401
|
Differential Effects of D-Cycloserine and ACBC at NMDA Receptors in the Rat Entorhinal Cortex Are Related to Efficacy at the Co-Agonist Binding Site. PLoS One 2015; 10:e0133548. [PMID: 26193112 PMCID: PMC4507855 DOI: 10.1371/journal.pone.0133548] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/29/2015] [Indexed: 12/20/2022] Open
Abstract
Partial agonists at the NMDA receptor co-agonist binding site may have potential therapeutic efficacy in a number of cognitive and neurological conditions. The entorhinal cortex is a key brain area in spatial memory and cognitive processing. At synapses in the entorhinal cortex, NMDA receptors not only mediate postsynaptic excitation but are expressed in presynaptic terminals where they tonically facilitate glutamate release. In a previous study we showed that the co-agonist binding site of the presynaptic NMDA receptor is endogenously and tonically activated by D-serine released from astrocytes. In this study we determined the effects of two co-agonist site partial agonists on both presynaptic and postsynaptic NMDA receptors in layer II of the entorhinal cortex. The high efficacy partial agonist, D-cycloserine, decreased the decay time of postsynaptic NMDA receptor mediated currents evoked by electrical stimulation, but had no effect on amplitude or other kinetic parameters. In contrast, a lower efficacy partial agonist, 1-aminocyclobutane-1-carboxylic acid, decreased decay time to a greater extent than D-cycloserine, and also reduced the peak amplitude of the evoked NMDA receptor mediated postsynaptic responses. Presynaptic NMDA receptors, (monitored indirectly by effects on the frequency of AMPA receptor mediated spontaneous excitatory currents) were unaffected by D-cycloserine, but were reduced in effectiveness by 1-aminocyclobutane-1-carboxylic acid. We discuss these results in the context of the effect of endogenous regulation of the NMDA receptor co-agonist site on receptor gating and the potential therapeutic implications for cognitive disorders.
Collapse
|
402
|
Sasaki T, Kinoshita Y, Matsui S, Kakuta S, Yokota-Hashimoto H, Kinoshita K, Iwasaki Y, Kinoshita T, Yada T, Amano N, Kitamura T. N-methyl-d-aspartate receptor coagonist d-serine suppresses intake of high-preference food. Am J Physiol Regul Integr Comp Physiol 2015; 309:R561-75. [PMID: 26157056 DOI: 10.1152/ajpregu.00083.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/07/2015] [Indexed: 12/20/2022]
Abstract
d-Serine is abundant in the forebrain and physiologically important for modulating excitatory glutamatergic neurotransmission as a coagonist of synaptic N-methyl-d-aspartate (NMDA) receptor. NMDA signaling has been implicated in the control of food intake. However, the role of d-serine on appetite regulation is unknown. To clarify the effects of d-serine on appetite, we investigated the effect of oral d-serine ingestion on food intake in three different feeding paradigms (one-food access, two-food choice, and refeeding after 24-h fasting) using three different strains of male mice (C57Bl/6J, BKS, and ICR). The effect of d-serine was also tested in leptin signaling-deficient db/db mice and sensory-deafferented (capsaicin-treated) mice. The expression of orexigenic neuropeptides [neuropeptide Y (Npy) and agouti-related protein (Agrp)] in the hypothalamus was compared in fast/refed experiments. Conditioned taste aversion for high-fat diet (HFD) was tested in the d-serine-treated mice. Under the one-food-access paradigm, some of the d-serine-treated mice showed starvation, but not when fed normal chow. HFD feeding with d-serine ingestion did not cause aversion. Under the two-food-choice paradigm, d-serine suppressed the intake of high-preference food but not normal chow. d-Serine also effectively suppressed HFD intake but not normal chow in db/db mice and sensory-deafferented mice. In addition, d-serine suppressed normal chow intake after 24-h fasting despite higher orexigenic gene expression in the hypothalamus. d-Serine failed to suppress HFD intake in the presence of L-701,324, the selective and full antagonist at the glycine-binding site of the NMDA receptor. Therefore, d-serine suppresses the intake of high-preference food through coagonism toward NMDA receptors.
Collapse
Affiliation(s)
- Tsutomu Sasaki
- Laboratory of Metabolic Signal, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan;
| | - Yoshihiro Kinoshita
- Department of Psychiatry, School of Medicine, Shinshu University, Matsumoto, Nagano, Japan
| | - Sho Matsui
- Laboratory of Metabolic Signal, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Shigeru Kakuta
- Research Center for Human and Environmental Sciences, Shinshu University, Matsumoto, Nagano, Japan
| | - Hiromi Yokota-Hashimoto
- Laboratory of Metabolic Signal, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Kuni Kinoshita
- Department of Psychiatry, School of Medicine, Shinshu University, Matsumoto, Nagano, Japan
| | - Yusaku Iwasaki
- Division of Integrated Physiology, Department of Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan; and
| | - Toshio Kinoshita
- Department of Analytical Chemistry, School of Pharmacy, Kitasato University, Tokyo, Tokyo, Japan
| | - Toshihiko Yada
- Division of Integrated Physiology, Department of Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan; and
| | - Naoji Amano
- Department of Psychiatry, School of Medicine, Shinshu University, Matsumoto, Nagano, Japan
| | - Tadahiro Kitamura
- Laboratory of Metabolic Signal, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
403
|
Perisynaptic astroglial processes: dynamic processors of neuronal information. Brain Struct Funct 2015; 221:2427-42. [PMID: 26026482 DOI: 10.1007/s00429-015-1070-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/21/2015] [Indexed: 10/23/2022]
Abstract
Neuroglial interactions are now recognized as essential to brain functions. Extensive research has sought to understand the modalities of such dialog by focusing on astrocytes, the most abundant glial cell type of the central nervous system. Neuron-astrocyte exchanges occur at multiple levels, at different cellular locations. With regard to information processing, regulations occurring around synapses are of particular interest as synaptic networks are thought to underlie higher brain functions. Astrocytes morphology is tremendously complex in that their processes exceedingly branch out to eventually form multitudinous fine leaflets. The latter extremities have been shown to surround many synapses, forming perisynaptic astrocytic processes, which although recognized as essential to synaptic functioning, are poorly defined elements due to their tiny size. The current review sums up the current knowledge on their molecular and structural properties as well as the functional characteristics making them good candidates for information processing units.
Collapse
|
404
|
Li Y, Liu Y, Peng X, Liu W, Zhao F, Feng D, Han J, Huang Y, Luo S, Li L, Yue SJ, Cheng Q, Huang X, Luo Z. NMDA Receptor Antagonist Attenuates Bleomycin-Induced Acute Lung Injury. PLoS One 2015; 10:e0125873. [PMID: 25942563 PMCID: PMC4420245 DOI: 10.1371/journal.pone.0125873] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/26/2015] [Indexed: 01/09/2023] Open
Abstract
Background Glutamate is a major neurotransmitter in the central nervous system (CNS). Large amount of glutamate can overstimulate N-methyl-D-aspartate receptor (NMDAR), causing neuronal injury and death. Recently, NMDAR has been reported to be found in the lungs. The aim of this study is to examine the effects of memantine, a NMDAR channel blocker, on bleomycin-induced lung injury mice. Methods C57BL/6 mice were intratracheally injected with bleomycin (BLM) to induce lung injury. Mice were randomized to receive saline, memantine (Me), BLM, BLM plus Me. Lungs and BALF were harvested on day 3 or 7 for further evaluation. Results BLM caused leukocyte infiltration, pulmonary edema and increase in cytokines, and imposed significant oxidative stress (MDA as a marker) in lungs. Memantine significantly mitigated the oxidative stress, lung inflammatory response and acute lung injury caused by BLM. Moreover, activation of NMDAR enhances CD11b expression on neutrophils. Conclusions Memantine mitigates oxidative stress, lung inflammatory response and acute lung injury in BLM challenged mice.
Collapse
Affiliation(s)
- Yang Li
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yong Liu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - XiangPing Peng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wei Liu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - FeiYan Zhao
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - DanDan Feng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - JianZhong Han
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - YanHong Huang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - SiWei Luo
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lian Li
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shao Jie Yue
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - QingMei Cheng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - XiaoTing Huang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - ZiQiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
405
|
Joubert B, Honnorat J. Autoimmune channelopathies in paraneoplastic neurological syndromes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2665-76. [PMID: 25883091 DOI: 10.1016/j.bbamem.2015.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 03/10/2015] [Accepted: 04/03/2015] [Indexed: 01/17/2023]
Abstract
Paraneoplastic neurological syndromes and autoimmune encephalitides are immune neurological disorders occurring or not in association with a cancer. They are thought to be due to an autoimmune reaction against neuronal antigens ectopically expressed by the underlying tumour or by cross-reaction with an unknown infectious agent. In some instances, paraneoplastic neurological syndromes and autoimmune encephalitides are related to an antibody-induced dysfunction of ion channels, a situation that can be labelled as autoimmune channelopathies. Such functional alterations of ion channels are caused by the specific fixation of an autoantibody upon its target, implying that autoimmune channelopathies are usually highly responsive to immuno-modulatory treatments. Over the recent years, numerous autoantibodies corresponding to various neurological syndromes have been discovered and their mechanisms of action partially deciphered. Autoantibodies in neurological autoimmune channelopathies may target either directly ion channels or proteins associated to ion channels and induce channel dysfunction by various mechanisms generally leading to the reduction of synaptic expression of the considered channel. The discovery of those mechanisms of action has provided insights on the regulation of the synaptic expression of the altered channels as well as the putative roles of some of their functional subdomains. Interestingly, patients' autoantibodies themselves can be used as specific tools in order to study the functions of ion channels. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Bastien Joubert
- University Lyon 1, University Lyon, Rue Guillaume Paradin, 69372 Lyon Cedex 08, France; INSERM, UMR-S1028, CNRS, UMR-5292, Lyon Neuroscience Research Center, Neuro-Oncology and Neuro-Inflammation Team, 7, Rue Guillaume Paradin, Lyon Cedex 08F-69372, France
| | - Jérôme Honnorat
- University Lyon 1, University Lyon, Rue Guillaume Paradin, 69372 Lyon Cedex 08, France; INSERM, UMR-S1028, CNRS, UMR-5292, Lyon Neuroscience Research Center, Neuro-Oncology and Neuro-Inflammation Team, 7, Rue Guillaume Paradin, Lyon Cedex 08F-69372, France; National Reference Centre for Paraneoplastic Neurological Diseases, hospices civils de Lyon, hôpital neurologique, 69677 Bron, France; Hospices Civils de Lyon, Neuro-oncology, Hôpital Neurologique, F-69677 Bron, France.
| |
Collapse
|
406
|
Glycolytic flux controls D-serine synthesis through glyceraldehyde-3-phosphate dehydrogenase in astrocytes. Proc Natl Acad Sci U S A 2015; 112:E2217-24. [PMID: 25870284 DOI: 10.1073/pnas.1416117112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
D-Serine is an essential coagonist with glutamate for stimulation of N-methyl-D-aspartate (NMDA) glutamate receptors. Although astrocytic metabolic processes are known to regulate synaptic glutamate levels, mechanisms that control D-serine levels are not well defined. Here we show that d-serine production in astrocytes is modulated by the interaction between the D-serine synthetic enzyme serine racemase (SRR) and a glycolytic enzyme, glyceraldehyde 3-phosphate dehydrogenase (GAPDH). In primary cultured astrocytes, glycolysis activity was negatively correlated with D-serine level. We show that SRR interacts directly with GAPDH, and that activation of glycolysis augments this interaction. Biochemical assays using mutant forms of GAPDH with either reduced activity or reduced affinity to SRR revealed that GAPDH suppresses SRR activity by direct binding to GAPDH and through NADH, a product of GAPDH. NADH allosterically inhibits the activity of SRR by promoting the disassociation of ATP from SRR. Thus, astrocytic production of D-serine is modulated by glycolytic activity via interactions between GAPDH and SRR. We found that SRR is expressed in astrocytes in the subiculum of the human hippocampus, where neurons are known to be particularly vulnerable to loss of energy. Collectively, our findings suggest that astrocytic energy metabolism controls D-serine production, thereby influencing glutamatergic neurotransmission in the hippocampus.
Collapse
|
407
|
Astrocytes: Orchestrating synaptic plasticity? Neuroscience 2015; 323:43-61. [PMID: 25862587 DOI: 10.1016/j.neuroscience.2015.04.001] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/25/2015] [Accepted: 04/01/2015] [Indexed: 01/09/2023]
Abstract
Synaptic plasticity is the capacity of a preexisting connection between two neurons to change in strength as a function of neural activity. Because synaptic plasticity is the major candidate mechanism for learning and memory, the elucidation of its constituting mechanisms is of crucial importance in many aspects of normal and pathological brain function. In particular, a prominent aspect that remains debated is how the plasticity mechanisms, that encompass a broad spectrum of temporal and spatial scales, come to play together in a concerted fashion. Here we review and discuss evidence that pinpoints to a possible non-neuronal, glial candidate for such orchestration: the regulation of synaptic plasticity by astrocytes.
Collapse
|
408
|
Yang Y, Xu-Friedman MA. Different pools of glutamate receptors mediate sensitivity to ambient glutamate in the cochlear nucleus. J Neurophysiol 2015; 113:3634-45. [PMID: 25855696 DOI: 10.1152/jn.00693.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 04/08/2015] [Indexed: 01/14/2023] Open
Abstract
Ambient glutamate plays an important role in pathological conditions, such as stroke, but its role during normal activity is not clear. In addition, it is not clear how ambient glutamate acts on glutamate receptors with varying affinities or subcellular localizations. To address this, we studied "endbulb of Held" synapses, which are formed by auditory nerve fibers onto bushy cells (BCs) in the anteroventral cochlear nucleus. When ambient glutamate was increased by applying the glutamate reuptake inhibitor TFB-TBOA, BCs depolarized as a result of activation of N-methyl-D-aspartate receptors (NMDARs) and group I metabotropic glutamate receptors (mGluRs). Application of antagonists against NMDARs (in 0 Mg(2+)) or mGluRs caused hyperpolarization, indicating that these receptors were bound by a tonic source of glutamate. AMPA receptors did not show these effects, consistent with their lower glutamate affinity. We also evaluated the subcellular localization of the receptors activated by ambient glutamate. The mGluRs were not activated by synaptic stimulation and thus appear to be exclusively extrasynaptic. By contrast, NMDARs in both synaptic and extrasynaptic compartments were activated by ambient glutamate, as shown using the use-dependent antagonist MK-801. Levels of ambient glutamate appeared to be regulated in a spike-independent manner, and glia likely play a major role. These low levels of ambient glutamate likely have functional consequences, as even low concentrations of TBOA caused significant increases in BC spiking following synaptic stimulation. These results indicate that normal resting potential appears to be poised in the region of maximal sensitivity to small changes in ambient glutamate.
Collapse
Affiliation(s)
- Yang Yang
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Matthew A Xu-Friedman
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York
| |
Collapse
|
409
|
Dryer SE. Glutamate receptors in the kidney. Nephrol Dial Transplant 2015; 30:1630-8. [PMID: 25829324 DOI: 10.1093/ndt/gfv028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/08/2015] [Indexed: 01/28/2023] Open
Abstract
l-Glutamate (l-Glu) plays an essential role in the central nervous system (CNS) as an excitatory neurotransmitter, and exerts its effects by acting on a large number of ionotropic and metabotropic receptors. These receptors are also expressed in several peripheral tissues, including the kidney. This review summarizes the general properties of ionotropic and metabotropic l-Glu receptors, focusing on N-methyl-d-aspartate (NMDA) and Group 1 metabotropic glutamate receptors (mGluRs). NMDA receptors are expressed in the renal cortex and medulla, and appear to play a role in the regulation of renal blood flow, glomerular filtration, proximal tubule reabsorption and urine concentration within medullary collecting ducts. Sustained activation of NMDA receptors induces Ca(2+) influx and oxidative stress, which can lead to glomerulosclerosis, for example in hyperhomocysteinemia. Group 1 mGluRs are expressed in podocytes and probably in other cell types. Mice in which these receptors are knocked out gradually develop albuminuria and glomerulosclerosis. Several endogenous agonists of l-Glu receptors, which include sulfur-containing amino acids derived from l-homocysteine, and quinolinic acid (QA), as well as the co-agonists glycine and d-serine, are present in the circulation at concentrations capable of robustly activating ionotropic and metabotropic l-Glu receptors. These endogenous agonists may also be secreted from renal parenchymal cells, or from cells that have migrated into the kidney, by exocytosis or by transporters such as system x(-)(c), or by transporters involved in ammonia secretion. l-Glu receptors may be useful targets for drug therapy, and many selective orally-active compounds exist for investigation of these receptors as potential drug targets for various kidney diseases.
Collapse
Affiliation(s)
- Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA Division of Nephrology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
410
|
Pritchett D, Hasan S, Tam SKE, Engle SJ, Brandon NJ, Sharp T, Foster RG, Harrison PJ, Bannerman DM, Peirson SN. d-amino acid oxidase knockout (Dao(-/-) ) mice show enhanced short-term memory performance and heightened anxiety, but no sleep or circadian rhythm disruption. Eur J Neurosci 2015; 41:1167-79. [PMID: 25816902 PMCID: PMC4744680 DOI: 10.1111/ejn.12880] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 02/10/2015] [Accepted: 02/23/2015] [Indexed: 12/21/2022]
Abstract
d-amino acid oxidase (DAO, DAAO) is an enzyme that degrades d-serine, the primary endogenous co-agonist of the synaptic N-methyl-d-aspartate receptor. Convergent evidence implicates DAO in the pathophysiology and potential treatment of schizophrenia. To better understand the functional role of DAO, we characterized the behaviour of the first genetically engineered Dao knockout (Dao(-/-) ) mouse. Our primary objective was to assess both spatial and non-spatial short-term memory performance. Relative to wildtype (Dao(+/+) ) littermate controls, Dao(-/-) mice demonstrated enhanced spatial recognition memory performance, improved odour recognition memory performance, and enhanced spontaneous alternation in the T-maze. In addition, Dao(-/-) mice displayed increased anxiety-like behaviour in five tests of approach/avoidance conflict: the open field test, elevated plus maze, successive alleys, light/dark box and novelty-suppressed feeding. Despite evidence of a reciprocal relationship between anxiety and sleep and circadian function in rodents, we found no evidence of sleep or circadian rhythm disruption in Dao(-/-) mice. Overall, our observations are consistent with, and extend, findings in the natural mutant ddY/Dao(-) line. These data add to a growing body of preclinical evidence linking the inhibition, inactivation or deletion of DAO with enhanced cognitive performance. Our results have implications for the development of DAO inhibitors as therapeutic agents.
Collapse
Affiliation(s)
- David Pritchett
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
411
|
Rudy CC, Hunsberger HC, Weitzner DS, Reed MN. The role of the tripartite glutamatergic synapse in the pathophysiology of Alzheimer's disease. Aging Dis 2015; 6:131-48. [PMID: 25821641 PMCID: PMC4365957 DOI: 10.14336/ad.2014.0423] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/23/2014] [Indexed: 12/26/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in individuals over 65 years of age and is characterized by accumulation of beta-amyloid (Aβ) and tau. Both Aβ and tau alter synaptic plasticity, leading to synapse loss, neural network dysfunction, and eventually neuron loss. However, the exact mechanism by which these proteins cause neurodegeneration is still not clear. A growing body of evidence suggests perturbations in the glutamatergic tripartite synapse, comprised of a presynaptic terminal, a postsynaptic spine, and an astrocytic process, may underlie the pathogenic mechanisms of AD. Glutamate is the primary excitatory neurotransmitter in the brain and plays an important role in learning and memory, but alterations in glutamatergic signaling can lead to excitotoxicity. This review discusses the ways in which both beta-amyloid (Aβ) and tau act alone and in concert to perturb synaptic functioning of the tripartite synapse, including alterations in glutamate release, astrocytic uptake, and receptor signaling. Particular emphasis is given to the role of N-methyl-D-aspartate (NMDA) as a possible convergence point for Aβ and tau toxicity.
Collapse
Affiliation(s)
- Carolyn C. Rudy
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, WV, 26506, USA
| | - Holly C. Hunsberger
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, WV, 26506, USA
| | - Daniel S. Weitzner
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, WV, 26506, USA
| | - Miranda N. Reed
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, WV, 26506, USA
- Center for Neuroscience, West Virginia University, Morgantown, WV, 26506, USA
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
412
|
Takagi S, Balu DT, Coyle JT. Subchronic pharmacological and chronic genetic NMDA receptor hypofunction differentially regulate the Akt signaling pathway and Arc expression in juvenile and adult mice. Schizophr Res 2015; 162:216-21. [PMID: 25592804 PMCID: PMC4339465 DOI: 10.1016/j.schres.2014.12.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 10/24/2022]
Abstract
NMDA receptor (NMDAR) hypofunction is a compelling hypothesis for the pathophysiology of schizophrenia, because in part, NMDAR antagonists cause symptoms in healthy adult subjects that resemble schizophrenia. Therefore, NMDAR antagonists have been used as a method to induce NMDAR hypofunction in animals as a pharmacological model of schizophrenia. Serine racemase-null mutant (SR-/-) mice display constitutive NMDAR hypofunction due to the lack of d-serine. SR-/- mice have deficits in tropomyosin-related kinase receptor (TrkB)/Akt signaling and activity regulated cytoskeletal protein (Arc) expression, which mirror what is observed in schizophrenia. Thus, we analyzed these signaling pathways in MK801 sub-chronically (0.15mg/kg; 5days) treated adult wild-type mice. We found that in contrast to SR-/- mice, the activated states of downstream signaling molecules, but not TrkB, increased in MK801 treated mice. Furthermore, there is an age-dependent change in the behavioral reaction of people to NMDAR antagonists. We therefore administered the same dosing regimen of MK801 to juvenile mice and compared them to juvenile SR-/- mice. Our findings demonstrate that pharmacological NMDAR antagonism has different effects on TrkB/Akt signaling than genetically-induced NMDAR hypofunction. Given the phenotypic disparity between the MK801 model and schizophrenia, our results suggest that SR-/- mice more accurately reflect NMDAR hypofunction in schizophrenia.
Collapse
Affiliation(s)
- Shunsuke Takagi
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA.
| | - Darrick T. Balu
- Department of Psychiatry, Harvard Medical School, 25 Shattuck Street Boston, Boston, MA, USA 02115
,Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA, USA 02478
| | - Joseph T. Coyle
- Department of Psychiatry, Harvard Medical School, 25 Shattuck Street Boston, Boston, MA, USA 02115
,Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA, USA 02478
,Corresponding author: Joseph T. Coyle, M.D., Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA. , Tel.: 617-855-2101, Fax: 617-855-2705
| |
Collapse
|
413
|
Billard JM. D-Serine in the aging hippocampus. J Pharm Biomed Anal 2015; 116:18-24. [PMID: 25740810 DOI: 10.1016/j.jpba.2015.02.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 01/06/2023]
Abstract
Experimental evidences now indicate that memory formation relies on the capacity of neuronal networks to manage long-term changes in synaptic communication. This property is driven by N-methyl-D-aspartate receptors (NMDAR), which requires the binding of glutamate but also the presence of the co-agonist D-serine at the glycine site. Defective memory function and impaired brain synaptic plasticity observed in aging are rescued by partial agonist acting at this site suggesting that this gating process is targeted to induce age-related cognitive defects. This review aims at compelling recent studies characterizing the role of D-serine in changes in functional plasticity that occur in the aging hippocampus since deficits are rescued by D-serine supplementation. The impaired efficacy of endogenous D-serine is not due to changes in the affinity to glycine-binding site but to a decrease in tissue levels of the amino acid resulting from a weaker expression of the producing enzyme serine racemase (SR). Interestingly, neither SR expression, D-serine levels, nor NMDAR activation is affected in aged LOU/C rats, a model of healthy aging in which memory deficits do not occur. These old animals do not develop oxidative stress suggesting that the D-serine-related pathway could be targeted by the age-related accumulation of reactive oxygen species. Accordingly, senescent rats chronically treated with the reducing agent N-acetyl-cysteine to prevent oxidative damage, show intact NMDAR activation linked to preserved D-serine levels and SR expression. These results point to a significant role of D-serine in age-related functional alterations underlying hippocampus-dependent memory deficits, at least within the CA1 area since the amino acid does not appear as critical in changes affecting the dentate gyrus.
Collapse
Affiliation(s)
- Jean-Marie Billard
- Center of Psychiatry and Neurosciences, Paris Descartes University, Sorbonne Paris City, UMR U894, Paris 75014 France.
| |
Collapse
|
414
|
Park H, Han KS, Seo J, Lee J, Dravid SM, Woo J, Chun H, Cho S, Bae JY, An H, Koh W, Yoon BE, Berlinguer-Palmini R, Mannaioni G, Traynelis SF, Bae YC, Choi SY, Lee CJ. Channel-mediated astrocytic glutamate modulates hippocampal synaptic plasticity by activating postsynaptic NMDA receptors. Mol Brain 2015; 8:7. [PMID: 25645137 PMCID: PMC4320468 DOI: 10.1186/s13041-015-0097-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/15/2015] [Indexed: 11/10/2022] Open
Abstract
Background Activation of G protein coupled receptor (GPCR) in astrocytes leads to Ca2+-dependent glutamate release via Bestrophin 1 (Best1) channel. Whether receptor-mediated glutamate release from astrocytes can regulate synaptic plasticity remains to be fully understood. Results We show here that Best1-mediated astrocytic glutamate activates the synaptic N-methyl-D-aspartate receptor (NMDAR) and modulates NMDAR-dependent synaptic plasticity. Our data show that activation of the protease-activated receptor 1 (PAR1) in hippocampal CA1 astrocytes elevates the glutamate concentration at Schaffer collateral-CA1 (SC-CA1) synapses, resulting in activation of GluN2A-containing NMDARs and NMDAR-dependent potentiation of synaptic responses. Furthermore, the threshold for inducing NMDAR-dependent long-term potentiation (LTP) is lowered when astrocytic glutamate release accompanied LTP induction, suggesting that astrocytic glutamate is significant in modulating synaptic plasticity. Conclusions Our results provide direct evidence for the physiological importance of channel-mediated astrocytic glutamate in modulating neural circuit functions.
Collapse
|
415
|
Ferreira IL, Ferreiro E, Schmidt J, Cardoso JM, Pereira CM, Carvalho AL, Oliveira CR, Rego AC. Aβ and NMDAR activation cause mitochondrial dysfunction involving ER calcium release. Neurobiol Aging 2015; 36:680-92. [DOI: 10.1016/j.neurobiolaging.2014.09.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 08/26/2014] [Accepted: 09/02/2014] [Indexed: 11/24/2022]
|
416
|
Levin R, Dor-Abarbanel AE, Edelman S, Durrant AR, Hashimoto K, Javitt DC, Heresco-Levy U. Behavioral and cognitive effects of the N-methyl-D-aspartate receptor co-agonist D-serine in healthy humans: initial findings. J Psychiatr Res 2015; 61:188-95. [PMID: 25554623 DOI: 10.1016/j.jpsychires.2014.12.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/30/2014] [Accepted: 12/12/2014] [Indexed: 11/19/2022]
Abstract
The efficacy of compounds having agonistic activity at the glycine site associated with the N-methyl-D-aspartate receptor (NMDAR) is presently assessed in psychiatric disorders. In contrast to NMDAR antagonists, the neuropsychiatric effects of NMDAR agonists in the healthy human organism are not known. We studied neuropsychiatric and neurochemical effects of the NMDAR-glycine site obligatory co-agonist d-serine (DSR) in healthy subjects using a randomized, controlled crossover challenge design including a baseline assessment day and two DSR/placebo administration days. Thirty-five subjects aged 23-29 years participated in the study and received a 2.1 g orally administered DSR dose. The main outcome measures were the changes in scores of mood-related Visual Analogue Scale (VAS), Continuous Performance Test-Identical Pairs (CPT-IP), and Rey Auditory Verbal Learning Test (RAVLT). DSR acute administration: (1) was well tolerated and resulted at 2 h in ≥ 200 times increase in DSR serum levels; (2) elicited reduced VAS-measured depression and anxiety feelings; (3) improved attention and vigilance as measured by CPT-IP D-prime score; (4) preferentially improved performance in RAVLT list 7 reflecting ability to retain information over interference; (5) had significant but nonspecific effects on Category Fluency and Benton Visual Retention tests; and (6) did not affect glycine and glutamate serum levels. These data indicate that in healthy subjects, DSR reduces subjective feelings of sadness and anxiety and has procognitive effects that are overall opposed to the known effects of NMDAR antagonists. The findings are relevant to translational research of NMDAR function and the development of NMDAR-glycine site treatments for specific psychiatric entities. ClinicalTrials.gov: Behavioral and Cognitive Effects of the N-methyl-D-aspartate Receptor (NMDAR) Co-agonist D-serine in Healthy Humans; http://www.clinicaltrials.gov/ct2/show/NCT02051426?term=NCT02051426&rank=1; NCT02051426.
Collapse
Affiliation(s)
- Raz Levin
- Research and Psychiatry Departments, Ezrath Nashim-Herzog Memorial Hospital, Jerusalem, Israel
| | | | - Shany Edelman
- Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | - Andrea R Durrant
- Research and Psychiatry Departments, Ezrath Nashim-Herzog Memorial Hospital, Jerusalem, Israel
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Daniel C Javitt
- Nathan S. Kline Institute for Psychiatric Research and Columbia University, NY, USA
| | - Uriel Heresco-Levy
- Research and Psychiatry Departments, Ezrath Nashim-Herzog Memorial Hospital, Jerusalem, Israel; Hadassah Medical School, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
417
|
Dunlop J, Brandon NJ. Schizophrenia drug discovery and development in an evolving era: are new drug targets fulfilling expectations? J Psychopharmacol 2015; 29:230-8. [PMID: 25586401 DOI: 10.1177/0269881114565806] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Current therapeutics for schizophrenia, the typical and atypical antipsychotic class of drugs, derive their therapeutic benefit predominantly by antagonism of the dopamine D2 receptor subtype and have robust clinical benefit on positive symptoms of the disease with limited to no impact on negative symptoms and cognitive impairment. Driven by these therapeutic limitations of current treatments and the recognition that transmitter systems beyond the dopaminergic system in particular glutamatergic transmission contribute to the etiology of schizophrenia significant recent efforts have focused on the discovery and development of novel treatments for schizophrenia with mechanisms of action that are distinct from current drugs. Specifically, compounds selectively targeting the metabotropic glutamate receptor 2/3 subtype, phosphodiesterase subtype 10, glycine transporter subtype 1 and the alpha7 nicotinic acetylcholine receptor have been the subject of intense drug discovery and development efforts. Here we review recent clinical experience with the most advanced drug candidates targeting each of these novel mechanisms and discuss whether these new agents are living up to expectations.
Collapse
Affiliation(s)
- John Dunlop
- AstraZeneca Neuroscience iMed, Cambridge, MA, USA
| | | |
Collapse
|
418
|
Lauro C, Catalano M, Di Paolo E, Chece G, de Costanzo I, Trettel F, Limatola C. Fractalkine/CX3CL1 engages different neuroprotective responses upon selective glutamate receptor overactivation. Front Cell Neurosci 2015; 8:472. [PMID: 25653593 PMCID: PMC4301004 DOI: 10.3389/fncel.2014.00472] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/30/2014] [Indexed: 11/16/2022] Open
Abstract
Neuronal death induced by overactivation of N-methyl-d-aspartate receptors (NMDARs) is implicated in the pathophysiology of many neurodegenerative diseases such as stroke, epilepsy and traumatic brain injury. This toxic effect is mainly mediated by NR2B-containing extrasynaptic NMDARs, while NR2A-containing synaptic NMDARs contribute to cell survival, suggesting the possibility of therapeutic approaches targeting specific receptor subunits. We report that fractalkine/CX3CL1 protects hippocampal neurons from NMDA-induced cell death with a mechanism requiring the adenosine receptors type 2A (A2AR). This is different from CX3CL1-induced protection from glutamate (Glu)-induced cell death, that fully depends on A1R and requires in part A3R. We show that CX3CL1 neuroprotection against NMDA excitotoxicity involves D-serine, a co-agonist of NR2A/NMDAR, resulting in cyclic AMP-dependent transcription factor cyclic-AMP response element-binding protein (CREB) phosphorylation.
Collapse
Affiliation(s)
- Clotilde Lauro
- Department of Physiology and Pharmacology, Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza University of Rome Rome, Italy
| | - Myriam Catalano
- Department of Physiology and Pharmacology, Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza University of Rome Rome, Italy ; Istituto di Ricovero e Cura a Carattere Scientifico NeuroMed Pozzilli, Italy
| | | | - Giuseppina Chece
- Department of Physiology and Pharmacology, Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza University of Rome Rome, Italy
| | - Ida de Costanzo
- Department of Physiology and Pharmacology, Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza University of Rome Rome, Italy
| | - Flavia Trettel
- Department of Physiology and Pharmacology, Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza University of Rome Rome, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza University of Rome Rome, Italy ; Istituto di Ricovero e Cura a Carattere Scientifico NeuroMed Pozzilli, Italy
| |
Collapse
|
419
|
Luscher B, Fuchs T. GABAergic control of depression-related brain states. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 73:97-144. [PMID: 25637439 DOI: 10.1016/bs.apha.2014.11.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The GABAergic deficit hypothesis of major depressive disorders (MDDs) posits that reduced γ-aminobutyric acid (GABA) concentration in brain, impaired function of GABAergic interneurons, altered expression and function of GABA(A) receptors, and changes in GABAergic transmission dictated by altered chloride homeostasis can contribute to the etiology of MDD. Conversely, the hypothesis posits that the efficacy of currently used antidepressants is determined by their ability to enhance GABAergic neurotransmission. We here provide an update for corresponding evidence from studies of patients and preclinical animal models of depression. In addition, we propose an explanation for the continued lack of genetic evidence that explains the considerable heritability of MDD. Lastly, we discuss how alterations in GABAergic transmission are integral to other hypotheses of MDD that emphasize (i) the role of monoaminergic deficits, (ii) stress-based etiologies, (iii) neurotrophic deficits, and (iv) the neurotoxic and neural circuit-impairing consequences of chronic excesses of glutamate. We propose that altered GABAergic transmission serves as a common denominator of MDD that can account for all these other hypotheses and that plays a causal and common role in diverse mechanistic etiologies of depressive brain states and in the mechanism of action of current antidepressant drug therapies.
Collapse
Affiliation(s)
- Bernhard Luscher
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Center for Molecular Investigation of Neurological Disorders, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Thomas Fuchs
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Center for Molecular Investigation of Neurological Disorders, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
420
|
Emnett CM, Eisenman LN, Mohan J, Taylor AA, Doherty JJ, Paul SM, Zorumski CF, Mennerick S. Interaction between positive allosteric modulators and trapping blockers of the NMDA receptor channel. Br J Pharmacol 2015; 172:1333-47. [PMID: 25377730 DOI: 10.1111/bph.13007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/27/2014] [Accepted: 10/29/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Memantine and ketamine are clinically used, open-channel blockers of NMDA receptors exhibiting remarkable pharmacodynamic similarities despite strikingly different clinical profiles. Although NMDA channel gating constitutes an important difference between memantine and ketamine, it is unclear how positive allosteric modulators (PAMs) might affect the pharmacodynamics of these NMDA blockers. EXPERIMENTAL APPROACH We used two different PAMs: SGE-201, an analogue of an endogenous oxysterol, 24S-hydroxycholesterol, along with pregnenolone sulphate (PS), to test on memantine and ketamine responses in single cells (oocytes and cultured neurons) and networks (hippocampal slices), using standard electrophysiological techniques. KEY RESULTS SGE-201 and PS had no effect on steady-state block or voltage dependence of a channel blocker. However, both PAMs increased the actions of memantine and ketamine on phasic excitatory post-synaptic currents, but neither revealed underlying pharmacodynamic differences. SGE-201 accelerated the re-equilibration of blockers during voltage jumps. SGE-201 also unmasked differences among the blockers in neuronal networks - measured either by suppression of activity in multi-electrode arrays or by neuroprotection against a mild excitotoxic insult. Either potentiating NMDA receptors while maintaining the basal activity level or increasing activity/depolarization without potentiating NMDA receptor function is sufficient to expose pharmacodynamic blocker differences in suppressing network function and in neuroprotection. CONCLUSIONS AND IMPLICATIONS Positive modulation revealed no pharmacodynamic differences between NMDA receptor blockers at a constant voltage, but did expose differences during spontaneous network activity. Endogenous modulator tone of NMDA receptors in different brain regions may underlie differences in the effects of NMDA receptor blockers on behaviour.
Collapse
Affiliation(s)
- Christine M Emnett
- Graduate Program in Neuroscience, Washington University, St Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | | | | | |
Collapse
|
421
|
Cheriyan J, Mezes C, Zhou N, Balsara RD, Castellino FJ. Heteromerization of ligand binding domains of N-methyl-D-aspartate receptor requires both coagonists, L-glutamate and glycine. Biochemistry 2015; 54:787-94. [PMID: 25544544 PMCID: PMC4310633 DOI: 10.1021/bi501437s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NMDA receptors (NMDAR) are voltage- and glutamate-gated heteromeric ion channels found at excitatory neuronal synapses, the functions of which are to mediate the mechanisms of brain plasticity and, thereby, its higher order functions. In addition to Glu, the activation of these heteromeric receptors requires Gly or d-Ser as a coagonist. However, it is not fully known as to why coagonism is required for the opening of NMDAR ion channels. We show herein that the ligand binding domains (LBD) of the GluN1 and GluN2A subunits of the NMDAR heterodimerize only when both coagonists, Glu and Gly/d-Ser, bind to their respective sites on GluN2 and GluN1. In the agonist-free state, these domains form homomeric interactions, which are disrupted by binding of their respective agonists. Also, in a heteromer formed by the LBDs, GluN2A is more sensitized to bind Glu, while the affinity of Gly for GluN1 remains unchanged. We thus provide direct evidence to show that coagonism is necessary for heteromeric pairing of LBDs, which is an essential step in forming functional ion channels in NMDARs.
Collapse
Affiliation(s)
- John Cheriyan
- W. M. Keck Center for Transgene Research and the Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | | | | | | | | |
Collapse
|
422
|
Gustafson EG, Stevens ES, Miller RF. Dynamic regulation of D-serine release in the vertebrate retina. J Physiol 2015; 593:843-56. [PMID: 25480802 DOI: 10.1113/jphysiol.2014.283432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/29/2014] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Activation of NMDA receptors (NMDARs) is essential for encoding visual stimuli into signals for the brain, although their over-activation can cause cell death. The recruitment of NMDARs is important for encoding light intensity in retinal ganglion cells. D-serine binding is essential for proper activation of NMDARs, although its role in signal processing and the mechanisms that underlie its availability are not well understood. In these light-evoked experiments, the addition of exogenous D-serine had a large effect on low contrast and low intensity NMDAR responses that decreased as the intensity was increased. The degradation of endogenous D-serine decreased the responses more at higher intensities. The results provide compelling evidence favouring a new interpretation of NMDAR recruitment in which light-evoked D-serine release serves an important regulatory control over the recruitment of NMDARs. ABSTRACT The present study aimed to investigate the functional properties of NMDA receptor coagonist release and to specifically evaluate whether light-evoked release mechanisms contribute to the availability of the coagonist D-serine. Two different methods were involved in our approach: (i) whole-cell recordings from identified retinal ganglion cells in the tiger salamander were used to study light adaptation with positive and negative contrast stimuli over a range of ± 1 log unit against a steady background illumination and (ii) the mechanisms for intensity encoding to a range of light intensities covering 6 log10 units were investigated. This latter study employed extracellular recordings of the proximal negative field potential, pharmacologically manipulated to generate a pure NMDA mediated response. For the adaptation study, we examined the light-evoked responses under control conditions, followed by light stimuli presented in the presence of D-serine, followed by light stimulation in the presence of dichlorokynurenic acid to block the coagonist site of NMDA receptors. For the brightness encoding studies, we examined the action of D-serine on each intensity used and then applied the enzyme D-serine deaminase to remove significant levels of D-serine. These studies provided new insights into the mechanisms that regulate coagonist availability in the vertebrate retina. Our results strongly support the idea that light-evoked coagonist release, a major component of which is D-serine, is needed to provide the full range of coagonist availability for optimal activation of NMDA receptors.
Collapse
Affiliation(s)
- Eric G Gustafson
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | | | | |
Collapse
|
423
|
Experimental approaches for elucidating co-agonist regulation of NMDA receptor in motor neurons: Therapeutic implications for amyotrophic lateral sclerosis (ALS). J Pharm Biomed Anal 2015; 116:2-6. [PMID: 25604957 DOI: 10.1016/j.jpba.2014.12.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/18/2014] [Accepted: 12/23/2014] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neuromuscular disease characterised by selective loss of motor neurons leading to fatal paralysis. Although most cases are sporadic, approximately 10% of cases are familial and the identification of mutations in these kindred has greatly accelerated our understanding of disease mechanisms. To date, the causal genes in over 70% of these families have been identified. Recently, we reported a mutation (R199W) in the enzyme that degrades d-serine, D-amino acid oxidase (DAO) and co-segregates with disease in familial ALS. Moreover, D-serine and DAO are abundant in human spinal cord and severely depleted in ALS. Using cell culture models, we have defined the effects of R199W-DAO, and shown that it activates autophagy, leads to the formation of ubiquitinated protein aggregates and promotes apoptosis, all of which processes are attenuated by a D-serine/glycine site antagonist of the N-methyl D-aspartate receptor (NMDAR). These findings suggest that the toxic effects of R199W-DAO are at least in part mediated via the NMDAR involving the D-serine/glycine site and that an excitotoxic mechanism may contribute to disease pathogenesis.
Collapse
|
424
|
Cunha MP, Pazini FL, Ludka FK, Rosa JM, Oliveira Á, Budni J, Ramos-Hryb AB, Lieberknecht V, Bettio LEB, Martín-de-Saavedra MD, López MG, Tasca CI, Rodrigues ALS. The modulation of NMDA receptors and l-arginine/nitric oxide pathway is implicated in the anti-immobility effect of creatine in the tail suspension test. Amino Acids 2015; 47:795-811. [DOI: 10.1007/s00726-014-1910-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 12/23/2014] [Indexed: 01/18/2023]
|
425
|
Moaddel R, Luckenbaugh DA, Xie Y, Villaseñor A, Brutsche NE, Machado-Vieira R, Ramamoorthy A, Lorenzo MP, Garcia A, Bernier M, Torjman MC, Barbas C, Zarate CA, Wainer IW. D-serine plasma concentration is a potential biomarker of (R,S)-ketamine antidepressant response in subjects with treatment-resistant depression. Psychopharmacology (Berl) 2015; 232:399-409. [PMID: 25056852 PMCID: PMC5990001 DOI: 10.1007/s00213-014-3669-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/27/2014] [Indexed: 12/16/2022]
Abstract
RATIONALE (R,S)-ketamine is a rapid and effective antidepressant drug that produces a response in two thirds of patients with treatment-resistant depression (TRD). The underlying biochemical differences between a (R,S)-ketamine responder (KET-R) and non-responder (KET-NR) have not been definitively identified but may involve serine metabolism. OBJECTIVES The aim of the study was to examine the relationship between baseline plasma concentrations of D-serine and its precursor L-serine and antidepressant response to (R,S)-ketamine in TRD patients. METHODS Plasma samples were obtained from 21 TRD patients at baseline, 60 min before initiation of the (R,S)-ketamine infusion. Patients were classified as KET-Rs (n = 8) or KET-NRs (n = 13) based upon the difference in Montgomery-Åsberg Depression Rating Scale (MADRS) scores at baseline and 230 min after infusion, with response defined as a ≥50 % decrease in MADRS score. The plasma concentrations of D-serine and L-serine were determined using liquid chromatography-mass spectrometry. RESULTS Baseline D-serine plasma concentrations were significantly lower in KET-Rs (3.02 ± 0.21 μM) than in KET-NRs (4.68 ± 0.81 μM), p < 0.001. A significant relationship between baseline D-serine plasma concentrations and percent change in MADRS at 230 min was determined using a Pearson correlation, r = 0.77, p < 0.001, with baseline D-serine explaining 60 % of the variance in (R,S)-ketamine response. The baseline concentrations of L-serine (L-Ser) in KET-Rs were also significantly lower than those measured in KET-NRs (66.2 ± 9.6 μM vs 242.9 ± 5.6 μM, respectively; p < 0.0001). CONCLUSIONS The results demonstrate that the baseline D-serine plasma concentrations were significantly lower in KET-Rs than in KET-NRs and suggest that this variable can be used to predict an antidepressant response following (R,S)-ketamine administration.
Collapse
Affiliation(s)
- Ruin Moaddel
- Intramural Research Program, National Institute on Aging, National Institutes of Health (NIH), Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
426
|
Identity of the NMDA receptor coagonist is synapse specific and developmentally regulated in the hippocampus. Proc Natl Acad Sci U S A 2014; 112:E204-13. [PMID: 25550512 DOI: 10.1073/pnas.1416668112] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
NMDA receptors (NMDARs) require the coagonists D-serine or glycine for their activation, but whether the identity of the coagonist could be synapse specific and developmentally regulated remains elusive. We therefore investigated the contribution of D-serine and glycine by recording NMDAR-mediated responses at hippocampal Schaffer collaterals (SC)-CA1 and medial perforant path-dentate gyrus (mPP-DG) synapses in juvenile and adult rats. Selective depletion of endogenous coagonists with enzymatic scavengers as well as pharmacological inhibition of endogenous D-amino acid oxidase activity revealed that D-serine is the preferred coagonist at SC-CA1 mature synapses, whereas, unexpectedly, glycine is mainly involved at mPP-DG synapses. Nevertheless, both coagonist functions are driven by the levels of synaptic activity as inferred by recording long-term potentiation generated at both connections. This regional compartmentalization in the coagonist identity is associated to different GluN1/GluN2A to GluN1/GluN2B subunit composition of synaptic NMDARs. During postnatal development, the replacement of GluN2B- by GluN2A-containing NMDARs at SC-CA1 synapses parallels a change in the identity of the coagonist from glycine to D-serine. In contrast, NMDARs subunit composition at mPP-DG synapses is not altered and glycine remains the main coagonist throughout postnatal development. Altogether, our observations disclose an unprecedented relationship in the identity of the coagonist not only with the GluN2 subunit composition at synaptic NMDARs but also with astrocyte activity in the developing and mature hippocampus that reconciles the complementary functions of D-serine And Glycine In Modulating Nmdars During The Maturation Of Tripartite Glutamatergic Synapses.
Collapse
|
427
|
Balu DT, Coyle JT. The NMDA receptor 'glycine modulatory site' in schizophrenia: D-serine, glycine, and beyond. Curr Opin Pharmacol 2014; 20:109-15. [PMID: 25540902 DOI: 10.1016/j.coph.2014.12.004] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 01/12/2023]
Abstract
Schizophrenia is a severe psychiatric illness that is characterized by reduced cortical connectivity, for which the underlying biological and genetic causes are not well understood. Although the currently approved antipsychotic drug treatments, which primarily modulate dopaminergic function, are effective at reducing positive symptoms (i.e. delusions and hallucinations), they do little to improve the disabling cognitive and negative (i.e. anhedonia) symptoms of patients with schizophrenia. This review details the recent genetic and neurobiological findings that link N-methyl-D-aspartate receptor (NMDAR) hypofunction to the etiology of schizophrenia. It also highlights potential treatment strategies that augment NMDA receptor function to treat the synaptic deficits and cognitive impairments.
Collapse
Affiliation(s)
- Darrick T Balu
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA; Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, Belmont, MA 02478, USA
| | - Joseph T Coyle
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA; Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, Belmont, MA 02478, USA.
| |
Collapse
|
428
|
Hashemi M, Hutt A, Sleigh J. Anesthetic action on extra-synaptic receptors: effects in neural population models of EEG activity. Front Syst Neurosci 2014; 8:232. [PMID: 25540612 PMCID: PMC4261904 DOI: 10.3389/fnsys.2014.00232] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/19/2014] [Indexed: 12/13/2022] Open
Abstract
The role of extra-synaptic receptors in the regulation of excitation and inhibition in the brain has attracted increasing attention. Because activity in the extra-synaptic receptors plays a role in regulating the level of excitation and inhibition in the brain, they may be important in determining the level of consciousness. This paper reviews briefly the literature on extra-synaptic GABA and NMDA receptors and their affinity to anesthetic drugs. We propose a neural population model that illustrates how the effect of the anesthetic drug propofol on GABAergic extra-synaptic receptors results in changes in neural population activity and the electroencephalogram (EEG). Our results show that increased tonic inhibition in inhibitory cortical neurons cause a dramatic increase in the power of both δ− and α− bands. Conversely, the effects of increased tonic inhibition in cortical excitatory neurons and thalamic relay neurons have the opposite effect and decrease the power in these bands. The increased δ-activity is in accord with observed data for deepening propofol anesthesia; but is absolutely dependent on the inclusion of extrasynaptic (tonic) GABA action in the model.
Collapse
Affiliation(s)
- Meysam Hashemi
- INRIA CR Nancy - Grand Est, Team Neurosys Villers-les-Nancy, France
| | - Axel Hutt
- INRIA CR Nancy - Grand Est, Team Neurosys Villers-les-Nancy, France
| | - Jamie Sleigh
- Department of Anaesthesiology, Waikato Clinical School, University of Auckland Hamilton, New Zealand
| |
Collapse
|
429
|
Hanson JE, Pare JF, Deng L, Smith Y, Zhou Q. Altered GluN2B NMDA receptor function and synaptic plasticity during early pathology in the PS2APP mouse model of Alzheimer's disease. Neurobiol Dis 2014; 74:254-62. [PMID: 25484285 DOI: 10.1016/j.nbd.2014.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/15/2014] [Accepted: 11/24/2014] [Indexed: 10/24/2022] Open
Abstract
GluN2B subunit containing NMDARs (GluN2B-NMDARs) mediate pathophysiological effects of acutely applied amyloid beta (Aβ), including impaired long-term potentiation (LTP). However, in transgenic Alzheimer's disease (AD) mouse models which feature gradual Aβ accumulation, the function of GluN2B-NMDARs and their contribution to synaptic plasticity are unknown. Therefore, we examined the role of GluN2B-NMDARs in synaptic function and plasticity in the hippocampus of PS2APP transgenic mice. Although LTP induced by theta burst stimulation (TBS) was normal in PS2APP mice, it was significantly reduced by the selective GluN2B-NMDAR antagonist Ro25-6981 (Ro25) in PS2APP mice, but not wild type (wt) mice. While NMDARs activated by single synaptic stimuli were not blocked by Ro25, NMDARs recruited during burst stimulation showed larger blockade by Ro25 in PS2APP mice. Thus, the unusual dependence of LTP on GluN2B-NMDARs in PS2APP mice suggests that non-synaptic GluN2B-NMDARs are activated by glutamate that spills out of synaptic cleft during the burst stimulation used to induce LTP. While long-term depression (LTD) was normal in PS2APP mice, and Ro25 had no impact on LTD in wt mice, Ro25 impaired LTD in PS2APP mice, again demonstrating aberrant GluN2B-NMDAR function during plasticity. Together these results demonstrate altered GluN2B-NMDAR function in a model of early AD pathology that has implications for the therapeutic targeting of NMDARs in AD.
Collapse
Affiliation(s)
- Jesse E Hanson
- Genentech Inc., Department of Neuroscience, 1 DNA Way, MS 230B, South San Francisco, CA 94080, USA.
| | - Jean-Francois Pare
- Yerkes National Primate Research Center, Department of Neurology, UDALL Center of Excellence for Parkinson's Disease, Emory University, 954, Gatewood Rd NE, Atlanta, GA, USA
| | - Lunbin Deng
- Genentech Inc., Department of Neuroscience, 1 DNA Way, MS 230B, South San Francisco, CA 94080, USA
| | - Yoland Smith
- Yerkes National Primate Research Center, Department of Neurology, UDALL Center of Excellence for Parkinson's Disease, Emory University, 954, Gatewood Rd NE, Atlanta, GA, USA
| | - Qiang Zhou
- Genentech Inc., Department of Neuroscience, 1 DNA Way, MS 230B, South San Francisco, CA 94080, USA.
| |
Collapse
|
430
|
Thompson RJ. Pannexin channels and ischaemia. J Physiol 2014; 593:3463-70. [PMID: 25384783 DOI: 10.1113/jphysiol.2014.282426] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/23/2014] [Indexed: 12/13/2022] Open
Abstract
An ischaemic stroke occurs during loss of blood flow in the brain from the occlusion of a blood vessel. The ischaemia itself comprises a complex array of insults, including oxygen and glucose deprivation (OGD), glutamate excitotoxicity, acidification/hypercapnia, and loss of sheer forces. A substantial amount of knowledge has accumulated that define the excitotoxic cascade downstream of N-methyl-d-aspartate receptors (NMDARs). While the NMDAR can influence numerous downstream elements, one critical target during ischaemia is the ion channel, pannexin-1 (Panx1). The C-terminal region of Panx1 appears critical for its regulation under a host of physiological and pathological stimuli. We have shown using hippocampal brain slices that Panx1 is activated by NMDARs through Src family kinases. However, it is not yet certain if this involves direct phosphorylation of Panx1 or an allosteric interaction between the channel's C-terminal tail and Src. Interestingly, Panx1 opening during ischaemia and NMDAR over-activation is antagonized by an interfering peptide that comprises amino acids 305-318 of Panx1. Thus, targeting the activation of Panx1 by NMDARs and Src kinases is an attractive mechanism to reduce anoxic depolarizations and neuronal death.
Collapse
Affiliation(s)
- Roger J Thompson
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
431
|
Johnson JW, Glasgow NG, Povysheva NV. Recent insights into the mode of action of memantine and ketamine. Curr Opin Pharmacol 2014; 20:54-63. [PMID: 25462293 DOI: 10.1016/j.coph.2014.11.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 01/21/2023]
Abstract
The clinical benefits of the glutamate receptor antagonists memantine and ketamine have helped sustain optimism that glutamate receptors represent viable targets for development of therapeutic drugs. Both memantine and ketamine antagonize N-methyl-D-aspartate receptors (NMDARs), a glutamate receptor subfamily, by blocking the receptor-associated ion channel. Although many of the basic characteristics of NMDAR inhibition by memantine and ketamine appear similar, their effects on humans and to a lesser extent on rodents are strongly divergent. Some recent research suggests that preferential inhibition by memantine and ketamine of distinct NMDAR subpopulations may contribute to the drugs' differential clinical effects. Here we review studies that shed light on possible explanations for differences between the effects of memantine and ketamine.
Collapse
Affiliation(s)
- Jon W Johnson
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Nathan G Glasgow
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Nadezhda V Povysheva
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
432
|
Chen Z, Zhou Q, Zhang M, Wang H, Yun W, Zhou X. Co-activation of synaptic and extrasynaptic NMDA receptors by neuronal insults determines cell death in acute brain slice. Neurochem Int 2014; 78:28-34. [DOI: 10.1016/j.neuint.2014.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/28/2014] [Accepted: 08/11/2014] [Indexed: 01/30/2023]
|
433
|
Horak M, Petralia RS, Kaniakova M, Sans N. ER to synapse trafficking of NMDA receptors. Front Cell Neurosci 2014; 8:394. [PMID: 25505872 PMCID: PMC4245912 DOI: 10.3389/fncel.2014.00394] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/04/2014] [Indexed: 11/26/2022] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. There are three distinct subtypes of ionotropic glutamate receptors (GluRs) that have been identified including 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid receptors (AMPARs), N-methyl-D-aspartate receptors (NMDARs) and kainate receptors. The most common GluRs in mature synapses are AMPARs that mediate the fast excitatory neurotransmission and NMDARs that mediate the slow excitatory neurotransmission. There have been large numbers of recent reports studying how a single neuron regulates synaptic numbers and types of AMPARs and NMDARs. Our current research is centered primarily on NMDARs and, therefore, we will focus in this review on recent knowledge of molecular mechanisms occurring (1) early in the biosynthetic pathway of NMDARs, (2) in the transport of NMDARs after their release from the endoplasmic reticulum (ER); and (3) at the plasma membrane including excitatory synapses. Because a growing body of evidence also indicates that abnormalities in NMDAR functioning are associated with a number of human psychiatric and neurological diseases, this review together with other chapters in this issue may help to enhance research and to gain further knowledge of normal synaptic physiology as well as of the etiology of many human brain diseases.
Collapse
Affiliation(s)
- Martin Horak
- Institute of Physiology, Academy of Sciences of the Czech Republic v.v.i. Prague, Czech Republic
| | - Ronald S Petralia
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health Bethesda, MD, USA
| | - Martina Kaniakova
- Institute of Physiology, Academy of Sciences of the Czech Republic v.v.i. Prague, Czech Republic
| | - Nathalie Sans
- Neurocentre Magendie, Institut National de la Santé et de la Recherche Médicale, U862 Bordeaux, France ; Neurocentre Magendie, University of Bordeaux, U862 Bordeaux, France
| |
Collapse
|
434
|
Yamazaki D, Horiuchi J, Ueno K, Ueno T, Saeki S, Matsuno M, Naganos S, Miyashita T, Hirano Y, Nishikawa H, Taoka M, Yamauchi Y, Isobe T, Honda Y, Kodama T, Masuda T, Saitoe M. Glial Dysfunction Causes Age-Related Memory Impairment in Drosophila. Neuron 2014; 84:753-63. [DOI: 10.1016/j.neuron.2014.09.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2014] [Indexed: 11/27/2022]
|
435
|
Yu H, Li T, Cui Y, Liao Y, Wang G, Gao L, Zhao F, Jin Y. Effects of lead exposure on d-serine metabolism in the hippocampus of mice at the early developmental stages. Toxicology 2014; 325:189-99. [DOI: 10.1016/j.tox.2014.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 02/05/2023]
|
436
|
Miller OH, Yang L, Wang CC, Hargroder EA, Zhang Y, Delpire E, Hall BJ. GluN2B-containing NMDA receptors regulate depression-like behavior and are critical for the rapid antidepressant actions of ketamine. eLife 2014; 3:e03581. [PMID: 25340958 PMCID: PMC4270067 DOI: 10.7554/elife.03581] [Citation(s) in RCA: 262] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/22/2014] [Indexed: 12/15/2022] Open
Abstract
A single, low dose of the NMDA receptor antagonist ketamine produces rapid antidepressant actions in treatment-resistant depressed patients. Understanding the cellular mechanisms underlying this will lead to new therapies for treating major depression. NMDARs are heteromultimeric complexes formed through association of two GluN1 and two GluN2 subunits. We show that in vivo deletion of GluN2B, only from principal cortical neurons, mimics and occludes ketamine's actions on depression-like behavior and excitatory synaptic transmission. Furthermore, ketamine-induced increases in mTOR activation and synaptic protein synthesis were mimicked and occluded in 2BΔCtx mice. We show here that cortical GluN2B-containing NMDARs are uniquely activated by ambient glutamate to regulate levels of excitatory synaptic transmission. Together these data predict a novel cellular mechanism that explains ketamine's rapid antidepressant actions. In this model, basal glutamatergic neurotransmission sensed by cortical GluN2B-containing NMDARs regulates excitatory synaptic strength in PFC determining basal levels of depression-like behavior. DOI:http://dx.doi.org/10.7554/eLife.03581.001 Depression is the leading cause of disability worldwide, with hundreds of millions of people living with the condition. The ‘gold standard’ for depression treatment involves a combination of psychotherapy and medication. Unfortunately, current antidepressant medications do not help everyone, waiting lists for psychotherapy are often long, and both normally take a number of weeks of regular treatment before they begin to have an effect. As patients are often at a high risk of suicide, it is crucial that treatments that act more quickly, and that are safe and effective, are developed. One substance that may fulfill these requirements is a drug called ketamine. Studies have shown that depression symptoms can be reduced within hours by a single low dose of ketamine, and this effect on mood can last for more than a week. However, progress has been hindered by a lack of knowledge about what ketamine actually does inside the brain. Neurons communicate with one another by releasing chemicals known as neurotransmitters, which transfer information by binding to receptor proteins on the surface of other neurons. Drugs such as ketamine also bind to these receptors. Ketamine works by blocking a specific receptor called the n-methyl d-aspartate (NMDA) receptor, but how this produces antidepressant effects is not fully understood. The NMDA receptor is actually formed from a combination of individual protein subunits, including one called GluN2B. Now Miller, Yang et al. have created mice that lack receptors containing these GluN2B subunits in neurons in their neocortex, including the prefrontal cortex, a brain region involved in complex mental processes such as decision-making. This allowed Miller, Yang et al. to discover that when the neurotransmitter glutamate binds to GluN2B-containing NMDA receptors, it limits the production of certain proteins that make it easier for signals to be transmitted between neurons. Suppressing the synthesis of these proteins too much may cause depressive effects by reducing communication between the neurons in the prefrontal cortex. Both mice lacking GluN2B-containing receptors in their cortical neurons and normal mice treated with ketamine showed a reduced amount of depressive-like behavior. This evidence supports Miller, Yang et al.'s theory that by blocking these NMDA receptors, ketamine restricts their activation. This restores normal levels of protein synthesis, improves communication between neurons in the cortex, and reduces depression. Understanding how ketamine works to alleviate depression is an important step towards developing it into a safe and effective treatment. Further research is also required to determine the conditions that cause overactivation of the GluN2B-containing NMDA receptors. DOI:http://dx.doi.org/10.7554/eLife.03581.002
Collapse
Affiliation(s)
- Oliver H Miller
- Neuroscience Program, Tulane University, New Orleans, United States
| | - Lingling Yang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, United States
| | - Chih-Chieh Wang
- Neuroscience Program, Tulane University, New Orleans, United States
| | | | - Yihui Zhang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, United States
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, United States
| | - Benjamin J Hall
- Neuroscience Program, Tulane University, New Orleans, United States
| |
Collapse
|
437
|
Vyklicky V, Korinek M, Smejkalova T, Balik A, Krausova B, Kaniakova M, Lichnerova K, Cerny J, Krusek J, Dittert I, Horak M, Vyklicky L. Structure, function, and pharmacology of NMDA receptor channels. Physiol Res 2014; 63:S191-203. [PMID: 24564659 DOI: 10.33549/physiolres.932678] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
NMDA receptors have received much attention over the last few decades, due to their role in many types of neural plasticity on the one hand, and their involvement in excitotoxicity on the other hand. There is great interest in developing clinically relevant NMDA receptor antagonists that would block excitotoxic NMDA receptor activation, without interfering with NMDA receptor function needed for normal synaptic transmission and plasticity. This review summarizes current understanding of the structure of NMDA receptors and the mechanisms of NMDA receptor activation and modulation, with special attention given to data describing the properties of various types of NMDA receptor inhibition. Our recent analyses point to certain neurosteroids as NMDA receptor inhibitors with desirable properties. Specifically, these compounds show use-dependent but voltage-independent block, that is predicted to preferentially target excessive tonic NMDA receptor activation. Importantly, neurosteroids are also characterized by use-independent unblock, compatible with minimal disruption of normal synaptic transmission. Thus, neurosteroids are a promising class of NMDA receptor modulators that may lead to the development of neuroprotective drugs with optimal therapeutic profiles.
Collapse
Affiliation(s)
- V Vyklicky
- Department of Cellular Neurophysiology, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
438
|
Glycine transporters type 1 inhibitor promotes brain preconditioning against NMDA-induced excitotoxicity. Neuropharmacology 2014; 89:274-81. [PMID: 25312280 DOI: 10.1016/j.neuropharm.2014.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/07/2014] [Accepted: 10/01/2014] [Indexed: 11/24/2022]
Abstract
Brain preconditioning is a protective mechanism, which can be activated by sub-lethal stimulation of the NMDA receptors (NMDAR) and be used to achieve neuroprotection against stroke and neurodegenerative diseases models. Inhibitors of glycine transporters type 1 modulate glutamatergic neurotransmission through NMDAR, suggesting an alternative therapeutic strategy of brain preconditioning. The aim of this work was to evaluate the effects of brain preconditioning induced by NFPS, a GlyT1 inhibitor, against NMDA-induced excitotoxicity in mice hippocampus, as well as to study its neurochemical mechanisms. C57BL/6 mice (male, 10-weeks-old) were preconditioned by intraperitoneal injection of NFPS at doses of 1.25, 2.5 or 5.0 mg/kg, 24 h before intrahippocampal injection of NMDA. Neuronal death was evaluated by fluoro jade C staining and neurochemical parameters were evaluated by gas chromatography-mass spectrometry, scintillation spectrometry and western blot. We observed that NFPS preconditioning reduced neuronal death in CA1 region of hippocampus submitted to NMDA-induced excitotoxicity. The amino acids (glycine and glutamate) uptake and content were increased in hippocampus of animals treated with NFPS 5.0 mg/kg, which were associated to an increased expression of type-2 glycine transporter (GlyT2) and glutamate transporters (EAAT1, EAAT2 and EAAT3). The expression of GlyT1 was reduced in animals treated with NFPS. Interestingly, the preconditioning reduced expression of GluN2B subunits of NMDAR, whereas did not change the expression of GluN1 or GluN2A in all tested doses. Our study suggests that NFPS preconditioning induces resistance against excitotoxicity, which is associated with neurochemical changes and reduction of GluN2B-containing NMDAR expression.
Collapse
|
439
|
Scribble1/AP2 complex coordinates NMDA receptor endocytic recycling. Cell Rep 2014; 9:712-27. [PMID: 25310985 DOI: 10.1016/j.celrep.2014.09.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 06/18/2014] [Accepted: 09/09/2014] [Indexed: 11/23/2022] Open
Abstract
The appropriate trafficking of glutamate receptors to synapses is crucial for basic synaptic function and synaptic plasticity. It is now accepted that NMDA receptors (NMDARs) internalize and are recycled at the plasma membrane but also exchange between synaptic and extrasynaptic pools; these NMDAR properties are also key to governing synaptic plasticity. Scribble1 is a large PDZ protein required for synaptogenesis and synaptic plasticity. Herein, we show that the level of Scribble1 is regulated in an activity-dependent manner and that Scribble1 controls the number of NMDARs at the plasma membrane. Notably, Scribble1 prevents GluN2A subunits from undergoing lysosomal trafficking and degradation by increasing their recycling to the plasma membrane following NMDAR activation. Finally, we show that a specific YxxR motif on Scribble1 controls these mechanisms through a direct interaction with AP2. Altogether, our findings define a molecular mechanism to control the levels of synaptic NMDARs via Scribble1 complex signaling.
Collapse
|
440
|
Karpyak VM, Biernacka JM, Geske JR, Jenkins GD, Cunningham JM, Rüegg J, Kononenko O, Leontovich AA, Abulseoud OA, Hall-Flavin DK, Loukianova LL, Schneekloth TD, Skime MK, Frank J, Nöthen MM, Rietschel M, Kiefer F, Mann KF, Weinshilboum RM, Frye MA, Choi DS. Genetic markers associated with abstinence length in alcohol-dependent subjects treated with acamprosate. Transl Psychiatry 2014; 4:e462. [PMID: 25290263 PMCID: PMC4350512 DOI: 10.1038/tp.2014.103] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/24/2014] [Indexed: 11/17/2022] Open
Abstract
Acamprosate supports abstinence in some alcohol-dependent subjects, yet predictors of response are unknown. To identify response biomarkers, we investigated associations of abstinence length with polymorphisms in candidate genes in glycine and glutamate neurotransmission pathways and genes previously implicated in acamprosate response. Association analyses were conducted in the discovery sample of 225 alcohol-dependent subjects treated with acamprosate for 3 months in community-based treatment programs in the United States. Data from 110 alcohol-dependent males treated with acamprosate in the study PREDICT were used for replication of the top association findings. Statistical models were adjusted for relevant covariates, including recruitment site and baseline clinical variables associated with response. In the discovery sample, shorter abstinence was associated with increased intensity of alcohol craving and lower number of days between the last drink and initiation of acamprosate treatment. After adjustment for covariates, length of abstinence was associated with the GRIN2B rs2058878 (P=4.6 × 10(-5)). In the replication sample, shorter abstinence was associated with increased craving, increased depressive mood score and higher alcohol consumption. Association of abstinence length with GRIN2B rs2058878 was marginally significant (P=0.0675); as in the discovery sample, the minor A allele was associated with longer abstinence. Furthermore, rs2300272, which is in strong linkage disequilibrium with rs2058878, was also associated with abstinence length (P=0.049). This is the first report of a replicated association of genetic markers with the length of abstinence in acamprosate-treated alcoholics. Investigation of the underlying mechanisms of this association and its usefulness for individualized treatment selection should follow.
Collapse
Affiliation(s)
- V M Karpyak
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA,Department of Psychiatry and Psychology, Mayo Clinic, Rochester, 200 First Street South West, Rochester, MN 55905, USA. E-mail:
| | - J M Biernacka
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA,Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - J R Geske
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - G D Jenkins
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - J M Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - J Rüegg
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - O Kononenko
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - A A Leontovich
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - O A Abulseoud
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - D K Hall-Flavin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - L L Loukianova
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - T D Schneekloth
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - M K Skime
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - J Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - M M Nöthen
- Department of Genomics Life and Brain Research Centre, Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - M Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - F Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - K F Mann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - R M Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - M A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - D S Choi
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
441
|
Li C, Xie M, Luo F, He C, Wang J, Tan G, Hu Z. The extremely low-frequency magnetic field exposure differently affects the AMPAR and NMDAR subunit expressions in the hippocampus, entorhinal cortex and prefrontal cortex without effects on the rat spatial learning and memory. ENVIRONMENTAL RESEARCH 2014; 134:74-80. [PMID: 25046815 DOI: 10.1016/j.envres.2014.06.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/18/2014] [Accepted: 06/28/2014] [Indexed: 06/03/2023]
Abstract
In the present study, we investigated the effects of chronic exposure (14 and 28 days) to a 50 Hz, 0.5 mT extremely low-frequency magnetic field (ELF-MF) on the NMDAR and AMPAR subunit expressions and rat spatial learning and memory. Using the Western blotting method, we found ELF-MF exposure specifically decreased the expressions of GluA2 in the EC post 28 day exposure and GluA3 of AMPAR subunits in the PFC after 14 day exposure, while it did not affect the AMPAR subunit expression in the hippocampus at both time points. As for NMDAR subunits, 14 day ELF-MF exposure significantly increased the levels of GluN2A and GluN2B in the hippocampus. Moreover, the levels of GluN1 and GluN2A were enhanced in the EC and PFC after two weeks of ELF-MF exposure. Interestingly, 28 day ELF-MF exposure induced a different expression pattern for NMDAR subunits. The increased GluN2A expression observed at 14 day post ELF-MF exposure was recovered after prolonged exposure in the hippocampus and PFC. In the EC, the increased expression of GluN1 achieved to control level and, specifically, a decrease in GluN2A level was observed. Surprisingly, neither 14 nor 28 day ELF-MF did affect the rat spatial reference memory as assessed by water maze. These results indicate that the dynamic and brain-region specific changes in ionotropic glutamate receptor expression induced by ELF-MF are insufficient to influence the rat spatial learning ability.
Collapse
Affiliation(s)
- Chao Li
- Department of Physiology, Third Military Medical University, Chongqing 400038, PR China
| | - Meilan Xie
- Department of Physiology, Third Military Medical University, Chongqing 400038, PR China
| | - Fenlan Luo
- Department of Physiology, Third Military Medical University, Chongqing 400038, PR China
| | - Chao He
- Department of Physiology, Third Military Medical University, Chongqing 400038, PR China
| | - Jiali Wang
- Department of Physiology, Third Military Medical University, Chongqing 400038, PR China
| | - Gang Tan
- Department of Physiology, Third Military Medical University, Chongqing 400038, PR China
| | - Zhian Hu
- Department of Physiology, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|
442
|
Xu K, Lipsky RH. Repeated ketamine administration alters N-methyl-D-aspartic acid receptor subunit gene expression: implication of genetic vulnerability for ketamine abuse and ketamine psychosis in humans. Exp Biol Med (Maywood) 2014; 240:145-55. [PMID: 25245072 DOI: 10.1177/1535370214549531] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
For more than 40 years following its approval by the Food and Drug Administration (FDA) as an anesthetic, ketamine, a non-competitive N-methyl-D-aspartic acid (NMDA) receptor antagonist, has been used as a tool of psychiatric research. As a psychedelic drug, ketamine induces psychotic symptoms, cognitive impairment, and mood elevation, which resemble some symptoms of schizophrenia. Recreational use of ketamine has been increasing in recent years. However, little is known of the underlying molecular mechanisms responsible for ketamine-associated psychosis. Recent animal studies have shown that repeated ketamine administration significantly increases NMDA receptor subunit gene expression, in particular subunit 1 (NR1 or GluN1) levels. This results in neurodegeneration, supporting a potential mechanism where up-regulation of NMDA receptors could produce cognitive deficits in chronic ketamine abuse patients. In other studies, NMDA receptor gene variants are associated with addictive behavior. Here, we focus on the roles of NMDA receptor gene subunits in ketamine abuse and ketamine psychosis and propose that full sequencing of NMDA receptor genes may help explain individual vulnerability to ketamine abuse and ketamine-associated psychosis.
Collapse
Affiliation(s)
- Ke Xu
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Robert H Lipsky
- Inova Neuroscience Institute, Inova Health System, Falls Church, VA 22042, USA Department of Molecular Neuroscience, the Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
443
|
Garcia-Munoz M, Lopez-Huerta VG, Carrillo-Reid L, Arbuthnott GW. Extrasynaptic glutamate NMDA receptors: key players in striatal function. Neuropharmacology 2014; 89:54-63. [PMID: 25239809 DOI: 10.1016/j.neuropharm.2014.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/26/2014] [Accepted: 09/06/2014] [Indexed: 10/24/2022]
Abstract
N-methyl-D-aspartate receptors (NMDAR) are crucial for the function of excitatory neurotransmission and are present at the synapse and on the extrasynaptic membrane. The major nucleus of the basal ganglia, striatum, receives a large glutamatergic excitatory input carrying information about movements and associated sensory stimulation for its proper function. Such bombardment of glutamate synaptic release results in a large extracellular concentration of glutamate that can overcome the neuronal and glial uptake homeostatic systems therefore allowing the stimulation of extrasynaptic glutamate receptors. Here we have studied the participation of their extrasynaptic type in cortically evoked responses or in the presence of NMDARs stimulation. We report that extrasynaptic NMDAR blocker memantine, reduced in a dose-dependent manner cortically induced NMDA excitatory currents in striatal neurons (recorded in zero-Mg(++) plus DNQX 10 μM). Moreover, memantine (2-4 μM) significantly reduced the NMDAR-dependent membrane potential oscillations called up and down states. Recordings of neuronal striatal networks with a fluorescent calcium indicator or with multielectrode arrays (MEA) also showed that memantine reduced in a dose-dependent manner, NMDA-induced excitatory currents and network behavior. We used multielectrode arrays (MEA) to grow segregated cortical and striatal neurons. Once synaptic contacts were developed (>21DIV) recordings of extracellular activity confirmed the cortical drive of spontaneous synchronous discharges in both compartments. After severing connections between compartments, active striatal neurons in the presence of memantine (1 μM) and CNQX (10 μM) were predominantly fast spiking interneurons (FSI). The significance of extrasynaptic receptors in the regulation of striatal function and neuronal network activity is evident.
Collapse
Affiliation(s)
- Marianela Garcia-Munoz
- Brain Mechanisms for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Japan.
| | - Violeta G Lopez-Huerta
- Brain Mechanisms for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Japan.
| | - Luis Carrillo-Reid
- Brain Mechanisms for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Japan; Department of Biological Sciences, Columbia University, NY, USA.
| | - Gordon W Arbuthnott
- Brain Mechanisms for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Japan.
| |
Collapse
|
444
|
Romero GE, Lockridge AD, Morgans CW, Bandyopadhyay D, Miller RF. The postnatal development of D-serine in the retinas of two mouse strains, including a mutant mouse with a deficiency in D-amino acid oxidase and a serine racemase knockout mouse. ACS Chem Neurosci 2014; 5:848-54. [PMID: 25083578 PMCID: PMC4176384 DOI: 10.1021/cn5000106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
D-Serine, an N-methyl D-aspartate receptor coagonist, and its regulatory enzymes, D-amino acid oxidase (DAO; degradation) and serine racemase (SR; synthesis), have been implicated in crucial roles of the developing central nervous system, yet the functional position that they play in regulating the availability of d-serine throughout development of the mammalian retina is not well-known. Using capillary electrophoresis and a sensitive method of enantiomeric amino acid separation, we were able to determine total levels of d-serine at specific ages during postnatal development of the mouse retina in two different strains of mice, one of which contained a loss-of-function point mutation for DAO while the other was a SR knockout line. Each mouse line was tested against conspecific wild type (WT) mice for each genetic strain. The universal trend in all WT and transgenic mice was a large amount of total retinal d-serine at postnatal age 2 (P2), followed by a dramatic decrease as the mice matured into adulthood (P70-80). SR knockout mice retinas had 41% less D-serine than WT retinas at P2, and 10 times less as an adult. DAO mutant mice retinas had significantly elevated levels of d-serine when compared to WT retinas at P2 (217%), P4 (223%), P8 (194%), and adulthood (227%).
Collapse
Affiliation(s)
| | | | - Catherine W. Morgans
- Department of Physiology & Pharmacology, Oregon Health and Science University, Portland, Oregon 97239, United States
| | | | | |
Collapse
|
445
|
Siddoway B, Hou H, Yang J, Sun L, Yang H, Wang GY, Xia H. Potassium channel Kv2.1 is regulated through protein phosphatase-1 in response to increases in synaptic activity. Neurosci Lett 2014; 583:142-7. [PMID: 25220706 DOI: 10.1016/j.neulet.2014.08.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 12/15/2022]
Abstract
The functional stability of neurons in the face of large variations in both activity and efficacy of synaptic connections suggests that neurons possess intrinsic negative feedback mechanisms to balance and tune excitability. While NMDA receptors have been established to play an important role in glutamate receptor-dependent plasticity through protein dephosphorylation, the effects of synaptic activation on intrinsic excitability are less well characterized. We show that increases in synaptic activity result in dephosphorylation of the potassium channel subunit Kv2.1. This dephosphorylation is induced through NMDA receptors and is executed through protein phosphatase-1 (PP1), an enzyme previously established to play a key role in regulating ligand gated ion channels in synaptic plasticity. Dephosphorylation of Kv2.1 by PP1 in response to synaptic activity results in substantial shifts in the inactivation curve of IK, resulting in a reduction in intrinsic excitability, facilitating negative feedback to neuronal excitability.
Collapse
Affiliation(s)
- Benjamin Siddoway
- Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA, United States.
| | - Hailong Hou
- Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA, United States
| | - Jinnan Yang
- Department of Structural and Cellular Biology, School of Medicine, Tulane University, New Orleans, LA, United States
| | - Lu Sun
- Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA, United States
| | - Hongtian Yang
- Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA, United States
| | - Guo-yong Wang
- Department of Structural and Cellular Biology, School of Medicine, Tulane University, New Orleans, LA, United States
| | - Houhui Xia
- Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA, United States
| |
Collapse
|
446
|
Zhou X, Chen Z, Yun W, Ren J, Li C, Wang H. Extrasynaptic NMDA Receptor in Excitotoxicity: Function Revisited. Neuroscientist 2014; 21:337-44. [PMID: 25168337 DOI: 10.1177/1073858414548724] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It is generally accepted that proper activation of N-methyl-d-aspartate receptors (NMDARs) promotes neuronal survival and supports neuroplasticity, and excessive NMDAR activation leads to pathological outcomes and neurodegeneration. As NMDARs are found at both synaptic and extrasynaptic sites, there is significant interest in determining how NMDARs at different subcellular locations differentially regulate physiological as well as pathological functions. Better understanding of this issue may support the development of therapeutic strategies to attenuate neuronal death or promote normal brain function. Although the current prevailing theory emphasizes the major role of extrasynaptic NMDARs in neurodegeneration, there is growing evidence indicating the involvement of synaptic receptors. It is also evident that physiological functions of the brain also involve extrasynaptic NMDARs. Our recent studies demonstrate that the degree of cell death following neuronal insults depends on the magnitude and duration of synaptic and extrasynaptic receptor co-activation. These new results underscore the importance of revisiting the function of extrasynaptic NMDARs in cell fate. Furthermore, the development of antagonists that preferentially inhibit synaptic or extrasynaptic receptors may better clarify the role of NMDARs in neurodegeneration.
Collapse
Affiliation(s)
- Xianju Zhou
- Department of Neurology, Changzhou No. 2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Zhuoyou Chen
- Department of Neurology, Changzhou No. 2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Wenwei Yun
- Department of Neurology, Changzhou No. 2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Jianhua Ren
- Key Laboratory of Translational Neuroscience, Zhoukou Normal University, Zhoukou China
| | - Chengwei Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou China
| | - Hongbing Wang
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
447
|
Ma TM, Paul BD, Fu C, Hu S, Zhu H, Blackshaw S, Wolosker H, Snyder SH. Serine racemase regulated by binding to stargazin and PSD-95: potential N-methyl-D-aspartate-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (NMDA-AMPA) glutamate neurotransmission cross-talk. J Biol Chem 2014; 289:29631-41. [PMID: 25164819 DOI: 10.1074/jbc.m114.571604] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
D-Serine, an endogenous co-agonist for the glycine site of the synaptic NMDA glutamate receptor, regulates synaptic plasticity and is implicated in schizophrenia. Serine racemase (SR) is the enzyme that converts L-serine to D-serine. In this study, we demonstrate that SR interacts with the synaptic proteins, postsynaptic density protein 95 (PSD-95) and stargazin, forming a ternary complex. SR binds to the PDZ3 domain of PSD-95 through the PDZ domain ligand at its C terminus. SR also binds to the C terminus of stargazin, which facilitates the cell membrane localization of SR and inhibits its activity. AMPA receptor activation internalizes SR and disrupts its interaction with stargazin, therefore derepressing SR activity, leading to more D-serine production and potentially facilitating NMDA receptor activation. These interactions regulate the enzymatic activity as well as the intracellular localization of SR, potentially coupling the activities of NMDA and AMPA receptors. This shuttling of a neurotransmitter synthesizing enzyme between two receptors appears to be a novel mode of synaptic regulation.
Collapse
Affiliation(s)
- Ting Martin Ma
- From The Solomon H. Snyder Department of Neuroscience and
| | - Bindu D Paul
- From The Solomon H. Snyder Department of Neuroscience and
| | - Chenglai Fu
- From The Solomon H. Snyder Department of Neuroscience and
| | - Shaohui Hu
- Departments of Pharmacology and Molecular Sciences and
| | - Heng Zhu
- Departments of Pharmacology and Molecular Sciences and
| | - Seth Blackshaw
- From The Solomon H. Snyder Department of Neuroscience and
| | - Herman Wolosker
- the Department of Biochemistry, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Solomon H Snyder
- From The Solomon H. Snyder Department of Neuroscience and Departments of Pharmacology and Molecular Sciences and Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and
| |
Collapse
|
448
|
Role of astrocytes in memory and psychiatric disorders. ACTA ACUST UNITED AC 2014; 108:240-51. [PMID: 25169821 DOI: 10.1016/j.jphysparis.2014.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 04/12/2014] [Accepted: 08/18/2014] [Indexed: 01/10/2023]
Abstract
Over the past decade, the traditional description of astrocytes as being merely accessories to brain function has shifted to one in which their role has been pushed into the forefront of importance. Current views suggest that astrocytes:(1) are excitable through calcium fluctuations and respond to neurotransmitters released at synapses; (2) communicate with each other via calcium waves and release their own gliotransmitters which are essential for synaptic plasticity; (3) activate hundreds of synapses at once, thereby synchronizing neuronal activity and activating or inhibiting complete neuronal networks; (4) release vasoactive substances to the smooth muscle surrounding blood vessels enabling the coupling of circulation (blood flow) to local brain activity; and (5) release lactate in an activity-dependent manner in order to supply neuronal metabolic demand. In consequence, the role of astrocytes and astrocytic gliotransmitters is now believed to be critical for higher brain function and recently, evidence begins to gather suggesting that astrocytes are pivotal for learning and memory. All of the above are reviewed here while focusing on the role of astrocytes in memory and psychiatric disorders.
Collapse
|
449
|
Knox R, Brennan-Minnella AM, Lu F, Yang D, Nakazawa T, Yamamoto T, Swanson RA, Ferriero DM, Jiang X. NR2B phosphorylation at tyrosine 1472 contributes to brain injury in a rodent model of neonatal hypoxia-ischemia. Stroke 2014; 45:3040-7. [PMID: 25158771 DOI: 10.1161/strokeaha.114.006170] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE The NR2B subunit of the N-methyl-d-aspartate (NMDA) receptor is phosphorylated by the Src family kinase Fyn in brain, with tyrosine (Y) 1472 as the major phosphorylation site. Although Y1472 phosphorylation is important for synaptic plasticity, it is unknown whether it is involved in NMDA receptor-mediated excitotoxicity in neonatal brain hypoxia-ischemia (HI). This study was designed to elucidate the specific role of Y1472 phosphorylation of NR2B in neonatal HI in vivo and in NMDA-mediated neuronal death in vitro. METHODS Neonatal mice with a knockin mutation of Y1472 to phenylalanine (YF-KI) and their wild-type littermates were subjected to HI using the Vannucci model. Brains were scored 5 days later for damage using cresyl violet and iron staining. Western blotting and immunoprecipitation were performed to determine NR2B tyrosine phosphorylation. Expression of NADPH oxidase subunits and superoxide production were measured in vivo. NMDA-induced calcium response, superoxide formation, and cell death were evaluated in primary cortical neurons. RESULTS After neonatal HI, YF-KI mice have reduced expression of NADPH oxidase subunit gp91phox and p47phox and superoxide production, lower activity of proteases implicated in necrotic and apoptotic cell death, and less brain damage when compared with the wild-type mice. In vitro, YF-KI mutation diminishes superoxide generation in response to NMDA without effect on calcium accumulation and inhibits NMDA and glutamate-induced cell death. CONCLUSIONS Upregulation of NR2B phosphorylation at Y1472 after neonatal HI is involved in superoxide-mediated oxidative stress and contributes to brain injury.
Collapse
Affiliation(s)
- Renatta Knox
- From the Department of Pediatrics (R.K., F.L., D.Y., D.M.F., X.J.), Biomedical Sciences Graduate Program (R.K., D.M.F.), Medical Scientist Training Program (R.K.), Department of Neurology (A.M.B.-M., R.A.S., D.M.F.), and San Francisco Veterans Affairs Medical Center (A.M.B.-M., R.A.S.), University of California, San Francisco; and Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan (T.N., T.Y.)
| | - Angela M Brennan-Minnella
- From the Department of Pediatrics (R.K., F.L., D.Y., D.M.F., X.J.), Biomedical Sciences Graduate Program (R.K., D.M.F.), Medical Scientist Training Program (R.K.), Department of Neurology (A.M.B.-M., R.A.S., D.M.F.), and San Francisco Veterans Affairs Medical Center (A.M.B.-M., R.A.S.), University of California, San Francisco; and Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan (T.N., T.Y.)
| | - Fuxin Lu
- From the Department of Pediatrics (R.K., F.L., D.Y., D.M.F., X.J.), Biomedical Sciences Graduate Program (R.K., D.M.F.), Medical Scientist Training Program (R.K.), Department of Neurology (A.M.B.-M., R.A.S., D.M.F.), and San Francisco Veterans Affairs Medical Center (A.M.B.-M., R.A.S.), University of California, San Francisco; and Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan (T.N., T.Y.)
| | - Diana Yang
- From the Department of Pediatrics (R.K., F.L., D.Y., D.M.F., X.J.), Biomedical Sciences Graduate Program (R.K., D.M.F.), Medical Scientist Training Program (R.K.), Department of Neurology (A.M.B.-M., R.A.S., D.M.F.), and San Francisco Veterans Affairs Medical Center (A.M.B.-M., R.A.S.), University of California, San Francisco; and Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan (T.N., T.Y.)
| | - Takanobu Nakazawa
- From the Department of Pediatrics (R.K., F.L., D.Y., D.M.F., X.J.), Biomedical Sciences Graduate Program (R.K., D.M.F.), Medical Scientist Training Program (R.K.), Department of Neurology (A.M.B.-M., R.A.S., D.M.F.), and San Francisco Veterans Affairs Medical Center (A.M.B.-M., R.A.S.), University of California, San Francisco; and Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan (T.N., T.Y.)
| | - Tadashi Yamamoto
- From the Department of Pediatrics (R.K., F.L., D.Y., D.M.F., X.J.), Biomedical Sciences Graduate Program (R.K., D.M.F.), Medical Scientist Training Program (R.K.), Department of Neurology (A.M.B.-M., R.A.S., D.M.F.), and San Francisco Veterans Affairs Medical Center (A.M.B.-M., R.A.S.), University of California, San Francisco; and Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan (T.N., T.Y.)
| | - Raymond A Swanson
- From the Department of Pediatrics (R.K., F.L., D.Y., D.M.F., X.J.), Biomedical Sciences Graduate Program (R.K., D.M.F.), Medical Scientist Training Program (R.K.), Department of Neurology (A.M.B.-M., R.A.S., D.M.F.), and San Francisco Veterans Affairs Medical Center (A.M.B.-M., R.A.S.), University of California, San Francisco; and Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan (T.N., T.Y.)
| | - Donna M Ferriero
- From the Department of Pediatrics (R.K., F.L., D.Y., D.M.F., X.J.), Biomedical Sciences Graduate Program (R.K., D.M.F.), Medical Scientist Training Program (R.K.), Department of Neurology (A.M.B.-M., R.A.S., D.M.F.), and San Francisco Veterans Affairs Medical Center (A.M.B.-M., R.A.S.), University of California, San Francisco; and Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan (T.N., T.Y.)
| | - Xiangning Jiang
- From the Department of Pediatrics (R.K., F.L., D.Y., D.M.F., X.J.), Biomedical Sciences Graduate Program (R.K., D.M.F.), Medical Scientist Training Program (R.K.), Department of Neurology (A.M.B.-M., R.A.S., D.M.F.), and San Francisco Veterans Affairs Medical Center (A.M.B.-M., R.A.S.), University of California, San Francisco; and Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan (T.N., T.Y.).
| |
Collapse
|
450
|
Novel human D-amino acid oxidase inhibitors stabilize an active-site lid-open conformation. Biosci Rep 2014; 34:BSR20140071. [PMID: 25001371 PMCID: PMC4127593 DOI: 10.1042/bsr20140071] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The NMDAR (N-methyl-D-aspartate receptor) is a central regulator of synaptic plasticity and learning and memory. hDAAO (human D-amino acid oxidase) indirectly reduces NMDAR activity by degrading the NMDAR co-agonist D-serine. Since NMDAR hypofunction is thought to be a foundational defect in schizophrenia, hDAAO inhibitors have potential as treatments for schizophrenia and other nervous system disorders. Here, we sought to identify novel chemicals that inhibit hDAAO activity. We used computational tools to design a focused, purchasable library of compounds. After screening this library for hDAAO inhibition, we identified the structurally novel compound, 'compound 2' [3-(7-hydroxy-2-oxo-4-phenyl-2H-chromen-6-yl)propanoic acid], which displayed low nM hDAAO inhibitory potency (Ki=7 nM). Although the library was expected to enrich for compounds that were competitive for both D-serine and FAD, compound 2 actually was FAD uncompetitive, much like canonical hDAAO inhibitors such as benzoic acid. Compound 2 and an analog were independently co-crystalized with hDAAO. These compounds stabilized a novel conformation of hDAAO in which the active-site lid was in an open position. These results confirm previous hypotheses regarding active-site lid flexibility of mammalian D-amino acid oxidases and could assist in the design of the next generation of hDAAO inhibitors.
Collapse
|