401
|
Fribourg S, Kellenberger E, Rogniaux H, Poterszman A, Van Dorsselaer A, Thierry JC, Egly JM, Moras D, Kieffer B. Structural characterization of the cysteine-rich domain of TFIIH p44 subunit. J Biol Chem 2000; 275:31963-71. [PMID: 10882739 DOI: 10.1074/jbc.m004960200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In an effort to understand the structure function relationship of TFIIH, a transcription/repair factor, we focused our attention on the p44 subunit, which plays a central role in both mechanisms. The amino-terminal portion of p44 has been shown to be involved in the regulation of the XPD helicase activity; here we show that its carboxyl-terminal domain is essential for TFIIH transcription activity and that it binds three zinc atoms through two independent modules. The first contains a C4 zinc finger motif, whereas the second is characterized by a CX(2)CX(2-4)FCADCD motif, corresponding to interleaved zinc binding sites. The solution structure of this second module reveals an unexpected homology with the regulatory domain of protein kinase C and provides a framework to study its role at the molecular level.
Collapse
Affiliation(s)
- S Fribourg
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1, rue Laurent Fries, Boite Postale 163, 67404 Illkirch Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
402
|
Aroca P, Santos E, Kazanietz MG. Recombinant C1b domain of PKCdelta triggers meiotic maturation upon microinjection in Xenopus laevis oocytes. FEBS Lett 2000; 483:27-32. [PMID: 11033350 DOI: 10.1016/s0014-5793(00)02075-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The C1 domains are 50 amino acid sequences present in protein kinase C (PKC) isozymes that are responsible for binding of phorbol esters and the lipid second messenger diacylglycerol (DAG). We found that bacterially expressed C1b domain of PKCdelta induces germinal vesicle breakdown (GVBD) when microinjected into Xenopus laevis oocytes. Injection of the C1b domain of PKCdelta significantly enhanced insulin- but not progesterone-induced maturation. Interestingly, the PKCdelta C1b domain markedly synergized with normal Ras protein to induce oocyte maturation when both proteins were co-injected in oocytes. Our results demonstrate that the purified C1b domain of PKCdelta is sufficient to promote meiotic maturation of X. laevis oocytes probably through activation of components of the insulin/Ras signaling pathway.
Collapse
Affiliation(s)
- P Aroca
- Department of Morphological Sciences, Faculty of Medicine, University of Murcia, E-30100 Murcia, Spain
| | | | | |
Collapse
|
403
|
Conesa-Zamora P, Gómez-Fernández JC, Corbalán-García S. The C2 domain of protein kinase calpha is directly involved in the diacylglycerol-dependent binding of the C1 domain to the membrane. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1487:246-54. [PMID: 11018476 DOI: 10.1016/s1388-1981(00)00099-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Protein kinase Calpha (PKCalpha), which is known to be critical for the control of many cellular processes, was submitted to site-directed mutagenesis in order to test the functionality of several amino acidic residues. Thus, D187, D246 and D248, all of which are located at the Ca(2+) binding site of the C2 domain, were substituted by N. Subcellular fractionation experiments demonstrated that these mutations are important for both Ca(2+)-dependent and diacylglycerol-dependent membrane binding. The mutants are not able to phosphorylate typical PKC substrates, such as histone and myelin basic protein. Furthermore, using increasing concentrations of dioleylglycerol, one of the mutants (D246/248N) was able to recover total activity although the amounts of dioleylglycerol it required were larger than those required by wild type protein. On the other hand, the other mutants (D187N and D187/246/248) only recovered 50% of their activity. These data suggest that there is a relationship between the C1 domain, where dioleylglycerol binds, and the C2 domain, and that this relationship is very important for enzyme activation. These findings led us to propose a mechanism for PKCalpha activation, where C1 and C2 domains cannot be considered independent membrane binding modules.
Collapse
Affiliation(s)
- P Conesa-Zamora
- Departamento de Bioquímica y Biología Molecular (A), Facultad de Veterinaria, Universidad de Murcia, Apartado de Correos 4021, E-30080, Murcia, Spain
| | | | | |
Collapse
|
404
|
Derubeis AR, Young MF, Jia L, Robey PG, Fisher LW. Double FYVE-containing protein 1 (DFCP1): isolation, cloning and characterization of a novel FYVE finger protein from a human bone marrow cDNA library. Gene 2000; 255:195-203. [PMID: 11024279 DOI: 10.1016/s0378-1119(00)00303-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Double FYVE-containing protein 1 (DFCP1) encodes a 777 amino acid protein that contains: (1) an N-terminal Cys-His cluster with some homology to many zinc finger domains; (2) a consensus sequence consistent with an ATP/GTP binding site; and (3) a C-terminal domain unique because it contains two zinc-binding FYVE domains. The gene, ZNFN2A1 (GenBank accession no. AF251025) was localized to chromosome 14q22-q24 and shown to be composed of 11 exons. Northern blot analysis revealed the presence of three different mRNA transcripts (4.2, 3 and 1.2kb). The two longer transcripts appear to be expressed in a variety of different tissues, especially in endocrine tissues, while the shorter messenger is limited to testis. Both of the larger transcripts are unusual due to the presence of a 463bp long 5' UTR. Furthermore, the 4.2kb transcript contains a non-standard polyadenylation consensus sequence while the 3kb transcript contains a standard consensus sequence but within the open reading frame. Following in vitro transfection of a DFCP1-containing expression construct, confocal microscopy studies showed a vesicular distribution of DFCP1 suggesting that this protein, like other FYVE-containing proteins, might be involved in membrane trafficking.
Collapse
MESH Headings
- 3T3 Cells
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Bone Marrow/metabolism
- Carrier Proteins/genetics
- Chromosome Mapping
- Chromosomes, Human, Pair 14/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Fluorescent Antibody Technique
- Gene Expression
- Gene Library
- Humans
- Male
- Mice
- Microscopy, Confocal
- Molecular Sequence Data
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
- Zinc Fingers/genetics
Collapse
Affiliation(s)
- A R Derubeis
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
405
|
Hoyos B, Imam A, Chua R, Swenson C, Tong GX, Levi E, Noy N, Hämmerling U. The cysteine-rich regions of the regulatory domains of Raf and protein kinase C as retinoid receptors. J Exp Med 2000; 192:835-45. [PMID: 10993914 PMCID: PMC2193291 DOI: 10.1084/jem.192.6.835] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2000] [Accepted: 07/31/2000] [Indexed: 11/05/2022] Open
Abstract
Vitamin A and its biologically active derivatives, the retinoids, are recognized as key regulators of vertebrate development, cell growth, and differentiation. Although nuclear receptors have held the attention since their discovery a decade ago, we report here on serine/threonine kinases as a new class of retinoid receptors. The conserved cysteine-rich domain of the NH(2)-terminal regulatory domains of cRaf-1, as well as several select domains of the mammalian protein kinase C (PKC) isoforms alpha, delta, zeta, and mu, the Drosophila and yeast PKCs, were found to bind retinol with nanomolar affinity. The biological significance was revealed in the alternate redox activation pathway of these kinases. Retinol served as a cofactor to augment the activation of both cRaf and PKC alpha by reactive oxygen, whereas the classical receptor-mediated pathway was unaffected by the presence or absence of retinol. We propose that bound retinol, owing to its electron transfer capacity, functions as a tag to enable the efficient and directed redox activation of the cRaf and PKC families of kinases.
Collapse
Affiliation(s)
- B Hoyos
- Program in Immunology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
406
|
Nakagawa Y, Irie K, Ohigashi H, Hayashi H, Wender PA. Synthesis and PKC isozyme surrogate binding of indothiolactam-V, a new thioamide analogue of tumor promoting indolactam-V. Bioorg Med Chem Lett 2000; 10:2087-90. [PMID: 10999477 DOI: 10.1016/s0960-894x(00)00411-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To investigate the role of the amide group of (-)-indolactam-V (1) on PKC binding, we synthesized (-)-indothiolactam-V (2), a new thioamide analogue of 1, by microbial conversion using Streptomyces blastmyceticum. Compounds 2 and 1 showed similar binding affinities to conventional PKCs but 2 had lower affinities to novel PKCs, suggesting that novel PKCs recognize amide modifications more effectively than conventional PKCs.
Collapse
Affiliation(s)
- Y Nakagawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
407
|
Tamamura H, Bienfait B, Nacro K, Lewin NE, Blumberg PM, Marquez VE. Conformationally constrained analogues of diacylglycerol (DAG). 17. Contrast between sn-1 and sn-2 DAG lactones in binding to protein kinase C. J Med Chem 2000; 43:3209-17. [PMID: 10966739 DOI: 10.1021/jm990613q] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In previous work, we have obtained potent protein kinase C (PK-C) ligands with low-namomolar binding affinities by constructing diacylglycerol (DAG) mimetics in which the sn-2 carbonyl of DAG was constrained into a lactone ring. An additional structural element that helped achieve high binding affinity was the presence of branched acyl or alpha-alkylidene chains. In the present study, the effects of similarly branched chains on a different lactone system, where the lactone carbonyl is now equivalent to the sn-1 carbonyl of DAG, are investigated. In this new lactone template, the two chiral centers must have the S-configuration for enzyme recognition. As with the sn-2 DAG lactones, the branched chains were designed to optimize van der Waals contacts with a group of conserved hydrophobic amino acids located on the rim of the C1 domain of PK-C. The acyl and alpha-alkylidene chains were also designed to be lipophilically equivalent (8 carbons each). Eight new compounds (7-14) representing all possible combinations of linear and branched acyl and alpha-alkylidene were synthesized and evaluated. The sn-1 DAG lactones were less effective as PK-C ligands than the sn-2 DAG lactones despite having a similar array of linear or branched acyl and alpha-alkylidene chains
Collapse
Affiliation(s)
- H Tamamura
- Laboratories of Medicinal Chemistry and of Cellular Carcinogenesis and Tumor Promotion, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
408
|
Abstract
Bryostatins are a class of antineoplastic compounds isolated from the bryozoans Bugula neritina. A wide range of scientific research is currently underway, studying different aspects of the bryostatins. In this review we try to summarize the latest findings, including all the topics involved, from marine biology to medicinal chemistry.
Collapse
Affiliation(s)
- R Mutter
- Department of Chemistry, University of Warwick, Coventry, UK.
| | | |
Collapse
|
409
|
Williams JG, Drugan JK, Yi GS, Clark GJ, Der CJ, Campbell SL. Elucidation of binding determinants and functional consequences of Ras/Raf-cysteine-rich domain interactions. J Biol Chem 2000; 275:22172-9. [PMID: 10777480 DOI: 10.1074/jbc.m000397200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Raf-1 is a critical downstream target of Ras and contains two distinct domains that bind Ras. The first Ras-binding site (RBS1) in Raf-1 has been shown to be essential for Ras-mediated translocation of Raf-1 to the plasma membrane, whereas the second site, in the Raf-1 cysteine-rich domain (Raf-CRD), has been implicated in regulating Raf kinase activity. While recognition elements that promote Ras.RBS1 complex formation have been characterized, relatively little is known about Ras/Raf-CRD interactions. In this study, we have characterized interactions important for Ras binding to the Raf-CRD. Reconciling conflicting reports, we found that these interactions are essentially independent of the guanine nucleotide bound state, but instead, are enhanced by post-translational modification of Ras. Specifically, our findings indicate that Ras farnesylation is sufficient for stable association of Ras with the Raf-CRD. Furthermore, we have also identified a Raf-CRD variant that is impaired specifically in its interactions with Ras. NMR data also suggests that residues proximal to this mutation site on the Raf-CRD form contacts with Ras. This Raf-CRD mutant impairs the ability of Ras to activate Raf kinase, thereby providing additional support that Ras interactions with the Raf-CRD are important for Ras-mediated activation of Raf-1.
Collapse
Affiliation(s)
- J G Williams
- Department of Biochemistry and Biophysics, Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
410
|
Martinez-Yamout M, Legge GB, Zhang O, Wright PE, Dyson HJ. Solution structure of the cysteine-rich domain of the Escherichia coli chaperone protein DnaJ. J Mol Biol 2000; 300:805-18. [PMID: 10891270 DOI: 10.1006/jmbi.2000.3923] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The solution structure of the cysteine-rich (CR) domain of Escherichia coli DnaJ has been solved by NMR methods. The structure of a 79 residue CR domain construct shows a novel fold with an overall V-shaped extended beta-hairpin topology. The CR domain is characterized by four C-X-X-C-X-G-X-G sequence motifs that bind two zinc ions. Residues in these two zinc modules show strong similarities in the grouping of resonances in the (15)N-(1)H HSQC spectrum and display pseudo-symmetry of the motifs in the calculated structures. The conformation of the cysteine residues coordinated to the zinc ion resembles that of the rubredoxin-knuckle, but there are significant differences in hydrogen bonding patterns in the two motifs. Zinc (15)N-(1)H HSQC titrations indicate that the fold of the isolated DnaJ CR domain is zinc-dependent and that one zinc module folds before the other. The C-X-X-C-X-G-X-G sequence motif is highly conserved in CR domains from a wide variety of species. The three-dimensional structure of the E. coli CR domain indicates that this sequence conservation is likely to result in a conserved structural motif.
Collapse
Affiliation(s)
- M Martinez-Yamout
- Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | | | | | | | | |
Collapse
|
411
|
Datta K, Nambudripad R, Pal S, Zhou M, Cohen HT, Mukhopadhyay D. Inhibition of insulin-like growth factor-I-mediated cell signaling by the von Hippel-Lindau gene product in renal cancer. J Biol Chem 2000; 275:20700-6. [PMID: 10748176 DOI: 10.1074/jbc.m909970199] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-like growth factor-I (IGF-I)-mediated signaling is thought to be involved in the regulation of multiple cellular functions in different tumors including renal cell carcinoma (RCC). Blocking IGF-I signaling by any of the several strategies abolishes or delays the progression of a variety of tumors in animal models. Herein, we demonstrate that in RCC cell lines, IGF-I-mediated signaling is found to be inhibited in the presence of wild type von Hippel-Lindau (VHL) tumor suppresser gene. Moreover, molecular modeling and biochemical approaches have revealed that beta-domain of the VHL gene product by interacting directly with protein kinase Cdelta inhibits its association with IGF-IR for downstream signaling. We also demonstrated that RCC has IGF-I-mediated invasive activity where protein kinase Cdelta is an important downstream molecule, and this invasiveness can be blocked by wild type VHL. These experiments thus elucidate a novel tumor suppresser function of VHL with its unique kinase inhibitory domain.
Collapse
Affiliation(s)
- K Datta
- Departments of Pathology and Molecular Computing Facility, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
412
|
Abstract
In addition to the well-characterized interaction with classical and novel protein kinase C (PKC) isozymes, the phorbol ester tumor promoters bind to other receptors lacking kinase activity. Among these novel phorbol ester receptors, two families of proteins may play a role in the regulation of cell growth and malignant transformation: chimaerins and ras guanyl-releasing protein (ras-GRP). These proteins possess a single copy of the C1 domain that is involved in binding of phorbol esters and the lipid second messenger diacylglycerol. Four isoforms of chimaerins (alpha1-, alpha2-, beta1-, and beta2-chimaerins) have been isolated to-date, all of them possessing GTPase-activating protein activity for Rac, a small GTP-binding protein that controls actin cytoskeleton organization, cell-cycle progression, adhesion, and migration. Ras-GRP is a guanine nucleotide exchange factor for ras and promotes malignant transformation in fibroblasts in a phorbol ester-dependent manner. The C1 domain in Ras-GRP may, therefore, have a dominant role in Ras-GRP activation and is essential for phorbol ester-dependent activation of downstream effectors of ras, i.e., the mitogen-activated protein kinase cascade. Thus, a novel concept emerges in which phorbol esters may exert cellular responses through pathways not involving phorbol ester-responsive PKC isozymes. The discovery of "nonPKC" phorbol ester receptors adds an additional level of complexity to the understanding of phorbol ester effects and the molecular mechanisms of carcinogenesis.
Collapse
Affiliation(s)
- M G Kazanietz
- Center for Experimental Therapeutics and Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia 19104-6160, USA
| |
Collapse
|
413
|
Abstract
Oxidative stress is involved in the pathogenesis of various degenerative diseases including cancer. It is now recognized that low levels of oxidants can modify cell-signaling proteins and that these modifications have functional consequences. Identifying the target proteins for redox modification is key to understanding how oxidants mediate pathological processes such as tumor promotion. These proteins are also likely to be important targets for chemopreventive antioxidants, which are known to block signaling induced by oxidants and to induce their own actions. Various antioxidant preventive agents also inhibit PKC-dependent cellular responses. Therefore, PKC is a logical candidate for redox modification by oxidants and antioxidants that may in part determine their cancer-promoting and anticancer activities, respectively. PKCs contain unique structural features that are susceptible to oxidative modification. The N-terminal regulatory domain contains zinc-binding, cysteine-rich motifs that are readily oxidized by peroxide. When oxidized, the autoinhibitory function of the regulatory domain is compromised and, consequently, cellular PKC activity is stimulated. The C-terminal catalytic domain contains several reactive cysteines that are targets for various chemopreventive antioxidants such as selenocompounds, polyphenolic agents such as curcumin, and vitamin E analogues. Modification of these cysteines decreases cellular PKC activity. Thus the two domains of PKC respond differently to two different type of agents: oxidants selectively react with the regulatory domain, stimulate cellular PKC, and signal for tumor promotion and cell growth. In contrast, antioxidant chemopreventive agents react with the catalytic domain, inhibit cellular PKC activity, and thus interfere with the action of tumor promoters.
Collapse
Affiliation(s)
- R Gopalakrishna
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
414
|
Wang QJ, Fang TW, Fenick D, Garfield S, Bienfait B, Marquez VE, Blumberg PM. The lipophilicity of phorbol esters as a critical factor in determining the pattern of translocation of protein kinase C delta fused to green fluorescent protein. J Biol Chem 2000; 275:12136-46. [PMID: 10766849 DOI: 10.1074/jbc.275.16.12136] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our previous study showed differential subcellular localization of protein kinase C (PKC) delta by phorbol esters and related ligands, using a green fluorescent protein-tagged construct in living cells. Here we compared the abilities of a series of symmetrically substituted phorbol 12,13-diesters to translocate PKC delta. In vitro, the derivatives bound to PKC with similar potencies but differed in rate of equilibration. In vivo, the phorbol diesters with short, intermediate, and long chain fatty acids induced distinct patterns of translocation. Phorbol 12,13-dioctanoate and phorbol 12,13-nonanoate, the intermediate derivatives and most potent tumor promoters, showed patterns of translocation typical of phorbol 12-myristate 13-acetate, with plasma membrane and subsequent nuclear membrane translocation. The more hydrophilic compounds (phorbol 12,13-dibutyrate and phorbol 12,13-dihexanoate) induced a patchy distribution in the cytoplasm, more prominent nuclear membrane translocation, and little plasma membrane localization at all concentrations examined (100 nM to 10 microM). The highly lipophilic derivatives, phorbol 12,13-didecanoate and phorbol 12, 13-diundecanoate, at 1 microM caused either plasma membrane translocation only or no translocation at incubation times up to 60 min. Our results indicate that lipophilicity of phorbol esters is a critical factor contributing to differential PKC delta localization and thereby potentially to their different biological activities.
Collapse
Affiliation(s)
- Q J Wang
- Molecular Mechanisms of Tumor Promotion Section, Laboratory of Cellular Carcinogenesis and Tumor Promotion, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
415
|
Nacro K, Bienfait B, Lee J, Han KC, Kang JH, Benzaria S, Lewin NE, Bhattacharyya DK, Blumberg PM, Marquez VE. Conformationally constrained analogues of diacylglycerol (DAG). 16. How much structural complexity is necessary for recognition and high binding affinity to protein kinase C? J Med Chem 2000; 43:921-44. [PMID: 10715158 DOI: 10.1021/jm9904607] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The design of potent protein kinase C (PK-C) ligands with low nanomolar binding affinities was accomplished by the combined use of pharmacophore- and receptor-guided approaches based on the structure of the physiological enzyme activator, diacylglycerol (DAG). Earlier use of the former approach, which was based on the structural equivalence of DAG and phorbol ester pharmacophores, identified a fixed template for the construction of a semirigid "recognition domain" that contained the three principal pharmacophores of DAG constrained into a lactone ring (DAG-lactones). In the present work, the pharmacophore-guided approach was refined to a higher level based on the X-ray structure of the C1b domain of PK-Cdelta complexed with phorbol-13-O-acetate. A systematic search that involved modifying the DAG-lactone template with a combination of linear or branched acyl and alpha-alkylidene chains, which functioned as variable hydrophobic "affinity domains", helped identify compounds that optimized hydrophobic contacts with a group of conserved hydrophobic amino acids located on the top half of the C1 domain where the phorbol binds. The hydrophilic/hydrophobic balance of the molecules was estimated by the octanol/water partition coefficients (log P) calculated according to a fragment-based approach. The presence of branched alpha-alkylidene or acyl chains was of critical importance to reach low nanomolar binding affinities for PK-C. These branched chains appear to facilitate important van der Waals contacts with hydrophobic segments of the protein and help promote the activation of PK-C through critical membrane interactions. Molecular modeling of these DAG-lactones into an empty C1b domain using the program AutoDock 2.4 suggests the existence of competing binding modes (sn-1 and sn-2) depending on which carbonyl is directly involved in binding to the protein. Inhibition of epidermal growth factor (EGF) binding, an indirect PK-C mediated response, was realized with some DAG-lactones at a dose 10-fold higher than with the standard phorbol-12, 13-dibutyrate (PDBU). Through the National Cancer Institute (NCI) 60-cell line in vitro screen, DAG-lactone 31 was identified as a very selective and potent antitumor agent. The NCI's computerized, pattern-recognition program COMPARE, which analyzes the degree of similarity of mean-graph profiles produced by the screen, corroborated our principles of drug design by matching the profile of compound 31 with that of the non-tumor-promoting antitumor phorbol ester, prostratin. The structural simplicity and the degree of potency achieved with some of the DAG-lactones described here should dispel the myth that chemical complexity and pharmacological activity go hand in hand. Even as a racemate, DAG-lactone 31 showed low namomolar binding affinity for PK-C and displayed selective antitumor activity at equivalent nanomolar levels. Our present approach should facilitate the generation of multiple libraries of structurally similar DAG-lactones to help exploit molecular diversity for PK-C and other high-affinity receptors for DAG and the phorbol esters. The success of this work suggests that substantially simpler, high-affinity structures could be identified to function as surrogates of other complex natural products.
Collapse
Affiliation(s)
- K Nacro
- Laboratories of Medicinal Chemistry and of Cellular Carcinogenesis and Tumor Promotion, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
416
|
Abstract
The effect of tamoxifen on oxyhemoglobin-mediated cerebral vasoconstriction was examined. Tamoxifen caused a concentration-dependent relaxation of cerebral artery preparations contracted with oxyhemoglobin and phorbol myristate acetate with the IC(50) values 0.66+/-0.1 and 1.1+/-0.1 microM, respectively. In cerebrovascular smooth muscle cells, oxyhemoglobin and phorbol myristate acetate induced protein kinase C activation, which was 220+/-7% and 203+/-8% of control, respectively. The increase in protein kinase C activity was prevented by tamoxifen. The results suggest that the ability of tamoxifen to reverse vasoconstriction is mediated, at least in part, via inhibition of protein kinase C.
Collapse
MESH Headings
- Animals
- Basilar Artery/drug effects
- Cells, Cultured
- Cerebrovascular Circulation/drug effects
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/physiology
- Estrogen Antagonists/pharmacology
- In Vitro Techniques
- Isometric Contraction/drug effects
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Oxyhemoglobins/pharmacology
- Protein Kinase C/metabolism
- Rabbits
- Tamoxifen/pharmacology
- Tetradecanoylphorbol Acetate/pharmacology
- Vasoconstriction/drug effects
Collapse
Affiliation(s)
- G Wickman
- Department of Pharmacology, Faculty of Medicine and Dentistry, 9-70 Medical Sciences Building, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
417
|
Abstract
The phospholipases A(2) (PLA(2)s) are a large family of enzymes with varied lipidic products which are involved in numerous signal transduction pathways. The structural and functional characterization of several PLA(2)s have revealed the various mechanisms used by these enzymes to ingeniously manipulate the phospholipidic metabolic machinery.
Collapse
Affiliation(s)
- A Dessen
- European Molecular Biology Laboratory, Grenoble, 38000, France.
| |
Collapse
|
418
|
Endo Y, Yokoyama A. Role of the hydrophobic moiety of tumor promoters. Synthesis and activity of 2-alkylated benzolactams. Bioorg Med Chem Lett 2000; 10:63-6. [PMID: 10636245 DOI: 10.1016/s0960-894x(99)00580-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The size and position of a hydrophobic moiety on a benzolactam skeleton, which reproduces the active conformation and biological activity of teleocidins, play an important role in the appearance of the activity. Compounds with alkyl groups of various sizes and shapes at the 2-position of benzolactam were synthesized. Structure-activity results indicate that a hydrophobic substituent at the C-2 position plays a critical role in the appearance of biological activities, as in the case of substitution at C-9.
Collapse
Affiliation(s)
- Y Endo
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Japan.
| | | |
Collapse
|
419
|
Sekine A, Kumagai N, Uotsu K, Ohshima T, Shibasaki M. An efficient method for the synthesis of versatile intermediates leading to 13-deoxy- and 9,13-dideoxyphorbols. Tetrahedron Lett 2000. [DOI: 10.1016/s0040-4039(99)02103-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
420
|
Hurley JH, Misra S. Signaling and subcellular targeting by membrane-binding domains. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2000; 29:49-79. [PMID: 10940243 PMCID: PMC4781318 DOI: 10.1146/annurev.biophys.29.1.49] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein kinase C homology-1 and -2, FYVE, and pleckstrin homology domains are ubiquitous in eukaryotic signal transduction and membrane-trafficking proteins. These domains regulate subcellular localization and protein function by binding to lipid ligands embedded in cell membranes. Structural and biochemical analysis of these domains has shown that their molecular mechanisms of membrane binding depend on a combination of specific and nonspecific interactions with membrane lipids. In vivo studies of green fluorescent protein fusions have highlighted the key roles of these domains in regulating protein localization to plasma and internal membranes in cells.
Collapse
Affiliation(s)
- J H Hurley
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0580, USA.
| | | |
Collapse
|
421
|
Wang QJ, Bhattacharyya D, Garfield S, Nacro K, Marquez VE, Blumberg PM. Differential localization of protein kinase C delta by phorbol esters and related compounds using a fusion protein with green fluorescent protein. J Biol Chem 1999; 274:37233-9. [PMID: 10601287 DOI: 10.1074/jbc.274.52.37233] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enzyme localization often plays a controlling role in determining its activity and specificity. Protein kinase C (PKC) has long been known to translocate in response to physiological stimuli as well as to exogenous ligands such as the phorbol esters. We report here that different phorbol derivatives and related ligands, selected for differences in chemical structure and profile of biological activity, induce distinct patterns of redistribution of PKC delta. Localization of a PKC delta-green fluorescent protein (GFP) fusion construct was monitored in living Chinese hamster ovary cells as a function of ligand, concentration, and time using confocal laser scanning microscopy. delta-PKC-GFP was expressed predominantly in the cytoplasm, with some in the nucleus and perinuclear region. Phorbol 12-myristate 13-acetate (PMA) induced plasma membrane translocation followed by slower nuclear membrane translocation. As the concentration of PMA increased, the proportion of nuclear to plasma membrane localization increased markedly. In contrast to PMA, bryostatin 1, a unique activator of PKC that induces a subset of PMA-mediated responses while antagonizing others, at all doses induced almost exclusively nuclear membrane translocation. Like PMA, the complete tumor promoter 12-deoxyphorbol 13-tetradecanoate induced plasma membrane and slower nuclear membrane translocation, whereas the inhibitor of tumor promotion 12-deoxyphorbol 13-phenylacetate, which differs only in its side chain, induced a distinctive distribution of PKC delta-GFP. Finally, the novel constrained diacylglycerol derivative B8-DL-B8 induced a slow Golgi localization. We speculate that differential control of PKC delta localization may provide an interesting strategy for producing ligands with differential biological consequences.
Collapse
Affiliation(s)
- Q J Wang
- Molecular Mechanisms of Tumor Promotion Section, Laboratory of Cellular Carcinogenesis and Tumor Promotion, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
422
|
Pak Y, Wang S. Application of a Molecular Dynamics Simulation Method with a Generalized Effective Potential to the Flexible Molecular Docking Problems. J Phys Chem B 1999. [DOI: 10.1021/jp993073h] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Youngshang Pak
- Georgetown Institute of Cognitive and Computational Sciences, and Departments of Oncology and Neuroscience, Georgetown University Medical Center, The New Research Building, Room EP07, 3970 Reservoir Road, Washington, D.C. 20007
| | - Shaomeng Wang
- Georgetown Institute of Cognitive and Computational Sciences, and Departments of Oncology and Neuroscience, Georgetown University Medical Center, The New Research Building, Room EP07, 3970 Reservoir Road, Washington, D.C. 20007
| |
Collapse
|
423
|
Abstract
The binding of cytosolic proteins to specific intracellular membranes containing phosphorylated derivatives of phosphatidylinositol (PtdIns) is a common theme in vital cellular processes, such as cytoskeletal function, receptor signalling and membrane trafficking. Recently, several potential effectors of the phosphoinositide 3-kinase product PtdIns 3-phosphate (PtdIns(3)P) have emerged through the observation that a conserved zinc-finger-like domain, the FYVE-finger, binds specifically to this lipid. Here we review current knowledge about the structural basis for the FYVE-PtdIns(3)P interaction, its role in membrane recruitment of proteins and the functions of FYVE-finger proteins in membrane trafficking and other cellular processes.
Collapse
Affiliation(s)
- H Stenmark
- Dept of Biochemistry, the Norwegian Radium Hospital, Montebello, N-0310 Oslo, Norway
| | | |
Collapse
|
424
|
|
425
|
Miège C, Maréchal É. 1,2-sn-Diacylglycerol in plant cells: Product, substrate and regulator. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 1999; 37:795-808. [PMID: 10580280 DOI: 10.1016/s0981-9428(99)00118-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
1,2-sn-Diacylglycerol (DAG) is a family of lipidic molecular species varying in the lengths and desaturation levels of acyl groups esterified at positions sn-1 and sn-2 of the glycerol backbone. In plant cells, DAG originating from plastid and from extraplastidial membranes have distinct molecular signatures, C18/C16 and C18/C18 structures, respectively. Under normal conditions, DAG is consumed nearly as fast as it is produced and is therefore a transient compound in the cell. In plants, DAG proved to be the most basic ingredient for cell membrane biogenesis and fat storage, but we still lack formal evidence to assert that DAG is also an intracellular messenger, as demonstrated for animals. From the biochemical and molecular comparisons of the best known DAG-manipulating proteins of prokaryotic and eukaryotic cells (phosphatidate phosphatases, diacylglycerol kinases, MGDG synthase, protein kinase C, etc.) this review aims to identify general rules driving DAG metabolism, and emphasizes its unique features in plant cells. DAG metabolism is an intricate network of local productions and utilizations: many isoenzymes can catalyse similar DAG modifications in distinct cell compartments or physiological processes. The enzymatic- or binding-specificity for DAG molecular species demonstrates that discrete DAG molecular subspecies fluxes are finely controlled (particularly for C18/C16 and C18/C18 structures in plastid membrane biogenesis). Eventually, this review stresses the diversity of structures and functioning of DAG-manipulating proteins. As a consequence, because DAG metabolism in plants is unique, the deciphering of genomic information cannot rely on homology searches using known prokaryotic, animal or yeast sequences, but requires sustained efforts in biochemical and molecular characterizations of plant DAG-manipulating proteins.
Collapse
Affiliation(s)
- C Miège
- Laboratoire de physiologie cellulaire végétale, Département de biologie moléculaire et structurale, CEA-G/CNRS (URA 576), université Joseph-Fourier, 38054 Grenoble cédex 9, France
| | | |
Collapse
|
426
|
Caloca MJ, Garcia-Bermejo ML, Blumberg PM, Lewin NE, Kremmer E, Mischak H, Wang S, Nacro K, Bienfait B, Marquez VE, Kazanietz MG. beta2-chimaerin is a novel target for diacylglycerol: binding properties and changes in subcellular localization mediated by ligand binding to its C1 domain. Proc Natl Acad Sci U S A 1999; 96:11854-9. [PMID: 10518540 PMCID: PMC18376 DOI: 10.1073/pnas.96.21.11854] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The members of the chimaerin family of Rac-GTPase-activating proteins possess a single C1 domain with high homology to those present in protein kinase C (PKC) isozymes. This domain in PKCs is involved in phorbol ester and diacylglycerol (DAG) binding. We previously have demonstrated that one of the chimaerin isoforms, beta2-chimaerin, binds phorbol esters with high affinity. In this study we analyzed the properties of beta2-chimaerin as a DAG receptor by using a series of conformationally constrained cyclic DAG analogues (DAG lactones) as probes. We identified analogs that bind to beta2-chimaerin with more than 100-fold higher affinity than 1-oleoyl-2-acetylglycerol. The potencies of these analogs approach those of the potent phorbol ester tumor promoters. The different DAG lactones show some selectivity for this novel receptor compared with PKCalpha. Cellular studies revealed that these DAG analogs induce translocation of beta2-chimaerin from cytosolic (soluble) to particulate fractions. Using green fluorescent protein-fusion proteins for beta2-chimaerin we determined that this novel receptor translocates to the perinuclear region after treatment with DAG lactones. Binding and translocation were prevented by mutation of the conserved Cys-246 in the C1 domain. The structural homology between the C1 domain of beta2-chimaerin and the C1b domain of PKCdelta also was confirmed by modeling analysis. Our results demonstrate that beta2-chimaerin is a high affinity receptor for DAG through binding to its C1 domain and supports the emerging concept that multiple pathways transduce signaling through DAG and the phorbol esters.
Collapse
Affiliation(s)
- M J Caloca
- Center for Experimental Therapeutics, Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
427
|
Meseguer B, Alonso-Díaz D, Griebenow N, Herget T, Waldmann H. Naturstoffsynthese am polymeren Träger – Synthese und biologische Evaluierung einer Indolactam-Bibliothek. Angew Chem Int Ed Engl 1999. [DOI: 10.1002/(sici)1521-3757(19991004)111:19<3083::aid-ange3083>3.0.co;2-q] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
428
|
Lackner MR, Nurrish SJ, Kaplan JM. Facilitation of synaptic transmission by EGL-30 Gqalpha and EGL-8 PLCbeta: DAG binding to UNC-13 is required to stimulate acetylcholine release. Neuron 1999; 24:335-46. [PMID: 10571228 DOI: 10.1016/s0896-6273(00)80848-x] [Citation(s) in RCA: 265] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We show that neurotransmitter release at Caenorhabditis elegans neuromuscular junctions is facilitated by a presynaptic pathway composed of a Gqalpha (EGL-30), EGL-8 phospholipase Cbeta (PLCbeta), and the diacylglycerol- (DAG-) binding protein UNC-13. Activation of this pathway increased release of acetylcholine at neuromuscular junctions, whereas inactivation decreased release. Phorbol esters stimulated acetylcholine release, and this effect was blocked by a mutation that eliminates phorbol ester binding to UNC-13. Expression of a constitutively membrane-bound form of UNC-13 restored acetylcholine release to mutants lacking the egl-8 PLCbeta. Activation of this pathway with muscarinic agonists caused UNC-13 to accumulate in punctate structures in the ventral nerve cord. These results suggest that presynaptic DAG facilitates synaptic transmission and that part of this effect is mediated by UNC-13.
Collapse
Affiliation(s)
- M R Lackner
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | |
Collapse
|
429
|
Ron D, Kazanietz MG. New insights into the regulation of protein kinase C and novel phorbol ester receptors. FASEB J 1999. [DOI: 10.1096/fasebj.13.13.1658] [Citation(s) in RCA: 463] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Dorit Ron
- Department of NeurologyErnest Gallo Clinic and Research CenterUniversity of California San Francisco San Francisco California 94110‐3518 USA
| | - Marcelo G. Kazanietz
- Center for Experimental TherapeuticsDepartment of PharmacologyUniversity of Pennsylvania School of Medicine Philadelphia Pennsylvania 19104‐6160 USA
| |
Collapse
|
430
|
Appendino G, Belloro E, Tron GC, Jakupovic J, Ballero M. Diterpenoids from euphorbia pithyusa subsp. cupanii. JOURNAL OF NATURAL PRODUCTS 1999; 62:1399-1404. [PMID: 10543901 DOI: 10.1021/np990209u] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The aerial parts of Euphorbia pithyusa subsp. cupanii collected in Sardinia afforded eleven novel diterpenoids belonging to the lathyrane (1a), premyrsinane (4a-g), and tigliane (5a-c) types. Compounds 4a-g and 5a are esters of two new parent alcohols, named premyrsinol and 4,12,20-trideoxyphorbol, respectively. Structures were elucidated by spectroscopic and chemical methods. Puzzling differences between the NMR data of lathyrol (1c) and its esters were rationalized in terms of flipping of the exomethylene around the mean plane of the macrocycle.
Collapse
Affiliation(s)
- G Appendino
- Dipartimento di Scienza e Tecnologia del Farmaco, Universita di Torino, Via Giuria 9, 10125 Torino, Italy, Dipartimento di Scienze Botaniche, Universita di Cagliari, Viale San Ignazio 13, 09123 Cagliari, Italy, and Analyticon AG, Hermannswe
| | | | | | | | | |
Collapse
|
431
|
Wang S, Liu M, Lewin NE, Lorenzo PS, Bhattacharrya D, Qiao L, Kozikowski AP, Blumberg PM. Probing the binding of indolactam-V to protein kinase C through site-directed mutagenesis and computational docking simulations. J Med Chem 1999; 42:3436-46. [PMID: 10479277 DOI: 10.1021/jm990129n] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein kinase C (PKC) comprises a family of ubiquitous enzymes transducing signals by the lipophilic second messenger sn-1, 2-diacylglycerol (DAG). Teleocidin and its structurally simpler congener indolactam-V (ILV) bind to PKC with high affinity. In this paper, we report our computational docking studies on ILV binding to PKC using an automatic docking computer program, MCDOCK. In addition, we used site-directed mutagenesis to assess the quantitative contribution of crucial residues around the binding site of PKC to the binding affinity of ILV to PKC. On the basis of the docking studies, ILV binds to PKC in its cis-twist conformation and forms a number of optimal hydrogen bond interactions. In addition, the hydrophobic groups in ILV form "specific" hydrophobic interactions with side chains of a number of conserved hydrophobic residues in PKC. The predicted binding mode for ILV is entirely consistent with known structure-activity relationships and with our mutational analysis. Our mutational analysis establishes the quantitative contributions of a number of conserved residues to the binding of PKC to ILV. Taken together, our computational docking simulations and analysis by site-directed mutagenesis provide a clear understanding of the interaction between ILV and PKC and the structural basis for design of novel, high-affinity, and isozyme-selective PKC ligands.
Collapse
Affiliation(s)
- S Wang
- Drug Discovery Program, Georgetown Institute for Cognitive and Computational Sciences, Research Building, Room EP07, Georgetown University Medical Center, 3970 Reservoir Road, Washington, D.C. 20007, USA
| | | | | | | | | | | | | | | |
Collapse
|
432
|
Irie K, Nakahara A, Ohigashi H, Fukuda H, Wender PA, Konishi H, Kikkawa U. Synthesis and phorbol ester-binding studies of the individual cysteine-rich motifs of protein kinase D. Bioorg Med Chem Lett 1999; 9:2487-90. [PMID: 10498194 DOI: 10.1016/s0960-894x(99)00413-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
To investigate the phorbol ester-binding properties of the individual cysteine-rich motifs of protein kinase D (PKD), the 52-mer peptides containing each cysteine-rich motif of PKD (PKD-C1A, PKD-C1B) have been synthesized. The [3H]phorbol-12,13-dibutyrate (PDBu) binding to PKD-C1A was affected drastically by incubation temperature while that to PKD-C1B was not. Scatchard analysis of [3H]PDBu binding to both PKD C1 peptides gave dissociation constants of 2.5 +/- 0.4 and 2.7 +/- 0.8 nM for PKD-C1A and PKD-C1B, respectively, indicating that the two cysteine-rich motifs of PKD are functionally equivalent like those of PKCgamma.
Collapse
Affiliation(s)
- K Irie
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
433
|
Endo Y, Yoshimi T, Kimura K, Itai A. Protein kinase C modulators bearing dicarba-CLOSO-dodecaborane as a hydrophobic pharmacophore. Bioorg Med Chem Lett 1999; 9:2561-4. [PMID: 10498208 DOI: 10.1016/s0960-894x(99)00436-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The size and position of a hydrophobic moiety on a benzolactam skeleton, which reproduces the active conformation and biological activity of teleocidins, play an important role in the appearance of the activity. We have designed and synthesized benzolactams bearing dicarba-closo-dodecaborane. These compounds showed potent binding affinity to protein kinase C, providing a further example of the application of carborane as the hydrophobic pharmacophore of biologically active molecules.
Collapse
Affiliation(s)
- Y Endo
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Japan
| | | | | | | |
Collapse
|
434
|
Improta-Brears T, Ghosh S, Bell RM. Mutational analysis of Raf-1 cysteine rich domain: requirement for a cluster of basic aminoacids for interaction with phosphatidylserine. Mol Cell Biochem 1999; 198:171-8. [PMID: 10497893 DOI: 10.1023/a:1006981411691] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Activation of Raf-1 kinase is preceded by a translocation of Raf-1 to the plasma membrane in response to external stimuli. The membrane localization of Raf-1 is facilitated through its interaction with activated Ras and with membrane phospholipids. Previous evidence suggests that the interaction of Raf-1 with Ras is mediated by two distinct domains within the N-terminal region of Raf-1 comprising amino acid residues 51-131 and residues 139-184, the latter of which codes for a zinc containing cysteine-rich domain. The cysteine-rich domain of Raf-1 is also reported to associate with other proteins, such as 14-3-3, and for selectively binding acidic phospholipids, particularly phosphatidylserine (PS). In the present study, we have investigated the consequences of progressive deletions and point mutations within the cysteine-rich domain of Raf-1 on its ability to bind PS. A reduced interaction with PS was observed in vitro for all deletion mutants of Raf-1 expressed either as full-length proteins or as fragments containing the isolated cysteine-rich domain. In particular, the cluster of basic amino acids R143, K144, and K148 appeared to be critical for interaction with PS, since substitution of all three residues to alanine resulted in a protein that failed to interact with liposomes enriched for PS. Expression of Raf-1 in vivo, containing point mutations in the cysteine-rich domain resulted in a truncated polypeptide that lacked both the Ras and PS binding sites and could no longer translocate to the plasma membrane upon serum stimulation. These results indicate that the basic residues 143, 144 and 148 in the anterior half of Raf-1 cysteine-rich domain play a role in the association with the lipid bilayer and possibly in protein stability, therefore they might contribute to Raf-1 localization and subsequent activation.
Collapse
Affiliation(s)
- T Improta-Brears
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
435
|
Bögi K, Lorenzo PS, Acs P, Szállási Z, Wagner GS, Blumberg PM. Comparison of the roles of the C1a and C1b domains of protein kinase C alpha in ligand induced translocation in NIH 3T3 cells. FEBS Lett 1999; 456:27-30. [PMID: 10452523 DOI: 10.1016/s0014-5793(99)00927-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To explore the relative roles of the two C1 domains of protein kinase C alpha (PKC alpha) in the response to phorbol esters and related analogs, we mutated the individual C1 domains, expressed the mutated PKC alpha in NIH 3T3 cells, and then examined the ability of ligands to induce its translocation to the membrane. The C1a and C1b domains play equivalent roles for translocation in response to phorbol 12-myristate 13-acetate, mezerein, and (-)octylindolactam V. These results contrast with those previously reported for PKC delta, suggesting that the domains play different roles in different PKC isoforms.
Collapse
Affiliation(s)
- K Bögi
- Laboratory of Cellular Carcinogenesis and Tumor Promotion, National Cancer Institute, Bethesda, MD 20892-4255, USA
| | | | | | | | | | | |
Collapse
|
436
|
Medkova M, Cho W. Interplay of C1 and C2 domains of protein kinase C-alpha in its membrane binding and activation. J Biol Chem 1999; 274:19852-61. [PMID: 10391930 DOI: 10.1074/jbc.274.28.19852] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulatory domain of conventional protein kinase C (PKC) contains two membrane-targeting modules, the C2 domain that is responsible for Ca2+-dependent membrane binding of protein, and the C1 domain composed of two cysteine-rich zinc fingers (C1a and C1b) that bind diacylglycerols and phorbol esters. To understand the individual roles and the interplay of the C1 and C2 domains in the membrane binding and activation of PKC, we functionally expressed isolated C1 and C2 domains of PKC-alpha and measured their vesicle binding and monolayer penetration. Results indicate that the C2 domain of PKC-alpha is responsible for the initial Ca2+- and phosphatidylserine-dependent electrostatic membrane binding of PKC-alpha, whereas the C1 domain is involved in subsequent membrane penetration and diacylglycerol binding, which eventually lead to enzyme activation. To determine the roles of individual zinc fingers in the C1 domain, we also mutated hydrophobic residues in the C1a (Trp58 and Phe60) and C1b (Tyr123 and Leu125) domains of the native PKC-alpha molecule and measured the effects of mutations on vesicle binding, enzyme activity and monolayer penetration. Results show that the hydrophobic residues in the C1a domain are essential for the membrane penetration and activation of PKC-alpha, whereas those in the C1b domain are not directly involved in these processes. Based on these results in conjunction with our previous structure-function studies of the C2 domain (Medkova, M., and Cho, W. (1998) J. Biol. Chem. 273, 17544-17552), we propose a mechanism for the in vitro membrane binding and activation of conventional PKC that accounts for the temporal and spatial sequences of PKC activation.
Collapse
Affiliation(s)
- M Medkova
- Department of Chemistry, University of Illinois, Chicago, Illinois 60607-7061, USA
| | | |
Collapse
|
437
|
Abstract
Protein kinase D is a serine/threonine kinase that binds phorbol esters in a phospholipid-dependent manner via a tandemly repeated cysteine-rich, zinc finger-like motif (the cysteine-rich domain). Here, we examined whether the cysteine-rich domain plays an additional role in the control of the catalytic kinase activity independently of the binding of allosteric effectors. We found that deletion of cys1, cys2 or the entire cysteine-rich domain increases the basal activity of protein kinase D leading to a constitutively active form of this enzyme. Our results demonstrate, for the first time, that the cysteine-rich domain of Protein kinase D plays a negative role in the regulation of protein kinase D kinase activity.
Collapse
Affiliation(s)
- T Iglesias
- Imperial Cancer Research Fund, Lincoln's Inn Fields, London, UK
| | | |
Collapse
|
438
|
Johnson JE, Cornell RB. Amphitropic proteins: regulation by reversible membrane interactions (review). Mol Membr Biol 1999; 16:217-35. [PMID: 10503244 DOI: 10.1080/096876899294544] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
What do Src kinase, Ras-guanine nucleotide exchange factor, cytidylyltransferase, protein kinase C, phospholipase C, vinculin, and DnaA protein have in common? These proteins are amphitropic, that is, they bind weakly (reversibly) to membrane lipids, and this process regulates their function. Proteins functioning in transduction of signals generated in cell membranes are commonly regulated by amphitropism. In this review, the strategies utilized by amphitropic proteins to bind to membranes and to regulate their membrane affinity are described. The recently solved structures of binding pockets for specific lipids are described, as well as the amphipathic alpha-helix motif. Regulatory switches that control membrane affinity include modulation of the membrane lipid composition, and modification of the protein itself by ligand binding, phosphorylation, or acylation. How does membrane binding modulate the protein's function? Two mechanisms are discussed: (1) localization with the substrate, activator, or downstream target, and (2) activation of the protein by a conformational switch. This paper also addresses the issue of specificity in the cell membrane targetted for binding.
Collapse
Affiliation(s)
- J E Johnson
- Institute of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | | |
Collapse
|
439
|
Andjelković M, Maira SM, Cron P, Parker PJ, Hemmings BA. Domain swapping used to investigate the mechanism of protein kinase B regulation by 3-phosphoinositide-dependent protein kinase 1 and Ser473 kinase. Mol Cell Biol 1999; 19:5061-72. [PMID: 10373555 PMCID: PMC84347 DOI: 10.1128/mcb.19.7.5061] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Protein kinase B (PKB or Akt), a downstream effector of phosphoinositide 3-kinase (PI 3-kinase), has been implicated in insulin signaling and cell survival. PKB is regulated by phosphorylation on Thr308 by 3-phosphoinositide-dependent protein kinase 1 (PDK1) and on Ser473 by an unidentified kinase. We have used chimeric molecules of PKB to define different steps in the activation mechanism. A chimera which allows inducible membrane translocation by lipid second messengers that activate in vivo protein kinase C and not PKB was created. Following membrane attachment, the PKB fusion protein was rapidly activated and phosphorylated at the two key regulatory sites, Ser473 and Thr308, in the absence of further cell stimulation. This finding indicated that both PDK1 and the Ser473 kinase may be localized at the membrane of unstimulated cells, which was confirmed for PDK1 by immunofluorescence studies. Significantly, PI 3-kinase inhibitors prevent the phosphorylation of both regulatory sites of the membrane-targeted PKB chimera. Furthermore, we show that PKB activated at the membrane was rapidly dephosphorylated following inhibition of PI 3-kinase, with Ser473 being a better substrate for protein phosphatase. Overall, the results demonstrate that PKB is stringently regulated by signaling pathways that control both phosphorylation/activation and dephosphorylation/inactivation of this pivotal protein kinase.
Collapse
Affiliation(s)
- M Andjelković
- Friedrich Miescher-Institut, CH-4058 Basel, Switzerland
| | | | | | | | | |
Collapse
|
440
|
Boeshans KM, Resing KA, Hunt JB, Ahn NG, Shabb JB. Structural characterization of the membrane-associated regulatory subunit of type I cAMP-dependent protein kinase by mass spectrometry: identification of Ser81 as the in vivo phosphorylation site of RIalpha. Protein Sci 1999; 8:1515-22. [PMID: 10422841 PMCID: PMC2144381 DOI: 10.1110/ps.8.7.1515] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The mechanism by which the type Ialpha regulatory subunit (RIalpha) of cAMP-dependent protein kinase is localized to cell membranes is unknown. To determine if structural modification of RIalpha is important for membrane association, both beef skeletal muscle cytosolic RI and beef heart membrane-associated RI were characterized by electrospray ionization mass spectrometry. Total sequence coverage was 98% for both the membrane-associated and cytosolic forms of RI after digestion with AspN protease or trypsin. Sequence data indicated that membrane-associated and cytosolic forms of RI were the same RIalpha gene product. A single RIalpha phosphorylation site was identified at Ser81 located near the autoinhibitory domain of both membrane-associated and cytosolic RIalpha. Because both R subunit preparations were 30-40% phosphorylated, this post-translational modification could not be responsible for the membrane compartmentation of the majority of RIalpha. Mass spectrometry also indicated that membrane-associated RIalpha had a higher extent of disulfide bond formation in the amino-terminal dimerization domain. No other structural differences between cytosolic and membrane-associated RIalpha were detected. Consistent with these data, masses of the intact proteins were identical by LCQ mass spectrometry. Lack of detectable structural differences between membrane-associated and cytosolic RIalpha strongly suggests an interaction between RIalpha and anchoring proteins or membrane lipids as more likely mechanisms for explaining RIalpha membrane association in the heart.
Collapse
Affiliation(s)
- K M Boeshans
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks 58202-9037, USA
| | | | | | | | | |
Collapse
|
441
|
Liu Y, Liu YC, Meller N, Giampa L, Elly C, Doyle M, Altman A. Protein Kinase C Activation Inhibits Tyrosine Phosphorylation of Cbl and Its Recruitment of Src Homology 2 Domain-Containing Proteins. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.12.7095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
One of the major proteins that is rapidly tyrosine phosphorylated upon stimulation of the TCR/CD3 complex is the 120-kDa product of the c-cbl protooncogene (Cbl). Upon activation, tyrosine-phosphorylated Cbl interacts with the Src homology 2 (SH2) domains of several signaling proteins, e.g., phosphatidylinositol 3-kinase (PI3-K) and CrkL. In the present study, we report that pretreatment of Jurkat T cells with PMA reduced the anti-CD3-induced tyrosine phosphorylation of Cbl and, consequently, its activation-dependent association with PI3-K and CrkL. A specific protein kinase C (PKC) inhibitor (GF-109203X) reversed the effect of PMA on tyrosine phosphorylation of Cbl and restored the activation-dependent association of Cbl with PI3-K and CrkL. We also provide evidence that PKCα and PKCθ can physically associate with Cbl and are able to phosphorylate it in vitro and in vivo. Furthermore, a serine-rich motif at the C terminus of Cbl, which is critical for PMA-induced 14-3-3 binding, is also phosphorylated by PKCα and PKCθ in vitro. These results suggest that, by regulating tyrosine and serine phosphorylation of Cbl, PKC is able to control the association of Cbl with signaling intermediates, such as SH2 domain-containing proteins and 14-3-3 proteins, which may consequently result in the modulation of its function.
Collapse
Affiliation(s)
- Yuhong Liu
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121
| | - Yun-Cai Liu
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121
| | - Nahum Meller
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121
| | - Leslie Giampa
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121
| | - Chris Elly
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121
| | - Melissa Doyle
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121
| | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121
| |
Collapse
|
442
|
Fukuda H, Irie K, Nakahara A, Ohigashi H, Wender PA. Solid-phase synthesis, mass spectrometric analysis of the zinc-folding, and phorbol ester-binding studies of the 116-mer peptide containing the tandem cysteine-rich C1 domains of protein kinase C gamma. Bioorg Med Chem 1999; 7:1213-21. [PMID: 10428394 DOI: 10.1016/s0968-0896(99)00037-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Tumor-promoting phorbol esters activate protein kinase C (PKC) isozymes by binding to the zinc-finger like cysteine-rich domains in the N-terminal regulatory region. Our recent studies have revealed that only PKCgamma has two high affinity phorbol ester-binding domains, providing a structural blueprint for the rational design of PKCgamma-selective modulators for the treatment of neuropathic pain. To extend this approach, the 116-mer peptide containing the double cysteine-rich motifs of PKCgamma (gamma-C1A-C1B) has been synthesized for the first time using an Fmoc-solid phase strategy with a stepwise chain elongation. This peptide was purified by the reversed phase HPLC to give satisfactory mass data (MALDI-TOF-MS and ESI-TOF-MS). The peptide was successfully folded by zinc treatment and the folded peptide was analyzed intact under neutral conditions by ESI-TOF-MS. The multiple charge mass envelopes shifted to those of the lower mass charge state by addition of 4 molar equiv. ZnCl2, suggesting that gamma-C1A-C1B preserves some higher order structure by the zinc folding. Moreover, the mass spectrum of the zinc-folded peptide in the presence of EDTA clearly showed that gamma-C1A-C1B coordinates exactly four atoms of zinc. This zinc stoichiometry is identical to that of native PKCgamma. Scatchard analysis of the zinc-folded peptide revealed two binding sites of distinctly different affinities (Kd=6.0 +/- 1.5 and 47.0 +/- 6.6 nM) comparable to those reported by Quest and Bell for the GST fusion protein of gamma-C1A-C1B prepared by DNA recombination. These results indicate that gamma-C1A-C1B serves as an effective surrogate for native PKCgamma for the study of the structural characteristics of the binding recognition event and the design, discovery, and development of new PKCgamma-selective modulators.
Collapse
Affiliation(s)
- H Fukuda
- Nihon PerSeptive Ltd., Tokyo, Japan
| | | | | | | | | |
Collapse
|
443
|
Misra S, Hurley JH. Crystal structure of a phosphatidylinositol 3-phosphate-specific membrane-targeting motif, the FYVE domain of Vps27p. Cell 1999; 97:657-66. [PMID: 10367894 DOI: 10.1016/s0092-8674(00)80776-x] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphatidylinositol 3-phosphate regulates membrane trafficking and signaling pathways by interacting with the FYVE domains of target proteins. The 1.15 A structure of the Vps27p FYVE domain reveals two antiparallel beta sheets and an alpha helix stabilized by two Zn2+-binding clusters. The core secondary structures are similar to a rabphilin-3A Zn2+-binding domain and to the C1 and LIM domains. Phosphatidylinositol 3-phosphate binds to a pocket formed by the (R/K)(R/K)HHCR motif. A lattice contact shows how anionic ligands can interact with the phosphatidylinositol 3-phosphate-binding site. The tip of the FYVE domain has basic and hydrophobic surfaces positioned so that nonspecific interactions with the phospholipid bilayer can abet specific binding to phosphatidylinositol 3-phosphate.
Collapse
Affiliation(s)
- S Misra
- Laboratory of Molecular Biology, National Institute of Digestive, Diabetes, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0580, USA
| | | |
Collapse
|
444
|
Goekjian PG, Wu GZ, Chen S, Zhou L, Jirousek MR, Gillig JR, Ballas LM, Dixon JT. Synthesis of Fluorinated Macrocyclic Bis(indolyl)maleimides as Potential 19F NMR Probes for Protein Kinase C. J Org Chem 1999. [DOI: 10.1021/jo9808876] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
445
|
Molander GA, Bessières B, Eastwood PR, Noll BC. Synthesis of Cyclic Bis(trimethysilyl) Enol Ethers and Their [3 + 4] and [3 + 5] Annulation Reactions with Dicarbonyl Electrophiles. Access to Highly Functionalized Tricyclic Ethers Possessing Trans Intrabridgehead Stereochemistry. J Org Chem 1999. [DOI: 10.1021/jo9902547] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gary A. Molander
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, 80309-0215
| | - Bernard Bessières
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, 80309-0215
| | - Paul R. Eastwood
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, 80309-0215
| | - Bruce C. Noll
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, 80309-0215
| |
Collapse
|
446
|
Marquez VE, Nacro K, Benzaria S, Lee J, Sharma R, Teng K, Milne GW, Bienfait B, Wang S, Lewin NE, Blumberg PM. The transition from a pharmacophore-guided approach to a receptor-guided approach in the design of potent protein kinase C ligands. Pharmacol Ther 1999; 82:251-61. [PMID: 10454202 DOI: 10.1016/s0163-7258(98)00048-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pharmacophore-guided approach used in the first phase of the design of novel protein kinase C (PKC) ligands was based on the study of the geometry of bioequivalent pharmacophores present in diacylglycerol (DAG) and in the more potent phorbol ester tumor promoters. A number of potent DAG lactones were generated by this approach, in which the glycerol backbone was constrained into various heterocyclic rings to reduce the entropic penalty associated with DAG binding. Based on the information provided by X-ray and NMR structures of the cysteine-rich, C1 phorbol ester/DAG binding domain, the DAG lactones were further modified to optimize their interaction with a group of highly conserved hydrophobic amino acids along the rim of the C1 domain. This receptor-guided approach culminated with the synthesis of a series of "super DAG" molecules that can bind to PKC with low nanomolar affinities. These compounds provide insight into the basis for PKC ligand specificity. Moreover, some of the compounds reviewed herein show potential utility as antitumor agents.
Collapse
Affiliation(s)
- V E Marquez
- Laboratories of Medicinal Chemistry, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
447
|
Hausser A, Storz P, Link G, Stoll H, Liu YC, Altman A, Pfizenmaier K, Johannes FJ. Protein kinase C mu is negatively regulated by 14-3-3 signal transduction proteins. J Biol Chem 1999; 274:9258-64. [PMID: 10092600 DOI: 10.1074/jbc.274.14.9258] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies have documented direct interaction between 14-3-3 proteins and key molecules in signal transduction pathways like Ras, Cbl, and protein kinases. In T cells, the 14-3-3tau isoform has been shown to associate with protein kinase C theta and to negatively regulate interleukin-2 secretion. Here we present data that 14-3-3tau interacts with protein kinase C mu (PKCmu), a subtype that differs from other PKC members in structure and activation mechanisms. Specific interaction of PKCmu and 14-3-3tau can be shown in the T cell line Jurkat by immunocoprecipitiation and by pulldown assays of either endogenous or overexpressed proteins using PKCmu-specific antibodies and GST-14-3-3 fusion proteins, respectively. Using PKCmu deletion mutants, the 14-3-3tau binding region is mapped within the regulatory C1 domain. Binding of 14-3-3tau to PKCmu is significantly enhanced upon phorbol ester stimulation of PKCmu kinase activity in Jurkat cells and occurs via a Cbl-like serine containing consensus motif. However, 14-3-3tau is not a substrate of PKCmu. In contrast 14-3-3tau strongly down-regulates PKCmu kinase activity in vitro. Moreover, overexpression of 14-3-3tau significantly reduced phorbol ester induced activation of PKCmu kinase activity in intact cells. We therefore conclude that 14-3-3tau is a negative regulator of PKCmu in T cells.
Collapse
Affiliation(s)
- A Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | | | | | | | | | | | | |
Collapse
|
448
|
Gaullier JM, Simonsen A, D'Arrigo A, Bremnes B, Stenmark H. FYVE finger proteins as effectors of phosphatidylinositol 3-phosphate. Chem Phys Lipids 1999; 98:87-94. [PMID: 10358931 DOI: 10.1016/s0009-3084(99)00021-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phosphatidylinositol 3-phosphate (PtdIns(3)P), generated via the phosphorylation of phosphatidylinositol by phosphatidylinositol 3-kinase (PI 3-kinase), plays an essential role in intracellular membrane traffic. The underlying mechanism is still not understood in detail, but the recent identification of the FYVE finger as a protein domain that binds specifically to PtdIns(3)P provides a number of potential effectors for PtdIns(3)P. The FYVE finger (named after the first letter of the four proteins containing it; Fab1p, YOTB, Vac1p and EEA1) is a double-zinc binding domain that is conserved in more than 30 proteins from yeast to mammals. It is found in several proteins involved in intracellular traffic, and FYVE finger mutations that affect zinc binding are associated with the loss of function of several of these proteins. The interaction of FYVE fingers with PtdIns(3)P may serve three alternative functions: First, to recruit cytosolic FYVE finger proteins to PtdIns(3)P-containing membranes (in concert with accessory molecules); second, to enrich for membrane bound FYVE finger proteins into PtdIns(3)P containing microdomains within the membrane; and third, to modulate the activity of membrane bound FYVE finger proteins.
Collapse
Affiliation(s)
- J M Gaullier
- Department of Biochemistry, Norwegian Radium Hospital, Oslo, Norway
| | | | | | | | | |
Collapse
|
449
|
Stempka L, Schnölzer M, Radke S, Rincke G, Marks F, Gschwendt M. Requirements of protein kinase cdelta for catalytic function. Role of glutamic acid 500 and autophosphorylation on serine 643. J Biol Chem 1999; 274:8886-92. [PMID: 10085132 DOI: 10.1074/jbc.274.13.8886] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, we reported that, in contrast to protein kinase C (PKC)alpha and betaII, PKCdelta does not require phosphorylation of a specific threonine (Thr505) in the activation loop for catalytic competence (Stempka et al. (1997) J. Biol. Chem. 272, 6805-6811). Here, we show that the acidic residue glutamic acid 500 (Glu500) in the activation loop is important for the catalytic function of PKCdelta. A Glu500 to valine mutant shows 76 and 73% reduced kinase activity toward autophosphorylation and substrate phosphorylation, respectively. With regard to thermal stability and inhibition by the inhibitors Gö6976 and Gö6983 the mutant does not differ from the wild type, indicating that the general conformation of the molecule is not altered by the site-directed mutagenesis. Thus, Glu500 in the activation loop of PKCdelta might take over at least part of the role of the phosphate groups on Thr497 and Thr500 of PKCalpha and betaII, respectively. Accordingly, PKCdelta exhibits kinase activity and is able to autophosphorylate probably without posttranslational modification. Autophosphorylation of PKCdelta in vitro occurs on Ser643, as demonstrated by matrix-assisted laser desorption ionization mass spectrometry of tryptic peptides of autophosphorylated PKCdelta wild type and mutants. A peptide containing this site is phosphorylated also in vivo, i.e. in recombinant PKCdelta purified from baculovirus-infected insect cells. A Ser643 to alanine mutation indicates that autophosphorylation of Ser643 is not essential for the kinase activity of PKCdelta. Probably additional (auto)phosphorylation site(s) exist that have not yet been identified.
Collapse
Affiliation(s)
- L Stempka
- German Cancer Research Center, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
450
|
Gopalakrishna R, Gundimeda U, Anderson WB, Colburn NH, Slaga TJ. Tumor promoter benzoyl peroxide induces sulfhydryl oxidation in protein kinase C: its reversibility is related to the cellular resistance to peroxide-induced cytotoxicity. Arch Biochem Biophys 1999; 363:246-58. [PMID: 10068446 DOI: 10.1006/abbi.1999.1100] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since tumor promoter benzoyl peroxide (BPO) mimics phorbol esters in some aspects, its effects on protein kinase C (PKC) were previously studied. However, in those studies due to the presence of thiol agents in the PKC preparations, the sensitive reaction of BPO with redox-active cysteine residues in PKC was not observed. In this study, by excluding thiol agents present in the purified PKC preparation, low concentrations of BPO modified PKC, resulting in the loss of both kinase activity and phorbol ester binding (IC50 = 0. 2 to 0.5 microM). This modification, which was not dependent on transition metals, was totally blocked by a variety of thiol agents including GSH, which directly reacted with BPO. Substoichiometric amounts of BPO (0.4 mol/mol of PKC) oxidized two sulfhydryls in PKC and inactivated the enzyme which was readily reversed by dithiothreitol. The regulatory domain having zinc thiolate structures supporting the membrane-inserting region provided the specificity for PKC reaction with BPO, which partitioned into the membrane. Unlike H2O2, BPO did not induce the generation of the Ca2+/lipid-independent activated form of PKC. Other redox-sensitive enzymes such as protein kinase A, phosphorylase kinase, and protein phosphatase 2A required nearly 25- to 100-fold higher concentrations of BPO for inactivation. BPO also inactivated PKC in a variety of cell types. In the JB6 (30 P-) nonpromotable cell line and other normal cell lines, where BPO was more cytotoxic, it readily inactivated PKC due to a slow reversibility of this inactivation by the cell. However, in the JB6 (41 P+) promotable cell line, C3H10T1/2 and B16 melanoma cells, where BPO was less cytotoxic, it did not readily inactivate PKC due to a rapid reversibility of this inactivation by an endogenous mechanism. Nevertheless, BPO inactivated PKC at an equal rate in the homogenates prepared from all these cell types. Inclusion of NADPH reversed this inactivation in the homogenates to a different extent, presumably due to a difference in distribution of a protein disulfide reductase, which reverses this oxidative modification. BPO-induced modification of PKC occurred independent of the cellular status of GSH. However, externally added GSH and cell-impermeable thiol agents prevented the BPO-induced modification of PKC. Since BPO readily partitions into membranes, its reaction with redox-cycling thiols of membrane proteins such as PKC may trigger epigenetic events to prevent cytotoxicity, but favor tumor promotion.
Collapse
Affiliation(s)
- R Gopalakrishna
- School of Medicine, University of Southern California, Los Angeles, California, 90033, USA.
| | | | | | | | | |
Collapse
|