401
|
López-González FJ, Moscoso A, Efthimiou N, Fernández-Ferreiro A, Piñeiro-Fiel M, Archibald SJ, Aguiar P, Silva-Rodríguez J. Spill-in counts in the quantification of 18F-florbetapir on Aβ-negative subjects: the effect of including white matter in the reference region. EJNMMI Phys 2019; 6:27. [PMID: 31858289 PMCID: PMC6923310 DOI: 10.1186/s40658-019-0258-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/25/2019] [Indexed: 12/17/2022] Open
Abstract
Background We aim to provide a systematic study of the impact of white matter (WM) spill-in on the calculation of standardized uptake value ratios (SUVRs) on Aβ-negative subjects, and we study the effect of including WM in the reference region as a compensation. In addition, different partial volume correction (PVC) methods are applied and evaluated. Methods We evaluated magnetic resonance imaging and 18F-AV-45 positron emission tomography data from 122 cognitively normal (CN) patients recruited at the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Cortex SUVRs were obtained by using the cerebellar grey matter (CGM) (SUVRCGM) and the whole cerebellum (SUVRWC) as reference regions. The correlations between the different SUVRs and the WM uptake (WM-SUVRCGM) were studied in patients, and in a well-controlled framework based on Monte Carlo (MC) simulation. Activity maps for the MC simulation were derived from ADNI patients by using a voxel-wise iterative process (BrainViset). Ten WM uptakes covering the spectrum of WM values obtained from patient data were simulated for different patients. Three different PVC methods were tested (a) the regional voxel-based (RBV), (b) the iterative Yang (iY), and (c) a simplified analytical correction derived from our MC simulation. Results WM-SUVRCGM followed a normal distribution with an average of 1.79 and a standard deviation of 0.243 (13.6%). SUVRCGM was linearly correlated to WM-SUVRCGM (r = 0.82, linear fit slope = 0.28). SUVRWC was linearly correlated to WM-SUVRCGM (r = 0.64, linear fit slope = 0.13). Our MC results showed that these correlations are compatible with those produced by isolated spill-in effect (slopes of 0.23 and 0.11). The impact of the spill-in was mitigated by using PVC for SUVRCGM (slopes of 0.06 and 0.07 for iY and RBV), while SUVRWC showed a negative correlation with SUVRCGM after PVC. The proposed analytical correction also reduced the observed correlations when applied to patient data (r = 0.27 for SUVRCGM, r = 0.18 for SUVRWC). Conclusions There is a high correlation between WM uptake and the measured SUVR due to spill-in effect, and that this effect is reduced when including WM in the reference region. We also evaluated the performance of PVC, and we proposed an analytical correction that can be applied to preprocessed data.
Collapse
Affiliation(s)
- Francisco Javier López-González
- Molecular Imaging and Medical Physics Group, Radiology Department, Faculty of Medicine, Universidade de Santiago de Compostela, Galicia, Spain
| | - Alexis Moscoso
- Nuclear Medicine Department and Molecular Imaging Research Group, University Hospital (SERGAS) and Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
| | - Nikos Efthimiou
- PET Research Centre, Faculty of Health Sciences, University of Hull, Hull, UK
| | - Anxo Fernández-Ferreiro
- Pharmacy Department and Pharmacology Group, University Hospital (SERGAS) and Health Research Institute Santiago Compostela (IDIS), Santiago de Compostela, Galicia, Spain
| | - Manuel Piñeiro-Fiel
- Molecular Imaging and Medical Physics Group, Radiology Department, Faculty of Medicine, Universidade de Santiago de Compostela, Galicia, Spain
| | - Stephen J Archibald
- PET Research Centre, Faculty of Health Sciences, University of Hull, Hull, UK
| | - Pablo Aguiar
- Molecular Imaging and Medical Physics Group, Radiology Department, Faculty of Medicine, Universidade de Santiago de Compostela, Galicia, Spain. .,Nuclear Medicine Department and Molecular Imaging Research Group, University Hospital (SERGAS) and Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain.
| | - Jesús Silva-Rodríguez
- Nuclear Medicine Department and Molecular Imaging Research Group, University Hospital (SERGAS) and Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain.,R&D Department, Qubiotech Health Intelligence SL, A Coruña, Galicia, Spain
| | | |
Collapse
|
402
|
Huber M, Beyer L, Prix C, Schönecker S, Palleis C, Rauchmann B, Morbelli S, Chincarini A, Bruffaerts R, Vandenberghe R, Van Laere K, Kramberger MG, Trost M, Grmek M, Garibotto V, Nicastro N, Frisoni GB, Lemstra AW, Zande J, Pilotto A, Padovani A, Garcia‐Ptacek S, Savitcheva I, Ochoa‐Figueroa MA, Davidsson A, Camacho V, Peira E, Arnaldi D, Bauckneht M, Pardini M, Sambuceti G, Vöglein J, Schnabel J, Unterrainer M, Perneczky R, Pogarell O, Buerger K, Catak C, Bartenstein P, Cumming P, Ewers M, Danek A, Levin J, Aarsland D, Nobili F, Rominger A, Brendel M. Metabolic Correlates of Dopaminergic Loss in Dementia with Lewy Bodies. Mov Disord 2019; 35:595-605. [DOI: 10.1002/mds.27945] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022] Open
Affiliation(s)
- Maria Huber
- Department of Nuclear Medicine University Hospital of Munich, LMU Munich Munich Germany
| | - Leonie Beyer
- Department of Nuclear Medicine University Hospital of Munich, LMU Munich Munich Germany
| | - Catharina Prix
- Department of Neurology University Hospital of Munich, LMU Munich Munich Germany
| | - Sonja Schönecker
- Department of Neurology University Hospital of Munich, LMU Munich Munich Germany
| | - Carla Palleis
- Department of Neurology University Hospital of Munich, LMU Munich Munich Germany
| | - Boris‐Stephan Rauchmann
- Department of Psychiatry and Psychotherapy University Hospital, LMU Munich Munich Germany
- Department of Radiology University Hospital of Munich, LMU Munich Munich Germany
| | - Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino Genoa Italy
- Nuclear Medicine Unit, Department of Health Sciences University of Genoa Genoa Italy
| | - Andrea Chincarini
- National Institute of Nuclear Physics (INFN), Genoa section Genoa Genoa Italy
| | - Rose Bruffaerts
- Department of Neurosciences Faculty of Medicine, KU Leuven Leuven Belgium
- Department of Neurology University Hospitals Leuven Leuven Belgium
| | - Rik Vandenberghe
- Department of Neurosciences Faculty of Medicine, KU Leuven Leuven Belgium
- Department of Neurology University Hospitals Leuven Leuven Belgium
| | - Koen Van Laere
- Department of Nuclear Medicine University Hospitals Leuven Leuven Belgium
| | | | - Maja Trost
- Department of Neurology University Medical Centre Ljubljana Slovenia
- Department for Nuclear Medicine University Medical Centre Ljubljana Slovenia
| | - Marko Grmek
- Department for Nuclear Medicine University Medical Centre Ljubljana Slovenia
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and NIMTLab Geneva University Geneva Switzerland
| | - Nicolas Nicastro
- Department of Clinical Neurosciences Geneva University Hospitals Geneva Switzerland
- Department of Psychiatry University of Cambridge Cambridge United Kingdom
| | - Giovanni B. Frisoni
- LANVIE (Laboratoire de Neuroimagerie du Vieillissement), Department of Psychiatry Geneva University Hospitals Geneva Switzerland
| | | | - Jessica Zande
- VU Medical Center Alzheimer Center Amsterdam The Netherlands
| | - Andrea Pilotto
- Neurology Unit University of Brescia Brescia Italy
- Parkinson's Disease Rehabilitation Centre FERB ONLUS–S. Isidoro Hospital Trescore Balneario (BG) Italy
| | | | - Sara Garcia‐Ptacek
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society Karolinska Institutet Stockholm Sweden
- Internal Medicine, section for Neurology Sädersjukhuset Stockholm Sweden
| | - Irina Savitcheva
- Medical Radiation Physics and Nuclear Medicine Karolinska University Hospital Stockholm Sweden
| | - Miguel A. Ochoa‐Figueroa
- Department of Clinical Physiology, Institution of Medicine and Health Sciences Linköping University Hospital Linköping Sweden
- Department of Diagnostic Radiology Linköping University Hospital Linköping Sweden
- Center for Medical Image Science and Visualization (CMIV) Linköping University Linköping Sweden
| | - Anette Davidsson
- Department of Clinical Physiology, Institution of Medicine and Health Sciences Linköping University Hospital Linköping Sweden
| | - Valle Camacho
- Servicio de Medicina Nuclear, Hospital de la Santa Creu i Sant Pau Universitat Autònoma de Barcelona Barcelona España
| | - Enrico Peira
- National Institute of Nuclear Physics (INFN), Genoa section Genoa Genoa Italy
- Clinical Neurology, Department of Neuroscience (DINOGMI) University of Genoa Genoa Italy
| | - Dario Arnaldi
- IRCCS Ospedale Policlinico San Martino Genoa Italy
- Clinical Neurology, Department of Neuroscience (DINOGMI) University of Genoa Genoa Italy
| | - Matteo Bauckneht
- IRCCS Ospedale Policlinico San Martino Genoa Italy
- Nuclear Medicine Unit, Department of Health Sciences University of Genoa Genoa Italy
| | - Matteo Pardini
- IRCCS Ospedale Policlinico San Martino Genoa Italy
- Clinical Neurology, Department of Neuroscience (DINOGMI) University of Genoa Genoa Italy
| | - Gianmario Sambuceti
- IRCCS Ospedale Policlinico San Martino Genoa Italy
- Nuclear Medicine Unit, Department of Health Sciences University of Genoa Genoa Italy
| | - Jonathan Vöglein
- Department of Neurology University Hospital of Munich, LMU Munich Munich Germany
- DZNE–German Center for Neurodegenerative Diseases Munich Germany
| | - Jonas Schnabel
- Department of Nuclear Medicine University Hospital of Munich, LMU Munich Munich Germany
| | - Marcus Unterrainer
- Department of Nuclear Medicine University Hospital of Munich, LMU Munich Munich Germany
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy University Hospital, LMU Munich Munich Germany
- DZNE–German Center for Neurodegenerative Diseases Munich Germany
- Ageing Epidemiology Research Unit (AGE) School of Public Health, Imperial College London United Kingdom
- Institut for Stroke and Dementia Research University of Munich Munich Germany
| | - Oliver Pogarell
- Department of Psychiatry and Psychotherapy University Hospital, LMU Munich Munich Germany
| | - Katharina Buerger
- DZNE–German Center for Neurodegenerative Diseases Munich Germany
- Institut for Stroke and Dementia Research University of Munich Munich Germany
| | - Cihan Catak
- Institut for Stroke and Dementia Research University of Munich Munich Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine University Hospital of Munich, LMU Munich Munich Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich Germany
| | - Paul Cumming
- Department of Nuclear Medicine University of Bern Inselspital Bern Switzerland
- School of Psychology and Counselling and IHBI Queensland University of Technology Brisbane Australia
| | - Michael Ewers
- DZNE–German Center for Neurodegenerative Diseases Munich Germany
| | - Adrian Danek
- Department of Neurology University Hospital of Munich, LMU Munich Munich Germany
| | - Johannes Levin
- Department of Neurology University Hospital of Munich, LMU Munich Munich Germany
- DZNE–German Center for Neurodegenerative Diseases Munich Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich Germany
| | - Dag Aarsland
- Centre for Age‐Related Medicine (SESAM) Stavanger University Hospital Stavanger Norway
- Wolfson Centre for Age‐Related Diseases King's College London London United Kingdom
| | - Flavio Nobili
- IRCCS Ospedale Policlinico San Martino Genoa Italy
- Clinical Neurology, Department of Neuroscience (DINOGMI) University of Genoa Genoa Italy
| | - Axel Rominger
- Department of Nuclear Medicine University Hospital of Munich, LMU Munich Munich Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich Germany
- Department of Nuclear Medicine University of Bern Inselspital Bern Switzerland
| | - Matthias Brendel
- Department of Nuclear Medicine University Hospital of Munich, LMU Munich Munich Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich Germany
| |
Collapse
|
403
|
Wulkersdorfer B, Bauer M, Karch R, Stefanits H, Philippe C, Weber M, Czech T, Menet MC, Declèves X, Hainfellner JA, Preusser M, Hacker M, Zeitlinger M, Müller M, Langer O. Assessment of brain delivery of a model ABCB1/ABCG2 substrate in patients with non-contrast-enhancing brain tumors with positron emission tomography. EJNMMI Res 2019; 9:110. [PMID: 31832814 PMCID: PMC6908538 DOI: 10.1186/s13550-019-0581-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/04/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) are two efflux transporters expressed at the blood-brain barrier which effectively restrict the brain distribution of the majority of currently known anticancer drugs. High-grade brain tumors often possess a disrupted blood-brain tumor barrier (BBTB) leading to enhanced accumulation of magnetic resonance imaging contrast agents, and possibly anticancer drugs, as compared to normal brain. In contrast to high-grade brain tumors, considerably less information is available with respect to BBTB integrity in lower grade brain tumors. MATERIALS AND METHODS We performed positron emission tomography imaging with the radiolabeled ABCB1 inhibitor [11C]tariquidar, a prototypical ABCB1/ABCG2 substrate, in seven patients with non-contrast -enhancing brain tumors (WHO grades I-III). In addition, ABCB1 and ABCG2 levels were determined in surgically resected tumor tissue of four patients using quantitative targeted absolute proteomics. RESULTS Brain distribution of [11C]tariquidar was found to be very low across the whole brain and not significantly different between tumor and tumor-free brain tissue. Only one patient showed a small area of enhanced [11C]tariquidar uptake within the brain tumor. ABCG2/ABCB1 ratios in surgically resected tumor tissue (1.4 ± 0.2) were comparable to previously reported ABCG2/ABCB1 ratios in isolated human micro-vessels (1.3), which suggested that no overexpression of ABCB1 or ABCG2 occurred in the investigated tumors. CONCLUSIONS Our data suggest that the investigated brain tumors had an intact BBTB, which is impermeable to anticancer drugs, which are dual ABCB1/ABCG2 substrates. Therefore, effective drugs for antitumor treatment should have high passive permeability and lack ABCB1/ABCG2 substrate affinity. TRIAL REGISTRATION European Union Drug Regulating Authorities Clinical Trials Database (EUDRACT), 2011-004189-13. Registered on 23 February 2012, https://www.clinicaltrialsregister.eu/ctr-search/search?query=2011-004189-13.
Collapse
Affiliation(s)
| | - Martin Bauer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Rudolf Karch
- Centre for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Harald Stefanits
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Cécile Philippe
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Maria Weber
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Thomas Czech
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Marie-Claude Menet
- Inserm, U1144, Paris, France.,Université Paris Descartes, UMR-S 1144, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Xavier Declèves
- Inserm, U1144, Paris, France.,Université Paris Descartes, UMR-S 1144, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Markus Müller
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria. .,Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria. .,Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria.
| |
Collapse
|
404
|
Wolters EE, Ossenkoppele R, Golla SS, Verfaillie SC, Timmers T, Visser D, Tuncel H, Coomans EM, Windhorst AD, Scheltens P, van der Flier WM, Boellaard R, van Berckel BN. Hippocampal [ 18F]flortaucipir BP ND corrected for possible spill-in of the choroid plexus retains strong clinico-pathological relationships. NEUROIMAGE-CLINICAL 2019; 25:102113. [PMID: 31835238 PMCID: PMC6920114 DOI: 10.1016/j.nicl.2019.102113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/22/2019] [Accepted: 12/01/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Off-target [18F]flortaucipir (tau) PET binding in the choroid plexus causes spill-in into the nearby hippocampus, which may influence the correlation between [18F]flortaucipir binding and measures of cognition. Previously, we showed that partial volume correction (combination of Van Cittert iterative deconvolution and HYPR denoising; PVC HDH) and manually eroding the hippocampus resulted in a significant decrease of the choroid plexus spill-in. In this study, we compared three different approaches for the quantification of hippocampal [18F]flortaucipir signal using a semi-automated technique, and assessed correlations with cognitive performance across methods. METHODS Dynamic 130 min [18F]flortaucipir PET scans were performed in 109 subjects (45 cognitively normal subjects (CN) and 64 mild cognitive impairment/Alzheimer's disease (AD) dementia patients. We extracted hippocampal binding potential (BPND) using receptor parametric mapping with cerebellar grey matter as reference region. PVC HDH was performed. Based on our previous study in which we manually eroded 40% ± 10% of voxels of the hippocampus, three hippocampal volumes-of-interest (VOIs) were generated: a non-optimized 100% hippocampal VOI [100%], and combining HDH with eroding a percentage of the highest hippocampus BPND voxels (i.e. lowering spill-in) resulting in optimized 50%[50%HDH] and 40%[40%HDH] hippocampal VOIs. Cognitive performance was assessed with the Mini-Mental State Examination (MMSE) and Rey auditory verbal learning delayed recall. We performed receiver operating characteristic analyses to investigate which method could best discriminate MCI/AD from controls. Subsequently, we performed linear regressions to investigate associations between the hippocampal [18F]flortaucipir BPND VOIs and MMSE/delayed recall adjusted for age, sex and education. RESULTS We found higher hippocampal [18F]flortaucipir BPND in MCI/AD patients (BPND100%=0.27±0.15) compared to CN (BPND100%= 0.07±0.13) and all methods showed comparable discriminative effects (AUC100%=0.85[CI=0.78-0.93]; AUC50%HDH=0.84[CI=0.74-0.92]; AUC40%HDH=0.83[CI=0.74-0.92]). Across groups, higher [18F]flortaucipir BPND was related to lower scores on MMSE (standardized β100%=-0.38[CI=-0.57-0.20]; β50%HDH= -0.37[CI=-0.54-0.19]; β40%HDH=-0.35[CI=-0.53-0.17], all p<0.001) and delayed recall (standardized β100%=-0.64[CI=-0.79-0.49]; β50%HDH= -0.61[CI=-0.76-0.46]; β40%HDH=-0.59[CI=-0.75-0.44]; all p<0.001), with comparable effect sizes for all hippocampal VOIs. CONCLUSIONS Hippocampal tau load measured with [18F]flortaucipir PET is strongly associated with cognitive function. Both discrimination between diagnostic groups and associations between hippocampal [18F]flortaucipir BPND and memory were comparable for all methods. The non-optimized 100% hippocampal VOI may be sufficient for clinical interpretation. However, proper correction for choroid plexus spillover and may be required in case of smaller effect sizes between subject groups or for longitudinal studies.
Collapse
Affiliation(s)
- Emma E Wolters
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, location VUmc, PO Box 7057, 1007 MB Amsterdam, the Netherlands; Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Sandeep Sv Golla
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, location VUmc, PO Box 7057, 1007 MB Amsterdam, the Netherlands
| | - Sander Cj Verfaillie
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, location VUmc, PO Box 7057, 1007 MB Amsterdam, the Netherlands
| | - Tessa Timmers
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, location VUmc, PO Box 7057, 1007 MB Amsterdam, the Netherlands; Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Denise Visser
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, location VUmc, PO Box 7057, 1007 MB Amsterdam, the Netherlands
| | - Hayel Tuncel
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, location VUmc, PO Box 7057, 1007 MB Amsterdam, the Netherlands
| | - Emma M Coomans
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, location VUmc, PO Box 7057, 1007 MB Amsterdam, the Netherlands
| | - Albert D Windhorst
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, location VUmc, PO Box 7057, 1007 MB Amsterdam, the Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, location VUmc, PO Box 7057, 1007 MB Amsterdam, the Netherlands
| | - Bart Nm van Berckel
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, location VUmc, PO Box 7057, 1007 MB Amsterdam, the Netherlands
| |
Collapse
|
405
|
Pharmacokinetic evaluation of [18F]PR04.MZ for PET/CT imaging and quantification of dopamine transporters in the human brain. Eur J Nucl Med Mol Imaging 2019; 47:1927-1937. [DOI: 10.1007/s00259-019-04594-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/23/2019] [Indexed: 11/26/2022]
|
406
|
Kreeke JA, Nguyen H, Haan J, Konijnenberg E, Tomassen J, Braber A, Kate M, Collij L, Yaqub M, Berckel B, Lammertsma AA, Boomsma DI, Tan HS, Verbraak FD, Visser PJ. Retinal layer thickness in preclinical Alzheimer's disease. Acta Ophthalmol 2019; 97:798-804. [PMID: 31058465 PMCID: PMC6900176 DOI: 10.1111/aos.14121] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/28/2019] [Indexed: 12/26/2022]
Abstract
Purpose There is urgent need for non‐invasive diagnostic biomarkers in the preclinical phase of Alzheimer's Disease (AD). Several studies suggest that retinal thickness is reduced in AD. Here, we aim to test the diagnostic value of retinal thickness in preclinical AD, as defined by cognitively normal individuals with amyloid pathology on PET. Methods One hundred and sixty five cognitively healthy monozygotic twins aged ≥ 60 were included from the Netherlands Twin Register taking part in the European Medical Information Framework for Alzheimer's Disease PreclinAD study. Participants underwent [18F] flutemetamol PET that was visually rated for presence or absence of cortical amyloid beta (Aβ). Binding potential (BPND) was calculated as continuous measure for Aβ. Spectral Domain OCT was used to asses total and individual inner retinal layer thickness in the macular region (ETDRS circles) as well as peripapillary retinal nerve fibre layer (pRNFL) thickness. Differences between Aβ+ and Aβ− individuals and associations between BPND and retinal thickness were analyzed. Results No differences were found in retinal layer thickness in the macula or pRNFL between Aβ+ and Aβ− individuals. A positive associations between BPND and macular total retinal thickness was observed in the inner ring (p = 0.018), but this was not statistically significant after correction for multiple testing (p = 0.144). Brain/eye parameters had moderate to high intra‐twin correlations (p < 0.001) except visual rating score of Aβ, which did not correlate (r = 0.21, p = 0.068). Conclusion Variation in retinal thickness likely reflects genetic differences between individuals, but cannot discriminate between healthy and preclinical AD cases, making its use as biomarker in these early stages limited.
Collapse
Affiliation(s)
- Jacoba A. Kreeke
- Ophthalmology Department Amsterdam UMC, location VUmc Amsterdam The Netherlands
| | - Hoang‐Ton Nguyen
- Ophthalmology Department Amsterdam UMC, location VUmc Amsterdam The Netherlands
| | - Jurre Haan
- Alzheimer Center Neuroscience Amsterdam Amsterdam UMC, location VUmc Amsterdam The Netherlands
| | - Elles Konijnenberg
- Alzheimer Center Neuroscience Amsterdam Amsterdam UMC, location VUmc Amsterdam The Netherlands
| | - Jori Tomassen
- Alzheimer Center Neuroscience Amsterdam Amsterdam UMC, location VUmc Amsterdam The Netherlands
| | - Anouk Braber
- Alzheimer Center Neuroscience Amsterdam Amsterdam UMC, location VUmc Amsterdam The Netherlands
- Department of Biological Psychology VU University Amsterdam Amsterdam The Netherlands
| | - Mara Kate
- Alzheimer Center Neuroscience Amsterdam Amsterdam UMC, location VUmc Amsterdam The Netherlands
| | - Lyduine Collij
- Department of Radiology and Nuclear Medicine Amsterdam UMC, location VUmc Amsterdam The Netherlands
| | - Maqsood Yaqub
- Department of Radiology and Nuclear Medicine Amsterdam UMC, location VUmc Amsterdam The Netherlands
| | - Bart Berckel
- Department of Radiology and Nuclear Medicine Amsterdam UMC, location VUmc Amsterdam The Netherlands
| | - Adriaan A. Lammertsma
- Department of Radiology and Nuclear Medicine Amsterdam UMC, location VUmc Amsterdam The Netherlands
| | - Dorret I. Boomsma
- Department of Biological Psychology VU University Amsterdam Amsterdam The Netherlands
| | - Hendra Stevie Tan
- Ophthalmology Department Amsterdam UMC, location VUmc Amsterdam The Netherlands
| | - Frank D. Verbraak
- Ophthalmology Department Amsterdam UMC, location VUmc Amsterdam The Netherlands
| | - Pieter Jelle Visser
- Alzheimer Center Neuroscience Amsterdam Amsterdam UMC, location VUmc Amsterdam The Netherlands
| |
Collapse
|
407
|
Alaverdyan Z, Jung J, Bouet R, Lartizien C. Regularized siamese neural network for unsupervised outlier detection on brain multiparametric magnetic resonance imaging: Application to epilepsy lesion screening. Med Image Anal 2019; 60:101618. [PMID: 31841950 DOI: 10.1016/j.media.2019.101618] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 10/25/2022]
Abstract
In this study, we propose a novel anomaly detection model targeting subtle brain lesions in multiparametric MRI. To compensate for the lack of annotated data adequately sampling the heterogeneity of such pathologies, we cast this problem as an outlier detection problem and introduce a novel configuration of unsupervised deep siamese networks to learn normal brain representations using a series of non-pathological brain scans. The proposed siamese network, composed of stacked convolutional autoencoders as subnetworks is designed to map patches extracted from healthy control scans only and centered at the same spatial localization to 'close' representations with respect to the chosen metric in a latent space. It is based on a novel loss function combining a similarity term and a regularization term compensating for the lack of dissimilar pairs. These latent representations are then fed into oc-SVM models at voxel-level to produce anomaly score maps. We evaluate the performance of our brain anomaly detection model to detect subtle epilepsy lesions in multiparametric (T1-weighted, FLAIR) MRI exams considered as normal (MRI-negative). Our detection model trained on 75 healthy subjects and validated on 21 epilepsy patients (with 18 MRI-negatives) achieves a maximum sensitivity of 61% on the MRI-negative lesions, identified among the 5 most suspicious detections on average. It is shown to outperform detection models based on the same architecture but with stacked convolutional or Wasserstein autoencoders as unsupervised feature extraction mechanisms.
Collapse
Affiliation(s)
- Zaruhi Alaverdyan
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F69621, Lyon, France
| | - Julien Jung
- Lyon Neuroscience Research Center, CRNL, INSERM U1028, CNRS UMR5292, University Lyon 1, Lyon, France
| | - Romain Bouet
- Lyon Neuroscience Research Center, CRNL, INSERM U1028, CNRS UMR5292, University Lyon 1, Lyon, France
| | - Carole Lartizien
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F69621, Lyon, France.
| |
Collapse
|
408
|
Hagens MHJ, Golla SSV, Janssen B, Vugts DJ, Beaino W, Windhorst AD, O’Brien-Brown J, Kassiou M, Schuit RC, Schwarte LA, de Vries HE, Killestein J, Barkhof F, van Berckel BNM, Lammertsma AA. The P2X 7 receptor tracer [ 11C]SMW139 as an in vivo marker of neuroinflammation in multiple sclerosis: a first-in man study. Eur J Nucl Med Mol Imaging 2019; 47:379-389. [PMID: 31705174 PMCID: PMC6974509 DOI: 10.1007/s00259-019-04550-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022]
Abstract
Purpose The novel PET tracer [11C]SMW139 binds with high affinity to the P2X7 receptor, which is expressed on pro-inflammatory microglia. The purposes of this first in-man study were to characterise pharmacokinetics of [11C]SMW139 in patients with active relapsing remitting multiple sclerosis (RRMS) and healthy controls (HC) and to evaluate its potential to identify in vivo neuroinflammation in RRMS. Methods Five RRMS patients and 5 age-matched HC underwent 90-min dynamic [11C]SMW139 PET scans, with online continuous and manual arterial sampling to generate a metabolite-corrected arterial plasma input function. Tissue time activity curves were fitted to single- and two-tissue compartment models, and the model that provided the best fits was determined using the Akaike information criterion. Results The optimal model for describing [11C]SMW139 kinetics in both RRMS and HC was a reversible two-tissue compartment model with blood volume parameter and with the dissociation rate k4 fixed to the whole-brain value. Exploratory group level comparisons demonstrated an increased volume of distribution (VT) and binding potential (BPND) in RRMS compared with HC in normal appearing brain regions. BPND in MS lesions was decreased compared with non-lesional white matter, and a further decrease was observed in gadolinium-enhancing lesions. In contrast, increased VT was observed in enhancing lesions, possibly resulting from disruption of the blood-brain barrier in active MS lesions. In addition, there was a high correlation between parameters obtained from 60- to 90-min datasets, although analyses using 60-min data led to a slight underestimation in regional VT and BPND values. Conclusions This first in-man study demonstrated that uptake of [11C]SMW139 can be quantified with PET using BPND as a measure for specific binding in healthy controls and RRMS patients. Additional studies are warranted for further clinical evaluation of this novel neuroinflammation tracer. Electronic supplementary material The online version of this article (10.1007/s00259-019-04550-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marloes H. J. Hagens
- MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC - location VUmc, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC - location VUmc, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Sandeep S. V. Golla
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC - location VUmc, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Bieneke Janssen
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC - location VUmc, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Danielle J. Vugts
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC - location VUmc, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Wissam Beaino
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC - location VUmc, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Albert D. Windhorst
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC - location VUmc, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | | | - Michael Kassiou
- School of Chemistry, University of Sydney, Sydney, Australia
| | - Robert C. Schuit
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC - location VUmc, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Lothar A. Schwarte
- Department of Anaesthesiology, Amsterdam UMC - location VUmc, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Helga E. de Vries
- MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC - location VUmc, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC - location VUmc, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Joep Killestein
- MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC - location VUmc, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC - location VUmc, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Frederik Barkhof
- MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC - location VUmc, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC - location VUmc, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Institutes of Neurology and Healthcare Engineering, UCL Institute of Neurology, London, UK
| | - Bart N. M. van Berckel
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC - location VUmc, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Adriaan A. Lammertsma
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC - location VUmc, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
409
|
Lee W, Reeve J. Brain gray matter correlates of general psychological need satisfaction: a voxel-based morphometry study. MOTIVATION AND EMOTION 2019. [DOI: 10.1007/s11031-019-09799-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
410
|
Holmberg MO, Malmgren H, Berglund P, Bunketorp-Käll L, Heckemann RA, Johansson B, Klasson N, Olsson E, Skau S, Nystrom Filipsson H. Structural brain changes in hyperthyroid Graves' disease: protocol for an ongoing longitudinal, case-controlled study in Göteborg, Sweden-the CogThy project. BMJ Open 2019; 9:e031168. [PMID: 31685507 PMCID: PMC6858258 DOI: 10.1136/bmjopen-2019-031168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Cognitive impairment and reduced well-being are common manifestations of Graves' disease (GD). These symptoms are not only prevalent during the active phase of the disease but also often prevail for a long time after hyperthyroidism is considered cured. The pathogenic mechanisms involved in these brain-derived symptoms are currently unknown. The overall aim of the CogThy study is to identify the mechanism behind cognitive impairment to be able to recognise GD patients at risk. METHODS AND ANALYSIS The study is a longitudinal, single-centre, case-controlled study conducted in Göteborg, Sweden on premenopausal women with newly diagnosed GD. The subjects are examined: at referral, at inclusion and then every 3.25 months until 15 months. Examinations include: laboratory measurements; eye evaluation; neuropsychiatric and neuropsychological testing; structural MRI of the whole brain, orbits and medial temporal lobe structures; functional near-infrared spectroscopy of the cerebral prefrontal cortex and self-assessed quality of life questionnaires. The primary outcome measure is the change in medial temporal lobe structure volume. Secondary outcome measures include neuropsychological, neuropsychiatric, hormonal and autoantibody variables. The study opened for inclusion in September 2012 and close for inclusion in October 2019. It will provide novel information on the effect of GD on medial temporal lobe structures and cerebral cortex functionality as well as whether these changes are associated with cognitive and affective impairment, hormonal levels and/or autoantibody levels. It should lead to a broader understanding of the underlying pathogenesis and future treatment perspectives. ETHICS AND DISSEMINATION The study has been reviewed and approved by the Regional Ethical Review Board in Göteborg, Sweden. The results will be actively disseminated through peer-reviewed journals, national and international conference presentations and among patient organisations after an appropriate embargo time. TRIAL REGISTRATION NUMBER 44321 at the public project database for research and development in Västra Götaland County, Sweden (https://www.researchweb.org/is/vgr/project/44321).
Collapse
Affiliation(s)
- Mats Olof Holmberg
- ANOVA, Karolinska University Hospital, Stockholm, Sweden
- Institute of Medicine, University of Gothenburg, Sahlgrenska Academy, Göteborg, Sweden
| | - Helge Malmgren
- Institute of Medicine, University of Gothenburg, Sahlgrenska Academy, Göteborg, Sweden
- MedTech West, University of Gothenburg, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Peter Berglund
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Göteborg, Sweden
| | - Lina Bunketorp-Käll
- Department of Health and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Göteborg, Sweden
| | - Rolf A Heckemann
- Division of Brain Sciences, Department of Medicine, Faculty of Medicine, Imperial College London, London, UK
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, Göteborg, Sweden
| | - Birgitta Johansson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Göteborg, Sweden
| | - Niklas Klasson
- MedTech West, University of Gothenburg, Sahlgrenska University Hospital, Göteborg, Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Göteborg, Sweden
| | - Erik Olsson
- Institute of Medicine, University of Gothenburg, Sahlgrenska Academy, Göteborg, Sweden
| | - Simon Skau
- MedTech West, University of Gothenburg, Sahlgrenska University Hospital, Göteborg, Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Göteborg, Sweden
| | - Helena Nystrom Filipsson
- Institute of Medicine, University of Gothenburg, Sahlgrenska Academy, Göteborg, Sweden
- Department of Endocrinology, Sahlgrenska University Hospital, Göteborg, Sweden
| |
Collapse
|
411
|
Golla SS, Verfaillie SC, Boellaard R, Adriaanse SM, Zwan MD, Schuit RC, Timmers T, Groot C, Schober P, Scheltens P, van der Flier WM, Windhorst AD, van Berckel BN, Lammertsma AA. Quantification of [ 18F]florbetapir: A test-retest tracer kinetic modelling study. J Cereb Blood Flow Metab 2019; 39:2172-2180. [PMID: 29897009 PMCID: PMC6826855 DOI: 10.1177/0271678x18783628] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Accumulation of amyloid beta can be visualized using [18F]florbetapir positron emission tomography. The aim of this study was to identify the optimal model for quantifying [18F]florbetapir uptake and to assess test-retest reliability of corresponding outcome measures. Eight Alzheimer's disease patients (age: 67 ± 6 years, Mini-Mental State Examination (MMSE): 23 ± 3) and eight controls (age: 63 ± 4 years, MMSE: 30 ± 0) were included. Ninety-minute dynamic positron emission tomography scans, together with arterial blood sampling, were acquired immediately following a bolus injection of 294 ± 32 MBq [18F]florbetapir. Several plasma input models and the simplified reference tissue model (SRTM) were evaluated. The Akaike information criterion was used to identify the preferred kinetic model. Compared to controls, Alzheimer's disease patients had lower MMSE scores and evidence for cortical Aβ pathology. A reversible two-tissue compartment model with fitted blood volume fraction (2T4k_VB) was the preferred model for describing [18F]florbetapir kinetics. SRTM-derived non-displaceable binding potential (BPND) correlated well (r2 = 0.83, slope = 0.86) with plasma input-derived distribution volume ratio. Test-retest reliability for plasma input-derived distribution volume ratio, SRTM-derived BPND and SUVr(50-70) were r = 0.88, r = 0.91 and r = 0.86, respectively. In vivo kinetics of [18F]florbetapir could best be described by a reversible two-tissue compartmental model and [18F]florbetapir BPND can be reliably estimated using an SRTM.
Collapse
Affiliation(s)
- Sandeep Sv Golla
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Sander Cj Verfaillie
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurology & Alzheimer Center, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Ronald Boellaard
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands.,Department of Nuclear Medicine & Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sofie M Adriaanse
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Marissa D Zwan
- Department of Neurology & Alzheimer Center, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Robert C Schuit
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Tessa Timmers
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurology & Alzheimer Center, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Colin Groot
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Patrick Schober
- Department of Anaesthesiology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Philip Scheltens
- Department of Neurology & Alzheimer Center, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Wiesje M van der Flier
- Department of Neurology & Alzheimer Center, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands.,Department of Epidemiology & Biostatistics, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Bart Nm van Berckel
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Adriaan A Lammertsma
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
412
|
Kim S, Jung WH, Howes OD, Veronese M, Turkheimer FE, Lee YS, Lee JS, Kim E, Kwon JS. Frontostriatal functional connectivity and striatal dopamine synthesis capacity in schizophrenia in terms of antipsychotic responsiveness: an [ 18F]DOPA PET and fMRI study. Psychol Med 2019; 49:2533-2542. [PMID: 30460891 DOI: 10.1017/s0033291718003471] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Given that only a subgroup of patients with schizophrenia responds to first-line antipsychotic drugs, a key clinical question is what underlies treatment response. Observations that prefrontal activity correlates with striatal dopaminergic function, have led to the hypothesis that disrupted frontostriatal functional connectivity (FC) could be associated with altered dopaminergic function. Thus, the aim of this study was to investigate the relationship between frontostriatal FC and striatal dopamine synthesis capacity in patients with schizophrenia who had responded to first-line antipsychotic drug compared with those who had failed but responded to clozapine. METHODS Twenty-four symptomatically stable patients with schizophrenia were recruited from Seoul National University Hospital, 12 of which responded to first-line antipsychotic drugs (first-line AP group) and 12 under clozapine (clozapine group), along with 12 matched healthy controls. All participants underwent resting-state functional magnetic resonance imaging and [18F]DOPA PET scans. RESULTS No significant difference was found in the total PANSS score between the patient groups. Voxel-based analysis showed a significant correlation between frontal FC to the associative striatum and the influx rate constant of [18F]DOPA in the corresponding region in the first-line AP group. Region-of-interest analysis confirmed the result (control group: R2 = 0.019, p = 0.665; first-line AP group: R2 = 0.675, p < 0.001; clozapine group: R2 = 0.324, p = 0.054) and the correlation coefficients were significantly different between the groups. CONCLUSIONS The relationship between striatal dopamine synthesis capacity and frontostriatal FC is different between responders to first-line treatment and clozapine treatment in schizophrenia, indicating that a different pathophysiology could underlie schizophrenia in patients who respond to first-line treatments relative to those who do not.
Collapse
Affiliation(s)
- Seoyoung Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Wi Hoon Jung
- Department of Psychology, College of Liberal Arts, Korea University, Seoul, Republic of Korea
| | - Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Psychiatric Imaging, Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Mattia Veronese
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federico E Turkheimer
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Yun-Sang Lee
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jae Sung Lee
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Brain & Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Euitae Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Brain & Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
413
|
Juarez EJ, Castrellon JJ, Green MA, Crawford JL, Seaman KL, Smith CT, Dang LC, Matuskey D, Morris ED, Cowan RL, Zald DH, Samanez-Larkin GR. Reproducibility of the correlative triad among aging, dopamine receptor availability, and cognition. Psychol Aging 2019; 34:921-932. [PMID: 31589058 PMCID: PMC6829049 DOI: 10.1037/pag0000403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The evidence that dopamine function mediates the association between aging and cognition is one of the most cited findings in the cognitive neuroscience of aging. However, few and relatively small studies have directly examined these associations. Here we examined correlations among adult age, dopamine D2-like receptor (D2R) availability, and cognition in two cross-sectional studies of healthy human adults. Participants completed a short cognitive test battery and, on a separate day, a PET scan with either the high-affinity D2R tracer [18F]Fallypride (Study 1) or [11C]FLB457 (Study 2). Digit span, a measure of short-term memory maintenance and working memory, was the only cognitive test for which dopamine D2R availability partially mediated the age effect on cognition. In Study 1, age was negatively correlated with digit span. Striatal D2R availability was positively correlated with digit span controlling for age. The age effect on digit span was smaller when controlling for striatal D2R availability. Although other cognitive measures used here have individually been associated with age and D2R availability in prior studies, we found no consistent evidence for significant associations between low D2R availability and low cognitive performance on these measures. These results at best only partially supported the correlative triad of age, dopamine D2R availability, and cognition. While a wealth of other research in human and nonhuman animals demonstrates that dopamine makes critical contributions to cognition, the present studies suggest caution in interpreting PET findings as evidence that dopamine D2R loss is a primary cause of broad age-related declines in fluid cognition. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Linh C Dang
- Department of Psychology, Vanderbilt University
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale University
| | - Evan D Morris
- Department of Radiology and Biomedical Imaging, Yale University
| | | | | | | |
Collapse
|
414
|
Nicastro N, Rodriguez PV, Malpetti M, Bevan-Jones WR, Simon Jones P, Passamonti L, Aigbirhio FI, O'Brien JT, Rowe JB. 18F-AV1451 PET imaging and multimodal MRI changes in progressive supranuclear palsy. J Neurol 2019; 267:341-349. [PMID: 31641878 PMCID: PMC6989441 DOI: 10.1007/s00415-019-09566-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022]
Abstract
Objectives Progressive supranuclear palsy (PSP) is characterized by deposition of straight filament tau aggregates in the grey matter (GM) of deep nuclei and cerebellum. We examined the relationship between tau pathology (assessed via 18F-AV1451 PET) and multimodal MRI imaging using GM volume, cortical thickness (CTh), and diffusion tensor imaging (DTI). Methods Twenty-three people with clinically probable PSP-Richardson’s syndrome (age 68.8 ± 5.8 years, 39% female) and 23 controls underwent structural 3 T brain MRI including DTI. Twenty-one patients also had 18F-AV1451 PET imaging. Voxelwise volume-based morphometry, surface-based morphometry, and DTI correlations were performed with 18F-AV1451 binding in typical PSP regions of interest (putamen, thalamus and dentate cerebellum). Clinical impairment was also assessed in relation to the different imaging modalities. Results PSP subjects showed GM volume loss in frontotemporal regions, basal ganglia, midbrain, and cerebellum (FDR-corrected p < 0.05), reduced CTh in the left entorhinal and fusiform gyrus (p < 0.001) as well as DTI changes in the corpus callosum, internal capsule, and superior longitudinal fasciculus (FWE-corrected p < 0.05). In PSP, higher 18F-AV1451 binding correlated with GM volume loss in frontal regions, DTI changes in motor tracts, and cortical thinning in parietooccipital areas. Cognitive impairment was related to decreased GM volume in frontotemporal regions, thalamus and pallidum, as well as DTI alteration in corpus callosum and cingulum. Conclusion This cross-sectional study demonstrates an association between in vivo proxy measures of tau pathology and grey and white matter degeneration in PSP. This adds to the present literature about the complex interplay between structural changes and protein deposition.
Collapse
Affiliation(s)
- Nicolas Nicastro
- Department of Psychiatry, University of Cambridge, Cambridge, UK.,Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Patricia Vazquez Rodriguez
- Department of Clinical Neurosciences, University of Cambridge, Herchel Smith Building, Forvie Site, Robinson Way, Cambridge Biomedical Campus, Cambridge, CB2 0SZ, UK
| | - Maura Malpetti
- Department of Clinical Neurosciences, University of Cambridge, Herchel Smith Building, Forvie Site, Robinson Way, Cambridge Biomedical Campus, Cambridge, CB2 0SZ, UK
| | - William Richard Bevan-Jones
- Department of Clinical Neurosciences, University of Cambridge, Herchel Smith Building, Forvie Site, Robinson Way, Cambridge Biomedical Campus, Cambridge, CB2 0SZ, UK
| | - P Simon Jones
- Department of Clinical Neurosciences, University of Cambridge, Herchel Smith Building, Forvie Site, Robinson Way, Cambridge Biomedical Campus, Cambridge, CB2 0SZ, UK
| | - Luca Passamonti
- Department of Clinical Neurosciences, University of Cambridge, Herchel Smith Building, Forvie Site, Robinson Way, Cambridge Biomedical Campus, Cambridge, CB2 0SZ, UK.,Consiglio Nazionale Delle Ricerche (CNR), Istituto Di Bioimmagini E Fisiologia Molecolare (IBFM), Milano, Italy
| | | | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Herchel Smith Building, Forvie Site, Robinson Way, Cambridge Biomedical Campus, Cambridge, CB2 0SZ, UK. .,Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK.
| |
Collapse
|
415
|
Characterization of the serotonin 2A receptor selective PET tracer (R)-[ 18F]MH.MZ in the human brain. Eur J Nucl Med Mol Imaging 2019; 47:355-365. [PMID: 31606832 DOI: 10.1007/s00259-019-04527-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/05/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE The serotonin receptor subtype 2A antagonist (5-HT2AR) (R)-[18F]MH.MZ has in preclinical studies been identified as a promising PET imaging agent for quantification of cerebral 5-HT2ARs. It displays a very similar selectivity profile as [11C]MDL 100907, one of the most selective compounds identified thus far for the 5-HT2AR. As [11C]MDL 100907, (R)-[18F]MH.MZ also displays slow brain kinetics in various animal models; however, the half-life of fluorine-18 allows for long scan times and consequently, a more precise determination of 5-HT2AR binding could still be feasible. In this study, we aimed to evaluate the potential of (R)-[18F]MH.MZ PET to image and quantify the 5-HT2AR in the human brain in vivo. METHODS Nine healthy volunteers underwent (R)-[18F]MH.MZ PET at baseline and four out of these also received a second PET scan, after ketanserin pretreatment. Regional time-activity curves of 17 brain regions were analyzed before and after pretreatment. We also investigated radiometabolism, time-dependent stability of outcomes measures, specificity of (R)-[18F]MH.MZ 5-HT2AR binding, and performance of different kinetic modeling approaches. RESULTS Highest uptake was determined in 5-HT2AR rich regions with a BPND of approximately 1.5 in cortex regions. No radiometabolism was observed. 1TCM and 2TCM resulted in similar outcome measure, whereas reference tissue models resulted in a small, but predictable bias. (R)-[18F]MH.MZ binding conformed to the known distribution of 5-HT2AR and could be blocked by pretreatment with ketanserin. Moreover, outcomes measures were stable after 100-110 min. CONCLUSION (R)-[18F]MH.MZ is a suitable PET tracer to image and quantify the 5-HT2AR system in humans. In comparison with [11C]MDL 100907, faster and more precise outcome measure could be obtained using (R)-[18F]MH.MZ. We believe that (R)-[18F]MH.MZ has the potential to become the antagonist radiotracer of choice to investigate the human 5-HT2AR system.
Collapse
|
416
|
Fonteneau C, Redoute J, Haesebaert F, Le Bars D, Costes N, Suaud-Chagny MF, Brunelin J. Frontal Transcranial Direct Current Stimulation Induces Dopamine Release in the Ventral Striatum in Human. Cereb Cortex 2019; 28:2636-2646. [PMID: 29688276 PMCID: PMC5998959 DOI: 10.1093/cercor/bhy093] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Indexed: 01/07/2023] Open
Abstract
A single transcranial direct current stimulation (tDCS) session applied over the dorsolateral prefrontal cortex (DLFPC) can be associated with procognitive effects. Furthermore, repeated DLPFC tDCS sessions are under investigation as a new therapeutic tool for a range of neuropsychiatric conditions. A possible mechanism explaining such beneficial effects is a modulation of meso-cortico-limbic dopamine transmission. We explored the spatial and temporal neurobiological effects of bifrontal tDCS on subcortical dopamine transmission during and immediately after the stimulation. In a double blind sham-controlled study, 32 healthy subjects randomly received a single session of either active (20 min, 2 mA; n = 14) or sham (n = 18) tDCS during a dynamic positron emission tomography scan using [11C]raclopride binding. During the stimulation period, no significant effect of tDCS was observed. After the stimulation period, compared with sham tDCS, active tDCS induced a significant decrease in [11C]raclopride binding potential ratio in the striatum, suggesting an increase in extracellular dopamine in a part of the striatum involved in the reward-motivation network. The present study provides the first evidence that bifrontal tDCS induces neurotransmitter release in polysynaptic connected subcortical areas. Therefore, levels of dopamine activity and reactivity should be a new element to consider for a general hypothesis of brain modulation by bifrontal tDCS.
Collapse
Affiliation(s)
- Clara Fonteneau
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, Lyon, France.,University Lyon 1, Villeurbanne, Lyon, France.,Centre Hospitalier Le Vinatier, Lyon, Lyon, France
| | - Jérome Redoute
- Centre d'Etude et de Recherche Multimodal et Pluridisciplinaire en Imagerie du Vivant (CERMEP-Imagerie du vivant), Lyon, Lyon, Auvergne-Rhône-Alpes, France
| | - Frédéric Haesebaert
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, Lyon, France.,University Lyon 1, Villeurbanne, Lyon, France.,Centre Hospitalier Le Vinatier, Lyon, Lyon, France
| | - Didier Le Bars
- Centre d'Etude et de Recherche Multimodal et Pluridisciplinaire en Imagerie du Vivant (CERMEP-Imagerie du vivant), Lyon, Lyon, Auvergne-Rhône-Alpes, France.,ICBMS, Université de Lyon, Lyon, France.,Hospices Civils de Lyon, Lyon, France
| | - Nicolas Costes
- Centre d'Etude et de Recherche Multimodal et Pluridisciplinaire en Imagerie du Vivant (CERMEP-Imagerie du vivant), Lyon, Lyon, Auvergne-Rhône-Alpes, France
| | - Marie-Françoise Suaud-Chagny
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, Lyon, France.,University Lyon 1, Villeurbanne, Lyon, France
| | - Jérome Brunelin
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, Lyon, France.,University Lyon 1, Villeurbanne, Lyon, France.,Centre Hospitalier Le Vinatier, Lyon, Lyon, France
| |
Collapse
|
417
|
Malbert CH, Horowitz M, Young RL. Low-calorie sweeteners augment tissue-specific insulin sensitivity in a large animal model of obesity. Eur J Nucl Med Mol Imaging 2019; 46:2380-2391. [PMID: 31338548 DOI: 10.1007/s00259-019-04430-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023]
Abstract
PURPOSES Whether low-calorie sweeteners (LCS), such as sucralose and acesulfame K, can alter glucose metabolism is uncertain, particularly given the inconsistent observations relating to insulin resistance in recent human trials. We hypothesized that these discrepancies are accounted for by the surrogate tools used to evaluate insulin resistance and that PET 18FDG, given its capacity to quantify insulin sensitivity in individual organs, would be more sensitive in identifying changes in glucose metabolism. Accordingly, we performed a comprehensive evaluation of the effects of LCS on whole-body and organ-specific glucose uptake and insulin sensitivity in a large animal model of morbid obesity. METHODS Twenty mini-pigs with morbid obesity were fed an obesogenic diet enriched with LCS (sucralose 1 mg/kg/day and acesulfame K 0.5 mg/kg/day, LCS diet group), or without LCS (control group), for 3 months. Glucose uptake and insulin sensitivity were determined for the duodenum, liver, skeletal muscle, adipose tissue and brain using dynamic PET 18FDG scanning together with direct measurement of arterial input function. Body composition was also measured using CT imaging and energy metabolism quantified with indirect calorimetry. RESULTS The LCS diet increased subcutaneous abdominal fat by ≈ 20% without causing weight gain, and reduced insulin clearance by ≈ 40%, while whole-body glucose uptake and insulin sensitivity were unchanged. In contrast, glucose uptake in the duodenum, liver and brain increased by 57, 66 and 29% relative to the control diet group (P < 0.05 for all), while insulin sensitivity increased by 53, 55 and 28% (P < 0.05 for all), respectively. In the brain, glucose uptake increased significantly only in the frontal cortex, associated with improved metabolic connectivity towards the hippocampus and the amygdala. CONCLUSIONS In miniature pigs, the combination of sucralose and acesulfame K is biologically active. While not affecting whole-body insulin resistance, it increases insulin sensitivity and glucose uptake in specific tissues, mimicking the effects of obesity in the adipose tissue and in the brain.
Collapse
Affiliation(s)
- Charles-Henri Malbert
- Aniscan Unit, Department of Human Nutrition, INRA, 16, le clos, 35590, Saint-Gilles, France.
| | - Michael Horowitz
- Center of Research Excellence in Translating Nutrition to Good Health, The University of Adelaide, Adelaide, 5005, Australia
| | - Richard L Young
- Center of Research Excellence in Translating Nutrition to Good Health, The University of Adelaide, Adelaide, 5005, Australia
- Nutrition & Metabolism, South Australia Health & Medical Research Institute, Adelaide, 5000, Australia
| |
Collapse
|
418
|
Borgan F, Laurikainen H, Veronese M, Marques TR, Haaparanta-Solin M, Solin O, Dahoun T, Rogdaki M, Salokangas RKR, Karukivi M, Di Forti M, Turkheimer F, Hietala J, Howes O. In Vivo Availability of Cannabinoid 1 Receptor Levels in Patients With First-Episode Psychosis. JAMA Psychiatry 2019; 76:1074-1084. [PMID: 31268519 PMCID: PMC6613300 DOI: 10.1001/jamapsychiatry.2019.1427] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
IMPORTANCE Experimental and epidemiological studies implicate the cannabinoid 1 receptor (CB1R) in the pathophysiology of psychosis. However, whether CB1R levels are altered in the early stages of psychosis and whether they are linked to cognitive function or symptom severity remain unknown. OBJECTIVE To investigate CB1R availability in first-episode psychosis (FEP) without the confounds of illness chronicity or the use of illicit substances or antipsychotics. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional, case-control study of 2 independent samples included participants receiving psychiatric early intervention services at 2 independent centers in Turku, Finland (study 1) and London, United Kingdom (study 2). Study 1 consisted of 18 volunteers, including 7 patients with affective or nonaffective psychoses taking antipsychotic medication and 11 matched controls; study 2, 40 volunteers, including 20 antipsychotic-naive or antipsychotic-free patients with schizophrenia or schizoaffective disorder and 20 matched controls. Data were collected from January 5, 2015, through September 26, 2018, and analyzed from June 20, 2016, through February 12, 2019. MAIN OUTCOMES AND MEASURES The availability of CB1R was indexed using the distribution volume (VT, in milliliters per cubic centimeter) of 2 CB1R-selective positron emission tomography radiotracers: fluoride 18-labeled FMPEP-d2 (study 1) and carbon 11-labeled MePPEP (study 2). Cognitive function was measured using the Wechsler Digit Symbol Coding Test. Symptom severity was measured using the Brief Psychiatric Rating Scale for study 1 and the Positive and Negative Syndrome Scale for study 2. RESULTS A total of 58 male individuals were included in the analyses (mean [SD] age of controls, 27.16 [5.93] years; mean [SD] age of patients, 26.96 [4.55] years). In study 1, 7 male patients with FEP (mean [SD] age, 26.80 [5.40] years) were compared with 11 matched controls (mean [SD] age, 27.18 [5.86] years); in study 2, 20 male patients with FEP (mean [SD] age, 27.00 [5.06] years) were compared with 20 matched controls (mean [SD] age, 27.15 [6.12] years). In study 1, a significant main effect of group on [18F]FMPEP-d2 VT was found in the anterior cingulate cortex (ACC) (t16 = -4.48; P < .001; Hedges g = 1.2), hippocampus (t16 = -2.98; P = .006; Hedges g = 1.4), striatum (t16 = -4.08; P = .001; Hedges g = 1.9), and thalamus (t16 = -4.67; P < .001; Hedges g = 1.4). In study 2, a significant main effect of group on [11C]MePPEP VT was found in the ACC (Hedges g = 0.8), hippocampus (Hedges g = 0.5), striatum (Hedges g = 0.4), and thalamus (Hedges g = 0.7). In patients, [11C]MePPEP VT in the ACC was positively associated with cognitive functioning (R = 0.60; P = .01), and [11C]MePPEP VT in the hippocampus was inversely associated with Positive and Negative Syndrome Scale total symptom severity (R = -0.50; P = .02). CONCLUSIONS AND RELEVANCE The availability of CB1R was lower in antipsychotic-treated and untreated cohorts relative to matched controls. Exploratory analyses indicated that greater reductions in CB1R levels were associated with greater symptom severity and poorer cognitive functioning in male patients. These findings suggest that CB1R may be a potential target for the treatment of psychotic disorders.
Collapse
Affiliation(s)
- Faith Borgan
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom,MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Heikki Laurikainen
- Turku PET (Positron Emission Tomography) Centre, University of Turku and Turku University Hospital, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Tiago Reis Marques
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom,MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Merja Haaparanta-Solin
- Turku PET (Positron Emission Tomography) Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Olof Solin
- Turku PET (Positron Emission Tomography) Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Tarik Dahoun
- MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom,Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | - Maria Rogdaki
- MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Raimo KR Salokangas
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Max Karukivi
- Department of Psychiatry, Turku University, Satakunta Hospital District, Turku, Finland
| | - Marta Di Forti
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Federico Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Jarmo Hietala
- Turku PET (Positron Emission Tomography) Centre, University of Turku and Turku University Hospital, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Oliver Howes
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom,MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | | |
Collapse
|
419
|
Nicastro N, Surendranathan A, Mak E, Rowe JB, O'Brien JT. 11 C-PK11195 PET imaging and white matter changes in Parkinson's disease dementia. Ann Clin Transl Neurol 2019; 6:2133-2136. [PMID: 31507085 PMCID: PMC6801158 DOI: 10.1002/acn3.50877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/02/2019] [Accepted: 08/08/2019] [Indexed: 01/16/2023] Open
Abstract
There is evidence of increased microglial activation in Parkinson’s disease (PD) as shown by in vivo PET ligand such as 11C‐PK11195. In addition, diffusion tensor imaging (DTI) imaging reveals widespread changes in PD, especially when the associated dementia develops. In the present case series, we studied five subjects with Parkinson’s disease dementia (PDD). Our findings suggest that while DTI metrics mirror cognitive severity, higher 11C‐PK11195 binding seems to be associated with a relative preservation of both white matter tracts and cognition. Longitudinal studies are warranted to tackle the complex relationship between microglial activation and structural abnormalities in neurodegenerative conditions.
Collapse
Affiliation(s)
- Nicolas Nicastro
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.,Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | | | - Elijah Mak
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
420
|
Groefsema MM, Mies GW, Cousijn J, Engels RCME, Sescousse G, Luijten M. Brain responses and approach bias to social alcohol cues and their association with drinking in a social setting in young adult males. Eur J Neurosci 2019; 51:1491-1503. [PMID: 31498505 PMCID: PMC7155040 DOI: 10.1111/ejn.14574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/11/2019] [Accepted: 08/27/2019] [Indexed: 11/29/2022]
Abstract
Alcohol is mainly consumed in social settings, in which people often adapt their drinking behaviour to that of others, also called imitation of drinking. Yet, it remains unclear what drives this drinking in a social setting. In this study, we expected to see stronger brain and behavioural responses to social compared to non-social alcohol cues, and these responses to be associated with drinking in a social setting. The sample consisted of 153 beer-drinking males, aged 18-25 years. Brain responses to social alcohol cues were measured during an alcohol cue-exposure task performed in an fMRI scanner. Behavioural responses to social alcohol cues were measured using a stimulus-response compatibility task, providing an index of approach bias towards these cues. Drinking in a social setting was measured in a laboratory mimicking a bar environment. Specific brain responses to social alcohol cues were observed in the bilateral superior temporal sulcus and the left inferior parietal lobe. There was no approach bias towards social alcohol cues specifically; however, we did find an approach bias towards alcohol (versus soda) cues in general. Brain responses and approach bias towards social alcohol cues were unrelated and not associated with actual drinking. Thus, we found no support for a relation between drinking in a social setting on the one hand, and brain cue-reactivity or behavioural approach biases to social alcohol cues on the other hand. This suggests that, in contrast to our hypothesis, drinking in a social setting may not be driven by brain or behavioural responses to social alcohol cues.
Collapse
Affiliation(s)
- Martine M Groefsema
- Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| | - Gabry W Mies
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Developmental Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Janna Cousijn
- Developmental Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Guillaume Sescousse
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands.,Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS, UMR5292, PSYR2 Team, Lyon, France.,CH Le Vinatier, Service Universitaire d'Addictologie, Bron, France
| | - Maartje Luijten
- Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
421
|
Ceccarini J, Leurquin-Sterk G, Crunelle CL, de Laat B, Bormans G, Peuskens H, Van Laere K. Recovery of Decreased Metabotropic Glutamate Receptor 5 Availability in Abstinent Alcohol-Dependent Patients. J Nucl Med 2019; 61:256-262. [PMID: 31481578 DOI: 10.2967/jnumed.119.228825] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/19/2019] [Indexed: 12/21/2022] Open
Abstract
Animal models of alcohol dependence and relapse demonstrate an important role of the glutamatergic system, in particular, cerebral metabotropic glutamate receptor 5 (mGluR5). 18F-3-fluoro-5-[(pyridin-3-yl)ethynyl]benzonitrile (18F-FPEB) PET has revealed that chronic alcohol use leads to decreased limbic mGluR5 availability, which was associated with less craving. Here, we tested whether the state of decreased mGluR5 availability in alcohol-dependent patients normalizes during abstinence (at 2 and 6 mo of detoxification) and whether initial mGluR5 imaging parameters can predict individual relapse. Methods: 18F-FPEB scans were performed for 16 recently detoxified alcohol-dependent patients (baseline condition), 2 mo after detoxification (n = 10), and 6 mo after detoxification (n = 8); 32 age- and sex-matched controls were included for comparison. mGluR5 availability was quantified by the 18F-FPEB total distribution volume using both voxel-by-voxel and volume-of-interest analyses. During follow-up, craving was assessed using the Desire for Alcohol Questionnaire, and alcohol consumption was assessed using the timeline follow-back method and monitored by hair ethyl glucuronide analysis. Results: During abstinence, alcohol-dependent patients showed sustained recovered mGluR5 availability in cortical and subcortical regions compared with the baseline, up to the levels observed in controls, after 6 mo in most areas except for the hippocampus, nucleus accumbens, and thalamus. Higher striatopallidal mGluR5 availability was observed at the baseline in patients who had a relapse during the 6-mo follow-up period (+25.1%). Also, normalization of striatal mGluR5 to control levels was associated with reduced craving ("desire and intention to drink" and "negative reinforcement"; r = 0.72-0.94). Conclusion: Reduced cerebral mGluR5 availability in alcohol-dependent patients recovers during abstinence and is associated with reduced craving. Higher striatal mGluR5 availability in alcohol-dependent users may be associated with long-term relapse.
Collapse
Affiliation(s)
- Jenny Ceccarini
- Department of Nuclear Medicine and Molecular Imaging, UZ Leuven, Leuven, Belgium .,Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Gil Leurquin-Sterk
- Department of Nuclear Medicine and Molecular Imaging, UZ Leuven, Leuven, Belgium.,Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Cleo Lina Crunelle
- Toxicological Center, University of Antwerp, Wilrijk, Belgium.,Department of Psychiatry, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Bart de Laat
- Department of Nuclear Medicine and Molecular Imaging, UZ Leuven, Leuven, Belgium.,Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,MoSAIC, Molecular Small Animal Imaging Center, KU Leuven, Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmacy, KU Leuven, Leuven, Belgium
| | - Hendrik Peuskens
- University Psychiatric Center, KU Leuven, Kortenberg, Belgium; and.,Kliniek Broeders Alexianen, Tienen, Belgium
| | - Koen Van Laere
- Department of Nuclear Medicine and Molecular Imaging, UZ Leuven, Leuven, Belgium.,Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,MoSAIC, Molecular Small Animal Imaging Center, KU Leuven, Leuven, Belgium
| |
Collapse
|
422
|
Meeter LHH, Steketee RME, Salkovic D, Vos ME, Grossman M, McMillan CT, Irwin DJ, Boxer AL, Rojas JC, Olney NT, Karydas A, Miller BL, Pijnenburg YAL, Barkhof F, Sánchez-Valle R, Lladó A, Borrego-Ecija S, Diehl-Schmid J, Grimmer T, Goldhardt O, Santillo AF, Hansson O, Vestberg S, Borroni B, Padovani A, Galimberti D, Scarpini E, Rohrer JD, Woollacott IOC, Synofzik M, Wilke C, de Mendonca A, Vandenberghe R, Benussi L, Ghidoni R, Binetti G, Niessen WJ, Papma JM, Seelaar H, Jiskoot LC, de Jong FJ, Donker Kaat L, Del Campo M, Teunissen CE, Bron EE, Van den Berg E, Van Swieten JC. Clinical value of cerebrospinal fluid neurofilament light chain in semantic dementia. J Neurol Neurosurg Psychiatry 2019; 90:997-1004. [PMID: 31123142 PMCID: PMC6820157 DOI: 10.1136/jnnp-2018-319784] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/12/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Semantic dementia (SD) is a neurodegenerative disorder characterised by progressive language problems falling within the clinicopathological spectrum of frontotemporal lobar degeneration (FTLD). The development of disease-modifying agents may be facilitated by the relative clinical and pathological homogeneity of SD, but we need robust monitoring biomarkers to measure their efficacy. In different FTLD subtypes, neurofilament light chain (NfL) is a promising marker, therefore we investigated the utility of cerebrospinal fluid (CSF) NfL in SD. METHODS This large retrospective multicentre study compared cross-sectional CSF NfL levels of 162 patients with SD with 65 controls. CSF NfL levels of patients were correlated with clinical parameters (including survival), neuropsychological test scores and regional grey matter atrophy (including longitudinal data in a subset). RESULTS CSF NfL levels were significantly higher in patients with SD (median: 2326 pg/mL, IQR: 1628-3593) than in controls (577 (446-766), p<0.001). Higher CSF NfL levels were moderately associated with naming impairment as measured by the Boston Naming Test (rs =-0.32, p=0.002) and with smaller grey matter volume of the parahippocampal gyri (rs =-0.31, p=0.004). However, cross-sectional CSF NfL levels were not associated with progression of grey matter atrophy and did not predict survival. CONCLUSION CSF NfL is a promising biomarker in the diagnostic process of SD, although it has limited cross-sectional monitoring or prognostic abilities.
Collapse
Affiliation(s)
- Lieke H H Meeter
- Alzheimer Center and Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Rebecca M E Steketee
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
| | - Dina Salkovic
- Alzheimer Center and Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Maartje E Vos
- Alzheimer Center and Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Murray Grossman
- Penn FTD Center, Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Corey T McMillan
- Penn FTD Center, Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - David J Irwin
- Penn FTD Center, Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Adam L Boxer
- Neurology, Memory and Aging Center University of California San Francisco, San Francisco, California, USA
| | - Julio C Rojas
- Neurology, Memory and Aging Center University of California San Francisco, San Francisco, California, USA
| | - Nicholas T Olney
- Neurology, University of California San Francisco Memory and Aging Center, San Francisco, California, USA
| | - Anna Karydas
- Neurology, University of California San Francisco Memory and Aging Center, San Francisco, California, USA
| | - Bruce L Miller
- Neurology, Memory and Aging Center University of California San Francisco, San Francisco, California, USA
| | - Yolande A L Pijnenburg
- Alzheimer Center and Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Neurology and Healthcare Engineering, University College London Medical School, London, UK
| | - Raquel Sánchez-Valle
- Department of Neurology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Albert Lladó
- Department of Neurology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Sergi Borrego-Ecija
- Department of Neurology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Janine Diehl-Schmid
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Oliver Goldhardt
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Alexander F Santillo
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | - Barbara Borroni
- Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alessandro Padovani
- Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniela Galimberti
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy
- Biomedical, Surgical and Dental Sciences, University of Milan, Centro Dino Ferrari, Milan, Italy
| | - Elio Scarpini
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy
- Pathophysiology and Transplantation, University of Milan, Centro Dino Ferrari, Milan, Italy
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
| | - Ione O C Woollacott
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Carlo Wilke
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Alexandre de Mendonca
- Institute of Molecular Medicine and Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Rik Vandenberghe
- Department of Neurology, University Hospital Leuven, Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Vlaanderen, Belgium
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giuliano Binetti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- MAC Memory Clinic, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Wiro J Niessen
- Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
- Imaging Physics, Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Janne M Papma
- Alzheimer Center and Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Harro Seelaar
- Alzheimer Center and Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Lize C Jiskoot
- Alzheimer Center and Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Frank Jan de Jong
- Alzheimer Center and Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Laura Donker Kaat
- Alzheimer Center and Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
- Department of Clinical Genetics, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| | - Marta Del Campo
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Esther E Bron
- Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
| | - Esther Van den Berg
- Alzheimer Center and Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - John C Van Swieten
- Alzheimer Center and Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
423
|
Blautzik J, Kotz S, Brendel M, Sauerbeck J, Vettermann F, Winter Y, Bartenstein P, Ishii K, Rominger A. Relationship Between Body Mass Index, ApoE4 Status, and PET-Based Amyloid and Neurodegeneration Markers in Amyloid-Positive Subjects with Normal Cognition or Mild Cognitive Impairment. J Alzheimers Dis 2019; 65:781-791. [PMID: 28697560 DOI: 10.3233/jad-170064] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Body weight loss in late-life is known to occur at a very early stage of Alzheimer's disease (AD). Apolipoprotein E4 (ApoE4) represents a major genetic risk factor for AD and is linked to an increased cortical amyloid-β (Aβ) accumulation. Since the relationship between body weight, ApoE4, and AD pathology is poorly investigated, we aimed to evaluate whether ApoE4 allelic status modifies the association of body mass index (BMI) with markers of AD pathology. A total of 368 Aβ-positive cognitively healthy or mild cognitive impaired subjects had undergone [18F]-AV45-PET, [18F]-FDG-PET, and T1w-MRI examinations. Composite cortical [18F]-AV45 uptake and [18F]-FDG uptake in posterior cingulate cortex were calculated as surrogates of cortical Aβ load and glucose metabolism, respectively. Multiple linear regressions were performed to assess the relationships between these PET biomarkers with BMI, present cognitive performance, and cognitive changes over time. Multivariate analysis of covariance was conducted to test for statistical differences between ApoE4/BMI categories on the PET markers and cognitive scores. In carriers of the ApoE4 allele only, BMI was inversely associated with cortical amlyoid load (β= -0.193, p < 0.005) and recent cognitive decline (β= -0.209, p < 0.05), and positively associated with cortical glucose metabolism in an AD-vulnerable region (β= 0.145, p < 0.05). ApoE4/BMI category analyses demonstrated lower Aβ load, higher posterior cingulate glucose metabolism, improved cognitive performance, and lower progression of cognitive decline in obese ApoE4 carriers. The effect of ApoE4 in promoting the accumulation of cortical amyoid, which may itself be a driver for weight loss, may be moderated by altering leptin signaling in the hypothalamus.
Collapse
Affiliation(s)
- Janusch Blautzik
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sebastian Kotz
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Julia Sauerbeck
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Franziska Vettermann
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Yaroslav Winter
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kazunari Ishii
- Department of Radiology, Kindai University Hospital, Osaka, Japan
| | - Axel Rominger
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | | |
Collapse
|
424
|
Hansen SJ, McMahon KL, de Zubicaray GI. Neural Mechanisms for Monitoring and Halting of Spoken Word Production. J Cogn Neurosci 2019; 31:1946-1957. [PMID: 31418336 DOI: 10.1162/jocn_a_01462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
During conversation, speakers monitor their own and others' output so they can alter their production adaptively, including halting it if needed. We investigated the neural mechanisms of monitoring and halting in spoken word production by employing a modified stop signal task during fMRI. Healthy participants named target pictures and withheld their naming response when presented with infrequent auditory words as stop signals. We also investigated whether the speech comprehension system monitors inner (i.e., prearticulatory) speech via the output of phonological word form encoding as proposed by the perceptual loop theory [Levelt, W. J. M. Speaking: From intention to articulation. Cambridge, MA: MIT Press, 1989] by presenting stop signals phonologically similar to the target picture name (e.g., cabbage-CAMEL). The contrast of successful halting versus naming revealed extensive BOLD signal responses in bilateral inferior frontal gyrus, preSMA, and superior temporal gyrus. Successful versus unsuccessful halting of speech was associated with increased BOLD signal bilaterally in the posterior middle temporal, frontal, and parietal lobes and decreases bilaterally in the posterior and left anterior superior temporal gyrus and right inferior frontal gyrus. These results show, for the first time, the neural mechanisms engaged during both monitoring and interrupting speech production. However, we failed to observe any differential effects of phonological similarity in either the behavioral or neural data, indicating monitoring of inner versus external speech might involve different mechanisms.
Collapse
|
425
|
Shiyam Sundar LK, Muzik O, Rischka L, Hahn A, Lanzenberger R, Hienert M, Klebermass EM, Bauer M, Rausch I, Pataraia E, Traub-Weidinger T, Beyer T. Promise of Fully Integrated PET/MRI: Noninvasive Clinical Quantification of Cerebral Glucose Metabolism. J Nucl Med 2019; 61:276-284. [PMID: 31375567 PMCID: PMC8801961 DOI: 10.2967/jnumed.119.229567] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/15/2019] [Indexed: 01/21/2023] Open
Abstract
We describe a fully automated processing pipeline to support the noninvasive absolute quantification of the cerebral metabolic rate for glucose (CMRGlc) in a clinical setting. This pipeline takes advantage of “anatometabolic” information associated with fully integrated PET/MRI. Methods: Ten healthy volunteers (5 men and /5 women; 27 ± 7 y old; 70 ± 10 kg) underwent a test-retest 18F-FDG PET/MRI examination of the brain. The imaging protocol consisted of a 60-min PET list-mode acquisition with parallel MRI acquisitions, including 3-dimensional time-of-flight MR angiography, MRI navigators, and a T1-weighted MRI scan. State-of-the-art MRI-based attenuation correction was derived from T1-weighted MRI (pseudo-CT [pCT]). For validation purposes, a low-dose CT scan was also performed. Arterial blood samples were collected as the reference standard (arterial input function [AIF]). The developed pipeline allows the derivation of an image-derived input function (IDIF), which is subsequently used to create CMRGlc maps by means of a Patlak analysis. The pipeline also includes motion correction using the MRI navigator sequence as well as a novel partial-volume correction that accounts for background heterogeneity. Finally, CMRGlc maps are used to generate a normative database to facilitate the detection of metabolic abnormalities in future patient scans. To assess the performance of the developed pipeline, IDIFs extracted by both CT-based attenuation correction (CT-IDIF) and MRI-based attenuation correction (pCT-IDIF) were compared with the reference standard (AIF) using the absolute percentage difference between the areas under the curves as well as the absolute percentage difference in regional CMRGlc values. Results: The absolute percentage differences between the areas under the curves for CT-IDIF and pCT-IDIF were determined to be 1.4% ± 1.0% and 3.4% ± 2.6%, respectively. The absolute percentage difference in regional CMRGlc values based on CT-IDIF and pCT-IDIF differed by less than 6% from the reference values obtained from the AIF. Conclusion: By taking advantage of the capabilities of fully integrated PET/MRI, we developed a fully automated computational pipeline that allows the noninvasive determination of regional CMRGlc values in a clinical setting. This methodology might facilitate the proliferation of fully quantitative imaging into the clinical arena and, as a result, might contribute to improved diagnostic efficacy.
Collapse
Affiliation(s)
- Lalith Kumar Shiyam Sundar
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Otto Muzik
- Department of Pediatrics, Children's Hospital of Michigan, The Detroit Medical Center, Wayne State University School of Medicine, Detroit, Michigan
| | - Lucas Rischka
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Marius Hienert
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Eva-Maria Klebermass
- Department of Clinical Pharmacology, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria; and
| | - Martin Bauer
- Department of Clinical Pharmacology, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria; and
| | - Ivo Rausch
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | | | - Tatjana Traub-Weidinger
- Department of Clinical Pharmacology, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria; and
| | - Thomas Beyer
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
426
|
Javor A, Ciumas C, Ibarrola D, Ryvlin P, Rheims S. Social cognition, behaviour and therapy adherence in frontal lobe epilepsy: a study combining neuroeconomic and neuropsychological methods. ROYAL SOCIETY OPEN SCIENCE 2019; 6:180850. [PMID: 31598216 PMCID: PMC6731699 DOI: 10.1098/rsos.180850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/23/2019] [Indexed: 05/30/2023]
Abstract
Social behaviour of healthy humans and its neural correlates have been extensively studied in social neuroscience and neuroeconomics. Whereas it is well established that several types of epilepsies, such as frontal lobe epilepsy, lead to social cognitive impairments, experimental evidence on how these translate into behavioural symptoms is scarce. Furthermore, it is unclear whether social cognitive or behavioural disturbances have an impact on therapy adherence, which is critical for effective disease management, but generally low in these patients. In order to investigate the relationship between social cognition, social behaviour, and therapy adherence in patients with frontal lobe epilepsies (FLE), we designed a study combining conventional neuropsychological with behavioural economic and functional magnetic resonance imaging (fMRI) methodology. Fifteen patients and 15 healthy controls played a prisoners' dilemma game (an established game to operationalize social behaviour) while undergoing fMRI. Additionally, social cognitive, basic neuropsychological variables, and therapy adherence were assessed. Our results implicate that social behaviour is indeed affected and can be quantified using neuroeconomic methods in patients with FLE. Impaired social behaviour in these patients might be a consequence of altered brain activation in the medial prefrontal cortex and play a role in low therapy adherence. Finally, this study serves as an example of how to integrate neuroeconomic methods in neurology.
Collapse
Affiliation(s)
- Andrija Javor
- Department of Neurology 2, Kepler University Clinic, Linz, Austria
| | - Carolina Ciumas
- Translational and Integrative Group in Epilepsy Research (TIGER), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, University Lyon 1, Lyon, France
- Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland
- Epilepsy Institute (IDEE), Lyon, France
| | - Danielle Ibarrola
- CERMEP - Imagerie du vivant, MRI department and CNRS UMS3453, Lyon, France
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland
- Epilepsy Institute (IDEE), Lyon, France
| | - Sylvain Rheims
- Translational and Integrative Group in Epilepsy Research (TIGER), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, University Lyon 1, Lyon, France
- Epilepsy Institute (IDEE), Lyon, France
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France
| |
Collapse
|
427
|
Beyer L, Schnabel J, Kazmierczak P, Ewers M, Schönecker S, Prix C, Meyer-Wilmes J, Unterrainer M, Catak C, Pogarell O, Perneczky R, Albert NL, Bartenstein P, Danek A, Buerger K, Levin J, Rominger A, Brendel M. Neuronal injury biomarkers for assessment of the individual cognitive reserve in clinically suspected Alzheimer's disease. NEUROIMAGE-CLINICAL 2019; 24:101949. [PMID: 31398553 PMCID: PMC6699250 DOI: 10.1016/j.nicl.2019.101949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 06/18/2019] [Accepted: 07/19/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVES Many predictive or influencing factors have emerged in investigations of the cognitive reserve model of patients with Alzheimer's disease (AD). For example, neuronal injury, which correlates with cognitive decline in AD, can be assessed by [18F]-fluorodeoxyglucose positron-emission-tomography (FDG-PET), structural magnetic resonance imaging (MRI) and total tau in cerebrospinal fluid (CSFt-tau), all according to the A/T/N-classification. The aim of this study was to calculate residual cognitive performance based on neuronal injury biomarkers as a surrogate of cognitive reserve, and to test the predictive value of this index for the individual clinical course. METHODS 110 initially mild cognitive impaired and demented subjects (age 71 ± 8 years) with a final diagnosis of AD dementia were assessed at baseline by clinical mini-mental-state-examination (MMSE), FDG-PET, MRI and CSFt-tau. All neuronal injury markers were tested for an association with clinical MMSE and the resulting residuals were correlated with years of education. We used multiple regression analysis to calculate the expected MMSE score based on neuronal injury biomarkers and covariates. The residuals of the partial correlation for each biomarker and the predicted residualized memory function were correlated with individual cognitive changes measured during clinical follow-up (27 ± 13 months). RESULTS FDG-PET correlated highly with clinical MMSE (R = -0.49, p < .01), whereas hippocampal atrophy to MRI (R = -0.15, p = .14) and CSFt-tau (R = -0.12, p = .22) showed only weak correlations. Residuals of all neuronal injury biomarker regressions correlated significantly with education level, indicating them to be surrogates of cognitive reserve. A positive residual was associated with faster cognitive deterioration at follow-up for the residuals of stand-alone FDG-PET (R = -0.36, p = .01) and the combined residualized memory function model (R = -0.35, p = .02). CONCLUSIONS These findings suggest that subjects with higher cognitive reserve had accumulated more pathology, which subsequently caused a faster cognitive decline over time. Together with previous findings suggesting that higher reserve is associated with slower cognitive decline, we propose a biphasic reserve effect, with an initially protective phase followed by more rapid decompensation once the protection is overwhelmed.
Collapse
Affiliation(s)
- Leonie Beyer
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Jonas Schnabel
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Philipp Kazmierczak
- Institute for Radiology, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Michael Ewers
- DZNE - German Center for Neurodegenerative Diseases, Feodor-Lynen-Straße 17, 81377 Munich, Germany
| | - Sonja Schönecker
- Dept. of Neurology, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Catharina Prix
- Dept. of Neurology, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Johanna Meyer-Wilmes
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Marcus Unterrainer
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Cihan Catak
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Feodor-Lynen-Straße 17, 81377 Munich, Germany
| | - Oliver Pogarell
- Dept. of Psychiatry, University Hospital of Munich, LMU Munich, Nußbaumstraße 7, 80336 Munich, Germany
| | - Robert Perneczky
- DZNE - German Center for Neurodegenerative Diseases, Feodor-Lynen-Straße 17, 81377 Munich, Germany; Dept. of Psychiatry, University Hospital of Munich, LMU Munich, Nußbaumstraße 7, 80336 Munich, Germany; Neuroepidemiology and Ageing Research Unit, School of Public Health, Imperial College, Charing Cross Hospital, St Dunstan's Road, London W6 8RP, United Kingdom; West London Mental Health NHS Trust, 1 Armstrong Way, Southhall UB2 4SD, United Kingdom
| | - Nathalie L Albert
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Peter Bartenstein
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Straße 17, 81377 Munich, Germany
| | - Adrian Danek
- Dept. of Neurology, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Katharina Buerger
- DZNE - German Center for Neurodegenerative Diseases, Feodor-Lynen-Straße 17, 81377 Munich, Germany; Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Feodor-Lynen-Straße 17, 81377 Munich, Germany
| | - Johannes Levin
- Dept. of Neurology, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Axel Rominger
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany; Dept. of Nuclear Medicine, University of Bern, Inselspital, Freiburgstraße 18, 3010 Bern, Switzerland; Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Straße 17, 81377 Munich, Germany
| | - Matthias Brendel
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Straße 17, 81377 Munich, Germany.
| |
Collapse
|
428
|
Dani M, Wood M, Mizoguchi R, Fan Z, Walker Z, Morgan R, Hinz R, Biju M, Kuruvilla T, Brooks DJ, Edison P. Microglial activation correlates in vivo with both tau and amyloid in Alzheimer's disease. Brain 2019; 141:2740-2754. [PMID: 30052812 DOI: 10.1093/brain/awy188] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 05/29/2018] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease is characterized by the histopathological presence of amyloid-β plaques and tau-containing neurofibrillary tangles. Microglial activation is also a recognized pathological component. The relationship between microglial activation and protein aggregation is still debated. We investigated the relationship between amyloid plaques, tau tangles and activated microglia using PET imaging. Fifty-one subjects (19 healthy controls, 16 mild cognitive impairment and 16 Alzheimer's disease subjects) participated in the study. All subjects had neuropsychometric testing, MRI, amyloid (18F-flutemetamol), and microglial (11C-PBR28) PET. All subjects with mild cognitive impairment and Alzheimer's disease and eight of the controls had tau (18F-AV1451) PET. 11C-PBR28 PET was analysed using Logan graphical analysis with an arterial plasma input function, while 18F-flutemetamol and 18F-AV1451 PET were analysed as target:cerebellar ratios to create parametric standardized uptake value ratio maps. Biological parametric mapping in the Statistical Parametric Mapping platform was used to examine correlations between uptake of tracers at a voxel-level. There were significant widespread clusters of positive correlation between levels of microglial activation and tau aggregation in both the mild cognitive impairment (amyloid-positive and amyloid-negative) and Alzheimer's disease subjects. The correlations were stronger in Alzheimer's disease than in mild cognitive impairment, suggesting that these pathologies increase together as disease progresses. Levels of microglial activation and amyloid deposition were also correlated, although in a different spatial distribution; correlations were stronger in mild cognitive impairment than Alzheimer's subjects, in line with a plateauing of amyloid load with disease progression. Clusters of positive correlations between microglial activation and protein aggregation often targeted similar areas of association cortex, indicating that all three processes are present in specific vulnerable brain areas. For the first time using PET imaging, we show that microglial activation can correlate with both tau aggregation and amyloid deposition. This confirms the complex relationship between these processes. These results suggest that preventative treatment for Alzheimer's disease should target all three processes.
Collapse
Affiliation(s)
- Melanie Dani
- Neurology Imaging Unit, Department of Medicine, Imperial College London, Hammersmith Hospital, UK
| | - Melanie Wood
- Neurology Imaging Unit, Department of Medicine, Imperial College London, Hammersmith Hospital, UK
| | - Ruth Mizoguchi
- Neurology Imaging Unit, Department of Medicine, Imperial College London, Hammersmith Hospital, UK
| | - Zhen Fan
- Neurology Imaging Unit, Department of Medicine, Imperial College London, Hammersmith Hospital, UK
| | - Zuzana Walker
- Division of Psychiatry, University College London, UK.,Essex Partnership University NHS Foundation Trust, UK
| | | | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, UK
| | - Maya Biju
- Gether NHS Foundation Trust, Gloucester, UK
| | | | - David J Brooks
- Neurology Imaging Unit, Department of Medicine, Imperial College London, Hammersmith Hospital, UK.,Department of Nuclear Medicine, Aarhus University, Denmark.,Institute of Neuroscience, University of Newcastle upon Tyne, UK
| | - Paul Edison
- Neurology Imaging Unit, Department of Medicine, Imperial College London, Hammersmith Hospital, UK
| |
Collapse
|
429
|
Brown EE, Rashidi-Ranjbar N, Caravaggio F, Gerretsen P, Pollock BG, Mulsant BH, Rajji TK, Fischer CE, Flint A, Mah L, Herrmann N, Bowie CR, Voineskos AN, Graff-Guerrero A. Brain Amyloid PET Tracer Delivery is Related to White Matter Integrity in Patients with Mild Cognitive Impairment. J Neuroimaging 2019; 29:721-729. [PMID: 31270885 DOI: 10.1111/jon.12646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/31/2019] [Accepted: 06/14/2019] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Amyloid deposition, tau neurofibrillary tangles, and cerebrovascular dysfunction are important pathophysiologic features in Alzheimer's disease. Pittsburgh compound B ([11 C]-PIB) is a positron emission tomography (PET) radiotracer used to quantify amyloid deposition in vivo. In addition, certain models of [11 C]-PIB delivery reflect cerebral blood flow rather than amyloid plaques. As cerebral blood flow and perfusion deficits are associated with white matter pathology, we hypothesized that [11 C]-PIB delivery in white matter regions may reflect white matter integrity. METHODS We obtained [11 C]-PIB-PET scans and quantified white matter hyperintensities and global fractional anisotropy on magnetic resonance images as biomarkers of white matter pathology in 34 older participants with mild cognitive impairment with or without a history of major depressive disorder. We analyzed the [11 C]-PIB time-activity curve data with models associated with cerebral blood flow: the early maximum standard uptake value and the relative delivery parameter R1. We used a global white matter region of interest. RESULTS Both of the partial-volume corrected PET parameters were correlated with white matter hyperintensities and fractional anisotropy. CONCLUSION Future studies are warranted to explore whether [11 C]-PIB PET is a "triple biomarker" that may provide information about amyloid deposition, cerebral blood flow, and white matter pathology.
Collapse
Affiliation(s)
- Eric E Brown
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Neda Rashidi-Ranjbar
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Fernando Caravaggio
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Philip Gerretsen
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Bruce G Pollock
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Benoit H Mulsant
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Tarek K Rajji
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Corinne E Fischer
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Keenan Research Centre for Biomedical Research, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Alastair Flint
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Centre for Mental Health, University Health Network, Toronto, Ontario, Canada
| | - Linda Mah
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Rotman Research Institute, Baycrest Health Sciences Centre, Toronto, Ontario, Canada
| | - Nathan Herrmann
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Christopher R Bowie
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Queen's University, Kingston, Ontario, Canada
| | - Aristotle N Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ariel Graff-Guerrero
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | -
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
430
|
Timmers T, Ossenkoppele R, Wolters EE, Verfaillie SCJ, Visser D, Golla SSV, Barkhof F, Scheltens P, Boellaard R, van der Flier WM, van Berckel BNM. Associations between quantitative [ 18F]flortaucipir tau PET and atrophy across the Alzheimer's disease spectrum. ALZHEIMERS RESEARCH & THERAPY 2019; 11:60. [PMID: 31272512 PMCID: PMC6610969 DOI: 10.1186/s13195-019-0510-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 06/06/2019] [Indexed: 01/09/2023]
Abstract
Background Neuropathological studies have linked tau aggregates to neuronal loss. To describe the spatial distribution of neurofibrillary tangle pathology in post-mortem tissue, Braak staging has been used. The aim of this study was to examine in vivo associations between tau pathology, quantified with [18F]flortaucipir PET in regions corresponding to Braak stages, and atrophy across the Alzheimer’s disease (AD) spectrum. Methods We included 100 subjects, including 58 amyloid-β positive patients with mild cognitive impairment (MCI, n = 6) or AD dementia (n = 52) and 42 controls with subjective cognitive decline (36% amyloid-β positive). All subjects underwent a dynamic [18F]flortaucipir PET to generate non-displaceable binding potential (BPND) maps. We extracted average [18F]flortaucipir BPND entorhinal, Braak III–IV (limbic) and Braak V–VI (neocortical) regions of interest (ROIs). T1-weighted MRI was used to assess gray matter (GM) volumes. We performed linear regression analyses using [18F]flortaucipir BPND ROIs as independent and GM density (ROI or voxelwise) as dependent variable. Results In MCI/AD subjects (age [mean ± SD] 65 ± 8 years, MMSE 23 ± 4), [18F]flortaucipir BPND was higher than in controls (age 65 ± 8, MMSE 29 ± 1) across all ROIs (entorhinal 0.06 ± 0.21 vs 0.46 ± 0.25 p < 0.001, Braak III–IV 0.11 ± 0.10 vs 0.46 ± 0.26, p < 0.001, Braak V–VI 0.07 ± 0.07 vs 0.38 ± 0.29, p < 0.001). In MCI/AD, greater [18F]flortaucipir BPND in entorhinal cortex was associated with lower GM density in medial temporal lobe (β − 0.40, p < 0.001). Greater [18F]flortaucipir BPND in ROI Braak III–IV and Braak V–VI was associated with smaller GM density in lateral and inferior temporal, parietal, occipital, and frontal lobes (range standardized βs − 0.30 to − 0.55, p < 0.01), but not in medial temporal lobe (β − 0.22, p 0.07). [18F]Flortaucipir BPND in ROI Braak I–II was not associated with GM density loss anywhere. When quantifying [18F]flortaucipir BPND across brain lobes, we observed both local and distant associations with GM atrophy. In controls, there were no significant associations between [18F]flortaucipir BPND and GM density (standardized βs ranging from − 0.24 to 0.02, all p > 0.05). Conclusions In MCI/AD patients, [18F]flortaucipir binding in entorhinal, limbic, and neocortical regions was associated with cortical atrophy. Electronic supplementary material The online version of this article (10.1186/s13195-019-0510-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tessa Timmers
- Department of Radiology, Amsterdam UMC, location VUmc, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands. .,Amsterdam Alzheimer Center, Amsterdam UMC, location VUmc, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands.
| | - Rik Ossenkoppele
- Amsterdam Alzheimer Center, Amsterdam UMC, location VUmc, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands.,Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Emma E Wolters
- Department of Radiology, Amsterdam UMC, location VUmc, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands.,Amsterdam Alzheimer Center, Amsterdam UMC, location VUmc, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Sander C J Verfaillie
- Department of Radiology, Amsterdam UMC, location VUmc, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands.,Amsterdam Alzheimer Center, Amsterdam UMC, location VUmc, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Denise Visser
- Department of Radiology, Amsterdam UMC, location VUmc, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Sandeep S V Golla
- Department of Radiology, Amsterdam UMC, location VUmc, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology, Amsterdam UMC, location VUmc, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands.,Institutes of Neurology and Healthcare Engineering, UCLK, London, UK
| | - Philip Scheltens
- Amsterdam Alzheimer Center, Amsterdam UMC, location VUmc, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Department of Radiology, Amsterdam UMC, location VUmc, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Amsterdam Alzheimer Center, Amsterdam UMC, location VUmc, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands.,Department of Epidemiology and Biostatistics, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Bart N M van Berckel
- Department of Radiology, Amsterdam UMC, location VUmc, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| |
Collapse
|
431
|
Peretti DE, Vállez García D, Reesink FE, Doorduin J, de Jong BM, De Deyn PP, Dierckx RAJO, Boellaard R. Diagnostic performance of regional cerebral blood flow images derived from dynamic PIB scans in Alzheimer's disease. EJNMMI Res 2019; 9:59. [PMID: 31273465 PMCID: PMC6609664 DOI: 10.1186/s13550-019-0528-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/20/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND In clinical practice, visual assessment of glucose metabolism images is often used for the diagnosis of Alzheimer's disease (AD) through 2-[18F]-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET) scans. However, visual assessment of the characteristic AD hypometabolic pattern relies on the expertise of the reader. Therefore, user-independent pipelines are preferred to evaluate the images and to classify the subjects. Moreover, glucose consumption is highly correlated with cerebral perfusion. Regional cerebral blood flow (rCBF) images can be derived from dynamic 11C-labelled Pittsburgh Compound B PET scans, which are also used for the assessment of the deposition of amyloid-β plaques on the brain, a fundamental characteristic of AD. The aim of this study was to explore whether these rCBF PIB images could be used for diagnostic purposes through the PMOD Alzheimer's Discrimination Tool. RESULTS Both tracer relative cerebral flow (R1) and early PIB (ePIB) (20-130 s) uptake presented a good correlation when compared to FDG standardized uptake value ratio (SUVR), while ePIB (1-8 min) showed a worse correlation. All receiver operating characteristic curves exhibited a similar shape, with high area under the curve values, and no statistically significant differences were found between curves. However, R1 and ePIB (1-8 min) had the highest sensitivity, while FDG SUVR had the highest specificity. CONCLUSION rCBF images were suggested to be a good surrogate for FDG scans for diagnostic purposes considering an adjusted threshold value.
Collapse
Affiliation(s)
- Débora E. Peretti
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - David Vállez García
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Fransje E. Reesink
- Department of Neurology, Alzheimer Centrum Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Bauke M. de Jong
- Department of Neurology, Alzheimer Centrum Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Peter P. De Deyn
- Department of Neurology, Alzheimer Centrum Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
- Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium
| | - Rudi A. J. O. Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
432
|
|
433
|
Yamagata B, Itahashi T, Fujino J, Ohta H, Takashio O, Nakamura M, Kato N, Mimura M, Hashimoto RI, Aoki YY. Cortical surface architecture endophenotype and correlates of clinical diagnosis of autism spectrum disorder. Psychiatry Clin Neurosci 2019; 73:409-415. [PMID: 31026100 DOI: 10.1111/pcn.12854] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/16/2019] [Accepted: 04/24/2019] [Indexed: 12/23/2022]
Abstract
AIM Prior structural magnetic resonance imaging studies demonstrated atypical gray matter characteristics in siblings of individuals with autism spectrum disorder (ASD). However, they did not clarify which aspect of gray matter is related to the endophenotype (i.e., genetic vulnerability) of ASD. Further, because they did not enroll siblings of typically developing (TD) people, they may have underestimated the difference between individuals with ASD and their unaffected siblings. The current study aimed to address these gaps. METHODS We recruited 30 pairs of adult male siblings (15 pairs with an ASD endophenotype and 15 pairs without) and focused on four gray matter parameters: cortical volume and three surface-based parameters (cortical thickness, fractal dimension, and sulcal depth [SD]). First, we sought to identify a pattern of an ASD endophenotype, comparing the four parameters. Then, we compared individuals with ASD and their unaffected siblings in the cortical parameters to identify neural correlates for the clinical diagnosis accounting for the difference between TD siblings. RESULTS A sparse logistic regression with a leave-one-pair-out cross-validation showed the SD as having the highest accuracy for the identification of an ASD endophenotype (73.3%) compared with the other three parameters. A bootstrapping analysis accounting for the difference in the SD between TD siblings showed a significantly large difference between individuals with ASD and their unaffected siblings in six out of 68 regions of interest. CONCLUSION This proof-of-concept study suggests that an ASD endophenotype emerges in the SD and that neural bases for ASD diagnosis can be discerned from the endophenotype when accounting for the difference between TD siblings.
Collapse
Affiliation(s)
- Bun Yamagata
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Itahashi
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Junya Fujino
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Haruhisa Ohta
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Osamu Takashio
- Department of Neuropsychiatry, Showa University School of Medicine, Tokyo, Japan
| | - Motoaki Nakamura
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Nobumasa Kato
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Ryu-Ichiro Hashimoto
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan.,Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, Tokyo, Japan
| | - Yuta Y Aoki
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| |
Collapse
|
434
|
Shiri I, Ghafarian P, Geramifar P, Leung KHY, Ghelichoghli M, Oveisi M, Rahmim A, Ay MR. Direct attenuation correction of brain PET images using only emission data via a deep convolutional encoder-decoder (Deep-DAC). Eur Radiol 2019; 29:6867-6879. [PMID: 31227879 DOI: 10.1007/s00330-019-06229-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To obtain attenuation-corrected PET images directly from non-attenuation-corrected images using a convolutional encoder-decoder network. METHODS Brain PET images from 129 patients were evaluated. The network was designed to map non-attenuation-corrected (NAC) images to pixel-wise continuously valued measured attenuation-corrected (MAC) PET images via an encoder-decoder architecture. Image quality was evaluated using various evaluation metrics. Image quantification was assessed for 19 radiomic features in 83 brain regions as delineated using the Hammersmith atlas (n30r83). Reliability of measurements was determined using pixel-wise relative errors (RE; %) for radiomic feature values in reference MAC PET images. RESULTS Peak signal-to-noise ratio (PSNR) and structural similarity index metric (SSIM) values were 39.2 ± 3.65 and 0.989 ± 0.006 for the external validation set, respectively. RE (%) of SUVmean was - 0.10 ± 2.14 for all regions, and only 3 of 83 regions depicted significant differences. However, the mean RE (%) of this region was 0.02 (range, - 0.83 to 1.18). SUVmax had mean RE (%) of - 3.87 ± 2.84 for all brain regions, and 17 regions in the brain depicted significant differences with respect to MAC images with a mean RE of - 3.99 ± 2.11 (range, - 8.46 to 0.76). Homogeneity amongst Haralick-based radiomic features had the highest number (20) of regions with significant differences with a mean RE (%) of 7.22 ± 2.99. CONCLUSIONS Direct AC of PET images using deep convolutional encoder-decoder networks is a promising technique for brain PET images. The proposed deep learning method shows significant potential for emission-based AC in PET images with applications in PET/MRI and dedicated brain PET scanners. KEY POINTS • We demonstrate direct emission-based attenuation correction of PET images without using anatomical information. • We performed radiomics analysis of 83 brain regions to show robustness of direct attenuation correction of PET images. • Deep learning methods have significant promise for emission-based attenuation correction in PET images with potential applications in PET/MRI and dedicated brain PET scanners.
Collapse
Affiliation(s)
- Isaac Shiri
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Pardis Ghafarian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,PET/CT and Cyclotron Center, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Parham Geramifar
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kevin Ho-Yin Leung
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.,Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - Mostafa Ghelichoghli
- Department of Biomedical and Health Informatics, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Mehrdad Oveisi
- Department of Biomedical and Health Informatics, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran.,Department of Computer Science, University of British Columbia, Vancouver, BC, Canada
| | - Arman Rahmim
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA.,Departments of Radiology and Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada.,Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Mohammad Reza Ay
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran. .,Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
435
|
Bailey JJ, Kaiser L, Lindner S, Wüst M, Thiel A, Soucy JP, Rosa-Neto P, Scott PJH, Unterrainer M, Kaplan DR, Wängler C, Wängler B, Bartenstein P, Bernard-Gauthier V, Schirrmacher R. First-in-Human Brain Imaging of [ 18F]TRACK, a PET tracer for Tropomyosin Receptor Kinases. ACS Chem Neurosci 2019; 10:2697-2702. [PMID: 31017386 DOI: 10.1021/acschemneuro.9b00144] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The tropomyosin receptor kinase TrkA/B/C family is responsible for human neuronal growth, survival, and differentiation from early nervous system development stages onward. Downregulation of TrkA/B/C receptors characterizes numerous neurological disorders including Alzheimer's disease (AD). Abnormally expressed Trk receptors or chimeric Trk fusion proteins are also well-characterized oncogenic drivers in a variety of neurogenic and non-neurogenic human neoplasms and are currently the focus of intensive clinical research. Previously, we have described the clinical translation of a highly selective and potent carbon-11-labeled pan-Trk radioligand and the preclinical characterization of the optimized fluorine-18-labeled analogue, [18F]TRACK, for in vivo Trk positron emission tomography (PET) imaging. We describe herein central nervous system selectivity assessment and first-in-human study of [18F]TRACK.
Collapse
Affiliation(s)
- Justin J. Bailey
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Lena Kaiser
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich 81377, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich 81377, Germany
| | - Melinda Wüst
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Alexander Thiel
- McConnel Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec HT3 1E2, Canada
| | - Jean-Paul Soucy
- McConnel Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
| | - Peter J. H. Scott
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Marcus Unterrainer
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich 81377, Germany
| | - David R. Kaplan
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim 68167, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich 81377, Germany
| | | | - Ralf Schirrmacher
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
436
|
Brain activity sustaining the modulation of pain by empathetic comments. Sci Rep 2019; 9:8398. [PMID: 31182760 PMCID: PMC6558033 DOI: 10.1038/s41598-019-44879-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/22/2019] [Indexed: 12/20/2022] Open
Abstract
Empathetic verbal feedback from others has been shown to alleviate the intensity of experimental pain. To investigate the brain changes associated with this effect, we conducted 3T-fMRI measurements in 30 healthy subjects who received painful thermal stimuli on their left hand while overhearing empathetic, neutral or unempathetic comments, supposedly made by experimenters, via headsets. Only the empathetic comments significantly reduced pain intensity ratings. A whole-brain BOLD analysis revealed that both Empathetic and Unempathetic conditions significantly increased the activation of the right anterior insular and posterior parietal cortices to pain stimuli, while activations in the posterior cingulate cortex and precuneus (PCC/Prec) were significantly stronger during Empathetic compared to Unempathetic condition. BOLD activity increased in the DLPFC in the Empathetic condition and decreased in the PCC/Prec and vmPFC in the Unempathetic condition. In the Empathetic condition only, functional connectivity increased significantly between the vmPFC and the insular cortex. These results suggest that modulation of pain perception by empathetic feedback involves a set of high-order brain regions associated with autobiographical memories and self-awareness, and relies on interactions between such supra-modal structures and key nodes of the pain system.
Collapse
|
437
|
Teng E, Ward M, Manser PT, Sanabria-Bohorquez S, Ray RD, Wildsmith KR, Baker S, Kerchner GA, Weimer RM. Cross-sectional associations between [ 18F]GTP1 tau PET and cognition in Alzheimer's disease. Neurobiol Aging 2019; 81:138-145. [PMID: 31280117 DOI: 10.1016/j.neurobiolaging.2019.05.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 10/26/2022]
Abstract
The regional relationships between tau positron emission tomography (PET) imaging and cognitive impairment in Alzheimer's disease (AD) remain uncertain. We examined cross-sectional associations between cognitive performance, cerebral uptake of the novel tau PET tracer [18F]GTP1, and other neuroimaging indices ([18F]florbetapir amyloid PET, magnetic resonance imaging) in 71 participants with normal cognition, prodromal AD, or AD dementia. Greater [18F]GTP1 uptake was seen with increasing clinical severity and correlated with poorer cognition. [18F]GTP1 uptake and cortical volume (but not [18F]florbetapir uptake) were independently associated with cognitive performance, particularly within the temporal lobe. Delayed memory was more specifically associated with temporal [18F]GTP1 uptake; other domains correlated with a broader range of regional [18F]GTP1 uptake. These data confirm that [18F]GTP1 tau PET uptake significantly correlates with cognitive performance in AD, but regional correlations between performance in non-memory cognitive domains were less specific than reported by tau PET imaging studies that included participants with atypical focal cortical AD syndromes. Tau PET imaging may have utility as a surrogate biomarker for clinical AD progression in therapeutic trials of disease-modifying interventions.
Collapse
Affiliation(s)
- Edmond Teng
- Early Clinical Development, Genentech, Inc., South San Francisco, CA, USA.
| | - Michael Ward
- Early Clinical Development, Genentech, Inc., South San Francisco, CA, USA
| | - Paul T Manser
- Biostatistics, Genentech, Inc., South San Francisco, CA, USA
| | | | - Rebecca D Ray
- Clinical Imaging Group, Genentech, Inc., South San Francisco, CA, USA; Early Clinical Development Informatics, Genentech, Inc., South San Francisco, CA, USA
| | | | - Suzanne Baker
- Clinical Imaging Group, Genentech, Inc., South San Francisco, CA, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Robby M Weimer
- Department of Biomedical Imaging, Genentech, Inc, South San Francisco, CA, USA
| |
Collapse
|
438
|
Paul S, Gallagher E, Liow JS, Mabins S, Henry K, Zoghbi SS, Gunn RN, Kreisl WC, Richards EM, Zanotti-Fregonara P, Morse CL, Hong J, Kowalski A, Pike VW, Innis RB, Fujita M. Building a database for brain 18 kDa translocator protein imaged using [ 11C]PBR28 in healthy subjects. J Cereb Blood Flow Metab 2019; 39:1138-1147. [PMID: 29749279 PMCID: PMC6547185 DOI: 10.1177/0271678x18771250] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Translocator protein 18 kDa (TSPO) has been widely imaged as a marker of neuroinflammation using several radioligands, including [11C]PBR28. In order to study the effects of age, sex, and obesity on TSPO binding and to determine whether this binding can be accurately assessed using fewer radio high-performance liquid chromatography (radio-HPLC) measurements of arterial blood samples, we created a database of 48 healthy subjects who had undergone [11C]PBR28 scans (23 high-affinity binders (HABs) and 25 mixed-affinity binders (MABs), 20 F/28 M, age: 40.6 ± 16.8 years). After analysis by Logan plot using 23 metabolite-corrected arterial samples, total distribution volume ( VT) was found to be 1.2-fold higher in HABs across all brain regions. Additionally, the polymorphism plot estimated nondisplaceable uptake ( VND) as 1.40 mL · cm-3, which generated a specific-to-nondisplaceable ratio ( BPND) of 1.6 ± 0.6 in HABs and 1.1 ± 0.6 in MABs. VT increased significantly with age in nearly all regions and was well estimated with radio-HPLC measurements from six arterial samples. However, VT did not correlate with body mass index and was not affected by sex. These results underscore which patient characteristics should be accounted for during [11C]PBR28 studies and suggest ways to perform such studies more easily and with fewer blood samples.
Collapse
Affiliation(s)
- Soumen Paul
- 1 Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Evan Gallagher
- 1 Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Jeih-San Liow
- 1 Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Sanche Mabins
- 1 Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Katharine Henry
- 1 Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Sami S Zoghbi
- 1 Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Roger N Gunn
- 2 Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK; Imanova Centre for Imaging Sciences, London, UK
| | - William C Kreisl
- 3 Taub Institute, Columbia University Medical Center, New York, NY, USA
| | - Erica M Richards
- 1 Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | | | - Cheryl L Morse
- 1 Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Jinsoo Hong
- 1 Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Aneta Kowalski
- 1 Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Victor W Pike
- 1 Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Robert B Innis
- 1 Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Masahiro Fujita
- 1 Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
439
|
Müller HP, Huppertz HJ, Dreyhaupt J, Ludolph AC, Tabrizi SJ, Roos RAC, Durr A, Landwehrmeyer GB, Kassubek J. Combined cerebral atrophy score in Huntington's disease based on atlas-based MRI volumetry: Sample size calculations for clinical trials. Parkinsonism Relat Disord 2019; 63:179-184. [PMID: 30846243 DOI: 10.1016/j.parkreldis.2019.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/18/2018] [Accepted: 02/03/2019] [Indexed: 12/19/2022]
Abstract
INTRODUCTION A volumetric MRI analysis of longitudinal regional cerebral atrophy in Huntington's disease (HD) was performed as a read-out of disease progression to calculate sample sizes for future clinical trials. METHODS This study was based on MRI data of 59 patients with HD and 40 controls recruited within the framework of the PADDINGTON study and investigated at baseline and follow-up after 6 and 15 months. Automatic atlas-based volumetry (ABV) of structural T1-weighted scans was used to calculate longitudinal volume changes of brain structures relevant in HD and to assess standardized effect sizes and sample sizes required for potential future studies. RESULTS Atrophy rates were largest in the caudate (-3.4%), putamen (-2.8%), nucleus accumbens (-1.6%), and the parietal lobes (-1.7%); the lateral ventricles showed an expansion by 6.0%. Corresponding effect sizes were -1.35 (caudate), -0.84 (putamen), -0.91 (nucleus accumbens), -1.05 (parietal lobe), and 0.92 (lateral ventricles) leading to N = 36 subjects per study group for detecting a 50% attenuation of atrophy for the best performing structure (caudate). A combined score of volume changes in non-overlapping compartments (striatum, parietal lobes, lateral ventricles) increased the effect size to -1.60 and substantially reduced the required sample sizes by 10 to N = 26 subjects per study group. This combined imaging score correlated significantly both with the CAP score and with the progression of the clinical phenotype. CONCLUSION We propose ABV of the striatum together with parietal lobe and lateral ventricle volumes as a combined imaging read-out for progression studies including clinical trials in HD.
Collapse
Affiliation(s)
| | | | - Jens Dreyhaupt
- Institute of Epidemiology and Medical Biometry, University of Ulm, Germany
| | | | - Sarah J Tabrizi
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Raymund A C Roos
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Alexandra Durr
- ICM - Institut du Cerveau et de la Moelle Epinière, INSERM U1127, CNRS UMR7225, Sorbonne Universités - UPMC Université Paris VI UMR_S1127 and APHP, Genetic Department, Pitié-Salpêtrière University Hospital, Paris, France
| | | | - Jan Kassubek
- Department of Neurology, University of Ulm, Germany
| |
Collapse
|
440
|
The contribution of striatal pseudo-reward prediction errors to value-based decision-making. Neuroimage 2019; 193:67-74. [DOI: 10.1016/j.neuroimage.2019.02.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/13/2019] [Accepted: 02/20/2019] [Indexed: 11/15/2022] Open
|
441
|
Head-to-head comparison of 11C-PBR28 and 11C-ER176 for quantification of the translocator protein in the human brain. Eur J Nucl Med Mol Imaging 2019; 46:1822-1829. [DOI: 10.1007/s00259-019-04349-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
|
442
|
Pandya S, Zeighami Y, Freeze B, Dadar M, Collins DL, Dagher A, Raj A. Predictive model of spread of Parkinson's pathology using network diffusion. Neuroimage 2019; 192:178-194. [PMID: 30851444 PMCID: PMC7180066 DOI: 10.1016/j.neuroimage.2019.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/20/2019] [Accepted: 03/01/2019] [Indexed: 02/03/2023] Open
Abstract
Growing evidence suggests that a "prion-like" mechanism underlies the pathogenesis of many neurodegenerative disorders, including Parkinson's disease (PD). We extend and tailor previously developed quantitative and predictive network diffusion model (NDM) to PD, by specifically modeling the trans-neuronal spread of alpha-synuclein outward from the substantia nigra (SN). The model demonstrated the spatial and temporal patterns of PD from neuropathological and neuroimaging studies and was statistically validated using MRI deformation of 232 Parkinson's patients. After repeated seeding simulations, the SN was found to be the most likely seed region, supporting its unique lynchpin role in Parkinson's pathology spread. Other alternative spread models were also evaluated for comparison, specifically, random spread and distance-based spread; the latter tests for Braak's original caudorostral transmission theory. We showed that the distance-based spread model is not as well supported as the connectivity-based model. Intriguingly, the temporal sequencing of affected regions predicted by the model was in close agreement with Braak stages III-VI, providing what we consider a "computational Braak" staging system. Finally, we investigated whether the regional expression patterns of implicated genes contribute to regional atrophy. Despite robust evidence for genetic factors in PD pathogenesis, NDM outperformed regional genetic expression predictors, suggesting that network processes are far stronger mediators of regional vulnerability than innate or cell-autonomous factors. This is the first finding yet of the ramification of prion-like pathology propagation in Parkinson's, as gleaned from in vivo human imaging data. The NDM is potentially a promising robust and clinically useful tool for diagnosis, prognosis and staging of PD.
Collapse
Affiliation(s)
- S Pandya
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA.
| | - Y Zeighami
- Montreal Neurological Institute, Brain Imaging Centre, McGill University, Canada
| | - B Freeze
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA
| | - M Dadar
- Montreal Neurological Institute, Brain Imaging Centre, McGill University, Canada
| | - D L Collins
- Montreal Neurological Institute, Brain Imaging Centre, McGill University, Canada
| | - A Dagher
- Montreal Neurological Institute, Brain Imaging Centre, McGill University, Canada
| | - A Raj
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA; Department of Radiology, UCSF School of Medicine, San Francisco, CA, USA.
| |
Collapse
|
443
|
Ismail R, Parbo P, Hansen KV, Schaldemose JL, Dalby RB, Tietze A, Kjeldsen PL, Cour SH, Qvist P, Gottrup H, Eskildsen SF, Brooks DJ. Abnormal Amyloid Load in Mild Cognitive Impairment: The Effect of Reducing the PiB‐PET Threshold. J Neuroimaging 2019; 29:499-505. [DOI: 10.1111/jon.12629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 11/26/2022] Open
Affiliation(s)
- Rola Ismail
- Department of Clinical Medicine, PET‐CentreAarhus University Denmark
| | - Peter Parbo
- Department of Nuclear Medicine and PET Centre Aarhus University Hospital Denmark
| | - Kim V. Hansen
- Department of Clinical Medicine, PET‐CentreAarhus University Denmark
| | | | - Rikke B. Dalby
- Center of Functionally Integrative Neuroscience (CFIN)Aarhus University Denmark
| | - Anna Tietze
- Institute of NeuroradiologyCharite–Universitätsmedizin Berlin Germany
| | | | - Sanne Hage Cour
- Department of BiomedicineCentre for Integrative Sequencing iSEQ, Aarhus University Denmark
| | - Per Qvist
- Department of BiomedicineCentre for Integrative Sequencing iSEQ, Aarhus University Denmark
| | - Hanne Gottrup
- Department of NeurologyAarhus University Hospital Denmark
| | - Simon F. Eskildsen
- Center of Functionally Integrative Neuroscience (CFIN)Aarhus University Denmark
| | - David J. Brooks
- Department of Clinical Medicine, PET‐CentreAarhus University Denmark
- Institute of NeuroscienceUniversity of Newcastle upon Tyne UK
- Department of MedicineImperial College London UK
| |
Collapse
|
444
|
High amyloid burden is associated with fewer specific words during spontaneous speech in individuals with subjective cognitive decline. Neuropsychologia 2019; 131:184-192. [PMID: 31075283 DOI: 10.1016/j.neuropsychologia.2019.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/29/2022]
Abstract
Self-perceived word-finding difficulties are common in aging individuals as well as in Alzheimer's Disease (AD). Language and speech deficits are difficult to objectify with neuropsychological assessments. We therefore aimed to investigate whether amyloid, an early AD pathological hallmark, is associated with speech-derived semantic complexity. We included 63 individuals with subjective cognitive decline (age 64 ± 8, MMSE 29 ± 1), with amyloid status (positron emission tomography [PET] scans n = 59, or Aβ1-42 cerebrospinal fluid [CSF] n = 4). Spontaneous speech was recorded using three open-ended tasks (description of cookie theft picture, abstract painting and a regular Sunday), transcribed verbatim and subsequently, linguistic parameters were extracted using T-scan computational software, including specific words (content words, frequent, concrete and abstract nouns, and fillers), lexical complexity (lemma frequency, Type-Token-Ratio) and syntactic complexity (Developmental Level scale). Nineteen individuals (30%) had high levels of amyloid burden, and there were no differences between groups on conventional neuropsychological tests. Using multinomial regression with linguistic parameters (in tertiles), we found that high amyloid burden is associated with fewer concrete nouns (ORmiddle (95%CI): 7.6 (1.4-41.2), ORlowest: 6.7 (1.2-37.1)) and content words (ORlowest: 6.3 (1.0-38.1). In addition, we found an interaction for education between high amyloid burden and more abstract nouns. In conclusion, high amyloid burden was modestly associated with fewer specific words, but not with syntactic complexity, lexical complexity or conventional neuropsychological tests, suggesting that subtle spontaneous speech deficits might occur in preclinical AD.
Collapse
|
445
|
Smith CT, Crawford JL, Dang LC, Seaman KL, San Juan MD, Vijay A, Katz DT, Matuskey D, Cowan RL, Morris ED, Zald DH, Samanez-Larkin GR. Partial-volume correction increases estimated dopamine D2-like receptor binding potential and reduces adult age differences. J Cereb Blood Flow Metab 2019; 39:822-833. [PMID: 29090626 PMCID: PMC6498753 DOI: 10.1177/0271678x17737693] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/17/2017] [Accepted: 09/19/2017] [Indexed: 12/17/2022]
Abstract
The relatively modest spatial resolution of positron emission tomography (PET) increases the likelihood of partial volume effects such that binding potential (BPND) may be underestimated. Given structural grey matter losses across adulthood, partial volume effects may be even more problematic in older age leading to overestimation of adult age differences. Here we examined the effects of partial volume correction (PVC) in two studies from different sites using different high-affinity D2-like radioligands (18 F-Fallypride, 11C-FLB457) and different PET camera resolutions (∼5 mm, 2.5 mm). Results across both data sets revealed that PVC increased estimated BPND and reduced, though did not eliminate, age effects on BPND. As expected, the effects of PVC were smaller in higher compared to lower resolution data. Analyses using uncorrected data that controlled for grey matter volume in each region of interest approximated PVC corrected data for some but not all regions. Overall, the findings suggest that PVC increases estimated BPND in general and reduces adult age differences especially when using lower resolution cameras. The findings suggest that the past 30 years of research on dopamine receptor availability, for which very few studies use PVC, may overestimate effects of aging on dopamine receptor availability.
Collapse
Affiliation(s)
| | - Jennifer L Crawford
- Department of Psychology,
Yale
University, New Haven, CT, USA
- Center for Cognitive Neuroscience, Duke
University, Durham, NC, USA
| | - Linh C Dang
- Department of Psychology,
Vanderbilt
University, Nashville, TN, USA
| | - Kendra L Seaman
- Department of Psychology,
Yale
University, New Haven, CT, USA
- Center for Cognitive Neuroscience, Duke
University, Durham, NC, USA
| | | | - Aishwarya Vijay
- Department of Radiology and Biomedical
Imaging,
Yale
University, New Haven, CT, USA
| | - Daniel T Katz
- Department of Psychology,
Vanderbilt
University, Nashville, TN, USA
| | - David Matuskey
- Department of Radiology and Biomedical
Imaging,
Yale
University, New Haven, CT, USA
- Department of Psychiatry,
Yale
University, New Haven, CT, USA
| | - Ronald L Cowan
- Department of Psychology,
Vanderbilt
University, Nashville, TN, USA
- Department of Psychiatry and Behavioral
Sciences,
Vanderbilt
University School of Medicine, Nashville,
TN, USA
- Department of Radiology and Radiological
Sciences,
Vanderbilt
University Medical Center, Nashville, TN,
USA
| | - Evan D Morris
- Department of Radiology and Biomedical
Imaging,
Yale
University, New Haven, CT, USA
- Department of Psychiatry,
Yale
University, New Haven, CT, USA
- Department of Biomedical Engineering,
Yale
University, New Haven, CT USA
| | - David H Zald
- Department of Psychology,
Vanderbilt
University, Nashville, TN, USA
- Department of Psychiatry and Behavioral
Sciences,
Vanderbilt
University School of Medicine, Nashville,
TN, USA
| | - Gregory R Samanez-Larkin
- Department of Psychology,
Yale
University, New Haven, CT, USA
- Center for Cognitive Neuroscience, Duke
University, Durham, NC, USA
- Department of Psychology and
Neuroscience, Duke University, Durham, NC, USA
| |
Collapse
|
446
|
Schöne M, Seidenbecher S, Tozzi L, Kaufmann J, Griep H, Fenker D, Frodl T, Bogerts B, Schiltz K. Neurobiological correlates of violence perception in martial artists. Brain Behav 2019; 9:e01276. [PMID: 30907076 PMCID: PMC6520304 DOI: 10.1002/brb3.1276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES The direct exertion as well as the visual perception of violence can have a hedonistic effect and elicit positive arousal in predisposed individuals. This appetitive aspect of aggression in healthy subjects has been neglected in psychiatric research so far. METHODS Using functional magnetic resonance imaging, we tested whether subjects trained in sports with a violent component (martial arts) show altered brain responses in reward-associated brain areas when compared to controls. Sixteen martial artists (e.g., boxing, mixed martial arts) and 24 controls watched violent versus neutral pictures while performing a cognitive cover task. Subjects' aggressiveness was assessed by the aggressiveness factors questionnaire (FAF). RESULTS While watching violent pictures, martial artists had a stronger activation in the left amygdala than controls. Within the martial artist group however, there was an inverse correlation between activation in the left amygdala and degree of aggressiveness. CONCLUSIONS Higher amygdala activation while watching violent pictures might reflect that perception of violence conveys increased salience to martial artists as compared to controls. The inverse correlation between amygdala activation and aggressiveness within the martial artist group might be explained by the assumption that the more aggressive martial artists may be more accustomed to violent situations leading to a down-modulation of amygdala activation. Appetitive aggression should be taken into account as a factor contributing to violence.
Collapse
Affiliation(s)
- Maria Schöne
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany.,Salus-Institute, Magdeburg, Germany
| | - Stephanie Seidenbecher
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany.,Salus-Institute, Magdeburg, Germany
| | - Leonardo Tozzi
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany.,Department of Psychiatry and Institute of Neuroscience, Dublin, Ireland.,Department of Psychiatry and Behavioral Science, Stanford University, Stanford, California
| | - Jörn Kaufmann
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Hendrik Griep
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Daniela Fenker
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany
| | - Thomas Frodl
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany.,Department of Psychiatry and Institute of Neuroscience, Dublin, Ireland.,Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | - Bernhard Bogerts
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany.,Salus-Institute, Magdeburg, Germany
| | - Kolja Schiltz
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany.,Department of Forensic Psychiatry, Psychiatric Hospital of the University of Munich, Munich, Germany
| |
Collapse
|
447
|
Konijnenberg E, den Braber A, ten Kate M, Tomassen J, Mulder SD, Yaqub M, Teunissen CE, Lammertsma AA, van Berckel BN, Scheltens P, Boomsma DI, Visser PJ. Association of amyloid pathology with memory performance and cognitive complaints in cognitively normal older adults: a monozygotic twin study. Neurobiol Aging 2019; 77:58-65. [DOI: 10.1016/j.neurobiolaging.2019.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 11/29/2022]
|
448
|
Rizzo G, Veronese M, Tonietto M, Bodini B, Stankoff B, Wimberley C, Lavisse S, Bottlaender M, Bloomfield PS, Howes O, Zanotti-Fregonara P, Turkheimer FE, Bertoldo A. Generalization of endothelial modelling of TSPO PET imaging: Considerations on tracer affinities. J Cereb Blood Flow Metab 2019; 39:874-885. [PMID: 29135382 PMCID: PMC6501510 DOI: 10.1177/0271678x17742004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The 18 kDa translocator protein (TSPO) is a marker of microglia activation and the main target of positron emission tomography (PET) ligands for neuroinflammation. Previous works showed that accounting for TSPO endothelial binding improves PET quantification for [11C]PBR28, [18F]DPA714 and [11C]-R-PK11195. It is still unclear, however, whether the vascular signal is tracer-dependent. This work aims to explore the relationship between the TSPO vascular and tissue components for PET tracers with varying affinity, also assessing the impact of affinity towards the differentiability amongst kinetics and the ensuing ligand amenability to cluster analysis for the extraction of a reference region. First, we applied the compartmental model accounting for vascular binding to [11C]-R-PK11195 data from six healthy subjects. Then, we compared the [11C]-R-PK11195 vascular binding estimates with previously published values for [18F]DPA714 and [11C]PBR28. Finally, we determined the suitability for reference region extraction by calculating the angle between grey and white matter kinetics. Our results showed that endothelial binding is common to all TSPO tracers and proportional to their affinity. By consequence, grey and white matter kinetics were most similar for the radioligand with the highest affinity (i.e. [11C]PBR28), hence poorly suited for the extraction of a reference region using supervised clustering.
Collapse
Affiliation(s)
- Gaia Rizzo
- 1 Department of Information Engineering, Padova University, Padova, Italy
| | - Mattia Veronese
- 2 Department of Neuroimaging, King's College London, London, UK
| | - Matteo Tonietto
- 3 UPMC, Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié Salpêtrière, Sorbonne Universités, Paris, France
| | - Benedetta Bodini
- 3 UPMC, Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié Salpêtrière, Sorbonne Universités, Paris, France.,4 Assistance Publique des Hopitaux de Paris, APHP, Hôpital Saint Antoine, Paris, France
| | - Bruno Stankoff
- 3 UPMC, Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié Salpêtrière, Sorbonne Universités, Paris, France.,4 Assistance Publique des Hopitaux de Paris, APHP, Hôpital Saint Antoine, Paris, France.,5 IMIV, Inserm, CEA, Paris-Sud Univ, Université Paris Saclay, Orsay, France
| | - Catriona Wimberley
- 5 IMIV, Inserm, CEA, Paris-Sud Univ, Université Paris Saclay, Orsay, France
| | - Sonia Lavisse
- 6 Département de Recherche Fondamentale (DRF), Institut d'Imagerie Biomédicale (I2BM), Fontenay-aux-Roses, France.,7 Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Michel Bottlaender
- 5 IMIV, Inserm, CEA, Paris-Sud Univ, Université Paris Saclay, Orsay, France.,8 Neurospin, CEA, Gif-sur-Yvette, France
| | | | - Oliver Howes
- 9 Institute of Clinical Sciences, Imperial College London, London, UK.,10 Department of Psychosis Studies, King's College London, London, UK
| | - Paolo Zanotti-Fregonara
- 11 Houston Methodist Hospital, PET Core Facility, Research Institute, Stanley H. Appel Department of Neurology, Houston, Texas, USA
| | | | - Alessandra Bertoldo
- 1 Department of Information Engineering, Padova University, Padova, Italy.,12 Padua Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
449
|
White Matter Microstructure Reflects Individual Differences in Music Reward Sensitivity. J Neurosci 2019; 39:5018-5027. [PMID: 31000588 DOI: 10.1523/jneurosci.2020-18.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 01/17/2023] Open
Abstract
People show considerable variability in the degree of pleasure they experience from music. These individual differences in music reward sensitivity are driven by variability in functional connectivity between the nucleus accumbens (NAcc), a key structure of the reward system, and the right superior temporal gyrus (STG). However, it is unknown whether a neuroanatomical basis exists for this variability. We used diffusion tensor imaging and probabilistic tractography to study the relationship between music reward sensitivity and white matter microstructure connecting these two regions via the orbitofrontal cortex (OFC) in 38 healthy human participants (24 females and 14 males). We found that right axial diffusivity (AD) in the STG-OFC connectivity inversely correlated with music reward sensitivity. Additionally, right mean diffusivity and left AD in the NAcc-OFC tract also showed an inverse correlation. Further, AD in this tract also correlated with previously acquired BOLD activity during music listening, but not for a control monetary reward task in the NAcc. Finally, we used mediation analysis to show that AD in the NAcc-OFC tract explains the influence of NAcc activation during a music task on music reward sensitivity. Overall, our results provide further support for the idea that the exchange of information among perceptual, integrative, and reward systems is important for musical pleasure, and that individual differences in the structure of the relevant anatomical connectivity influences the degree to which people are able to derive such pleasure.SIGNIFICANCE STATEMENT Music is one of the most important sources of pleasure for many people, but at the same time there are important individual differences in the sensitivity to musical reward. Previous studies have revealed the critical involvement of the functional connectivity between perceptual and subcortical brain areas in the enjoyment of music. However, it is unknown whether individual differences in music sensitivity might arise from variability in the structural connectivity among these areas. Here we show that structural connectivity between supratemporal and orbitofrontal cortices, and between orbitofrontal and nucleus accumbens, predict individual differences in sensibility to music reward. These results provide evidence for the critical involvement of the interaction between the subcortical reward system and higher-order cortical areas in music-induced pleasure.
Collapse
|
450
|
Kark SM, Kensinger EA. Post-Encoding Amygdala-Visuosensory Coupling Is Associated with Negative Memory Bias in Healthy Young Adults. J Neurosci 2019; 39:3130-3143. [PMID: 30760626 PMCID: PMC6468097 DOI: 10.1523/jneurosci.2834-18.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/27/2019] [Accepted: 02/05/2019] [Indexed: 01/24/2023] Open
Abstract
The amygdala is well documented as the critical nexus of emotionally enhanced memory, yet its role in the creation of negative memory biases, better memory for negative compared with positive stimuli, has not been clarified. Although prior work suggests valence-specific effects at the moment of "online" encoding and retrieval, with enhanced visuosensory processes supporting negative memories in particular, here we tested the novel hypothesis that the amygdala engages with distant cortical regions after encoding in a manner that predicts inter-individual differences in negative memory biases in humans. Twenty-nine young adults (males and females) were scanned while they incidentally encoded negative, neutral, and positive scenes, each preceded by a line-drawing sketch of the scene. Twenty-four hours later, participants were scanned during an Old/New recognition memory task with only the line-drawings presented as retrieval cues. We replicated and extended our prior work, showing that enhanced online visuosensory recapitulation supports negative memory. Critically, resting-state scans flanked the encoding task, allowing us to show for the first time that individual differences in "off-line" increases in amygdala resting-state functional connectivity (RSFC) immediately following encoding relate to negative and positive memory bias at test. Specifically, post-encoding increases in amygdala RSFC with visuosensory and frontal regions were associated with the degree of negative and positive memory bias, respectively. These findings provide new evidence that valence-specific negative memory biases can be linked to the way that sensory processes are integrated into amygdala-centered emotional memory networks.SIGNIFICANCE STATEMENT Decades of research has placed the amygdala at the center of the emotional memory network. Despite the clinical importance of disproportionate memory for negative compared with positive events, it is not known whether post-encoding increases in amygdala-cortical coupling, possibly reflective of early consolidation processes, bear any influence on the degree or direction of such emotional memory biases. We demonstrate that, across participants, increases in post-encoding amygdala coupling with visuosensory and frontal regions are associated with more pronounced negative and positive memory biases, respectively. These findings provide the first evidence linking post-encoding amygdala modulation to the degree of negative or positive memory bias, emphasizing the need for valence-based accounts of the amygdala's role in emotional memory.
Collapse
Affiliation(s)
- Sarah M Kark
- Department of Psychology, Boston College, Chestnut Hill, Massachusetts 02467
| | | |
Collapse
|