Lumpur 57000, Malaysia
| | | | - Gan Tjin Fung
- School of Pharmacy, International Medical University (IMU), Kuala Lumpur 57000, Malaysia
| | - Chin Tze Liang
- School of Pharmacy, International Medical University (IMU), Kuala Lumpur 57000, Malaysia
| | - Vasudeva Rao Avupati
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University (IMU), Kuala Lumpur 57000, Malaysia; Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation (IRDI), International Medical University (IMU), Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
377
|
Gunathilaka TL, Dilrangi KH, Ranasinghe P, Samarakoon KW, Peiris LDC. Mechanistic Insight into Apoptotic Induction in Human Rhabdomyosarcoma and Breast Adenocarcinoma Cells by Chnoospora minima: A Sri Lankan Brown Seaweed. Pharmaceuticals (Basel) 2021; 14:1154. [PMID: 34832937 PMCID: PMC8622854 DOI: 10.3390/ph14111154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/24/2022] Open
Abstract
The current study determined the cytotoxic and apoptotic potential of the polyphenol-rich methanol extract of Chnoospora minima (C. minima) and its fractions against human breast adenocarcinoma (MCF-7) and rhabdomyosarcoma (RMS) cells. MTT and neutral red assays were used to determine cytotoxicity. The clonogenic assay evaluated the antineoplastic activity, while the apoptotic activity was determined by cellular morphological changes, caspase 3/7 activity, and DNA fragmentation. Morphological alterations in apoptosis were observed by an inverted phase-contrast microscope and Hoechst 33342 staining methods. The total phenolic, flavonoids, alkaloids, and antioxidant activity in the hexane and chloroform fractions were determined, based on their cytotoxic activity. The hexane fraction of C. minima effectively reduced the cell growth that is concentration-dependent in human RMS and MCF-7 cell lines. It also exhibited low cytotoxicity on Vero cells. The characteristic cellular and nuclear apoptotic morphological features were observed. A noticeable caspase 3/7 activation and the fragmented DNA were detected only in the hexane fraction treated RMS cells, whereas MCF-7 cells showed low caspase 3/7 activation due to a lack of caspase 3 and no evidence of having a typical ladder pattern of apoptosis. Further analysis revealed that the hexane fraction-treated RMS cells upregulated the p53 gene twofold (2.72) compared to the p21 (0.77) gene, whereas in the MCF-7 cells, a 2.21-fold upregulation of p53 was observed compared to the p21 (0.64) gene. The hexane fraction exhibited moderate total phenolics, flavonoids, alkaloids content, and antioxidant activity. According to the different antioxidant mechanisms, hexane and chloroform fractions showed the highest antioxidant activities by FRAP and ORAC assays, respectively. GC-MS analysis of hexane fraction revealed the presence of methyl tetradecanoate (38.314%) as the most abundant compound. The study's findings highlighted that the non-polar compounds present in the hexane fraction of C. minima suppressed cell proliferation and induced apoptosis-mediated cell death in RMS and MCF-7 cells, mainly via the activation of the p53 gene. Hence, the isolation of compounds is warranted. However, more studies are required to understand the mechanistic insights of these observations.
Collapse
Affiliation(s)
- Thilina Lakmini Gunathilaka
- Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; (T.L.G.); (K.H.D.)
| | - Kulathungage Hiranthi Dilrangi
- Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; (T.L.G.); (K.H.D.)
| | | | - Kalpa W. Samarakoon
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defence University, Ratmalana 10390, Sri Lanka
| | - L. Dinithi C. Peiris
- Department of Zoology/Genetics & Molecular Biology Unit (Center for Biotechnology), Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| |
Collapse
|
378
|
Harnessing the combined potential of cancer immunotherapy and nanomedicine: A new paradigm in cancer treatment. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 40:102492. [PMID: 34775062 DOI: 10.1016/j.nano.2021.102492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 10/16/2021] [Accepted: 10/29/2021] [Indexed: 11/21/2022]
Abstract
Cancer immunotherapy has recently emerged as a rising star due to its ability to activate patients' immune systems to fight tumors and prevent relapse. Conversely, the interest in cancer nanomedicine has seemingly waned due to its lackluster clinical translation. Despite being hailed as a game-changer in oncology, cancer immunotherapy still faces numerous challenges. Combining both entities together has thus been one among several solutions proposed to circumvent these challenges. This solution has since gained traction and has also led to a renaissance of cancer nanomedicine. While most combinations are currently experimental at best, some have progressed on to clinical trials. This review thus seeks to examine the advantages and disadvantages of integrating both modalities as a cancer treatment. The opportunities, challenges and future directions of this emerging field will also be explored with the hope that such a combination will lead to a paradigm shift in cancer treatments.
Collapse
|
379
|
Cháirez-Ramírez MH, de la Cruz-López KG, García-Carrancá A. Polyphenols as Antitumor Agents Targeting Key Players in Cancer-Driving Signaling Pathways. Front Pharmacol 2021; 12:710304. [PMID: 34744708 PMCID: PMC8565650 DOI: 10.3389/fphar.2021.710304] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/15/2021] [Indexed: 12/23/2022] Open
Abstract
Polyphenols constitute an important group of natural products that are traditionally associated with a wide range of bioactivities. These are usually found in low concentrations in natural products and are now available in nutraceuticals or dietary supplements. A group of polyphenols that include apigenin, quercetin, curcumin, resveratrol, EGCG, and kaempferol have been shown to regulate signaling pathways that are central for cancer development, progression, and metastasis. Here, we describe novel mechanistic insights on the effect of this group of polyphenols on key elements of the signaling pathways impacting cancer. We describe the protein modifications induced by these polyphenols and their effect on the central elements of several signaling pathways including PI3K, Akt, mTOR, RAS, and MAPK and particularly those affecting the tumor suppressor p53 protein. Modifications of p53 induced by these polyphenols regulate p53 gene expression and protein levels and posttranslational modifications such as phosphorylation, acetylation, and ubiquitination that influence stability, subcellular location, activation of new transcriptional targets, and the role of p53 in response to DNA damage, apoptosis control, cell- cycle regulation, senescence, and cell fate. Thus, deep understanding of the effects that polyphenols have on these key players in cancer-driving signaling pathways will certainly lead to better designed targeted therapies, with less toxicity for cancer treatment. The scope of this review centers on the regulation of key elements of cancer signaling pathways by the most studied polyphenols and highlights the importance of a profound understanding of these regulations in order to improve cancer treatment and control with natural products.
Collapse
Affiliation(s)
- Manuel Humberto Cháirez-Ramírez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| | - Karen Griselda de la Cruz-López
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico.,Programa de Doctorado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandro García-Carrancá
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| |
Collapse
|
380
|
Proteomic Research on the Antitumor Properties of Medicinal Mushrooms. Molecules 2021; 26:molecules26216708. [PMID: 34771120 PMCID: PMC8588050 DOI: 10.3390/molecules26216708] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
Medicinal mushrooms are increasingly being recognized as an important therapeutic modality in complementary oncology. Until now, more than 800 mushroom species have been known to possess significant pharmacological properties, of which antitumor and immunomodulatory properties have been the most researched. Besides a number of medicinal mushroom preparations being used as dietary supplements and nutraceuticals, several isolates from mushrooms have been used as official antitumor drugs in clinical settings for several decades. Various proteomic approaches allow for the identification of a large number of differentially regulated proteins serendipitously, thereby providing an important platform for a discovery of new potential therapeutic targets and approaches as well as biomarkers of malignant disease. This review is focused on the current state of proteomic research into antitumor mechanisms of some of the most researched medicinal mushroom species, including Phellinus linteus, Ganoderma lucidum, Auricularia auricula, Agrocybe aegerita, Grifola frondosa, and Lentinus edodes, as whole body extracts or various isolates, as well as of complex extract mixtures.
Collapse
|
381
|
Roacho-Pérez JA, Garza-Treviño EN, Delgado-Gonzalez P, G-Buentello Z, Delgado-Gallegos JL, Chapa-Gonzalez C, Sánchez-Domínguez M, Sánchez-Domínguez CN, Islas JF. Target Nanoparticles against Pancreatic Cancer: Fewer Side Effects in Therapy. Life (Basel) 2021; 11:1187. [PMID: 34833063 PMCID: PMC8620707 DOI: 10.3390/life11111187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is the most common lethal tumor in America. This lethality is related to limited treatment options. Conventional treatments involve the non-specific use of chemotherapeutical agents such as 5-FU, capecitabine, gemcitabine, paclitaxel, cisplatin, oxaliplatin, or irinotecan, which produce several side effects. This review focuses on the use of targeted nanoparticles, such as metallic nanoparticles, polymeric nanoparticles, liposomes, micelles, and carbon nanotubes as an alternative to standard treatment for pancreatic cancer. The principal objective of nanoparticles is reduction of the side effects that conventional treatments produce, mostly because of their non-specificity. Several molecular markers of pancreatic cancer cells have been studied to target nanoparticles and improve current treatment. Therefore, properly functionalized nanoparticles with specific aptamers or antibodies can be used to recognize pancreatic cancer cells. Once cancer is recognized, these nanoparticles can attack the tumor by drug delivery, gene therapy, or hyperthermia.
Collapse
Affiliation(s)
- Jorge A. Roacho-Pérez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.D.-G.); (Z.G.-B.); (J.L.D.-G.); (C.N.S.-D.)
| | - Elsa N. Garza-Treviño
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.D.-G.); (Z.G.-B.); (J.L.D.-G.); (C.N.S.-D.)
| | - Paulina Delgado-Gonzalez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.D.-G.); (Z.G.-B.); (J.L.D.-G.); (C.N.S.-D.)
| | - Zuca G-Buentello
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.D.-G.); (Z.G.-B.); (J.L.D.-G.); (C.N.S.-D.)
| | - Juan Luis Delgado-Gallegos
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.D.-G.); (Z.G.-B.); (J.L.D.-G.); (C.N.S.-D.)
| | - Christian Chapa-Gonzalez
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico;
| | - Margarita Sánchez-Domínguez
- Grupo de Química Coloidal e Interfacial Aplicada a Nanomateriales y Formulaciones, Centro de Investigación en Materiales Avanzados, S.C. (CIMAV, S.C.), Unidad Monterrey, Apodaca 66628, Mexico;
| | - Celia N. Sánchez-Domínguez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.D.-G.); (Z.G.-B.); (J.L.D.-G.); (C.N.S.-D.)
| | - Jose Francisco Islas
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.D.-G.); (Z.G.-B.); (J.L.D.-G.); (C.N.S.-D.)
| |
Collapse
|
382
|
Shinde A, Panchal K, Katke S, Paliwal R, Chaurasiya A. Tyrosine kinase inhibitors as next generation oncological therapeutics: Current strategies, limitations and future perspectives. Therapie 2021; 77:425-443. [PMID: 34823895 DOI: 10.1016/j.therap.2021.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/04/2021] [Accepted: 10/19/2021] [Indexed: 02/09/2023]
Abstract
Protein kinases, a class of enzymes that govern various biological phenomena at a cellular level, are responsible for signal transduction in cells that regulate cellular proliferation, differentiation, and growth. Protein kinase enzyme mutation results in abnormal cell division leading to a pathological condition like cancer. Tyrosine kinase (TK) inhibitors, which helps as a potential drug candidate for the treatment of cancer, are continuously being developed. Majority of these drug candidates are being administered as conventional oral dosage form, which provides limited safety and efficacy due to non-specific delivery and uncontrolled biodistribution resulting into the adverse effects. A controlled drug delivery approach for the delivery of TK inhibitors may be a potential strategy with significant safety and efficacy profile. Novel drug delivery strategies provide target-specific drug delivery, improved pharmacokinetic behaviour, and sustained release leading to lower doses and dosing frequency with significantly reduced side effects. Along with basic aspects of tyrosine kinase, this review discusses various aspects related to the application of tyrosine kinase inhibitors in clinical oncological setting. Furthermore, the limitations/challenges and formulation advancements related to this class of candidates particularly for cancer management have been reviewed. It is expected that innovations in drug delivery approaches for TK inhibitors using novel techniques will surely provide a new insights for improved cancer treatment and patients' life quality.
Collapse
Affiliation(s)
- Aishwarya Shinde
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana 500078, India
| | - Kanan Panchal
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana 500078, India
| | - Sumeet Katke
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana 500078, India
| | - Rishi Paliwal
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak 484886, India
| | - Akash Chaurasiya
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana 500078, India.
| |
Collapse
|
383
|
Paul S, Kundu P, Kondaiah P, Chakravarty AR. BODIPY-Ruthenium(II) Bis-Terpyridine Complexes for Cellular Imaging and Type-I/-II Photodynamic Therapy. Inorg Chem 2021; 60:16178-16193. [PMID: 34672556 DOI: 10.1021/acs.inorgchem.1c01850] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of multichromophoric ruthenium(II) complexes with the formulation [Ru(tpy-BODIPY)(tpy-R)]Cl2 (1-4), having a heteroleptic Ru(II)-bis-tpy (tpy = 4'-phenyl-2,2':6',2″-terpyridine) moiety covalently linked to a boron-dipyrromethene (BODIPY) pendant, have been prepared and characterized and their application as a phototherapeutic and photodetection agent in cancer therapy has been explored. Ligand L1 with a terpyridine-BODIPY moiety and complex 1 as its PF6 salt (1a) have been structurally characterized by a single-crystal X-ray diffraction study. Complex 1a has a distorted-octahedral RuN6 core with a Ru(II)-bis-terpyridine unit that is covalently linked to one photoactive BODIPY unit. The complexes exhibit strong absorbance near 502 nm (ε ≈ (3.7-7.8) × 104 M-1 cm-1) and high singlet oxygen sensitization ability, giving singlet oxygen quantum yield (ΦΔ) values ranging from 0.57 to 0.75 in DMSO. An emission-based study using complex 4 and Singlet Oxygen Sensor Green (SOSG) displays the formation of singlet oxygen inside the cells and also in the buffer medium upon light irradiation. DNA (pUC19) photocleavage experiments using ROS scavengers/stabilizers reveal photoinduced generation of singlet oxygen by a type-II process and of the superoxide anion radical by a type-I process. Complex 4 having a pendant biotin moiety as a cancer cell targeting group shows high photocytotoxicity with a remarkable phototherapeutic index (PI) value of >1400 in HeLa cancer cells with a low light dose activation (400-700 nm, 2.2 J cm-2). The complexes display reduced activity in noncancerous HPL1D cells. The emission property of the complexes is used for cellular imaging, thus making them suitable as next-generation theranostic PDT agents.
Collapse
|
384
|
Raza F, Siyu L, Zafar H, Kamal Z, Zheng B, Su J, Qiu M. Recent Advances in Gelatin-Based Nanomedicine for Targeted Delivery of Anti-Cancer Drugs. Curr Pharm Des 2021; 28:380-394. [PMID: 34727851 DOI: 10.2174/1381612827666211102100118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/29/2021] [Accepted: 09/25/2021] [Indexed: 11/22/2022]
Abstract
Nanoparticles based on natural polymers are utilized for the development of a wide range of drug delivery systems (DDS) in the current era. Gelatin-based nanoparticles, for example, are a remarkable cancer therapy with high efficacy and specificity. This paper reviews the recent advancements in gelatin-based nanomedicine for use in cancer therapeutics. Due to the characteristics features of gelatin, such as biocompatibility, biodegradability, stability, and good surface properties, these nanoparticles provide high therapeutic potency in cancer nanomedicine. The surface of gelatin can be modified in a number of ways using various ligands to explore the platform for the development of a more novel DDS. Various methods are available for the preparation of gelatin nanomedicine discussed in this review. In addition, various cross-linkers to stabilized nanocarriers and stimuli base gelatin nanoparticles are reviewed. Furthermore, recent advances and research in gelatin-based nanomedicine are discussed. Also, some drawbacks and challenges are evaluated. In general, this paper paves the pathway to identify the details about the gelatin-based DDS for cancer therapy.
Collapse
Affiliation(s)
- Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240. China
| | - Liu Siyu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240. China
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240. China
| | - Zul Kamal
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240. China
| | - Bo Zheng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240. China
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240. China
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240. China
| |
Collapse
|
385
|
Wang Y, Zou Z, Jaisi A, Olatunji OJ. Unravelling the Protective Effects of Emodin Against Cyclophosphamide Induced Gonadotoxicity in Male Wistar Rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:4403-4411. [PMID: 34703213 PMCID: PMC8541740 DOI: 10.2147/dddt.s333383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022]
Abstract
Background Over the past few decades, cyclophosphamide (CP) has been extensively used as a broad-spectrum alkylating agent for the treatment of various cancers and solid tumors. However, the therapeutic actions on CP are not limited to only cancer cells, as it simultaneously exerts significant toxicities on healthy cells through the instigation of oxidative stress and oxidative damages. CP induced testicular toxicity is associated with impaired spermatogenesis, reduced sperm functionality, reproductive hormone and testicular weight. This study was aimed at unravelling the protective effects of emodin (EMD) on testicular toxicity following CP treatment. Methods Twenty-four male Wistar rats were allotted into 4 groups as normal control group (NCG), CP control group (CPCG), EMD25+CP (25 mg/kg in 5% tween 80) and EMD50+CP groups (50 mg/kg in 5% tween 80). EMD was orally administered for 35 consecutive days, while four doses of CP (100 mg/kg/week) were administered intraperitoneally from the second to fifth week of treatment. Thereafter, the animals were sacrificed and histopathological examination of the testes as well as serum/testicular biochemical assays were conducted. Results The results revealed that CP significantly impeded sperm function parameters including sperm count, viability and motility as well as decreased reproductive hormones (testosterone, LH and FSH) levels. In addition, CP enhanced testicular oxidative stress and proinflammatory markers (MDA, IL-6 and TNF-α), while simultaneously decreasing testicular antioxidant enzymes (GSH, GPx, SOD and CAT). Evidence of marked histopathological alterations was also observed in the H&E stained testicular tissues of CP treated rats. EMD significantly prevented these CP induced negative effects. Conclusion This study provides a basis for the potential use of EMD in counteracting chemotherapy induced testicular toxicity. The results further suggest that EMD testicular protective effects in CP-treated rats may be mediated through its modulatory role on oxidative stress and inflammation.
Collapse
Affiliation(s)
- Yinhua Wang
- The Second Peoples Hospital of Wuhu, Wuhu, 241001, Anhui, People's Republic of China
| | - Zhaoling Zou
- The Second Peoples Hospital of Wuhu, Wuhu, 241001, Anhui, People's Republic of China
| | - Amit Jaisi
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Opeyemi Joshua Olatunji
- Faculty of Thai Traditional Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand
| |
Collapse
|
386
|
Unsymmetrical Trifluoromethyl Methoxyphenyl β-Diketones: Effect of the Position of Methoxy Group and Coordination at Cu(II) on Biological Activity. Molecules 2021; 26:molecules26216466. [PMID: 34770875 PMCID: PMC8588221 DOI: 10.3390/molecules26216466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/06/2021] [Accepted: 10/21/2021] [Indexed: 12/09/2022] Open
Abstract
Copper(II) complexes with 1,1,1-trifluoro-4-(4-methoxyphenyl)butan-2,4-dione (HL1) were synthesized and characterized by elemental analysis, FT-IR spectroscopy, and single crystal X-ray diffraction. The biological properties of HL1 and cis-[Cu(L1)2(DMSO)] (3) were examined against Gram-positive and Gram-negative bacteria and opportunistic unicellular fungi. The cytotoxicity was estimated towards the HeLa and Vero cell lines. Complex 3 demonstrated antibacterial activity towards S. aureus comparable to that of streptomycin, lower antifungal activity than the ligand HL1 and moderate cytotoxicity. The bioactivity was compared with the activity of compounds of similar structures. The effect of changing the position of the methoxy group at the aromatic ring in the ligand moiety of the complexes on their antimicrobial and cytotoxic activity was explored. We propose that complex 3 has lower bioavailability and reduced bioactivity than expected due to strong intermolecular contacts. In addition, molecular docking studies provided theoretical information on the interactions of tested compounds with ribonucleotide reductase subunit R2, as well as the chaperones Hsp70 and Hsp90, which are important biomolecular targets for antitumor and antimicrobial drug search and design. The obtained results revealed that the complexes displayed enhanced affinity over organic ligands. Taken together, the copper(II) complexes with the trifluoromethyl methoxyphenyl-substituted β-diketones could be considered as promising anticancer agents with antibacterial properties.
Collapse
|
387
|
5-Oxo-hexahydroquinoline and 5-oxo-tetrahydrocyclopentapyridine derivatives as promising antiproliferative agents with potential apoptosis-inducing capacity. Mol Divers 2021; 26:1481-1500. [PMID: 34671894 DOI: 10.1007/s11030-021-10281-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
Discovery of novel anticancer agents is of crucial importance to expand the therapeutic options for cancer patients. In this study, a series of 49 5-oxo-hexahydroquinoline and 5-oxo-tetrahydrocyclopentapyridine analogs, containing different pyridine alkyl carboxylates at C3 and various aliphatic, aromatic, and heteroaromatic substitutions at the C4 position of the central core, were synthesized. The target compounds were tested for antiproliferative effect against three human cancer cell lines including MOLT-4 (acute lymphoblastic leukemia), K562 (chronic myelogenous leukemia), and MCF-7 (breast adenocarcinoma) by MTT assay, and the effect of the most potent derivatives on cell cycle was evaluated by RNase/propidium iodide (PI) flow cytometric assay. Generally, 5-oxo-hexahydroquinoline derivatives (E series) possessed superior antiproliferative activities compared to their 5-oxo-tetrahydrocyclopentapyridine counterparts (F series). 5-Oxo-hexahydroquinoline compounds bearing 2-pyridyl propyl carboxylate (group D) and 3-pyridyl propyl carboxylate (group E) were better antiproliferative agents than those bearing other pyridyl alkyl carboxylates. Five best compounds with IC50 values in the range of 9.5-22.9 µM against MOLT-4 cells were selected for cell-cycle analysis, which revealed that derivatives D5, E3, and E5 with 2,3-dichlorophenyl, 3-nitrophenyl, and 2-nitrophenyl substitutions at C4 position, respectively, may induce apoptosis in MOLT-4 cells. Molecular docking analysis, which was employed to make some predictions on the interaction of the most active derivatives with the binding site of Bcl-2 and Bcl-xL proteins, suggested that the compounds may be well accommodated within the binding sites of these anti-apoptotic proteins via hydrogen-bonding and hydrophobic interactions. The findings of this study present 5-oxo-hexahydroquinoline derivatives as antiproliferative agents with potential apoptosis-inducing ability in cancer cells.
Collapse
|
388
|
Giordano F, Lenna S, Rampado R, Brozovich A, Hirase T, Tognon MG, Martini F, Agostini M, Yustein JT, Taraballi F. Nanodelivery Systems Face Challenges and Limitations in Bone Diseases Management. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Federica Giordano
- Center for Musculoskeletal Regeneration Houston Methodist Academic Institute, Houston Methodist 6670 Bertner Ave Houston TX 77030 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital Houston Methodist, 6565 Fannin Street Houston TX 77030 USA
| | - Stefania Lenna
- Center for Musculoskeletal Regeneration Houston Methodist Academic Institute, Houston Methodist 6670 Bertner Ave Houston TX 77030 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital Houston Methodist, 6565 Fannin Street Houston TX 77030 USA
| | - Riccardo Rampado
- Center for Musculoskeletal Regeneration Houston Methodist Academic Institute, Houston Methodist 6670 Bertner Ave Houston TX 77030 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital Houston Methodist, 6565 Fannin Street Houston TX 77030 USA
- First Surgical Clinic Section, Department of Surgical Oncological and Gastroenterological Sciences, University of Padua Padua 35124 Italy
- Nano‐Inspired Biomedicine Laboratory Institute of Pediatric Research—Città della Speranza Padua Italy
| | - Ava Brozovich
- Center for Musculoskeletal Regeneration Houston Methodist Academic Institute, Houston Methodist 6670 Bertner Ave Houston TX 77030 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital Houston Methodist, 6565 Fannin Street Houston TX 77030 USA
- Texas A&M College of Medicine 8447 Highway 47 Bryan TX 77807 USA
| | - Takashi Hirase
- Center for Musculoskeletal Regeneration Houston Methodist Academic Institute, Houston Methodist 6670 Bertner Ave Houston TX 77030 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital Houston Methodist, 6565 Fannin Street Houston TX 77030 USA
| | - Mauro G. Tognon
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine University of Ferrara Ferrara Italy
| | - Fernanda Martini
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine University of Ferrara Ferrara Italy
| | - Marco Agostini
- First Surgical Clinic Section, Department of Surgical Oncological and Gastroenterological Sciences, University of Padua Padua 35124 Italy
- Nano‐Inspired Biomedicine Laboratory Institute of Pediatric Research—Città della Speranza Padua Italy
| | - Jason T. Yustein
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center Baylor College of Medicine Houston TX 77030 USA
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration Houston Methodist Academic Institute, Houston Methodist 6670 Bertner Ave Houston TX 77030 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital Houston Methodist, 6565 Fannin Street Houston TX 77030 USA
| |
Collapse
|
389
|
Antiproliferative and palliative activity of flavonoids in colorectal cancer. Biomed Pharmacother 2021; 143:112241. [PMID: 34649363 DOI: 10.1016/j.biopha.2021.112241] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/10/2021] [Accepted: 09/21/2021] [Indexed: 12/21/2022] Open
Abstract
Flavonoids are plant bioactive compounds of great interest in nutrition and pharmacology, due to their remarkable properties as antioxidant, anti-inflammatory, antibacterial, antifungal and antitumor drugs. More than 5000 different flavonoids exist in nature, with a huge structural diversity and a plethora of interesting pharmacological properties. In this work, five flavonoids were tested for their potential use as antitumor drugs against three CRC cell lines (HCT116, HT-29 and T84). These cell lines represent three different stages of this tumor, one of which is metastatic. Xanthohumol showed the best antitumor activity on the three cancer cell lines, even better than that of the clinical drug 5-fluorouracil (5-FU), although no synergistic effect was observed in the combination therapy with this drug. On the other hand, apigenin and luteolin displayed slightly lower antitumor activities on these cancer cell lines but showed a synergistic effect in combination with 5-FU in the case of HTC116, which is of potential clinical interest. Furthermore, a literature review highlighted that these flavonoids show very interesting palliative effects on clinical symptoms such as diarrhea, mucositis, neuropathic pain and others often associated with the chemotherapy treatment of CRC. Flavonoids could provide a double effect for the combination treatment, potentiating the antitumor effect of 5-FU, and simultaneously, preventing important side effects of 5-FU chemotherapy.
Collapse
|
390
|
Nelson A, Lukacs JD, Johnston B. The Current Landscape of NKT Cell Immunotherapy and the Hills Ahead. Cancers (Basel) 2021; 13:cancers13205174. [PMID: 34680322 PMCID: PMC8533824 DOI: 10.3390/cancers13205174] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Natural killer T (NKT) cells are a subset of lipid-reactive T cells that enhance anti-tumor immunity. While preclinical studies have shown NKT cell immunotherapy to be safe and effective, clinical studies lack predictable therapeutic efficacy and no approved treatments exist. In this review, we outline the current strategies, challenges, and outlook for NKT cell immunotherapy. Abstract NKT cells are a specialized subset of lipid-reactive T lymphocytes that play direct and indirect roles in immunosurveillance and anti-tumor immunity. Preclinical studies have shown that NKT cell activation via delivery of exogenous glycolipids elicits a significant anti-tumor immune response. Furthermore, infiltration of NKT cells is associated with a good prognosis in several cancers. In this review, we aim to summarize the role of NKT cells in cancer as well as the current strategies and status of NKT cell immunotherapy. This review also examines challenges and future directions for improving the therapy.
Collapse
Affiliation(s)
- Adam Nelson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Jordan D. Lukacs
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
- Department of Pediatrics, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Correspondence:
| |
Collapse
|
391
|
Dually targeted bioinspired nanovesicle delays advanced prostate cancer tumour growth in vivo. Acta Biomater 2021; 134:559-575. [PMID: 34274531 DOI: 10.1016/j.actbio.2021.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/03/2023]
Abstract
Prostate cancer (PC) is second-leading cancer in men, with limited treatment options available for men with advanced and metastatic PC. Prostate-specific antigen (PSA) and prostate-specific membrane antigen (PSMA) have been exploited as therapeutic targets in PC due to their upregulation in the advanced stages of the disease. To date, several PSA- and PSMA-activatable prodrugs have been developed to reduce the systemic toxicity of existing chemotherapeutics. Bioinspired nanovesicles have been exploited in drug delivery, offering prolonged drug blood circulation and higher tumour accumulation. For the first time, this study describes the engineering of dually targeted PSA/PSMA nanovesicles for advanced PC. PSMA-targeted bioinspired hybrids were prepared by hydrating a lipid film with anti-PSMA-U937 cell membranes and DOX-PSA prodrug, followed by extrusion. The bioinspired hybrids were characterised using dynamic light scattering, transmission electron microscopy, Dot blot, flow cytometry and Western blot. Cellular binding and toxicity studies in PC cancer cell lines were carried out using flow cytometry, confocal microscopy, and resazurin assay. Finally, tumour targeting and therapeutic efficacy studies were performed in solid and metastatic C4-2B-tumor-bearing mice. Interestingly, our PSMA-targeted hybrids demonstrated high cell uptake in PSMA-expressing cells with significant accumulation in solid and metastatic C4-2B tumour tissues following intravenous administration. More promisingly, our dually targeted PSA/PSMA hybrid significantly slowed down the C4-2B tumour growth in vivo, compared to free DOX-PSA and non-targeted PSA-hybrid. Our PSA/PSMA bioinspired hybrid could offer a highly selective treatment for advanced PC with lower side effects. STATEMENT OF SIGNIFICANCE: This study investigates a new approach to treat prostate cancer using dually targeted bioinspired nanovesicle . Our bioinspired vesicles are made mainly of a human blood cell membrane with a ligand recognising a specific marker (PSMA) on the surface of the prostate cancer cells. The present work describes the successful loading of a doxorubicin prodrug linked to a PSA- activatable peptide into these targeted bioinspired nanovesicle , where the active PSA enzyme presents in these cells converts the drug to its active form. Our dually targeted PSA/PSMA hybrid vesicles has successfully improved site-specific prodrug delivery to tackle advanced prostate cancer, offering a novel and effective prostate cancer treatment.
Collapse
|
392
|
Sun C, Wang Z, Yang K, Yue L, Cheng Q, Ma YL, Lu S, Chen G, Wang R. Polyamine-Responsive Morphological Transformation of a Supramolecular Peptide for Specific Drug Accumulation and Retention in Cancer Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101139. [PMID: 34114343 DOI: 10.1002/smll.202101139] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/10/2021] [Indexed: 06/12/2023]
Abstract
The precise accumulation and extended retention of nanomedicines in the tumor tissue has been highly desired for cancer therapy. Here a novel supramolecular-peptide derived nanodrug (SPN) that can be transformed to microfibers in response to intracellular polyamine in cancer cells for significantly enhanced tumor specific accumulation and retention is developed. The supramolecular-peptide is constructed via the non-covalent interactions between cucurbit[7]uril (CB[7]) and Phe on Phe-Phe-Val-Leu-Lys-camptothecin conjugates (FFVLK-CPT, PC). The resultant amphiphilic supramolecular complex subsequently self-assembles into nanoparticles with a hydrodynamic diameter of 164.2 ± 3.7 nm. Upon internalization into spermine-overexpressed cancer cells, the CB[7]-Phe host-guest pairs can be competitively dissociated by spermine and can release free PC, which immediately form β-sheet structures and subsequently reorganize into microfibers, leading to dramatically improved accumulation, retention, and sustained release of CPT in tumor cells for highly effective cancer therapy. Accordingly, this SPN exhibit rather low toxicity against non-cancerous cells due to the morphological stability and fast exocytosis of the nanodrugs in those cells without abundant spermine. This study reports the first supramolecular peptide capable of polyamine-responsive "nanoparticle-to-microfiber" transformation for specific tumor therapy with minimal side effects. This work also offers novel insights to the design and development of stimuli-responsive nanomaterials as precision medicine.
Collapse
Affiliation(s)
- Chen Sun
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Ziyi Wang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Kuikun Yang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Ludan Yue
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Qian Cheng
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Yan-Long Ma
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Guosong Chen
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| |
Collapse
|
393
|
Valizadeh A, Khaleghi AA, Roozitalab G, Osanloo M. High anticancer efficacy of solid lipid nanoparticles containing Zataria multiflora essential oil against breast cancer and melanoma cell lines. BMC Pharmacol Toxicol 2021; 22:52. [PMID: 34587996 PMCID: PMC8482686 DOI: 10.1186/s40360-021-00523-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
Background The cancer burden is rising rapidly worldwide, and it annually causes about 8.8 million deaths worldwide. Due to chemical drugs’ side effects and the emergence of resistance, the development of new green drugs has received much attention. We aimed to investigate whether solid-lipid nanoparticles containing essential oil of Zataria multiflora (ZMSLN) enhanced the anticancer efficacy of the essential oil against breast cancer (MDA-MB-468) and melanoma (A-375) cells. Results ZMSLN was prepared by the high-pressure homogenizer method; particle size 176 ± 8 nm, polydispersity index 0.22 ± 0.1, entrapment efficiency 67 ± 5%. The essential oil showed a dose-dependent antiproliferative effect on MDA-MB-468 and A-375 cells at all examined concentrations (75, 150, 300, 600, and 1200 μg/mL). Interestingly, after treating both cells with 75 μg/mL of ZMSLN, their viabilities were reduced to under 13%. Conclusion The finding showed that ZMSLN had a distinct antiproliferative efficacy; it could thus be considered a green anticancer candidate for further in vivo and in vivo studies.
Collapse
Affiliation(s)
- Alireza Valizadeh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Asghar Khaleghi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ghazaal Roozitalab
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
394
|
Pradipta AR, Tanaka K. Biofunctional chemistry and reactivity of biogenic acrolein for cancer diagnosis and therapy. Chem Commun (Camb) 2021; 57:9798-9806. [PMID: 34581321 DOI: 10.1039/d1cc03590h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acrolein holds excellent potential as a biomarker in various oxidative stress-related diseases, including cancer, Alzheimer's, Parkinson's, and inflammatory disorders. Consequently, a direct method to target and visualize acrolein in biological systems might be essential to provide tools for diagnosis and therapeutic purposes. Previously, we discovered 1,3-dipolar cycloaddition between aryl azides and acrolein, which proceeds without a catalyst to give α-diazocarbonyl derivatives. The reaction proceeds with high reactivity and selectivity even under physiological conditions. We have successfully utilized the reaction as a robust method for detecting acrolein generated by cancer cells. This review discusses the utilization of the endogenous acrolein reaction with aryl azide to (1) distinguish breast cancer from normal tissue during breast-conserving surgery and (2) treat cancer through selective prodrug activation in a mouse model without causing adverse effects. The methods have potential clinical application for breast-conserving surgery and are highly advantageous for cancer therapy.
Collapse
Affiliation(s)
- Ambara R Pradipta
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, 152-8552, Tokyo, Japan. .,Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan
| | - Katsunori Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, 152-8552, Tokyo, Japan. .,Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan.,Biofunctional Chemistry Laboratory, Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, 420008, Kazan, Russian Federation
| |
Collapse
|
395
|
Abstract
ABSTRACT Triple-negative breast cancer (TNBC) continues to represent an unmet need because of its significantly poorer outcomes, including higher relapse rates following early-stage disease and dismal survival times in the advanced setting, when compared with other breast cancer subtypes (Cancer 2012;118:5463-5472). Furthermore, there remains a lack of established systemic treatment options beyond conventional cytotoxic chemotherapy, with the exception of PARP inhibitors in the small subset of patients who harbor a BRCA mutation (N Engl J Med 2018;379:753; Lancet Oncol 2020;21:1269-1282; Ann Oncol 2019;30:558-566) and recently the use of immunotherapy in the first-line metastatic setting in those who are programmed death ligand 1-positive (Lancet Oncol 2020;21(1):44-59; N Engl J Med 2018;379(22):2108-2121). Suitable biomarkers for improving prognostication and directing therapy in both the early and advanced TNBC settings are required in order for improvements in survival outcomes to be continued to be attained. Tumor-infiltrating lymphocytes are gaining increasing relevance as an immunological biomarker in this arena.
Collapse
|
396
|
Sargazi S, Mukhtar M, Rahdar A, Barani M, Pandey S, Díez-Pascual AM. Active Targeted Nanoparticles for Delivery of Poly(ADP-ribose) Polymerase (PARP) Inhibitors: A Preliminary Review. Int J Mol Sci 2021; 22:10319. [PMID: 34638660 PMCID: PMC8508934 DOI: 10.3390/ijms221910319] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Nanotechnology has revolutionized novel drug delivery strategies through establishing nanoscale drug carriers, such as niosomes, liposomes, nanomicelles, dendrimers, polymeric micelles, and nanoparticles (NPs). Owing to their desirable cancer-targeting efficacy and controlled release, these nanotherapeutic modalities are broadly used in clinics to improve the efficacy of small-molecule inhibitors. Poly(ADP-ribose) polymerase (PARP) family members engage in various intracellular processes, including DNA repair, gene transcription, signal transduction, cell cycle regulation, cell division, and antioxidant response. PARP inhibitors are synthetic small-molecules that have emerged as one of the most successful innovative strategies for targeted therapy in cancer cells harboring mutations in DNA repair genes. Despite these advances, drug resistance and unwanted side effects are two significant drawbacks to using PARP inhibitors in the clinic. Recently, the development of practical nanotechnology-based drug delivery systems has tremendously improved the efficacy of PARP inhibitors. NPs can specifically accumulate in the leaky vasculature of the tumor and cancer cells and release the chemotherapeutic moiety in the tumor microenvironment. On the contrary, NPs are usually unable to permeate across the body's normal organs and tissues; hence the toxicity is zero to none. NPs can modify the release of encapsulated drugs based on the composition of the coating substance. Delivering PARP inhibitors without modulation often leads to the toxic effect; therefore, a delivery vehicle is essential to encapsulate them. Various nanocarriers have been exploited to deliver PARP inhibitors in different cancers. Through this review, we hope to cast light on the most innovative advances in applying PARP inhibitors for therapeutic purposes.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan 9816743463, Iran;
| | - Mahwash Mukhtar
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös utca 6, 6720 Szeged, Hungary;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran;
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Sadanad Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea; or
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
397
|
A Perspective on the Role of Microbiome for Colorectal Cancer Treatment. Cancers (Basel) 2021; 13:cancers13184623. [PMID: 34572850 PMCID: PMC8468110 DOI: 10.3390/cancers13184623] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Colorectal cancer is the third most diagnosed cancer worldwide and contributes significantly to global mortality and morbidity. The gut microbiome, composed of the trillions of microbes endemic to the human gastrointestinal tract, has been shown to be implicated in colorectal cancer oncogenesis; however, the roles of microbiota and dysbiosis in CRC treatment remain poorly understood. This review sought to characterize this relationship and in doing so, identify how these interactions may inform future treatments in the form of synbiotics designed to alter the host microbiota to achieve optimized treatment outcomes. Abstract In healthy hosts, trillions of microbes colonise the gut and oral cavity in a well-balanced state, maintaining a mutually beneficial relationship. Loss of this balance, termed dysbiosis, is strongly implicated in the pathogenesis of colorectal cancer (CRC). However, the roles of microbiota and dysbiosis in CRC treatment remain poorly understood. Recent studies suggest that the gut microbiota has the ability to affect the host response to chemotherapeutic agents by enhancing drug efficacy, promoting chemoresistance and mediating chemotherapy-induced toxicity and side effects via a variety of mechanisms. Several other studies have also proposed manipulation of the microbiota to optimise CRC treatment. In this review, we summarise the current advancement of knowledge on how microbiota and CRC treatments interact with each other and how this interaction may shed some light on the development of personalised microbiota manipulations that improve CRC treatment outcomes.
Collapse
|
398
|
Burlacu E, Tanase C. Anticancer Potential of Natural Bark Products-A Review. PLANTS 2021; 10:plants10091895. [PMID: 34579427 PMCID: PMC8467168 DOI: 10.3390/plants10091895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 12/22/2022]
Abstract
Cell biology, plant-based extracts, structural chemistry, and laboratory in vitro or in vivo experiments are the principal aspects or interfaces that can contribute to discovering new possibilities in cancer therapy and to developing improved chemotherapeutics. Forestry residues can be used for their wealthy resource in polyphenols and other phytoconstituents known for anticancer properties. This review is designed to bring together information on the in vitro or in vivo anticancer potential of woody vascular plants especially the bark extracts (BE) and biosynthesized metallic nanoparticles (BMN) using bark extracts. Type of extracts, main phytoconstituents found in extracts responsible for the anticancer activity, and targeted cancerous cell lines were followed. The literature data were collected via Clarivate Analytics, Science Direct, PubMed, and Google Academic (2011-2021). The search terms were: bark extracts, metallic nanoparticles, silver nanoparticles, gold nanoparticles, anticancer, cytotoxic activity, antiproliferative effect, and antimetastatic potential in vitro and in vivo. All of the search terms listed above were used in different combinations. The literature data highlight the efficaciousness of the BE and BMN as anticancer agents in in vitro experiments and showed the mechanism of action and their advantage of nontoxicity on normal cells. In vitro testing has shown promising results of the BE and BMN effect on different cancer cell lines. In vivo testing is lacking and more data is necessary for drug development on animal models.
Collapse
Affiliation(s)
- Ema Burlacu
- Residency Department, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 38 Gheorghe Marinescu Street, 540139 Târgu Mureș, Romania;
| | - Corneliu Tanase
- Department of Pharmaceutical Botany, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 38 Gheorghe Marinescu Street, 540139 Târgu Mureș, Romania
- Correspondence: ; Tel.:+40-744-215-543
| |
Collapse
|
399
|
Smart Shockwave Responsive Titania-Based Nanoparticles for Cancer Treatment. Pharmaceutics 2021; 13:pharmaceutics13091423. [PMID: 34575499 PMCID: PMC8467828 DOI: 10.3390/pharmaceutics13091423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022] Open
Abstract
Nanomedicine is an emerging treatment approach for many cancers, characterized by having high sensitivity and selectivity for tumor cells and minimal toxic effects induced by the conventional chemotherapeutics. In these context, smart nanoparticles (NPs) are getting increasingly relevant in the development of new therapies. NPs with specific chemical composition and/or structure and being stimuli-responsive to magnetic, light or ultrasound waves are new promising tools. In the present work, amorphous-titania propyl-amine functionalized (a-TiO2-NH2) NPs, coated with bovine serum albumin (BSA), are stimulated with high energy shock waves to induce cytotoxic effects in cancer cells. First, a new method to coat a-TiO2-NH2 NPs with BSA (a-TiO2-NH2/BSA) was proposed, allowing for a high dispersion and colloidal stability in a cell culture media. The a-TiO2-NH2/BSA NPs showed no cancer cell cytotoxicity. In a second step, the use of shock waves to stimulate a-TiO2-NH2/BSA NPs, was evaluated and optimized. A systematic study was performed in in vitro cell culture aiming to impair the cancer cell viability: NP concentrations, time steps and single versus multiple shock waves treatments were studied. The obtained results highlighted the relevance of NPs design and administration time point with respect to the shock wave treatment and allow to hypothesize mechanical damages to cells.
Collapse
|
400
|
Anti-Cancer Effects of Cyclic Peptide ALOS4 in a Human Melanoma Mouse Model. Int J Mol Sci 2021; 22:ijms22179579. [PMID: 34502483 PMCID: PMC8430629 DOI: 10.3390/ijms22179579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
We examined the effects of ALOS4, a cyclic peptide discovered previously by phage library selection against integrin αvβ3, on a human melanoma (A375) xenograft model to determine its abilities as a potential anti-cancer agent. We found that ALOS4 promoted healthy weight gain in A375-engrafted nude mice and reduced melanoma tumor mass and volume. Despite these positive changes, examination of the tumor tissue did not indicate any significant effects on proliferation, mitotic index, tissue vascularization, or reduction of αSMA or Ki-67 tumor markers. Modulation in overall expression of critical downstream αvβ3 integrin factors, such as FAK and Src, as well as reductions in gene expression of c-Fos and c-Jun transcription factors, indirectly confirmed our suspicions that ALOS4 is likely acting through an integrin-mediated pathway. Further, we found no overt formulation issues with ALOS4 regarding interaction with standard inert laboratory materials (polypropylene, borosilicate glass) or with pH and temperature stability under prolonged storage. Collectively, ALOS4 appears to be safe, chemically stable, and produces anti-cancer effects in a human xenograft model of melanoma. We believe these results suggest a role for ALOS4 in an integrin-mediated pathway in exerting its anti-cancer effects possibly through immune response modulation.
Collapse
|