401
|
Lu S, Sung T, Lin N, Abraham RT, Jessen BA. Lysosomal adaptation: How cells respond to lysosomotropic compounds. PLoS One 2017; 12:e0173771. [PMID: 28301521 PMCID: PMC5354416 DOI: 10.1371/journal.pone.0173771] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/27/2017] [Indexed: 12/21/2022] Open
Abstract
Lysosomes are acidic organelles essential for degradation and cellular homoeostasis and recently lysosomes have been shown as signaling hub to respond to the intra and extracellular changes (e.g. amino acid availability). Compounds including pharmaceutical drugs that are basic and lipophilic will become sequestered inside lysosomes (lysosomotropic). How cells respond to the lysosomal stress associated with lysosomotropism is not well characterized. Our goal is to assess the lysosomal changes and identify the signaling pathways that involve in the lysosomal changes. Eight chemically diverse lysosomotropic drugs from different therapeutic areas were subjected to the evaluation using the human adult retinal pigmented epithelium cell line, ARPE-19. All lysosomotropic drugs tested triggered lysosomal activation demonstrated by increased lysosotracker red (LTR) and lysosensor green staining, increased cathepsin activity, and increased LAMP2 staining. However, tested lysosomotropic drugs also prompted lysosomal dysfunction exemplified by intracellular and extracellular substrate accumulation including phospholipid, SQSTM1/p62, GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) and opsin. Lysosomal activation observed was likely attributed to lysosomal dysfunction, leading to compensatory responses including nuclear translocation of transcriptional factors TFEB, TFE3 and MITF. The adaptive changes are protective to the cells under lysosomal stress. Mechanistic studies implicate calcium and mTORC1 modulation involvement in the adaptive changes. These results indicate that lysosomotropic compounds could evoke a compensatory lysosomal biogenic response but with the ultimate consequence of lysosomal functional impairment. This work also highlights a pathway of response to lysosomal stress and evidences the role of TFEB, TFE3 and MITF in the stress response.
Collapse
Affiliation(s)
- Shuyan Lu
- Drug Safety Research and Development, Pfizer Inc., San Diego, CA, United States of America
- * E-mail: (SL); (BAJ)
| | - Tae Sung
- Drug Safety Research and Development, Pfizer Inc., San Diego, CA, United States of America
| | - Nianwei Lin
- iXCells Biotechnologies, San Diego, CA, United States of America
| | - Robert T. Abraham
- Oncology Research Unit, Pfizer Inc., San Diego, CA, United States of America
| | - Bart A. Jessen
- Drug Safety Research and Development, Pfizer Inc., San Diego, CA, United States of America
- * E-mail: (SL); (BAJ)
| |
Collapse
|
402
|
Desdín-Micó G, Mittelbrunn M. Role of exosomes in the protection of cellular homeostasis. Cell Adh Migr 2017; 11:127-134. [PMID: 27875097 PMCID: PMC5351736 DOI: 10.1080/19336918.2016.1251000] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/13/2016] [Accepted: 10/17/2016] [Indexed: 12/20/2022] Open
Abstract
Due to their ability to shuttle proteins, lipids and genetic material between distant cells, exosomes promote extensive phenotypic changes in recipient cells, modulating immune responses, cellular migration, cancer metastasis or the spreading of neurotoxic protein aggregates in neurodegenerative diseases. Besides intercellular communication, exosome biogenesis and secretion permit the rapid release of a selective repertoire of compounds, conferring cells with an additional mechanism to fight alterations in protein, lipid or RNA homeostasis during stress or pathological conditions. Here, we review the dual role of the different quality control mechanisms arising from the endolysosomal system and the diverse situations that control the decision between degradation or secretion. The crosstalk between exosome secretion and the different cellular degradation mechanisms confers an additional layer of protection to maintain cellular integrity and homeostasis in a number of physiological and pathological conditions.
Collapse
Affiliation(s)
| | - María Mittelbrunn
- Instituto de Investigación del Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
403
|
Cuajungco MP, Kiselyov K. The mucolipin-1 (TRPML1) ion channel, transmembrane-163 (TMEM163) protein, and lysosomal zinc handling. Front Biosci (Landmark Ed) 2017; 22:1330-1343. [PMID: 28199205 DOI: 10.2741/4546] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lysosomes are emerging as important players in cellular zinc ion (Zn2+) homeostasis. The series of work on Zn2+ accumulation in the neuronal lysosomes and the mounting evidence on the role of lysosomal Zn2+ in cell death during mammary gland involution set a biological precedent for the central role of the lysosomes in cellular Zn2+ handling. Such a role appears to involve cytoprotection on the one hand, and cell death on the other. The recent series of work began to identify the molecular determinants of the lysosomal Zn2+ handling. In addition to zinc transporters (ZnT) of the solute-carrier family type 30A (SLC30A), the lysosomal ion channel TRPML1 and the poorly understood novel transporter TMEM163 have been shown to play a role in the Zn2+ uptake by the lysosomes. In this review, we summarize the current knowledge on molecular determinants of the lysosomal Zn2+ handling, uptake, and release pathways, as well as discuss their possible roles in health and disease.
Collapse
Affiliation(s)
- Math P Cuajungco
- Department of Biological Science, and Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA, 92831, USA
| | - Kirill Kiselyov
- Dept. of Biological Sciences, University of Pittsburgh, 519 Langley Hall, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA,
| |
Collapse
|
404
|
Matalonga L, Gort L, Ribes A. Small molecules as therapeutic agents for inborn errors of metabolism. J Inherit Metab Dis 2017; 40:177-193. [PMID: 27966099 DOI: 10.1007/s10545-016-0005-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 01/03/2023]
Abstract
Most inborn errors of metabolism (IEM) remain without effective treatment mainly due to the incapacity of conventional therapeutic approaches to target the neurological symptomatology and to ameliorate the multisystemic involvement frequently observed in these patients. However, in recent years, the therapeutic use of small molecules has emerged as a promising approach for treating this heterogeneous group of disorders. In this review, we focus on the use of therapeutically active small molecules to treat IEM, including readthrough agents, pharmacological chaperones, proteostasis regulators, substrate inhibitors, and autophagy inducers. The small molecules reviewed herein act at different cellular levels, and this knowledge provides new tools to set up innovative treatment approaches for particular IEM. We review the molecular mechanism underlying therapeutic properties of small molecules, methodologies used to screen for these compounds, and their applicability in preclinical and clinical practice.
Collapse
Affiliation(s)
- Leslie Matalonga
- Secció Errors Congènits del Metabolisme-IBC. Servei de Bioquímica i Genètica Molecular, Hospital Clínic, CIBERER-U737; IDIBAPS, C/ Mejía Lequerica s/n, 08028, Barcelona, Spain.
| | - Laura Gort
- Secció Errors Congènits del Metabolisme-IBC. Servei de Bioquímica i Genètica Molecular, Hospital Clínic, CIBERER-U737; IDIBAPS, C/ Mejía Lequerica s/n, 08028, Barcelona, Spain
| | - Antonia Ribes
- Secció Errors Congènits del Metabolisme-IBC. Servei de Bioquímica i Genètica Molecular, Hospital Clínic, CIBERER-U737; IDIBAPS, C/ Mejía Lequerica s/n, 08028, Barcelona, Spain
| |
Collapse
|
405
|
Palmieri M, Pal R, Nelvagal HR, Lotfi P, Stinnett GR, Seymour ML, Chaudhury A, Bajaj L, Bondar VV, Bremner L, Saleem U, Tse DY, Sanagasetti D, Wu SM, Neilson JR, Pereira FA, Pautler RG, Rodney GG, Cooper JD, Sardiello M. mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases. Nat Commun 2017; 8:14338. [PMID: 28165011 PMCID: PMC5303831 DOI: 10.1038/ncomms14338] [Citation(s) in RCA: 302] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022] Open
Abstract
Neurodegenerative diseases characterized by aberrant accumulation of undigested cellular components represent unmet medical conditions for which the identification of actionable targets is urgently needed. Here we identify a pharmacologically actionable pathway that controls cellular clearance via Akt modulation of transcription factor EB (TFEB), a master regulator of lysosomal pathways. We show that Akt phosphorylates TFEB at Ser467 and represses TFEB nuclear translocation independently of mechanistic target of rapamycin complex 1 (mTORC1), a known TFEB inhibitor. The autophagy enhancer trehalose activates TFEB by diminishing Akt activity. Administration of trehalose to a mouse model of Batten disease, a prototypical neurodegenerative disease presenting with intralysosomal storage, enhances clearance of proteolipid aggregates, reduces neuropathology and prolongs survival of diseased mice. Pharmacological inhibition of Akt promotes cellular clearance in cells from patients with a variety of lysosomal diseases, thus suggesting broad applicability of this approach. These findings open new perspectives for the clinical translation of TFEB-mediated enhancement of cellular clearance in neurodegenerative storage diseases.
Collapse
Affiliation(s)
- Michela Palmieri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
| | - Rituraj Pal
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hemanth R. Nelvagal
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 9RT, UK
| | - Parisa Lotfi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
| | - Gary R. Stinnett
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Michelle L. Seymour
- Huffington Center on Aging and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Arindam Chaudhury
- Department of Molecular Physiology and Biophysics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Lakshya Bajaj
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
| | - Vitaliy V. Bondar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
| | - Laura Bremner
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 9RT, UK
| | - Usama Saleem
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 9RT, UK
| | - Dennis Y. Tse
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030, USA
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Deepthi Sanagasetti
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
| | - Samuel M. Wu
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Joel R. Neilson
- Department of Molecular Physiology and Biophysics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Fred A. Pereira
- Huffington Center on Aging and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Robia G. Pautler
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - George G. Rodney
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jonathan D. Cooper
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 9RT, UK
| | - Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
| |
Collapse
|
406
|
Rega LR, Polishchuk E, Montefusco S, Napolitano G, Tozzi G, Zhang J, Bellomo F, Taranta A, Pastore A, Polishchuk R, Piemonte F, Medina DL, Catz SD, Ballabio A, Emma F. Activation of the transcription factor EB rescues lysosomal abnormalities in cystinotic kidney cells. Kidney Int 2017; 89:862-73. [PMID: 26994576 DOI: 10.1016/j.kint.2015.12.045] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 12/22/2015] [Accepted: 12/30/2015] [Indexed: 11/15/2022]
Abstract
Nephropathic cystinosis is a rare autosomal recessive lysosomal storage disease characterized by accumulation of cystine into lysosomes secondary to mutations in the cystine lysosomal transporter, cystinosin. The defect initially causes proximal tubular dysfunction (Fanconi syndrome) which in time progresses to end-stage renal disease. Cystinotic patients treated with the cystine-depleting agent, cysteamine, have improved life expectancy, delayed progression to chronic renal failure, but persistence of Fanconi syndrome. Here, we have investigated the role of the transcription factor EB (TFEB), a master regulator of the autophagy-lysosomal pathway, in conditionally immortalized proximal tubular epithelial cells derived from the urine of a healthy volunteer or a cystinotic patient. Lack of cystinosin reduced TFEB expression and induced TFEB nuclear translocation. Stimulation of endogenous TFEB activity by genistein, or overexpression of exogenous TFEB lowered cystine levels within 24 hours in cystinotic cells. Overexpression of TFEB also stimulated delayed endocytic cargo processing within 24 hours. Rescue of other abnormalities of the lysosomal compartment was observed but required prolonged expression of TFEB. These abnormalities could not be corrected with cysteamine. Thus, these data show that the consequences of cystinosin deficiency are not restricted to cystine accumulation and support the role of TFEB as a therapeutic target for the treatment of lysosomal storage diseases, in particular of cystinosis.
Collapse
Affiliation(s)
- Laura R Rega
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy.
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Sandro Montefusco
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | | | - Giulia Tozzi
- Unit for Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Jinzhong Zhang
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Francesco Bellomo
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Anna Taranta
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Anna Pastore
- Laboratory of Proteomics and Metabolomics, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Roman Polishchuk
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Fiorella Piemonte
- Unit for Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Sergio D Catz
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Francesco Emma
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| |
Collapse
|
407
|
Borland H, Vilhardt F. Prelysosomal Compartments in the Unconventional Secretion of Amyloidogenic Seeds. Int J Mol Sci 2017; 18:ijms18010227. [PMID: 28124989 PMCID: PMC5297856 DOI: 10.3390/ijms18010227] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/09/2017] [Accepted: 01/16/2017] [Indexed: 12/18/2022] Open
Abstract
A mechanistic link between neuron-to-neuron transmission of secreted amyloid and propagation of protein malconformation cytopathology and disease has recently been uncovered in animal models. An enormous interest in the unconventional secretion of amyloids from neurons has followed. Amphisomes and late endosomes are the penultimate maturation products of the autophagosomal and endosomal pathways, respectively, and normally fuse with lysosomes for degradation. However, under conditions of perturbed membrane trafficking and/or lysosomal deficiency, prelysosomal compartments may instead fuse with the plasma membrane to release any contained amyloid. After a brief introduction to the endosomal and autophagosomal pathways, we discuss the evidence for autophagosomal secretion (exophagy) of amyloids, with a comparative emphasis on Aβ1-42 and α-synuclein, as luminal and cytosolic amyloids, respectively. The ESCRT-mediated import of cytosolic amyloid into late endosomal exosomes, a known vehicle of transmission of macromolecules between cells, is also reviewed. Finally, mechanisms of lysosomal dysfunction, deficiency, and exocytosis are exemplified in the context of genetically identified risk factors, mainly for Parkinson's disease. Exocytosis of prelysosomal or lysosomal organelles is a last resort for clearance of cytotoxic material and alleviates cytopathy. However, they also represent a vehicle for the concentration, posttranslational modification, and secretion of amyloid seeds.
Collapse
Affiliation(s)
- Helena Borland
- Department of Neurodegeneration In Vitro, H. Lundbeck A/S, 2500 Valby, Denmark.
| | - Frederik Vilhardt
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, 2200N Copenhagen, Denmark.
| |
Collapse
|
408
|
Sbano L, Bonora M, Marchi S, Baldassari F, Medina DL, Ballabio A, Giorgi C, Pinton P. TFEB-mediated increase in peripheral lysosomes regulates store-operated calcium entry. Sci Rep 2017; 7:40797. [PMID: 28084445 PMCID: PMC5233950 DOI: 10.1038/srep40797] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/09/2016] [Indexed: 01/04/2023] Open
Abstract
Lysosomes are membrane-bound organelles mainly involved in catabolic processes. In addition, lysosomes can expel their contents outside of the cell via lysosomal exocytosis. Some of the key steps involved in these important cellular processes, such as vesicular fusion and trafficking, require calcium (Ca2+) signaling. Recent data show that lysosomal functions are transcriptionally regulated by transcription factor EB (TFEB) through the induction of genes involved in lysosomal biogenesis and exocytosis. Given these observations, we investigated the roles of TFEB and lysosomes in intracellular Ca2+ homeostasis. We studied the effect of transient modulation of TFEB expression in HeLa cells by measuring the cytosolic Ca2+ response after capacitative Ca2+ entry activation and Ca2+ dynamics in the endoplasmic reticulum (ER) and directly in lysosomes. Our observations show that transient TFEB overexpression significantly reduces cytosolic Ca2+ levels under a capacitative influx model and ER re-uptake of calcium, increasing the lysosomal Ca2+ buffering capacity. Moreover, lysosomal destruction or damage abolishes these TFEB-dependent effects in both the cytosol and ER. These results suggest a possible Ca2+ buffering role for lysosomes and shed new light on lysosomal functions during intracellular Ca2+ homeostasis.
Collapse
Affiliation(s)
- Luigi Sbano
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, 44121, Italy
| | - Massimo Bonora
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, 44121, Italy
| | - Saverio Marchi
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, 44121, Italy
| | - Federica Baldassari
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, 44121, Italy
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy.,Dept. of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.,Medical Genetics, Dept. of Translational Medicine, Federico II University, 80131 Naples, Italy
| | - Carlotta Giorgi
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, 44121, Italy
| | - Paolo Pinton
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, 44121, Italy
| |
Collapse
|
409
|
Vega-Rubin-de-Celis S, Peña-Llopis S, Konda M, Brugarolas J. Multistep regulation of TFEB by MTORC1. Autophagy 2017; 13:464-472. [PMID: 28055300 DOI: 10.1080/15548627.2016.1271514] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The master regulator of lysosome biogenesis, TFEB, is regulated by MTORC1 through phosphorylation at S211, and a S211A mutation increases nuclear localization. However, TFEBS211A localizes diffusely in both cytoplasm and nucleus and, as we show, retains regulation by MTORC1. Here, we report that endogenous TFEB is phosphorylated at S122 in an MTORC1-dependent manner, that S122 is phosphorylated in vitro by recombinant MTOR, and that S122 is important for TFEB regulation by MTORC1. Specifically, nuclear localization following MTORC1 inhibition is blocked by a S122D mutation (despite S211 dephosphorylation). Furthermore, such a mutation inhibits lysosomal biogenesis induced by Torin1. These data reveal a novel mechanism of TFEB regulation by MTORC1 essential for lysosomal biogenesis.
Collapse
Affiliation(s)
- Silvia Vega-Rubin-de-Celis
- a Kidney Cancer Program, Simmons Comprehensive Cancer Center , University of Texas Southwestern Medical Center , Dallas , TX , USA.,b Department of Internal Medicine, Hematology/Oncology Division , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Samuel Peña-Llopis
- a Kidney Cancer Program, Simmons Comprehensive Cancer Center , University of Texas Southwestern Medical Center , Dallas , TX , USA.,b Department of Internal Medicine, Hematology/Oncology Division , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Meghan Konda
- a Kidney Cancer Program, Simmons Comprehensive Cancer Center , University of Texas Southwestern Medical Center , Dallas , TX , USA.,b Department of Internal Medicine, Hematology/Oncology Division , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - James Brugarolas
- a Kidney Cancer Program, Simmons Comprehensive Cancer Center , University of Texas Southwestern Medical Center , Dallas , TX , USA.,b Department of Internal Medicine, Hematology/Oncology Division , University of Texas Southwestern Medical Center , Dallas , TX , USA
| |
Collapse
|
410
|
Ou L, Przybilla MJ, Whitley CB. Proteomic analysis of mucopolysaccharidosis I mouse brain with two-dimensional polyacrylamide gel electrophoresis. Mol Genet Metab 2017; 120:101-110. [PMID: 27742266 PMCID: PMC5293606 DOI: 10.1016/j.ymgme.2016.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/08/2016] [Accepted: 10/08/2016] [Indexed: 12/19/2022]
Abstract
Mucopolysaccharidosis type I (MPS I) is due to deficiency of α-l-iduronidase (IDUA) and subsequent storage of undegraded glycosaminoglycans (GAG). The severe form of the disease, known as Hurler syndrome, is characterized by mental retardation and neurodegeneration of unknown etiology. To identify potential biomarkers and unveil the neuropathology mechanism of MPS I disease, two-dimensional polyacrylamide gel electrophoresis (PAGE) and nanoliquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) were applied to compare proteome profiling of brains from MPS I and control mice (5-month old). A total of 2055 spots were compared, and 25 spots (corresponding to 50 different proteins) with a fold change ≥3.5 and a p value <0.05 between MPS I and control mice were further analyzed by nanoLC-MS/MS. These altered proteins could be divided into three major groups based on Gene Ontology (GO) terms: proteins involved in metabolism, neurotransmission and cytoskeleton. Cytoskeletal proteins including ACTA1, ACTN4, TUBB4B and DNM1 were significantly downregulated. STXBP1, a regulator of synaptic vesicle fusion and docking was also downregulated, indicating impaired synaptic transmission. Additionally, proteins regulating Ca2+ and H+ homeostasis including ATP6V1B2 and RYR3 were downregulated, which may be related to disrupted autophagic and endocytotic pathways. Notably, there is no altered expression in proteins associated with cell death, ubiquitin or inflammation. These results for the first time highlight the important role of alterations in metabolism pathways, intracellular ionic homeostasis and the cytoskeleton in the neuropathology of MPS I disease. The proteins identified in this study would provide potential biomarkers for diagnostic and therapeutic studies of MPS I.
Collapse
Affiliation(s)
- Li Ou
- Gene Therapy Center, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, United States.
| | - Michael J Przybilla
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, United States
| | - Chester B Whitley
- Gene Therapy Center, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, United States; Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
411
|
Bouché V, Espinosa AP, Leone L, Sardiello M, Ballabio A, Botas J. Drosophila Mitf regulates the V-ATPase and the lysosomal-autophagic pathway. Autophagy 2016; 12:484-98. [PMID: 26761346 DOI: 10.1080/15548627.2015.1134081] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An evolutionarily conserved gene network regulates the expression of genes involved in lysosome biogenesis, autophagy, and lipid metabolism. In mammals, TFEB and other members of the MiTF-TFE family of transcription factors control this network. Here we report that the lysosomal-autophagy pathway is controlled by Mitf gene in Drosophila melanogaster. Mitf is the single MiTF-TFE family member in Drosophila and prior to this work was known only for its function in eye development. We show that Mitf regulates the expression of genes encoding V-ATPase subunits as well as many additional genes involved in the lysosomal-autophagy pathway. Reduction of Mitf function leads to abnormal lysosomes and impairs autophagosome fusion and lipid breakdown during the response to starvation. In contrast, elevated Mitf levels increase the number of lysosomes, autophagosomes and autolysosomes, and decrease the size of lipid droplets. Inhibition of Drosophila MTORC1 induces Mitf translocation to the nucleus, underscoring conserved regulatory mechanisms between Drosophila and mammalian systems. Furthermore, we show Mitf-mediated clearance of cytosolic and nuclear expanded ATXN1 (ataxin 1) in a cellular model of spinocerebellar ataxia type 1 (SCA1). This remarkable observation illustrates the potential of the lysosomal-autophagy system to prevent toxic protein aggregation in both the cytoplasmic and nuclear compartments. We anticipate that the genetics of the Drosophila model and the absence of redundant MIT transcription factors will be exploited to investigate the regulation and function of the lysosomal-autophagy gene network.
Collapse
Affiliation(s)
- Valentina Bouché
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,b Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital , Houston , TX , USA.,c Telethon Institute of Genetics and Medicine (TIGEM) , Naples , Italy
| | - Alma Perez Espinosa
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,b Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital , Houston , TX , USA
| | - Luigi Leone
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,b Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital , Houston , TX , USA.,d Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche , Pozzuoli , Italy
| | - Marco Sardiello
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,b Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital , Houston , TX , USA
| | - Andrea Ballabio
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,b Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital , Houston , TX , USA.,c Telethon Institute of Genetics and Medicine (TIGEM) , Naples , Italy.,e Medical Genetics, Department of Translational Medicine, Federico II University , Naples , Italy
| | - Juan Botas
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,b Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital , Houston , TX , USA
| |
Collapse
|
412
|
Cherqui S, Courtoy PJ. The renal Fanconi syndrome in cystinosis: pathogenic insights and therapeutic perspectives. Nat Rev Nephrol 2016; 13:115-131. [PMID: 27990015 DOI: 10.1038/nrneph.2016.182] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cystinosis is an autosomal recessive metabolic disease that belongs to the family of lysosomal storage disorders. It is caused by a defect in the lysosomal cystine transporter, cystinosin, which results in an accumulation of cystine in all organs. Despite the ubiquitous expression of cystinosin, a renal Fanconi syndrome is often the first manifestation of cystinosis, usually presenting within the first year of life and characterized by the early and severe dysfunction of proximal tubule cells, highlighting the unique vulnerability of this cell type. The current therapy for cystinosis, cysteamine, facilitates lysosomal cystine clearance and greatly delays progression to kidney failure but is unable to correct the Fanconi syndrome. This Review summarizes decades of studies that have fostered a better understanding of the pathogenesis of the renal Fanconi syndrome associated with cystinosis. These studies have unraveled some of the early molecular changes that occur before the onset of tubular atrophy and identified a role for cystinosin beyond cystine transport, in endolysosomal trafficking and proteolysis, lysosomal clearance, autophagy and the regulation of energy balance. These studies have also led to the identification of new potential therapeutic targets and here, we outline the potential role of stem cell therapy for cystinosis and provide insights into the mechanism of haematopoietic stem cell-mediated kidney protection.
Collapse
Affiliation(s)
- Stephanie Cherqui
- Department of Pediatrics, Division of Genetics, University of California San Diego, 9500 Gilman Drive, MC 0734, La Jolla, California 92093-0734, USA
| | - Pierre J Courtoy
- Cell biology, de Duve Institute and Université catholique de Louvain, UCL-Brussels, 75 Avenue Hippocrate, B-1200 Brussels, Belgium
| |
Collapse
|
413
|
Abstract
Macroautophagy is a catabolic process deputed to the turnover of intracellular components. Recent studies have revealed that transcriptional regulation is a major mechanism controlling autophagy. Currently, more than 20 transcription factors have been shown to modulate cellular autophagy levels. Among them, the transcription factor EB (TFEB) appears to have the broadest proautophagy role, given its capacity to control the biogenesis of lysosomes and autophagosomes, the two main organelles required for the autophagy pathway. TFEB has attracted major attention owing to its ability to enhance cellular clearance of pathogenic substrates in a variety of animal models of disease, such as lysosomal storage disorders, Parkinson's, Alzheimer's, α1-antitrypsin, obesity as well as others, suggesting that the TFEB pathway represents an extraordinary possibility for future development of innovative therapies. Importantly, the subcellular localization and activity of TFEB are regulated by its phosphorylation status, suggesting that TFEB activity can be pharmacologically targeted. Given the growing list of common and rare diseases in which manipulation of autophagy may be beneficial, in this chapter we describe a set of validated protocols developed to modulate and analyze TFEB-mediated enhancement of autophagy both in vitro and in vivo conditions.
Collapse
Affiliation(s)
- D L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - C Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy; Dulbecco Telethon Institute (DTI), Naples, Italy; Medical Genetics, Federico II University, Naples, Italy
| | - A Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy; Medical Genetics, Federico II University, Naples, Italy; Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States.
| |
Collapse
|
414
|
Marcoline FV, Ishida Y, Mindell JA, Nayak S, Grabe M. A mathematical model of osteoclast acidification during bone resorption. Bone 2016; 93:167-180. [PMID: 27650914 PMCID: PMC5077641 DOI: 10.1016/j.bone.2016.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 08/16/2016] [Accepted: 09/09/2016] [Indexed: 12/01/2022]
Abstract
Bone resorption by osteoclasts occurs through the creation of a sealed extracellular compartment (ECC), or pit, adjacent to the bone that is subsequently acidified through a complex biological process. The low pH of the pit dissolves the bone mineral and activates acid proteases that further break down the bone matrix. There are many ion channels, transporters, and soluble proteins involved in osteoclast mediated resorption, and in the past few years, there has been an increased understanding of the identity and properties of some key proteins such as the ClC-7 Cl-/H+ antiporter and the HV1 proton channel. Here we present a detailed mathematical model of osteoclast acidification that includes the influence of many of the key regulatory proteins. The primary enzyme responsible for acidification is the vacuolar H+-ATPase (V-ATPase), which pumps protons from the cytoplasm into the pit. Unlike the acidification of small lysosomes, the pit is so large that protons become depleted from the cytoplasm. Hence, proton buffering and production in the cytoplasm by carbonic anhydrase II (CAII) is potentially important for proper acidification. We employ an ordinary differential equations (ODE)-based model that accounts for the changes in ionic species in the cytoplasm and the resorptive pit. Additionally, our model tracks ionic flow between the cytoplasm and the extracellular solution surrounding the cell. Whenever possible, the properties of individual channels and transporters are calibrated based on electrophysiological measurements, and physical properties of the cell, such as buffering capacity, surface areas, and volumes, are estimated based on available data. Our model reproduces many of the experimental findings regarding the role of key proteins in the acidification process, and it allows us to estimate, among other things, number of active pumps, protons moved, and the influence of particular mutations implicated in disease.
Collapse
Affiliation(s)
- Frank V Marcoline
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Yoichi Ishida
- Department of Philosophy, Ohio University, Athens, OH 45701, USA
| | - Joseph A Mindell
- Membrane Transport Biophysics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Smita Nayak
- Swedish Center for Research and Innovation, Swedish Health Services, Seattle, WA 98122, USA
| | - Michael Grabe
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
415
|
Schröder B, Saftig P. Intramembrane proteolysis within lysosomes. Ageing Res Rev 2016; 32:51-64. [PMID: 27143694 DOI: 10.1016/j.arr.2016.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/01/2016] [Accepted: 04/26/2016] [Indexed: 11/26/2022]
Abstract
Regulated intramembrane proteolysis is of pivotal importance in a diverse set of developmental and physiological processes. Altered intramembrane substrate turnover may be associated with neurodegeneration, cancer and impaired immune function. In this review we will focus on the intramembrane proteases which have been localized in the lysosomal membrane. Members of the γ-secretase complex and γ-secretase activity are found in the lysosomal membrane and are discussed to contribute to intracellular amyloid β production. Mutant or deficient γ-secretase may cause disturbed lysosomal function. The signal peptide peptidase-like (SPPL) protease 2a is a lysosomal membrane component and cleaves CD74, the invariant chain of the MHC II complex, as well as FasL, TNF, ITM2B and TMEM106, type II transmembrane proteins involved in the regulation of immunity and neurodegeneration. Therefore, it can be concluded, that not only proteolysis within the lysosomal lumen but also within lysosomal membranes regulates important cellular functions and contributes essentially to proteostasis of membrane proteins what may become increasingly compromised in the aged individual.
Collapse
|
416
|
Carmona-Gutierrez D, Hughes AL, Madeo F, Ruckenstuhl C. The crucial impact of lysosomes in aging and longevity. Ageing Res Rev 2016; 32:2-12. [PMID: 27125853 DOI: 10.1016/j.arr.2016.04.009] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/26/2016] [Accepted: 04/23/2016] [Indexed: 02/07/2023]
Abstract
Lysosomes are the main catabolic organelles of a cell and play a pivotal role in a plethora of cellular processes, including responses to nutrient availability and composition, stress resistance, programmed cell death, plasma membrane repair, development, and cell differentiation. In line with this pleiotropic importance for cellular and organismal life and death, lysosomal dysfunction is associated with many age-related pathologies like Parkinson's and Alzheimer's disease, as well as with a decline in lifespan. Conversely, targeting lysosomal functional capacity is emerging as a means to promote longevity. Here, we analyze the current knowledge on the prominent influence of lysosomes on aging-related processes, such as their executory and regulatory roles during general and selective macroautophagy, or their storage capacity for amino acids and ions. In addition, we review and discuss the roles of lysosomes as active players in the mechanisms underlying known lifespan-extending interventions like, for example, spermidine or rapamycin administration. In conclusion, this review aims at critically examining the nature and pliability of the different layers, in which lysosomes are involved as a control hub for aging and longevity.
Collapse
|
417
|
Abstract
The lysosome has long been viewed as the recycling center of the cell. However, recent discoveries have challenged this simple view and have established a central role of the lysosome in nutrient-dependent signal transduction. The degradative role of the lysosome and its newly discovered signaling functions are not in conflict but rather cooperate extensively to mediate fundamental cellular activities such as nutrient sensing, metabolic adaptation, and quality control of proteins and organelles. Moreover, lysosome-based signaling and degradation are subject to reciprocal regulation. Transcriptional programs of increasing complexity control the biogenesis, composition, and abundance of lysosomes and fine-tune their activity to match the evolving needs of the cell. Alterations in these essential activities are, not surprisingly, central to the pathophysiology of an ever-expanding spectrum of conditions, including storage disorders, neurodegenerative diseases, and cancer. Thus, unraveling the functions of this fascinating organelle will contribute to our understanding of the fundamental logic of metabolic organization and will point to novel therapeutic avenues in several human diseases.
Collapse
Affiliation(s)
- Rushika M Perera
- Department of Anatomy and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94143;
| | - Roberto Zoncu
- Department of Molecular and Cellular Biology and Paul F. Glenn Center for Aging Research, University of California, Berkeley, California 94720;
| |
Collapse
|
418
|
Turner CT, Fuller M, Hopwood JJ, Meikle PJ, Brooks DA. Drug induced exocytosis of glycogen in Pompe disease. Biochem Biophys Res Commun 2016; 479:721-727. [PMID: 27693584 DOI: 10.1016/j.bbrc.2016.09.145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 09/27/2016] [Indexed: 01/11/2023]
Abstract
Pompe disease is caused by a deficiency in the lysosomal enzyme α-glucosidase, and this leads to glycogen accumulation in the autolysosomes of patient cells. Glycogen storage material is exocytosed at a basal rate in cultured Pompe cells, with one study showing up to 80% is released under specific culture conditions. Critically, exocytosis induction may reduce glycogen storage in Pompe patients, providing the basis for a therapeutic strategy whereby stored glycogen is redirected to an extracellular location and subsequently degraded by circulating amylases. The focus of the current study was to identify compounds capable of inducing rapid glycogen exocytosis in cultured Pompe cells. Here, calcimycin, lysophosphatidylcholine and α-l-iduronidase each significantly increased glycogen exocytosis compared to vehicle-treated controls. The most effective compound, calcimycin, induced exocytosis through a Ca2+-dependent mechanism, although was unable to release a pool of vesicular glycogen larger than the calcimycin-induced exocytic pore. There was reduced glycogen release from Pompe compared to unaffected cells, primarily due to increased granule size in Pompe cells. Drug induced exocytosis therefore shows promise as a therapeutic approach for Pompe patients but strategies are required to enhance the release of large molecular weight glycogen granules.
Collapse
Affiliation(s)
- Christopher T Turner
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, Australia
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia
| | - John J Hopwood
- Lysosomal Diseases Research Unit, SA Health and Medical Research Institute, Adelaide, Australia
| | - Peter J Meikle
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Doug A Brooks
- Mechanisms in Cell Biology and Diseases Research Group, School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide 5001, Australia.
| |
Collapse
|
419
|
Zhong XZ, Sun X, Cao Q, Dong G, Schiffmann R, Dong XP. BK channel agonist represents a potential therapeutic approach for lysosomal storage diseases. Sci Rep 2016; 6:33684. [PMID: 27670435 PMCID: PMC5037385 DOI: 10.1038/srep33684] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/31/2016] [Indexed: 12/21/2022] Open
Abstract
Efficient lysosomal Ca2+ release plays an essential role in lysosomal trafficking. We have recently shown that lysosomal big conductance Ca2+-activated potassium (BK) channel forms a physical and functional coupling with the lysosomal Ca2+ release channel Transient Receptor Potential Mucolipin-1 (TRPML1). BK and TRPML1 forms a positive feedback loop to facilitate lysosomal Ca2+ release and subsequent lysosome membrane trafficking. However, it is unclear whether the positive feedback mechanism is common for other lysosomal storage diseases (LSDs) and whether BK channel agonists rescue abnormal lysosomal storage in LSDs. In this study, we assessed the effect of BK agonist, NS1619 and NS11021 in a number of LSDs including NPC1, mild cases of mucolipidosis type IV (ML4) (TRPML1-F408∆), Niemann-Pick type A (NPA) and Fabry disease. We found that TRPML1-mediated Ca2+ release was compromised in these LSDs. BK activation corrected the impaired Ca2+ release in these LSDs and successfully rescued the abnormal lysosomal storage of these diseases by promoting TRPML1-mediated lysosomal exocytosis. Our study suggests that BK channel activation stimulates the TRPML1-BK positive reinforcing loop to correct abnormal lysosomal storage in LSDs. Drugs targeting BK channel represent a potential therapeutic approach for LSDs.
Collapse
Affiliation(s)
- Xi Zoë Zhong
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, B3H 4R2, Nova Scotia, Canada
| | - Xue Sun
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, B3H 4R2, Nova Scotia, Canada
| | - Qi Cao
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, B3H 4R2, Nova Scotia, Canada
| | - Gaofeng Dong
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, B3H 4R2, Nova Scotia, Canada
| | - Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Research Institute, 3812 Elm Street, Dallas, TX, 75226, USA
| | - Xian-Ping Dong
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, B3H 4R2, Nova Scotia, Canada
| |
Collapse
|
420
|
Li Y, Xu M, Ding X, Yan C, Song Z, Chen L, Huang X, Wang X, Jian Y, Tang G, Tang C, Di Y, Mu S, Liu X, Liu K, Li T, Wang Y, Miao L, Guo W, Hao X, Yang C. Protein kinase C controls lysosome biogenesis independently of mTORC1. Nat Cell Biol 2016; 18:1065-77. [PMID: 27617930 DOI: 10.1038/ncb3407] [Citation(s) in RCA: 265] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 08/11/2016] [Indexed: 12/13/2022]
Abstract
Lysosomes respond to environmental cues by controlling their own biogenesis, but the underlying mechanisms are poorly understood. Here we describe a protein kinase C (PKC)-dependent and mTORC1-independent mechanism for regulating lysosome biogenesis, which provides insights into previously reported effects of PKC on lysosomes. By identifying lysosome-inducing compounds we show that PKC couples activation of the TFEB transcription factor with inactivation of the ZKSCAN3 transcriptional repressor through two parallel signalling cascades. Activated PKC inactivates GSK3β, leading to reduced phosphorylation, nuclear translocation and activation of TFEB, while PKC activates JNK and p38 MAPK, which phosphorylate ZKSCAN3, leading to its inactivation by translocation out of the nucleus. PKC activation may therefore mediate lysosomal adaptation to many extracellular cues. PKC activators facilitate clearance of aggregated proteins and lipid droplets in cell models and ameliorate amyloid β plaque formation in APP/PS1 mouse brains. Thus, PKC activators are viable treatment options for lysosome-related disorders.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Meng Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China.,Graduate University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiao Ding
- State Key Laboratory of Phytochemistry and Plant Resources in Western China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650021, China
| | - Chen Yan
- The Key Laboratory of Chemistry for Natural Product of Guizhou Province and Chinese Academy of Science, Guiyang 550002, China
| | - Zhiqin Song
- The Key Laboratory of Chemistry for Natural Product of Guizhou Province and Chinese Academy of Science, Guiyang 550002, China
| | - Lianwan Chen
- Key Laboratory of RNA Biology, Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, No.15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Xin Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Youli Jian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Guihua Tang
- State Key Laboratory of Phytochemistry and Plant Resources in Western China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650021, China
| | - Changyong Tang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Yingtong Di
- State Key Laboratory of Phytochemistry and Plant Resources in Western China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650021, China
| | - Shuzhen Mu
- The Key Laboratory of Chemistry for Natural Product of Guizhou Province and Chinese Academy of Science, Guiyang 550002, China
| | - Xuezhao Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China.,Graduate University of Chinese Academy of Sciences, Beijing 100039, China
| | - Kai Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China.,Graduate University of Chinese Academy of Sciences, Beijing 100039, China
| | - Ting Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Long Miao
- Key Laboratory of RNA Biology, Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, No.15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Weixiang Guo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Xiaojiang Hao
- State Key Laboratory of Phytochemistry and Plant Resources in Western China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650021, China.,The Key Laboratory of Chemistry for Natural Product of Guizhou Province and Chinese Academy of Science, Guiyang 550002, China
| | - Chonglin Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
421
|
Trivedi PC, Bartlett JJ, Perez LJ, Brunt KR, Legare JF, Hassan A, Kienesberger PC, Pulinilkunnil T. Glucolipotoxicity diminishes cardiomyocyte TFEB and inhibits lysosomal autophagy during obesity and diabetes. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1893-1910. [PMID: 27620487 DOI: 10.1016/j.bbalip.2016.09.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 01/07/2023]
Abstract
Impaired cardiac metabolism in the obese and diabetic heart leads to glucolipotoxicity and ensuing cardiomyopathy. Glucolipotoxicity causes cardiomyocyte injury by increasing energy insufficiency, impairing proteasomal-mediated protein degradation and inducing apoptosis. Proteasome-evading proteins are degraded by autophagy in the lysosome, whose metabolism and function are regulated by master regulator transcription factor EB (TFEB). Limited studies have examined the impact of glucolipotoxicity on intra-lysosomal signaling proteins and their regulators. By utilizing a mouse model of diet-induced obesity, type-1 diabetes (Akita) and ex-vivo model of glucolipotoxicity (H9C2 cells and NRCM, neonatal rat cardiomyocyte), we examined whether glucolipotoxicity negatively targets TFEB and lysosomal proteins to dysregulate autophagy and cause cardiac injury. Despite differential effects of obesity and diabetes on LC3B-II, expression of proteins facilitating autophagosomal clearance such as TFEB, LAMP-2A, Hsc70 and Hsp90 were decreased in the obese and diabetic heart. In-vivo data was recapitulated in H9C2 and NRCM cells, which exhibited impaired autophagic flux and reduced TFEB content when exposed to a glucolipotoxic milieu. Notably, overloading myocytes with a saturated fatty acid (palmitate) but not an unsaturated fatty acid (oleate) depleted cellular TFEB and suppressed autophagy, suggesting a fatty acid specific regulation of TFEB and autophagy in the cardiomyocyte. The effect of glucolipotoxicity to reduce TFEB content was also confirmed in heart tissue from patients with Class-I obesity. Therefore, during glucolipotoxicity, suppression of lysosomal autophagy was associated with reduced lysosomal content, decreased cathepsin-B activity and diminished cellular TFEB content likely rendering myocytes susceptible to cardiac injury.
Collapse
Affiliation(s)
- Purvi C Trivedi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, 100 Tucker Park Road, Saint John E2L4L5, New Brunswick, Canada
| | - Jordan J Bartlett
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, 100 Tucker Park Road, Saint John E2L4L5, New Brunswick, Canada
| | - Lester J Perez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, 100 Tucker Park Road, Saint John E2L4L5, New Brunswick, Canada
| | - Keith R Brunt
- Deparment of Pharmacology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, 100 Tucker Park Road, Saint John E2L4L5, New Brunswick, Canada
| | - Jean Francois Legare
- Department of Surgery, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, 100 Tucker Park Road, Saint John E2L4L5, New Brunswick, Canada
| | - Ansar Hassan
- Department of Surgery, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, 100 Tucker Park Road, Saint John E2L4L5, New Brunswick, Canada
| | - Petra C Kienesberger
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, 100 Tucker Park Road, Saint John E2L4L5, New Brunswick, Canada
| | - Thomas Pulinilkunnil
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, 100 Tucker Park Road, Saint John E2L4L5, New Brunswick, Canada.
| |
Collapse
|
422
|
Ravi S, Peña KA, Chu CT, Kiselyov K. Biphasic regulation of lysosomal exocytosis by oxidative stress. Cell Calcium 2016; 60:356-362. [PMID: 27593159 DOI: 10.1016/j.ceca.2016.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 02/02/2023]
Abstract
Oxidative stress drives cell death in a number of diseases including ischemic stroke and neurodegenerative diseases. A better understanding of how cells recover from oxidative stress is likely to lead to better treatments for stroke and other diseases. The recent evidence obtained in several models ties the process of lysosomal exocytosis to the clearance of protein aggregates and toxic metals. The mechanisms that regulate lysosomal exocytosis, under normal or pathological conditions, are only beginning to emerge. Here we provide evidence for the biphasic effect of oxidative stress on lysosomal exocytosis. Lysosomal exocytosis was measured using the extracellular levels of the lysosomal enzyme beta-hexosaminidase (ß-hex). Low levels or oxidative stress stimulated lysosomal exocytosis, but inhibited it at high levels. Deletion of the lysosomal ion channel TRPML1 eliminated the stimulatory effect of low levels of oxidative stress. The inhibitory effects of oxidative stress appear to target the component of lysosomal exocytosis that is driven by extracellular Ca2+. We propose that while moderate oxidative stress promotes cellular repair by stimulating lysosomal exocytosis, at high levels oxidative stress has a dual pathological effect: it directly causes cell damage and impairs damage repair by inhibiting lysosomal exocytosis. Harnessing these adaptive mechanisms may point to pharmacological interventions for diseases involving oxidative proteotoxicity or metal toxicity.
Collapse
Affiliation(s)
- Sreeram Ravi
- Department of Biological Sciences, Pittsburgh, PA 15260, USA
| | - Karina A Peña
- Department of Biological Sciences, Pittsburgh, PA 15260, USA
| | - Charleen T Chu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Kirill Kiselyov
- Department of Biological Sciences, Pittsburgh, PA 15260, USA.
| |
Collapse
|
423
|
Sato Y, Kobayashi H, Higuchi T, Shimada Y, Ida H, Ohashi T. TFEB overexpression promotes glycogen clearance of Pompe disease iPSC-derived skeletal muscle. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16054. [PMID: 27556060 PMCID: PMC4980109 DOI: 10.1038/mtm.2016.54] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/03/2016] [Accepted: 06/08/2016] [Indexed: 11/09/2022]
Abstract
Pompe disease (PD) is a lysosomal disorder caused by acid α-glucosidase (GAA) deficiency. Progressive muscular weakness is the major symptom of PD, and enzyme replacement therapy can improve the clinical outcome. However, to achieve a better clinical outcome, alternative therapeutic strategies are being investigated, including gene therapy and pharmacological chaperones. We previously used lentiviral vector-mediated GAA gene transfer in PD patient-specific induced pluripotent stem cells. Some therapeutic efficacy was observed, although glycogen accumulation was not normalized. Transcription factor EB is a master regulator of lysosomal biogenesis and autophagy that has recently been associated with muscular pathology, and is now a potential therapeutic target in PD model mice. Here, we differentiated skeletal muscle from PD patient-specific induced pluripotent stem cells by forced MyoD expression. Lentiviral vector-mediated GAA and transcription factor EB gene transfer independently improved GAA enzyme activity and reduced glycogen content in skeletal muscle derived from PD-induced pluripotent stem cells. Interestingly, GAA and transcription factor EB cooperatively improved skeletal muscle pathology, both biochemically and morphologically. Thus, our findings show that abnormal lysosomal biogenesis is associated with the muscular pathology of PD, and transcription factor EB gene transfer is effective as an add-on strategy to GAA gene transfer.
Collapse
Affiliation(s)
- Yohei Sato
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan; Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroshi Kobayashi
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan; Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Higuchi
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine , Tokyo, Japan
| | - Yohta Shimada
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine , Tokyo, Japan
| | - Hiroyuki Ida
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan; Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Toya Ohashi
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan; Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
424
|
Doxorubicin impairs cardiomyocyte viability by suppressing transcription factor EB expression and disrupting autophagy. Biochem J 2016; 473:3769-3789. [PMID: 27487838 DOI: 10.1042/bcj20160385] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/03/2016] [Indexed: 12/11/2022]
Abstract
Doxorubicin (DOX) is an effective anti-cancer agent. However, DOX treatment increases patient susceptibility to dilated cardiomyopathy. DOX predisposes cardiomyocytes to insult by suppressing mitochondrial energy metabolism, altering calcium flux, and disrupting proteolysis and proteostasis. Prior studies have assessed the role of macroautophagy in DOX cardiotoxicity; however, limited studies have examined whether DOX mediates cardiac injury through dysfunctions in inter- and/or intra-lysosomal signaling events. Lysosomal signaling and function is governed by transcription factor EB (TFEB). In the present study, we hypothesized that DOX caused myocyte injury by impairing lysosomal function and signaling through negative regulation of TFEB. Indeed, we found that DOX repressed cellular TFEB expression, which was associated with impaired cathepsin proteolytic activity across in vivo, ex vivo, and in vitro models of DOX cardiotoxicity. Furthermore, we observed that loss of TFEB was associated with reduction in macroautophagy protein expression, inhibition of autophagic flux, impairments in lysosomal cathepsin B activity, and activation of cell death. Restoration and/or activation of TFEB in DOX-treated cardiomyocytes prevented DOX-induced suppression of cathepsin B activity, reduced DOX-mediated reactive oxygen species (ROS) overproduction, attenuated activation of caspase-3, and improved cellular viability. Collectively, loss of TFEB inhibits lysosomal autophagy, rendering cardiomyocytes susceptible to DOX-induced proteotoxicity and injury. Our data reveal a novel mechanism wherein DOX primes cardiomyocytes for cell death by depleting cellular TFEB.
Collapse
|
425
|
Song JX, Sun YR, Peluso I, Zeng Y, Yu X, Lu JH, Xu Z, Wang MZ, Liu LF, Huang YY, Chen LL, Durairajan SSK, Zhang HJ, Zhou B, Zhang HQ, Lu A, Ballabio A, Medina DL, Guo Z, Li M. A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition. Autophagy 2016; 12:1372-1389. [PMID: 27172265 PMCID: PMC4968239 DOI: 10.1080/15548627.2016.1179404] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022] Open
Abstract
Autophagy dysfunction is a common feature in neurodegenerative disorders characterized by accumulation of toxic protein aggregates. Increasing evidence has demonstrated that activation of TFEB (transcription factor EB), a master regulator of autophagy and lysosomal biogenesis, can ameliorate neurotoxicity and rescue neurodegeneration in animal models. Currently known TFEB activators are mainly inhibitors of MTOR (mechanistic target of rapamycin [serine/threonine kinase]), which, as a master regulator of cell growth and metabolism, is involved in a wide range of biological functions. Thus, the identification of TFEB modulators acting without inhibiting the MTOR pathway would be preferred and probably less deleterious to cells. In this study, a synthesized curcumin derivative termed C1 is identified as a novel MTOR-independent activator of TFEB. Compound C1 specifically binds to TFEB at the N terminus and promotes TFEB nuclear translocation without inhibiting MTOR activity. By activating TFEB, C1 enhances autophagy and lysosome biogenesis in vitro and in vivo. Collectively, compound C1 is an orally effective activator of TFEB and is a potential therapeutic agent for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ju-Xian Song
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Mr. & Mrs. Ko Chi Ming Center for Parkinson Disease Research (CPDR), Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Yue-Ru Sun
- Department of Chemistry, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ivana Peluso
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Yu Zeng
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Mr. & Mrs. Ko Chi Ming Center for Parkinson Disease Research (CPDR), Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Xing Yu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Mr. & Mrs. Ko Chi Ming Center for Parkinson Disease Research (CPDR), Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Zheng Xu
- Department of Chemistry, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ming-Zhong Wang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Liang-Feng Liu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Mr. & Mrs. Ko Chi Ming Center for Parkinson Disease Research (CPDR), Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Ying-Yu Huang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Mr. & Mrs. Ko Chi Ming Center for Parkinson Disease Research (CPDR), Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Lei-Lei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Mr. & Mrs. Ko Chi Ming Center for Parkinson Disease Research (CPDR), Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Siva Sundara Kumar Durairajan
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Mr. & Mrs. Ko Chi Ming Center for Parkinson Disease Research (CPDR), Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Hong-Jie Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Mr. & Mrs. Ko Chi Ming Center for Parkinson Disease Research (CPDR), Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu, China
| | - Hong-Qi Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Diego L. Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Zhihong Guo
- Department of Chemistry, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Mr. & Mrs. Ko Chi Ming Center for Parkinson Disease Research (CPDR), Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| |
Collapse
|
426
|
Gianfranceschi G, Caragnano A, Piazza S, Manini I, Ciani Y, Verardo R, Toffoletto B, Finato N, Livi U, Beltrami CA, Scoles G, Sinagra G, Aleksova A, Cesselli D, Beltrami AP. Critical role of lysosomes in the dysfunction of human Cardiac Stem Cells obtained from failing hearts. Int J Cardiol 2016; 216:140-50. [DOI: 10.1016/j.ijcard.2016.04.155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 04/10/2016] [Accepted: 04/20/2016] [Indexed: 12/01/2022]
|
427
|
Regulation of lysosomal ion homeostasis by channels and transporters. SCIENCE CHINA-LIFE SCIENCES 2016; 59:777-91. [PMID: 27430889 PMCID: PMC5147046 DOI: 10.1007/s11427-016-5090-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/02/2016] [Indexed: 02/05/2023]
Abstract
Lysosomes are the major organelles that carry out degradation functions. They integrate and digest materials compartmentalized by endocytosis, phagocytosis or autophagy. In addition to more than 60 hydrolases residing in the lysosomes, there are also ion channels and transporters that mediate the flux or transport of H+, Ca2+, Na+, K+, and Cl− across the lysosomal membranes. Defects in ionic exchange can lead to abnormal lysosome morphology, defective vesicle trafficking, impaired autophagy, and diseases such as neurodegeneration and lysosomal storage disorders. The latter are characterized by incomplete lysosomal digestion and accumulation of toxic materials inside enlarged intracellular vacuoles. In addition to degradation, recent studies have revealed the roles of lysosomes in metabolic pathways through kinases such as mechanistic target of rapamycin (mTOR) and transcriptional regulation through calcium signaling molecules such as transcription factor EB (TFEB) and calcineurin. Owing to the development of new approaches including genetically encoded fluorescence probes and whole endolysosomal patch clamp recording techniques, studies on lysosomal ion channels have made remarkable progress in recent years. In this review, we will focus on the current knowledge of lysosome-resident ion channels and transporters, discuss their roles in maintaining lysosomal function, and evaluate how their dysfunction can result in disease.
Collapse
|
428
|
Fraldi A, Klein AD, Medina DL, Settembre C. Brain Disorders Due to Lysosomal Dysfunction. Annu Rev Neurosci 2016; 39:277-95. [DOI: 10.1146/annurev-neuro-070815-014031] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alessandro Fraldi
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Andrés D. Klein
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Diego L. Medina
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
- Dulbecco Telethon Institute, 80078 Pozzuoli, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, 80131 Naples, Italy; ,
| |
Collapse
|
429
|
Phagocytosis Enhances Lysosomal and Bactericidal Properties by Activating the Transcription Factor TFEB. Curr Biol 2016; 26:1955-1964. [PMID: 27397893 DOI: 10.1016/j.cub.2016.05.070] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/11/2016] [Accepted: 05/27/2016] [Indexed: 11/21/2022]
Abstract
Macrophages internalize pathogens through phagocytosis, entrapping them into organelles called phagosomes. Phagosomes then fuse with lysosomes to mature into phagolysosomes, acquiring an acidic and hydrolytic lumen that kills the pathogens. During an ongoing infection, macrophages can internalize dozens of bacteria. Thus, we hypothesized that an initial round of phagocytosis might boost lysosome function and bactericidal ability to cope with subsequent rounds of phagocytosis. To test this hypothesis, we employed Fcγ-receptor-mediated phagocytosis and endocytosis, which internalize immunoglobulin G (IgG)-opsonized particles and polyvalent IgG immune complexes, respectively. We report that Fcγ receptor activation in macrophages enhances lysosome-based proteolysis and killing of subsequently phagocytosed E. coli compared to naive macrophages. Importantly, we show that Fcγ receptor activation causes nuclear translocation of TFEB, a transcription factor that boosts expression of lysosome genes. Indeed, Fc receptor activation is accompanied by increased expression of specific lysosomal proteins. Remarkably, TFEB silencing represses the Fcγ-receptor-mediated enhancements in degradation and bacterial killing. In addition, nuclear translocation of TFEB requires phagosome completion and fails to occur in cells silenced for MCOLN1, a lysosomal Ca(2+) channel, suggesting that lysosomal Ca(2+) released during phagosome maturation activates TFEB. Finally, we demonstrate that non-opsonic phagocytosis of E. coli also enhances lysosomal degradation in a TFEB-dependent manner, suggesting that this phenomenon is not limited to Fcγ receptors. Overall, we show that macrophages become better killers after one round of phagocytosis and suggest that phagosomes and lysosomes are capable of bi-directional signaling.
Collapse
|
430
|
Meduri G, Guillemeau K, Dounane O, Sazdovitch V, Duyckaerts C, Chambraud B, Baulieu EE, Giustiniani J. Caspase-cleaved Tau-D(421) is colocalized with the immunophilin FKBP52 in the autophagy-endolysosomal system of Alzheimer's disease neurons. Neurobiol Aging 2016; 46:124-37. [PMID: 27479154 DOI: 10.1016/j.neurobiolaging.2016.06.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/27/2016] [Accepted: 06/24/2016] [Indexed: 01/06/2023]
Abstract
Pathologic modifications of the Tau protein leading to neurofibrillary tangle (NFT) formation are a common feature of a wide range of neurodegenerative diseases known as tauopathies, which include Alzheimer's disease (AD). We previously showed that the immunophilin FKBP52 physically and functionally interacts with Tau, and we recently reported that FKBP52 levels are abnormally low in AD patients' brains. To decipher the mechanism of FKBP52 decrease in AD brains, we performed multiple labeling immunohistofluorescence and lysosomal purification using postmortem brain samples of healthy controls (n = 8) and AD (n = 20) patients. Confocal analysis revealed that FKBP52 localizes to the endolysosomal system. We also report FKBP52 colocalization with the truncated Tau-D(421) in the autophagy-endolysosomal system in some AD neurons and that the decrease of FKBP52 correlates with NFT formation. Additional experiments of autophagy inhibition in Tau-inducible SH-SY5Y cells allowed demonstrating FKBP52 release in the extracellular milieu. Our findings point out the possibility that FKBP52 could be abnormally released from NFTs negative neurons in AD brains in correlation with the early pathologic Tau-D(421) neuronal accumulation.
Collapse
Affiliation(s)
- Geri Meduri
- INSERM, Unité mixte de recherche 1195, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Kevin Guillemeau
- INSERM, Unité mixte de recherche 1195, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Omar Dounane
- INSERM, Unité mixte de recherche 1195, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Véronique Sazdovitch
- Laboratoire de Neuropathologie Escourolle, Hôpital de La Salpêtrière, AP-HP, Paris, France
| | - Charles Duyckaerts
- Laboratoire de Neuropathologie Escourolle, Hôpital de La Salpêtrière, AP-HP, Paris, France
| | - Béatrice Chambraud
- INSERM, Unité mixte de recherche 1195, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Etienne Emile Baulieu
- INSERM, Unité mixte de recherche 1195, Université Paris-Saclay, Le Kremlin Bicêtre, France.
| | - Julien Giustiniani
- INSERM, Unité mixte de recherche 1195, Université Paris-Saclay, Le Kremlin Bicêtre, France.
| |
Collapse
|
431
|
Dodding MP. Folliculin - A tumor suppressor at the intersection of metabolic signaling and membrane traffic. Small GTPases 2016; 8:100-105. [PMID: 27355777 DOI: 10.1080/21541248.2016.1204808] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Birt-Hoge-Dubé syndrome tumor suppressor Folliculin is a regulator of metabolism and has as a wide range of cellular and organismal phenotypes associated with its disruption. However, the molecular mechanisms which underlie its functions are poorly understood. Folliculin has been described to associate with lysosomes in response to nutrient depletion and form a key part of the signaling network that controls the activity of mTORC1. We recently reported that Folliculin can control the nutrient dependent cytoplasmic distribution of lysosomes by promoting the formation of a complex with the Golgi-associated small GTPase Rab34 and its effector RILP. We thus define a mechanistic connection between the lysosomal nutrient signaling network and the transport machinery that controls the distribution and dynamics of this organelle. Here we summarise the main conclusions from that study, attempt to integrate our findings with other recent studies on lysosome distribution/dynamics, and discuss the potential consequences of the dysregulation of this processes caused by Folliculin loss for Birt-Hoge-Dubé syndrome and normal cell function.
Collapse
Affiliation(s)
- Mark P Dodding
- a Randall Division of Cell and Molecular Biophysics , King's College London , London , UK
| |
Collapse
|
432
|
Transcription Factor EB Is Selectively Reduced in the Nuclear Fractions of Alzheimer's and Amyotrophic Lateral Sclerosis Brains. NEUROSCIENCE JOURNAL 2016; 2016:4732837. [PMID: 27433468 PMCID: PMC4940567 DOI: 10.1155/2016/4732837] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022]
Abstract
Multiple studies suggest that autophagy is strongly dysregulated in Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), as evidenced by accumulation of numerous autophagosomes, lysosomes with discontinuous membranes, and aggregated proteins in the patients' brains. Transcription factor EB (TFEB) was recently discovered to be a master regulator of lysosome biogenesis and autophagy. To examine whether aberrant autophagy in AD and ALS is due to alterations in TFEB expression, we systematically quantified the levels of TFEB in these brains by immunoblotting. Interestingly, cytoplasmic fractions of AD brains showed increased levels of normalized (to tubulin) TFEB only at Braak stage IV (61%, p < 0.01). Most importantly, normalized (to lamin) TFEB levels in the nuclear fractions were consistently reduced starting from Braak stage IV (52%, p < 0.01), stage V (67%, p < 0.01), and stage VI (85%, p < 0.01) when compared to normal control (NC) brains. In the ALS brains also, nuclear TFEB levels were reduced by 62% (p < 0.001). These data suggest that nuclear TFEB is selectively lost in ALS as well as AD brains, in which TFEB reduction was Braak-stage-dependent. Taken together, the observed reductions in TFEB protein levels may be responsible for the widely reported autophagy defects in these disorders.
Collapse
|
433
|
Unuma K, Aki T, Funakoshi T, Hashimoto K, Uemura K. Extrusion of mitochondrial contents from lipopolysaccharide-stimulated cells: Involvement of autophagy. Autophagy 2016; 11:1520-36. [PMID: 26102061 DOI: 10.1080/15548627.2015.1063765] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Sepsis/endotoxemia is elicited by the circulatory distribution of pathogens/endotoxins into whole bodies, and causes profound effects on human health by causing inflammation in multiple organs. Mitochondrial damage is one of the characteristics of the cellular degeneration observed during sepsis/endotoxemia. Elimination of damaged mitochondria through the autophagy-lysosome system has been reported in the liver, indicating that autophagy should play an important role in liver homeostasis during sepsis/endotoxemia. An increased appearance of mitochondrial DNA and proteins in the plasma is another feature of sepsis/endotoxemia, suggesting that damaged mitochondria are not only eliminated within the cells, but also extruded through currently unknown mechanisms. Here we provide evidence for the secretion of mitochondrial proteins and DNA from lipopolysaccharide (LPS)-stimulated rat hepatocytes as well as mouse embryonic fibroblasts (MEFs). The secretion of mitochondrial contents is accompanied by the secretion of proteins that reside in the lumenal space of autolysosomes (LC3-II and CTSD/cathepsin D), but not by a lysosomal membrane protein (LAMP1). The pharmacological inhibition of autophagy by 3MA blocks the secretion of mitochondrial constituents from LPS-stimulated hepatocytes. LPS also stimulates the secretion of mitochondrial as well as autolysosomal lumenal proteins from wild-type (Atg5(+/+)) MEFs, but not from atg5(-/-) MEFs. Furthermore, we show that direct exposure of purified mitochondria activates polymorphonuclear leukocytes (PMNs), as evident by the induction of IL1B/interlekin-1β, a pro-inflammatory cytokine. Taken together, the data suggest the active extrusion of mitochondrial contents, which provoke an inflammatory response of immune cells, through the exocytosis of autolysosomes by cells stimulated with LPS.
Collapse
Affiliation(s)
- Kana Unuma
- a Department of Forensic Medicine ; Graduate School of Medical and Dental Sciences; Tokyo Medical and Dental University ; Tokyo , Japan
| | - Toshihiko Aki
- a Department of Forensic Medicine ; Graduate School of Medical and Dental Sciences; Tokyo Medical and Dental University ; Tokyo , Japan
| | - Takeshi Funakoshi
- a Department of Forensic Medicine ; Graduate School of Medical and Dental Sciences; Tokyo Medical and Dental University ; Tokyo , Japan
| | - Kyoko Hashimoto
- a Department of Forensic Medicine ; Graduate School of Medical and Dental Sciences; Tokyo Medical and Dental University ; Tokyo , Japan
| | - Koichi Uemura
- a Department of Forensic Medicine ; Graduate School of Medical and Dental Sciences; Tokyo Medical and Dental University ; Tokyo , Japan
| |
Collapse
|
434
|
He L, Weber KJ, Diwan A, Schilling JD. Inhibition of mTOR reduces lipotoxic cell death in primary macrophages through an autophagy-independent mechanism. J Leukoc Biol 2016; 100:1113-1124. [PMID: 27312848 DOI: 10.1189/jlb.3a1015-463r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 06/01/2016] [Indexed: 12/14/2022] Open
Abstract
Macrophage dysfunction in obesity and diabetes is associated with persistent inflammation and poor wound healing responses. Relevant to these phenotypes, we have previously shown that macrophage activation in a high-fat environment results in cell death via a mechanism that involves lysosome damage. While searching for signaling pathways that were required for this response, we discovered that mTOR inhibitors, torin and rapamycin, were protective against lipotoxic cell death in primary peritoneal macrophages. The protective effect of mTOR inhibition was also confirmed by using genetic loss-of-function approaches. Given the importance of mTOR in regulation of autophagy we hypothesized that this pathway would be important in protection from cell death. We first demonstrated that autophagy was disrupted in response to palmitate and LPS as a consequence of impaired lysosome function. Conversely, the mTOR inhibitor, torin, increased macrophage autophagy and protected against lysosome damage; however, the beneficial effects of torin persisted in autophagy-deficient cells. Inhibition of mTOR also triggered nuclear localization of TFEB, a transcription factor that regulates lysosome biogenesis and function, but the rescue phenotype did not require the presence of TFEB. Instead, we demonstrated that mTOR inhibition reduces mitochondrial oxidative metabolism and attenuates the negative effects of palmitate on LPS-induced mitochondrial respiration. These results suggest that inhibition of mTOR is protective against lipotoxicity via an autophagy-independent mechanism that involves relieving mitochondrial substrate overload. On the basis of these findings, we suggest that therapies to reduce macrophage mTOR activation may protect against dysfunctional inflammation in states of overnutrition, such as diabetes.
Collapse
Affiliation(s)
- Li He
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA; and
| | - Kassandra J Weber
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA; and
| | - Abhinav Diwan
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA; and
| | - Joel D Schilling
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, Missouri, USA; .,Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA; and.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
435
|
Abstract
Lysosomes have emerged in the last decade as an immensely important intracellular site of Ca2+ storage and signalling. More recently there has been an increase in the number of new ion channels found to be functional on lysosomes and the potential roles that these signalling pathways might play in fundamental cellular processes are being uncovered. Defects in lysosomal function have been shown to result in changes in lysosomal Ca2+ homeostasis and ultimately can result in cell death. Several neurodegenerative diseases, from rare lysosomal storage diseases through to more common diseases of ageing, have recently been identified as having alterations in lysosomal Ca2+ homeostasis that may play an important role in neuronal excitotoxicity and ultimately cell death. This review will critically summarise these recent findings.
Collapse
Affiliation(s)
- Emyr Lloyd-Evans
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff, CF10 3AX
| |
Collapse
|
436
|
Feng X, Yang J. Lysosomal Calcium in Neurodegeneration. MESSENGER (LOS ANGELES, CALIF. : PRINT) 2016; 5:56-66. [PMID: 29082116 PMCID: PMC5659362 DOI: 10.1166/msr.2016.1055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lysosomes are the central organelles responsible for macromolecule recycling in the cell. Lysosomal dysfunction is the primary cause of lysosomal storage diseases (LSDs), and contributes significantly to the pathogenesis of common neurodegenerative diseases. The lysosomes are also intracellular stores for calcium ions, one of the most common second messenger in the cell. Lysosomal Ca2+ is required for diverse cellular processes including signal transduction, vesicular trafficking, autophagy, nutrient sensing, exocytosis, and membrane repair. In this review, we first summarize some recent progresses in the studies of lysosome Ca2+ regulation, with a focus on the newly discovered lysosomal Ca2+ channels and the mechanisms of lysosomal Ca2+ store refilling. We then discuss how defects in lysosomal Ca2+ release and store maintenance cause lysosomal dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Xinghua Feng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junsheng Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
- The Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, MI 48109, USA
| |
Collapse
|
437
|
Abstract
The transcription factor EB (TFEB) plays a pivotal role in the regulation of basic cellular processes, such as lysosomal biogenesis and autophagy. The subcellular localization and activity of TFEB are regulated by mechanistic target of rapamycin (mTOR)-mediated phosphorylation, which occurs at the lysosomal surface. Phosphorylated TFEB is retained in the cytoplasm, whereas dephosphorylated TFEB translocates to the nucleus to induce the transcription of target genes. Thus, a lysosome-to-nucleus signaling pathway regulates cellular energy metabolism through TFEB. Recently, in vivo studies have revealed that TFEB is also involved in physiological processes, such as lipid catabolism. TFEB has attracted a lot of attention owing to its ability to induce the intracellular clearance of pathogenic factors in a variety of murine models of disease, such as Parkinson's and Alzheimer's, suggesting that novel therapeutic strategies could be based on the modulation of TFEB activity. In this Cell Science at a Glance article and accompanying poster, we present an overview of the latest research on TFEB function and its implication in human diseases.
Collapse
Affiliation(s)
- Gennaro Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM), 80131 Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), 80131 Naples, Italy Medical Genetics, Department of Translational Medicine, Federico II University, 80131 Naples, Italy Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX 77030, USA
| |
Collapse
|
438
|
Abstract
In recent years, our vision of lysosomes has drastically changed. Formerly considered to be mere degradative compartments, they are now recognized as key players in many cellular processes. The ability of lysosomes to respond to different stimuli revealed a complex and coordinated regulation of lysosomal gene expression. This review discusses the participation of the transcription factors TFEB and TFE3 in the regulation of lysosomal function and biogenesis, as well as the role of the lysosomal pathway in cellular adaptation to a variety of stress conditions, including nutrient deprivation, mitochondrial dysfunction, protein misfolding, and pathogen infection. We also describe how cancer cells make use of TFEB and TFE3 to promote their own survival and highlight the potential of these transcription factors as therapeutic targets for the treatment of neurological and lysosomal diseases.
Collapse
Affiliation(s)
- Nina Raben
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892;
| | - Rosa Puertollano
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892;
| |
Collapse
|
439
|
TFEB Overexpression in the P301S Model of Tauopathy Mitigates Increased PHF1 Levels and Lipofuscin Puncta and Rescues Memory Deficits. eNeuro 2016; 3:eN-NWR-0042-16. [PMID: 27257626 PMCID: PMC4876487 DOI: 10.1523/eneuro.0042-16.2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 12/22/2022] Open
Abstract
Transcription factor EB (TFEB) was recently shown to be a master regulator of autophagy lysosome pathway. Here, we successfully generated and characterized transgenic mice overexpressing flag-TFEB. Enhanced autophagy in the flag-TFEB transgenic mice was confirmed by an increase in the cellular autophagy markers, as determined by both immunoblots and transmission electron microscopy. Surprisingly, in the flag-TFEB mice we observed increased activity of senescence-associated β-galactosidase by ∼66% of neurons in the cortex (p < 0.001) and 73% of neurons in the hippocampus (p < 0.001). More importantly, flag-TFEB expression remarkably reduced the levels of paired-helical filament (PHF)-tau from 372% in the P301S model of tauopathy to 171% (p < 0.001) in the cortex, and from 436% to 212% (p < 0.001) in the hippocampus. Significantly, reduced levels of NeuN in the cortex (38%, p < 0.001) and hippocampus (25%, p < 0.05) of P301S mice were almost completely restored to WT levels in the P301S/flag-TFEB double-transgenic mice. Also, levels of spinophilin in both the cortex (p < 0.001) and hippocampus (p < 0.001) were restored almost to WT levels. Most importantly, the age-associated lipofuscin granules, which are generally presumed to be nondegradable, were reduced by 57% (p < 0.001) in the cortex and by 55% (p < 0.001) in the hippocampus in the double-transgenic mice. Finally, TFEB overexpression in the P301S mice markedly reversed learning deficits in terms of spatial memory (Barnes maze), as well as working and reference memories (T maze). These data suggest that the overexpression of TFEB can reliably enhance autophagy in vivo, reduce levels of PHF-tau, and thereby reverse the deposition of lipofuscin granules and memory deficits.
Collapse
|
440
|
Xu M, Motabar O, Ferrer M, Marugan JJ, Zheng W, Ottinger EA. Disease models for the development of therapies for lysosomal storage diseases. Ann N Y Acad Sci 2016; 1371:15-29. [PMID: 27144735 DOI: 10.1111/nyas.13052] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 12/11/2022]
Abstract
Lysosomal storage diseases (LSDs) are a group of rare diseases in which the function of the lysosome is disrupted by the accumulation of macromolecules. The complexity underlying the pathogenesis of LSDs and the small, often pediatric, population of patients make the development of therapies for these diseases challenging. Current treatments are only available for a small subset of LSDs and have not been effective at treating neurological symptoms. Disease-relevant cellular and animal models with high clinical predictability are critical for the discovery and development of new treatments for LSDs. In this paper, we review how LSD patient primary cells and induced pluripotent stem cell-derived cellular models are providing novel assay systems in which phenotypes are more similar to those of the human LSD physiology. Furthermore, larger animal disease models are providing additional tools for evaluation of the efficacy of drug candidates. Early predictors of efficacy and better understanding of disease biology can significantly affect the translational process by focusing efforts on those therapies with the higher probability of success, thus decreasing overall time and cost spent in clinical development and increasing the overall positive outcomes in clinical trials.
Collapse
Affiliation(s)
- Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland.,Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Omid Motabar
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Juan J Marugan
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Elizabeth A Ottinger
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
441
|
Sardiello M. Transcription factor EB: from master coordinator of lysosomal pathways to candidate therapeutic target in degenerative storage diseases. Ann N Y Acad Sci 2016; 1371:3-14. [PMID: 27299292 PMCID: PMC5032832 DOI: 10.1111/nyas.13131] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 05/15/2016] [Accepted: 05/16/2016] [Indexed: 12/14/2022]
Abstract
The lysosome is the main catabolic hub of the cell. Owing to its role in fundamental processes such as autophagy, plasma membrane repair, mTOR signaling, and maintenance of cellular homeostasis, the lysosome has a profound influence on cellular metabolism and human health. Indeed, inefficient or impaired lysosomal function has been implicated in the pathogenesis of a number of degenerative diseases affecting various organs and tissues, most notably the brain, liver, and muscle. The discovery of the coordinated lysosomal expression and regulation (CLEAR) genetic program and its master controller, transcription factor EB (TFEB), has provided an unprecedented tool to study and manipulate lysosomal function. Most lysosome-based processes-including macromolecule degradation, autophagy, lysosomal exocytosis, and proteostasis-are under the transcriptional control of TFEB. Interestingly, impaired TFEB signaling has been suggested to be a contributing factor in the pathogenesis of several degenerative storage diseases. Preclinical studies based on TFEB exogenous expression to reinstate TFEB activity or promote CLEAR network-based lysosomal enhancement have highlighted TFEB as a candidate therapeutic target for the treatment of various degenerative storage diseases.
Collapse
Affiliation(s)
- Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas
| |
Collapse
|
442
|
Lapierre LR, Kumsta C, Sandri M, Ballabio A, Hansen M. Transcriptional and epigenetic regulation of autophagy in aging. Autophagy 2016; 11:867-80. [PMID: 25836756 DOI: 10.1080/15548627.2015.1034410] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Macroautophagy is a major intracellular degradation process recognized as playing a central role in cell survival and longevity. This multistep process is extensively regulated at several levels, including post-translationally through the action of conserved longevity factors such as the nutrient sensor TOR. More recently, transcriptional regulation of autophagy genes has emerged as an important mechanism for ensuring the somatic maintenance and homeostasis necessary for a long life span. Autophagy is increased in many long-lived model organisms and contributes significantly to their longevity. In turn, conserved transcription factors, particularly the helix-loop-helix transcription factor TFEB and the forkhead transcription factor FOXO, control the expression of many autophagy-related genes and are important for life-span extension. In this review, we discuss recent progress in understanding the contribution of these transcription factors to macroautophagy regulation in the context of aging. We also review current research on epigenetic changes, such as histone modification by the deacetylase SIRT1, that influence autophagy-related gene expression and additionally affect aging. Understanding the molecular regulation of macroautophagy in relation to aging may offer new avenues for the treatment of age-related diseases.
Collapse
Key Words
- AMPK, AMP-activated protein kinase
- Atg, autophagy related
- BNIP3, BCL2/adenovirus E1B 19kDa interacting protein 3
- CaN, calcineurin; HDAC, histone deacetylase
- FOXO
- HAT, histone acetyltransferase
- LC3, microtubule-associated protein 1 light chain 3
- MITF, microphthalmia-associated transcription factor
- PDPK1/2, 3-phosphoinositide dependent kinase 1/2
- PtdIns3K, phosphatidylinositol 3-kinase
- PtdIns3P, phosphatidylinositol 3-phosphate
- SIRT1
- TFEB
- TFEB, transcription factor EB
- TOR, target of rapamycin
- TSC, tuberous sclerosis complex
- UVRAG, UV radiation resistance associated.
- acetyl-CoA, acetyl coenzyme A
- autophagy
- epigenetics
- longevity
- miRNA
- transcription.
Collapse
Affiliation(s)
- Louis R Lapierre
- a Development, Aging and Regeneration Program; Sanford-Burnham Medical Research Institute ; La Jolla , CA USA
| | | | | | | | | |
Collapse
|
443
|
La Rovere RML, Roest G, Bultynck G, Parys JB. Intracellular Ca(2+) signaling and Ca(2+) microdomains in the control of cell survival, apoptosis and autophagy. Cell Calcium 2016; 60:74-87. [PMID: 27157108 DOI: 10.1016/j.ceca.2016.04.005] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 01/01/2023]
Abstract
The endoplasmic reticulum (ER), mitochondria and lysosomes are physically and/or functionally linked, establishing close contact sites between these organelles. As a consequence, Ca(2+) release events from the ER, the major intracellular Ca(2+)-storage organelle, have an immediate effect on the physiological function of mitochondria and lysosomes. Also, the lysosomes can act as a Ca(2+) source for Ca(2+) release into the cytosol, thereby influencing ER-based Ca(2+) signaling. Given the important role for mitochondria and lysosomes in cell survival, cell death and cell adaptation processes, it has become increasingly clear that Ca(2+) signals from or towards these organelles impact these processes. In this review, we discuss the most recent insights in the emerging role of Ca(2+) signaling in cellular survival by controlling basal mitochondrial bioenergetics and by regulating apoptosis, a mitochondrial process, and autophagy, a lysosomal process, in response to cell damage and cell stress.
Collapse
Affiliation(s)
- Rita M L La Rovere
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, BE-3000 Leuven, Belgium
| | - Gemma Roest
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, BE-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, BE-3000 Leuven, Belgium.
| | - Jan B Parys
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, BE-3000 Leuven, Belgium.
| |
Collapse
|
444
|
Geraets RD, Koh SY, Hastings ML, Kielian T, Pearce DA, Weimer JM. Moving towards effective therapeutic strategies for Neuronal Ceroid Lipofuscinosis. Orphanet J Rare Dis 2016; 11:40. [PMID: 27083890 PMCID: PMC4833901 DOI: 10.1186/s13023-016-0414-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/16/2016] [Indexed: 12/24/2022] Open
Abstract
The Neuronal Ceroid Lipofuscinoses (NCLs) are a family of autosomal recessive neurodegenerative disorders that annually affect 1:100,000 live births worldwide. This family of diseases results from mutations in one of 14 different genes that share common clinical and pathological etiologies. Clinically, the diseases are subcategorized into infantile, late-infantile, juvenile and adult forms based on their age of onset. Though the disease phenotypes may vary in their age and order of presentation, all typically include progressive visual deterioration and blindness, cognitive impairment, motor deficits and seizures. Pathological hallmarks of NCLs include the accumulation of storage material or ceroid in the lysosome, progressive neuronal degeneration and massive glial activation. Advances have been made in genetic diagnosis and counseling for families. However, comprehensive treatment programs that delay or halt disease progression have been elusive. Current disease management is primarily targeted at controlling the symptoms rather than "curing" the disease. Recognizing the growing need for transparency and synergistic efforts to move the field forward, this review will provide an overview of the therapeutic approaches currently being pursued in preclinical and clinical trials to treat different forms of NCL as well as provide insight to novel therapeutic approaches in development for the NCLs.
Collapse
Affiliation(s)
- Ryan D. Geraets
- />Children’s Health Research Center, Sanford Research, Sioux Falls, SD USA
- />Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD USA
| | - Seung yon Koh
- />Children’s Health Research Center, Sanford Research, Sioux Falls, SD USA
| | - Michelle L. Hastings
- />Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL USA
| | - Tammy Kielian
- />Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE USA
| | - David A. Pearce
- />Children’s Health Research Center, Sanford Research, Sioux Falls, SD USA
- />Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD USA
| | - Jill M. Weimer
- />Children’s Health Research Center, Sanford Research, Sioux Falls, SD USA
- />Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD USA
| |
Collapse
|
445
|
Najafian B, Tøndel C, Svarstad E, Sokolovkiy A, Smith K, Mauer M. One Year of Enzyme Replacement Therapy Reduces Globotriaosylceramide Inclusions in Podocytes in Male Adult Patients with Fabry Disease. PLoS One 2016; 11:e0152812. [PMID: 27081853 PMCID: PMC4833322 DOI: 10.1371/journal.pone.0152812] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/19/2016] [Indexed: 12/22/2022] Open
Abstract
Fabry nephropathy is associated with progressive accumulation of globotriaosylceramide (GL3) in podocytes. Reducing this GL3 burden may reduce podocyte injury. Sensitive methods to quantify podocyte GL3 content may determine whether a given strategy can benefit podocytes in Fabry disease. We developed an unbiased electron microscopic stereological method to estimate the average volume of podocytes and their GL3 inclusions in 6 paired pre- and post-enzyme replacement therapy (ERT) biopsies from 5 men with Fabry disease. Podocyte GL3 content was regularly reduced (average 73%) after 11-12 months of ERT. This was not detectable using a semi-quantitative approach. Parallel to GL3 reduction, podocytes became remarkably smaller (average 63%). These reductions in podocyte GL3 content or size were not significantly correlated with changes in foot process width (FPW). However, FPW after ERT was significantly correlated with the magnitude of the decrease in podocyte GL3 content from baseline to 11-12 months of ERT. Also podocytes exocytosed GL3 inclusions, a phenomenon correlated with their reduction in their GL3 content. Demonstrable after11-12 months, reduction in podocyte GL3 content allows for early assessment of treatment efficacy and shorter clinical trials in Fabry disease.
Collapse
Affiliation(s)
- Behzad Najafian
- Department of Pathology, University of Washington, Seattle, United States of America
- * E-mail:
| | - Camilla Tøndel
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Einar Svarstad
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Alexey Sokolovkiy
- Department of Pathology, University of Washington, Seattle, United States of America
| | - Kelly Smith
- Department of Pathology, University of Washington, Seattle, United States of America
| | - Michael Mauer
- Departments of Pediatrics and Medicine, University of Minnesota, Minneapolis, United States of America
| |
Collapse
|
446
|
Starling GP, Yip YY, Sanger A, Morton PE, Eden ER, Dodding MP. Folliculin directs the formation of a Rab34-RILP complex to control the nutrient-dependent dynamic distribution of lysosomes. EMBO Rep 2016; 17:823-41. [PMID: 27113757 PMCID: PMC4893818 DOI: 10.15252/embr.201541382] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 03/14/2016] [Indexed: 11/09/2022] Open
Abstract
The spatial distribution of lysosomes is important for their function and is, in part, controlled by cellular nutrient status. Here, we show that the lysosome associated Birt-Hoge-Dubé (BHD) syndrome renal tumour suppressor folliculin (FLCN) regulates this process. FLCN promotes the peri-nuclear clustering of lysosomes following serum and amino acid withdrawal and is supported by the predominantly Golgi-associated small GTPase Rab34. Rab34-positive peri-nuclear membranes contact lysosomes and cause a reduction in lysosome motility and knockdown of FLCN inhibits Rab34-induced peri-nuclear lysosome clustering. FLCN interacts directly via its C-terminal DENN domain with the Rab34 effector RILP Using purified recombinant proteins, we show that the FLCN-DENN domain does not act as a GEF for Rab34, but rather, loads active Rab34 onto RILP We propose a model whereby starvation-induced FLCN association with lysosomes drives the formation of contact sites between lysosomes and Rab34-positive peri-nuclear membranes that restrict lysosome motility and thus promote their retention in this region of the cell.
Collapse
Affiliation(s)
- Georgina P Starling
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Yan Y Yip
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Anneri Sanger
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Penny E Morton
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Emily R Eden
- Institute of Ophthalmology, University College London, London, UK
| | - Mark P Dodding
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| |
Collapse
|
447
|
Onyenwoke RU, Brenman JE. Lysosomal Storage Diseases-Regulating Neurodegeneration. J Exp Neurosci 2016; 9:81-91. [PMID: 27081317 PMCID: PMC4822725 DOI: 10.4137/jen.s25475] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a complex pathway regulated by numerous signaling events that recycles macromolecules and can be perturbed in lysosomal storage diseases (LSDs). The concept of LSDs, which are characterized by aberrant, excessive storage of cellular material in lysosomes, developed following the discovery of an enzyme deficiency as the cause of Pompe disease in 1963. Great strides have since been made in better understanding the biology of LSDs. Defective lysosomal storage typically occurs in many cell types, but the nervous system, including the central nervous system and peripheral nervous system, is particularly vulnerable to LSDs, being affected in two-thirds of LSDs. This review provides a summary of some of the better characterized LSDs and the pathways affected in these disorders.
Collapse
Affiliation(s)
- Rob U Onyenwoke
- Department of Pharmaceutical Science, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, USA
| | - Jay E Brenman
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.; Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
448
|
Martini-Stoica H, Xu Y, Ballabio A, Zheng H. The Autophagy-Lysosomal Pathway in Neurodegeneration: A TFEB Perspective. Trends Neurosci 2016; 39:221-234. [PMID: 26968346 PMCID: PMC4928589 DOI: 10.1016/j.tins.2016.02.002] [Citation(s) in RCA: 313] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/03/2016] [Accepted: 02/09/2016] [Indexed: 02/08/2023]
Abstract
The autophagy-lysosomal pathway (ALP) is involved in the degradation of long-lived proteins. Deficits in the ALP result in protein aggregation, the generation of toxic protein species, and accumulation of dysfunctional organelles, which are hallmarks of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and prion disease. Decades of research have therefore focused on enhancing the ALP in neurodegenerative diseases. More recently, transcription factor EB (TFEB), a major regulator of autophagy and lysosomal biogenesis, has emerged as a leading factor in addressing disease pathology. We review the regulation of the ALP and TFEB and their impact on neurodegenerative diseases. We also offer our perspective on the complex role of autophagy and TFEB in disease pathogenesis and its therapeutic implications through the examination of prion disease.
Collapse
Affiliation(s)
- Heidi Martini-Stoica
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA; Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Yin Xu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Andrea Ballabio
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Dan and Jan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Telethon Institute of Genetics and Medicine (TIGEM) and Department of Translational Medical Sciences, Frederico II University, Naples, Italy
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
449
|
Hu W, Tian H, Yue W, Li L, Li S, Gao C, Si L, Qi L, Lu M, Hao B, Shan S. Rotenone induces apoptosis in human lung cancer cells by regulating autophagic flux. IUBMB Life 2016; 68:388-93. [PMID: 27015848 DOI: 10.1002/iub.1493] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/17/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Wensi Hu
- Department of Thoracic Surgery; Qilu Hospital, Shandong University; Jinan China
| | - Hui Tian
- Department of Thoracic Surgery; Qilu Hospital, Shandong University; Jinan China
| | - Weiming Yue
- Department of Thoracic Surgery; Qilu Hospital, Shandong University; Jinan China
| | - Lin Li
- Department of Thoracic Surgery; Qilu Hospital, Shandong University; Jinan China
| | - Shuhai Li
- Department of Thoracic Surgery; Qilu Hospital, Shandong University; Jinan China
| | - Cun Gao
- Department of Thoracic Surgery; Qilu Hospital, Shandong University; Jinan China
| | - Libo Si
- Department of Thoracic Surgery; Qilu Hospital, Shandong University; Jinan China
| | - Lei Qi
- Department of Thoracic Surgery; Qilu Hospital, Shandong University; Jinan China
| | - Ming Lu
- Department of Thoracic Surgery; Qilu Hospital, Shandong University; Jinan China
| | - Bin Hao
- Department of Thoracic Surgery; Central Hospital of ZiBo; ZiBo China
| | - Shuyu Shan
- Department of Thoracic Surgery; Central Hospital of ZiBo; ZiBo China
| |
Collapse
|
450
|
Dehay B, Decressac M, Bourdenx M, Guadagnino I, Fernagut PO, Tamburrino A, Bassil F, Meissner WG, Bezard E. Targeting α-synuclein: Therapeutic options. Mov Disord 2016; 31:882-8. [PMID: 26926119 DOI: 10.1002/mds.26568] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/09/2016] [Accepted: 01/14/2016] [Indexed: 12/21/2022] Open
Abstract
The discovery of the central role of α-synuclein (αSyn) in the pathogenesis of Parkinson's disease (PD) has powered, in the last decade, the emergence of novel relevant models of this condition based on viral vector-mediated expression of the disease-causing protein or inoculation of toxic species of αSyn. Although the development of these powerful tools and models has provided considerable insights into the mechanisms underlying neurodegeneration in PD, it has also been translated into the expansion of the landscape of preclinical therapeutic strategies. Much attention is now brought to the proteotoxic mechanisms induced by αSyn and how to block them using strategies inspired by intrinsic cellular pathways such as the enhancement of cellular clearance by the lysosomal-autophagic system, through proteasome-mediated degradation or through immunization. The important effort undertaken by several laboratories and consortia to tackle these issues and identify novel targets warrants great promise for the discovery not only of neuroprotective approaches but also of restorative strategies for PD and other synucleinopathies. In this viewpoint, we summarize the latest advances in this new area of PD research and will discuss promising approaches and ongoing challenges. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Benjamin Dehay
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | | | - Mathieu Bourdenx
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | | | - Pierre-Olivier Fernagut
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Anna Tamburrino
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Fares Bassil
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Wassilios G Meissner
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,Department of Neurology, University Hospital Bordeaux, Bordeaux, France
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| |
Collapse
|