401
|
Lee AG. Lipid-protein interactions in biological membranes: a structural perspective. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1612:1-40. [PMID: 12729927 DOI: 10.1016/s0005-2736(03)00056-7] [Citation(s) in RCA: 656] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lipid molecules bound to membrane proteins are resolved in some high-resolution structures of membrane proteins. An analysis of these structures provides a framework within which to analyse the nature of lipid-protein interactions within membranes. Membrane proteins are surrounded by a shell or annulus of lipid molecules, equivalent to the solvent layer surrounding a water-soluble protein. The lipid bilayer extends right up to the membrane protein, with a uniform thickness around the protein. The surface of a membrane protein contains many shallow grooves and protrusions to which the fatty acyl chains of the surrounding lipids conform to provide tight packing into the membrane. An individual lipid molecule will remain in the annular shell around a protein for only a short period of time. Binding to the annular shell shows relatively little structural specificity. As well as the annular lipid, there is evidence for other lipid molecules bound between the transmembrane alpha-helices of the protein; these lipids are referred to as non-annular lipids. The average thickness of the hydrophobic domain of a membrane protein is about 29 A, with a few proteins having significantly smaller or greater thicknesses than the average. Hydrophobic mismatch between a membrane protein and the surrounding lipid bilayer generally leads to only small changes in membrane thickness. Possible adaptations in the protein to minimise mismatch include tilting of the helices and rotation of side chains at the ends of the helices. Packing of transmembrane alpha-helices is dependent on the chain length of the surrounding phospholipids. The function of membrane proteins is dependent on the thickness of the surrounding lipid bilayer, sometimes on the presence of specific, usually anionic, phospholipids, and sometimes on the phase of the phospholipid.
Collapse
Affiliation(s)
- A G Lee
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Bassett Crescent East, SO16 7PX, Southampton, UK.
| |
Collapse
|
402
|
Park JB, Kim HJ, Ryu PD, Moczydlowski E. Effect of phosphatidylserine on unitary conductance and Ba2+ block of the BK Ca2+-activated K+ channel: re-examination of the surface charge hypothesis. J Gen Physiol 2003; 121:375-97. [PMID: 12695485 PMCID: PMC2217375 DOI: 10.1085/jgp.200208746] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2002] [Revised: 03/13/2003] [Accepted: 03/17/2003] [Indexed: 11/29/2022] Open
Abstract
Incorporation of BK Ca2+-activated K+ channels into planar bilayers composed of negatively charged phospholipids such as phosphatidylserine (PS) or phosphatidylinositol (PI) results in a large enhancement of unitary conductance (gch) in comparison to BK channels in bilayers formed from the neutral zwitterionic lipid, phospatidylethanolamine (PE). Enhancement of gch by PS or PI is inversely dependent on KCl concentration, decreasing from 70% at 10 mM KCl to 8% at 1,000 mM KCl. This effect was explained previously by a surface charge hypothesis (Moczydlowski, E., O. Alvarez, C. Vergara, and R. Latorre. 1985. J. Membr. Biol. 83:273-282), which attributed the conductance enhancement to an increase in local K+ concentration near the entryways of the channel. To test this hypothesis, we measured the kinetics of block by external and internal Ba2+, a divalent cation that is expected to respond strongly to changes in surface electrostatics. We observed little or no effect of PS on discrete blocking kinetics by external and internal Ba2+ at 100 mM KCl and only a small enhancement of discrete and fast block by external Ba2+ in PS-containing membranes at 20 mM KCl. Model calculations of effective surface potential sensed by the K+ conduction and Ba2+-blocking reactions using the Gouy-Chapman-Stern theory of lipid surface charge do not lend support to a simple electrostatic mechanism that predicts valence-dependent increase of local cation concentration. The results imply that the conduction pore of the BK channel is electrostatically insulated from the lipid surface, presumably by a lateral distance of separation (>20 A) from the lipid head groups. The lack of effect of PS on apparent association and dissociation rates of Ba2+ suggest that lipid modulation of K+ conductance is preferentially coupled through conformational changes of the selectivity filter region that determine the high K+ flux rate of this channel relative to other cations. We discuss possible mechanisms for the effect of anionic lipids in the context of specific molecular interactions of phospholipids documented for the KcsA bacterial potassium channel and general membrane physical properties proposed to regulate membrane protein conformation via energetics of bilayer stress.
Collapse
Affiliation(s)
- Jin Bong Park
- Department of Pharmacology, College of Veterinary Medicine and School of Agricultural Biotechnology, Seoul national Universiyt, Suwon, Korea
| | | | | | | |
Collapse
|
403
|
Subczynski WK, Pasenkiewicz-Gierula M, McElhaney RN, Hyde JS, Kusumi A. Molecular dynamics of 1-palmitoyl-2-oleoylphosphatidylcholine membranes containing transmembrane alpha-helical peptides with alternating leucine and alanine residues. Biochemistry 2003; 42:3939-48. [PMID: 12667085 DOI: 10.1021/bi020636y] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects of the transmembrane alpha-helical peptide Ac-K(2)(LA)(12)K(2)-amide [(LA)(12)] on the molecular organization and dynamics of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) membranes were investigated using conventional and saturation-recovery EPR observations of phosphatidylcholine spin labels, and the results were compared with our earlier, similar study of Ac-K(2)L(24)K(2)-amide (L(24)) [Subczynski, W. K., Lewis, R. N. A. H., McElhaney, R. N., Hodges, R. S., Hyde, J. S., and Kusumi, A. (1998) Biochemistry 37, 3156-3164]. At peptide-to-POPC ratios between 1/10 and 1/40, both methods (covering a time scale of 100 ps-10 micros) detect the presence of a single homogeneous membrane environment for both peptides, suggesting that these peptides are both well dispersed and that POPC is exchanging rapidly between the boundary and the bulk domains. The local diffusion-solubility product of oxygen molecules (oxygen transport parameter) in the membrane, studied by saturation-recovery EPR, decreases by a factor of about 2 by including 10 mol % (LA)(12) whereas incorporating L(24) has practically no effect. (LA)(12) increases the alkyl chain order of POPC more than L(24). L(24) increases hydrophobicity (decreases the degree of water penetration into the hydrophobic region of the membrane) more than does (LA)(12). We ascribe the much stronger effects of (LA)(12) on membrane order and dynamics to the increased roughness of its hydrophobic surface and also to the increased motional freedom of its leucine side chains. In L(24), the leucine side chains are packed tightly, giving a smooth hydrophobic surface. In (LA)(12), they are separated by the small methyl groups of the alanine side chains, giving them additional motional freedom and the ability to protrude between the phospholipid hydrocarbon chains. The frequency of gauche-trans isomerization of hydrocarbon chains and concentration of vacant pockets (voids) in the lipid bilayer are thus reduced, which decreases oxygen transport. This explanation was confirmed by calculating the orientational order of leucine side chains in (LA)(12) and L(24) from molecular dynamics simulation studies.
Collapse
Affiliation(s)
- Witold K Subczynski
- Biophysics Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | |
Collapse
|
404
|
Storm P, Li L, Kinnunen P, Wieslander A. Lateral organization in Acholeplasma laidlawii lipid bilayer models containing endogenous pyrene probes. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1699-709. [PMID: 12694183 DOI: 10.1046/j.1432-1033.2003.03527.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In membranes of the small prokaryote Acholeplasma laidlawii bilayer- and nonbilayer-prone glycolipids are major species, similar to chloroplast membranes. Enzymes of the glucolipid pathway keep certain important packing properties of the bilayer in vivo, visualized especially as a monolayer curvature stress ('spontaneous curvature'). Two key enzymes depend in a cooperative fashion on substantial amounts of the endogenous anionic lipid phosphatidylglycerol (PG) for activity. The lateral organization of five unsaturated A. laidlawii lipids was analyzed in liposome model bilayers with the use of endogenously produced pyrene-lipid probes, and extensive experimental designs. Of all lipids analyzed, PG especially promoted interactions with the precursor diacylglycerol (DAG), as revealed from pyrene excimer ratio (Ie/Im) responses. Significant interactions were also recorded within the major nonbilayer-prone monoglucosylDAG (MGlcDAG) lipids. The anionic precursor phosphatidic acid (PA) was without effects. Hence, a heterogeneous lateral lipid organization was present in these liquid-crystalline bilayers. The MGlcDAG synthase when binding at the PG bilayer interface, decreased acyl chain ordering (increase of membrane free volume) according to a bis-pyrene-lipid probe, but the enzyme did not influence the bulk lateral lipid organization as recorded from DAG or PG probes. It is concluded that the concentration of the substrate DAG by PG is beneficial for the MGlcDAG synthase, but that binding in a proper orientation/conformation seems most important for activity.
Collapse
Affiliation(s)
- Patrik Storm
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | | | | | | |
Collapse
|
405
|
Stamouli A, Kafi S, Klein DCG, Oosterkamp TH, Frenken JWM, Cogdell RJ, Aartsma TJ. The ring structure and organization of light harvesting 2 complexes in a reconstituted lipid bilayer, resolved by atomic force microscopy. Biophys J 2003; 84:2483-91. [PMID: 12668456 PMCID: PMC1302814 DOI: 10.1016/s0006-3495(03)75053-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2002] [Accepted: 11/25/2002] [Indexed: 10/21/2022] Open
Abstract
The main function of the transmembrane light-harvesting complexes in photosynthetic organisms is the absorption of a light quantum and its subsequent rapid transfer to a reaction center where a charge separation occurs. A combination of freeze-thaw and dialysis methods were used to reconstitute the detergent-solubilized Light Harvesting 2 complex (LH2) of the purple bacterium Rhodopseudomonas acidophila strain 10050 into preformed egg phosphatidylcholine liposomes, without the need for extra chemical agents. The LH2-containing liposomes opened up to a flat bilayer, which were imaged with tapping and contact mode atomic force microscopy under ambient and physiological conditions, respectively. The LH2 complexes were packed in quasicrystalline domains. The endoplasmic and periplasmic sides of the LH2 complexes could be distinguished by the difference in height of the protrusions from the lipid bilayer. The results indicate that the complexes entered in intact liposomes. In addition, it was observed that the most hydrophilic side, the periplasmic, enters first in the membrane. In contact mode the molecular structure of the periplasmic side of the transmembrane pigment-protein complex was observed. Using Föster's theory for describing the distance dependent energy transfer, we estimate the dipole strength for energy transfer between two neighboring LH2s, based on the architecture of the imaged unit cell.
Collapse
Affiliation(s)
- Amalia Stamouli
- Department of Biophysics, Huygens Laboratory, Leiden University, 2300 RA Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
406
|
Zemel A, Fattal DR, Ben-Shaul A. Energetics and self-assembly of amphipathic peptide pores in lipid membranes. Biophys J 2003; 84:2242-55. [PMID: 12668433 PMCID: PMC1302791 DOI: 10.1016/s0006-3495(03)75030-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2002] [Accepted: 12/13/2002] [Indexed: 11/25/2022] Open
Abstract
We present a theoretical study of the energetics, equilibrium size, and size distribution of membrane pores composed of electrically charged amphipathic peptides. The peptides are modeled as cylinders (mimicking alpha-helices) carrying different amounts of charge, with the charge being uniformly distributed over a hydrophilic face, defined by the angle subtended by polar amino acid residues. The free energy of a pore of a given radius, R, and a given number of peptides, s, is expressed as a sum of the peptides' electrostatic charging energy (calculated using Poisson-Boltzmann theory), and the lipid-perturbation energy associated with the formation of a membrane rim (which we model as being semitoroidal) in the gap between neighboring peptides. A simple phenomenological model is used to calculate the membrane perturbation energy. The balance between the opposing forces (namely, the radial free energy derivatives) associated with the electrostatic free energy that favors large R, and the membrane perturbation term that favors small R, dictates the equilibrium properties of the pore. Systematic calculations are reported for circular pores composed of various numbers of peptides, carrying different amounts of charge (1-6 elementary, positive charges) and characterized by different polar angles. We find that the optimal R's, for all (except, possibly, very weakly) charged peptides conform to the "toroidal" pore model, whereby a membrane rim larger than approximately 1 nm intervenes between neighboring peptides. Only weakly charged peptides are likely to form "barrel-stave" pores where the peptides essentially touch one another. Treating pore formation as a two-dimensional self-assembly phenomenon, a simple statistical thermodynamic model is formulated and used to calculate pore size distributions. We find that the average pore size and size polydispersity increase with peptide charge and with the amphipathic polar angle. We also argue that the transition of peptides from the adsorbed to the inserted (membrane pore) state is cooperative and thus occurs rather abruptly upon a change in ambient conditions.
Collapse
Affiliation(s)
- Assaf Zemel
- Department of Physical Chemistry and the Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel
| | | | | |
Collapse
|
407
|
Caputo GA, London E. Using a novel dual fluorescence quenching assay for measurement of tryptophan depth within lipid bilayers to determine hydrophobic alpha-helix locations within membranes. Biochemistry 2003; 42:3265-74. [PMID: 12641458 DOI: 10.1021/bi026696l] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel fluorescence method for determining the depth of Trp residues in membrane-inserted polypeptides is introduced. Quenching of Trp by acrylamide and 10-doxylnonadecane (10-DN) was used to measure Trp depth. Transmembrane helices with Trp residues at varying positions (and thus locating at different depths in lipid bilayers) were used to calibrate the method. It was found that acrylamide quenches Trp close to the bilayer surface more strongly than it quenches deeply buried Trp, while 10-DN quenches Trp close to the center of the bilayer more strongly than Trp close to the surface. The ratio of acrylamide quenching to that of 10-DN was found to be nearly linearly dependent on the depth of Trp in a membrane. It was also found that it was possible to detect coexisting shallowly and deeply inserted populations of Trp-containing polypeptides using these quenchers. In the presence of such mixed populations, acrylamide induced large blue shifts in fluorescence emission lambda(max) whereas 10-DN induced large red shifts. In a more homogeneous population quencher-induced shifts were found to be minimal. Dual quencher analysis can be used to distinguish hydrophobic helices with a transmembrane orientation from those located close to the bilayer surface and, when applied to a number of different peptides, revealed novel aspects of hydrophobic helix behavior.
Collapse
Affiliation(s)
- Gregory A Caputo
- Department of Biochemistry and Cell Biology, Stony Brook University, State University of New York, Stony Brook, New York 11794-5215, USA
| | | |
Collapse
|
408
|
Caputo GA, London E. Cumulative effects of amino acid substitutions and hydrophobic mismatch upon the transmembrane stability and conformation of hydrophobic alpha-helices. Biochemistry 2003; 42:3275-85. [PMID: 12641459 DOI: 10.1021/bi026697d] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effects of amino acid substitutions upon the behavior of poly(Leu)-rich alpha-helices inserted into model membrane vesicles were investigated. One or two consecutive Leu residues in the hydrophobic core of the helix were substituted with A, F, G, S, D, K, H, P, GG, SS, PG, PP, KK, or DD residues. A Trp placed at the center of the sequence allowed assessment of peptide behavior via fluorescence emission lambda(max) and dual quenching analysis of Trp depth [Caputo, G. A., and London, E. (2003) Biochemistry 42, 3265-3274]. In vesicles composed of dioleoylphosphatidylcholine (DOPC), all of the peptides with single substitutions adopted a transmembrane (TM) state. Experiments were also performed in thicker bilayers composed of dierucoylphosphatidylcholine (DEuPC). In DEuPC vesicles TM states were destabilized by mismatch between helix length and bilayer thickness. Nevertheless, in DEuPC vesicles TM states were still prevalent for peptides with single substitutions, although less so for peptides with P, K, H, or D substitutions. In contrast to single substitutions, certain consecutive double substitutions strongly interfered with formation of TM states. In both DOPC and DEuPC vesicles DD and KK substitutions abolished the normal TM state, but GG and SS substitutions had little effect. In even wider bilayers, a SS substitution reduced the formation of a TM state. A peptide with a PP substitution maintained the TM state in DOPC vesicles, but in DEuPC vesicles the level of formation of the TM state was significantly reduced. Upon disruption of normal TM insertion peptides moved close to the bilayer surface, with the exception of the KK-substituted peptide in DOPC vesicles, which formed a truncated TM segment. These studies begin to provide a detailed relationship between sequence and the stability of TM insertion and show that the influence of insertion-destabilizing residues upon hydrophobic helices can be strongly modulated by properties such as mismatch. For certain helix-forming hydrophobic sequences, sensitivity to lipid structure may be sufficient to induce large conformational changes in vivo.
Collapse
Affiliation(s)
- Gregory A Caputo
- Department of Biochemistry and Cell Biology, Stony Brook University, State University of New York, Stony Brook, New York 11794-5215, USA
| | | |
Collapse
|
409
|
Knecht V, Grubmüller H. Mechanical coupling via the membrane fusion SNARE protein syntaxin 1A: a molecular dynamics study. Biophys J 2003; 84:1527-47. [PMID: 12609859 PMCID: PMC1302726 DOI: 10.1016/s0006-3495(03)74965-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2002] [Accepted: 10/31/2002] [Indexed: 01/04/2023] Open
Abstract
SNARE trans complexes between membranes likely promote membrane fusion. For the t-SNARE syntaxin 1A involved in synaptic transmission, the secondary structure and bending stiffness of the five-residue juxtamembrane linker is assumed to determine the required mechanical energy transfer from the cytosolic core complex to the membrane. These properties have here been studied by molecular dynamics and annealing simulations for the wild-type and a C-terminal-prolongated mutant within a neutral and an acidic bilayer, suggesting linker stiffnesses above 1.7 but below 50 x 10(-3) kcal mol(-1) deg(-2). The transmembrane helix was found to be tilted by 15 degrees and tightly anchored within the membrane with a stiffness of 4-5 kcal mol(-1) A(-2). The linker turned out to be marginally helical and strongly influenced by its lipid environment. Charged lipids increased the helicity and H3 helix tilt stiffness. For the wild type, the linker was seen embedded deeply within the polar region of the bilayer, whereas the prolongation shifted the linker outward. This reduced its helicity and increased its average tilt, thereby presumably reducing fusion efficiency. Our results suggest that partially unstructured linkers provide considerable mechanical coupling; the energy transduced cooperatively by the linkers in a native fusion event is thus estimated to be 3-8 kcal/mol, implying a two-to-five orders of magnitude fusion rate increase.
Collapse
Affiliation(s)
- Volker Knecht
- Theoretical Molecular Biophysics Group, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | |
Collapse
|
410
|
Denich TJ, Beaudette LA, Lee H, Trevors JT. Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. J Microbiol Methods 2003; 52:149-82. [PMID: 12459238 DOI: 10.1016/s0167-7012(02)00155-0] [Citation(s) in RCA: 285] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Membranes lipids are one of the most adaptable molecules in response to perturbations. Even subtle changes of the composition of acyl chains or head groups can alter the packing arrangements of lipids within the bilayer. This changes the balance between bilayer and nonbilayer lipids, serving to affect bilayer stability and fluidity, as well as altering lipid-protein interactions. External factors can also change membrane fluidity and lipid composition; including temperature, chemicals, ions, pressure, nutrients and the growth phase of the microbial culture. Various biophysical techniques have been used to monitor fluidity changes within the bacterial membrane. In this review, bacterial cytoplasmic membrane changes and related functional effects will be examined as well as the use of fluorescence polarization methods and examples of data obtained from research with bacteria.
Collapse
Affiliation(s)
- T J Denich
- Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | |
Collapse
|
411
|
Price H, Wallace R. Field-induced reorganization of the neural membrane lipid bilayer: a proposed role in the regulation of ion-channel dynamics. Biosystems 2003; 68:67-77. [PMID: 12543523 DOI: 10.1016/s0303-2647(02)00158-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We present a computational model demonstrating that an electric field propagating in the plane of the neural membrane during transmembrane ion movement creates lateral concentration gradients of the lipids. Due to this field-induced reorganization, ethenes of the lipid chains become aligned and polarized. This finding is interpreted within the context of molecular studies of protein folding in biological membranes. We propose that electrostatic interactions between membrane dipoles and charged amino acid residues of the unfolded ion-channel protein regulate protein-folding kinetics (channel closing). These electrostatic interactions thus regulate electrical signaling in neurons.
Collapse
Affiliation(s)
- Harry Price
- Department of Chemistry, Stetson University, Deland, FL 32720-3756, USA.
| | | |
Collapse
|
412
|
Whiles JA, Deems R, Vold RR, Dennis EA. Bicelles in structure-function studies of membrane-associated proteins. Bioorg Chem 2002; 30:431-42. [PMID: 12642127 DOI: 10.1016/s0045-2068(02)00527-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bicelles are a novel form of long-chain/short-chain phospholipid aggregates, which are useful for biophysical and biochemical studies of membrane-associated biomolecules. In this work, we review the development of bicelles and their uses in structural characterization (primarily via NMR, circular dichroism, and fluorescence) of membrane-associated peptides. We also show that bicellar phospholipids are substrates for lipolytic enzymes. For this latter work, we employed a 31P NMR enzymatic assay system to examine the kinetic behavior of cobra venom phospholipase A(2) toward a variety of bicellar substrates. This enzyme hydrolyzed all bicelle lipids at rates comparable to those found for the enzyme action on traditional micellar substrates, which are the best substrates for this enzyme. In addition, we found that this PLA(2) showed no significant preference for long-chain or short-chain phospholipids when they were presented as mixtures in bicelles.
Collapse
Affiliation(s)
- Jennifer A Whiles
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0601, USA
| | | | | | | |
Collapse
|
413
|
Kleinschmidt JH, Tamm LK. Secondary and tertiary structure formation of the beta-barrel membrane protein OmpA is synchronized and depends on membrane thickness. J Mol Biol 2002; 324:319-30. [PMID: 12441110 DOI: 10.1016/s0022-2836(02)01071-9] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The mechanism of membrane insertion and folding of a beta-barrel membrane protein has been studied using the outer membrane protein A (OmpA) as an example. OmpA forms an eight-stranded beta-barrel that functions as a structural protein and perhaps as an ion channel in the outer membrane of Escherichia coli. OmpA folds spontaneously from a urea-denatured state into lipid bilayers of small unilamellar vesicles. We have used fluorescence spectroscopy, circular dichroism spectroscopy, and gel electrophoresis to investigate basic mechanistic principles of structure formation in OmpA. Folding kinetics followed a second-order rate law and is strongly depended on the hydrophobic thickness of the lipid bilayer. When OmpA was refolded into model membranes of dilaurylphosphatidylcholine, fluorescence kinetics were characterized by a rate constant that was about fivefold higher than the rate constants of formation of secondary and tertiary structure, which were determined by circular dichroism spectroscopy and gel electrophoresis, respectively. The formation of beta-sheet secondary structure and closure of the beta-barrel of OmpA were correlated with the same rate constant and coupled to the insertion of the protein into the lipid bilayer. OmpA, and presumably other beta-barrel membrane proteins therefore do not follow a mechanism according to the two-stage model that has been proposed for the folding of alpha-helical bundle membrane proteins. These different folding mechanisms are likely a consequence of the very different intramolecular hydrogen bonding and hydrophobicity patterns in these two classes of membrane proteins.
Collapse
Affiliation(s)
- Jörg H Kleinschmidt
- Department of Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, Charlottesville, VA 22908-0736, USA
| | | |
Collapse
|
414
|
Williamson IM, Alvis SJ, East JM, Lee AG. Interactions of phospholipids with the potassium channel KcsA. Biophys J 2002; 83:2026-38. [PMID: 12324421 PMCID: PMC1302292 DOI: 10.1016/s0006-3495(02)73964-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The potassium channel KcsA from Streptomyces lividans has been reconstituted into bilayers of phosphatidylcholines and fluorescence spectroscopy has been used to characterize the response of KcsA to changes in bilayer thickness. The Trp residues in KcsA form two bands, one on each side of the membrane. Trp fluorescence emission spectra and the proportion of the Trp fluorescence intensity quenchable by I(-) hardly vary in the lipid chain length range C10 to C24, suggesting efficient hydrophobic matching between KcsA and the lipid bilayer over this range. Measurements of fluorescence quenching for KcsA reconstituted into mixtures of brominated and nonbrominated phospholipids have been analyzed to give binding constants of lipids for KcsA, relative to that for dioleoylphosphatidylcholine (di(C18:1)PC). Relative lipid binding constants increase by only a factor of three with increasing chain length from C10 to C22 with a decrease from C22 to C24. Strongest binding to di(C22:1)PC corresponds to a state in which the side chains of the lipid-exposed Trp residues are likely to be located within the hydrocarbon core of the lipid bilayer. It is suggested that matching of KcsA to thinner bilayers than di(C24:1)PC is achieved by tilting of the transmembrane alpha-helices in KcsA. Measurements of fluorescence quenching of KcsA in bilayers of brominated phospholipids as a function of phospholipid chain length suggest that in the chain length range C14 to C18 the Trp residues move further away from the center of the lipid bilayer with increasing chain length, which can be partly explained by a decrease in helix tilt angle with increasing bilayer thickness. In the chain length range C18 to C24 it is suggested that the Trp residues become more buried within the hydrocarbon core of the bilayer.
Collapse
Affiliation(s)
- Ian M Williamson
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, United Kingdom
| | | | | | | |
Collapse
|
415
|
Whiles JA, Glover KJ, Vold RR, Komives EA. Methods for studying transmembrane peptides in bicelles: consequences of hydrophobic mismatch and peptide sequence. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2002; 158:149-156. [PMID: 12419680 DOI: 10.1016/s1090-7807(02)00068-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We have shown that bicelles prepared from dilauryl phosphatidylcholine (DLPC) and dipalmitoyl phosphatidylcholine (DPPC) align in a magnetic field under conditions similar to the more common dimyristoyl phosphatidylcholine (DMPC) bicelles. In addition, a model transmembrane peptide, P16, with a hydrophobic stretch of 24 A, and specific alanine-d(3) labels, was incorporated into all of the different bicelles. The long-chain phospholipid (DLPC, DMPC, or DPPC) remained unperturbed upon incorporation of the peptide while the quadrupolar splitting of the short-chain phospholipid along the bicelle rim increased by varying degrees in the different bicelle systems. The change in quadrupolar splitting of the short-chain phospholipids was attributed to changes in either fluidity of the planar region of the bicelle or differences in overall lipid packing. When the hydrophobic stretch of the bilayer was 22.8 (DMPC) or 26.3 A (DPPC), the peptide tilt was found to be transmembrane (33-35 degrees with respect to the bicelle normal). When the hydrophobic stretch of the bilayer was 19.5 A (DLPC), the peptide quadrupolar splittings suggested a loss of transmembrane orientation. When tryptophan was incorporated in the middle of the transmembrane region, the transmembrane orientation was also lost.
Collapse
Affiliation(s)
- Jennifer A Whiles
- University of California, San Diego 9500 Gilman Dr, La Jolla, CA 92093-0359, USA
| | | | | | | |
Collapse
|
416
|
van der Wel PCA, Strandberg E, Killian JA, Koeppe RE. Geometry and intrinsic tilt of a tryptophan-anchored transmembrane alpha-helix determined by (2)H NMR. Biophys J 2002; 83:1479-88. [PMID: 12202373 PMCID: PMC1302246 DOI: 10.1016/s0006-3495(02)73918-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We used solid-state deuterium NMR spectroscopy and an approach involving geometric analysis of labeled alanines (GALA method) to examine the structure and orientation of a designed synthetic hydrophobic, membrane-spanning alpha-helical peptide in phosphatidylcholine (PC) bilayers. The 19-amino-acid peptide consists of an alternating leucine and alanine core, flanked by tryptophans that serve as interfacial anchors: acetyl-GWW(LA)(6)LWWA-ethanolamine (WALP19). A single deuterium-labeled alanine was introduced at different positions within the peptide. Peptides were incorporated in oriented bilayers of dilauroyl- (di-C12:0-), dimyristoyl- (di-C14:0-), or dioleoyl- (di-C18:1(c)-) phosphatidylcholine. The NMR data fit well to a WALP19 orientation characterized by a distinctly nonzero tilt, approximately 4 degrees from the membrane normal, and rapid reorientation about the membrane normal in all three lipids. Although the orientation of WALP19 varies slightly in the different lipids, hydrophobic mismatch does not seem to be the dominant factor causing the tilt. We suggest rather that the peptide itself has an inherently preferred tilted orientation, possibly related to peptide surface characteristics or the disposition of tryptophan indole anchors relative to the lipids, the peptide backbone, and the membrane/water interface. Additionally, the data allow us to define more precisely the local alanine geometry in this membrane-spanning alpha-helix.
Collapse
Affiliation(s)
- Patrick C A van der Wel
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701 USA.
| | | | | | | |
Collapse
|
417
|
Kleinschmidt JH, Tamm LK. Structural transitions in short-chain lipid assemblies studied by (31)P-NMR spectroscopy. Biophys J 2002; 83:994-1003. [PMID: 12124281 PMCID: PMC1302203 DOI: 10.1016/s0006-3495(02)75225-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The self-assembled supramolecular structures of diacylphosphatidylcholine (diC(n)PC), diacylphosphatidylethanolamine (diC(n)PE), diacylphosphatidyglycerol (diC(n)PG), and diacylphosphatidylserine (diC(n)PS) were investigated by (31)P nuclear magnetic resonance (NMR) spectroscopy as a function of the hydrophobic acyl chain length. Short-chain homologs of these lipids formed micelles, and longer-chain homologs formed bilayers. The shortest acyl chain lengths that supported bilayer structures depended on the headgroup of the lipids. They increased in the order PE (C(6)) < PC (C(9)) < or = PS (C(9) or C(10)) < PG (C(11) or C(12)). This order correlated with the effective headgroup area, which is a function of the physical size, charge, hydration, and hydrogen-bonding capacity of the four headgroups. Electrostatic screening of the headgroup charge with NaCl reduced the effective headgroup area of PS and PG and thereby decreased the micelle-to-bilayer transition of these lipid classes to shorter chain lengths. The experimentally determined supramolecular structures were compared to the assembly states predicted by packing constraints that were calculated from the hydrocarbon-chain volume and effective headgroup area of each lipid. The model accurately predicted the chain-length threshold for bilayer formation if the relative displacement of the acyl chains of the phospholipid were taken into account. The model also predicted cylindrical rather than spherical micelles for all four diacylphospholipid classes and the (31)P-NMR spectra provided evidence for a tubular network that appeared as an intermediate phase at the micelle-to-bilayer transition. The free energy of micellization per methylene group was independent of the structure of the supramolecular assembly, but was -0.95 kJ/mol (-0.23 kcal/mol) for the PGs compared to -2.5 kJ/mol (-0.60 kcal/mol) for the PCs. The integral membrane protein OmpA did not change the bilayer structure of thin (diC(10)PC) bilayers.
Collapse
Affiliation(s)
- Jörg H Kleinschmidt
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, Virginia 22908-0736, USA.
| | | |
Collapse
|
418
|
Liu F, Lewis RNAH, Hodges RS, McElhaney RN. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylcholine bilayers. Biochemistry 2002; 41:9197-207. [PMID: 12119034 DOI: 10.1021/bi025661i] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High-sensitivity differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy were used to study the interaction of an alpha-helical transmembrane peptide, acetyl-Lys2-Leu24-Lys2-amide (L24), and odd-chain members of the homologous series of n-saturated diacylphosphatidylcholines. An analogue of L24, in which the lysine residues were all replaced by 2,3-diaminopropionic acid, and another, in which a leucine residue at each end of the polyLeu sequence was replaced by a tryptophan, were also studied. At low peptide concentrations, the DSC thermograms exhibited by these lipid/peptide mixtures are resolvable into two components. One of these components is fairly narrow, highly cooperative, and exhibits properties which are similar to but not identical with those of the pure lipid. In addition, the transition temperature and cooperativity of this component, and its fractional contribution to the total enthalpy change, decrease with an increase in peptide concentration, more or less independently of phospholipid acyl chain length. The other component is very broad and predominates at high peptide concentrations. These two components have been assigned to the chain-melting phase transitions of populations of peptide-poor and peptide-enriched lipid domains, respectively. Moreover, when the mean hydrophobic thickness of the PC bilayer is less than the peptide hydrophobic length, the peptide-associated lipid melts at higher temperatures than does the bulk lipid and vice versa. In addition, the chain-melting enthalpy of the broad endotherm does not decrease to zero even at high peptide concentrations, suggesting that these peptides reduce somewhat but do not abolish the cooperative gel/liquid-crystalline phase transition of the lipids with which it is in contact. Our DSC results indicate that the width of the broad phase transition observed at high peptide concentration is inversely but discontinuously related to hydrocarbon chain length. Our FTIR spectroscopic data indicate that these peptides form a very stable alpha-helix under all of our experimental conditions but that small distortions of their alpha-helical conformation are induced in response to mismatch between peptide hydrophobic length and gel-state bilayer hydrophobic thickness. We also present evidence that these distortions are localized to the N- and C-terminal regions of these peptides. Interestingly, replacing the terminal Lys residues of L24 by 2,3-diaminopropionic acid residues actually attenuates the hydrophobic mismatch effects of the peptide on the thermotropic phase behavior of the host PC bilayer, in contrast to the predictions of the snorkel hypothesis. We rationalize this attenuated hydrophobic mismatch effect by postulating that the 2,3-diaminopropionic acid residues are too short to engage in significant electrostatic and hydrogen-bonding interactions with the polar headgroups of the host phospholipid bilayer, even in the absence of any hydrophobic mismatch between incorporated peptide and the bilayer. Similarly, the reduced hydrophobic mismatch effect also observed when the two terminal Leu residues of L24 are replaced by Trp residues is rationalized by considering the lower energetic cost of exposing the Trp as opposed to the Leu residues to the aqueous phase in thin PC bilayers and the higher cost of inserting the Trp as opposed to the Leu residues into the hydrophobic cores of thick PC bilayers.
Collapse
Affiliation(s)
- Feng Liu
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | |
Collapse
|
419
|
van Duyl BY, Rijkers DTS, de Kruijff B, Killian JA. Influence of hydrophobic mismatch and palmitoylation on the association of transmembrane alpha-helical peptides with detergent-resistant membranes. FEBS Lett 2002; 523:79-84. [PMID: 12123808 DOI: 10.1016/s0014-5793(02)02939-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of this study was to gain insight into the mechanism through which transmembrane proteins are targeted to liquid ordered (L(o)) phase domains or rafts. This was investigated by analyzing the Triton X-100 resistance of designed transmembrane peptides in model membranes of 1,2-dioleoyl-sn-glycero-3-phosphocholine, sphingomyelin and cholesterol (1/1/1, molar ratio), which contain both L(o) phase domains and fluid bilayers. By using peptides with one or two palmitate chains covalently linked to their N-terminus or with variable hydrophobic lengths, the roles of protein palmitoylation and of mismatch between the transmembrane segment of the protein and the bilayer thickness, respectively, were investigated. The results show that neither hydrophobic matching nor palmitoylation is sufficient for partitioning of peptides into L(o) phase domains. It is concluded that the L(o) phase itself, due to the tight packing of the lipids, constitutes an unfavorable environment for accommodation of protein transmembrane segments.
Collapse
Affiliation(s)
- Bianca Y van Duyl
- Department of Biochemistry of Membranes, CBLE, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
420
|
de Planque MRR, Boots JWP, Rijkers DTS, Liskamp RMJ, Greathouse DV, Killian JA. The effects of hydrophobic mismatch between phosphatidylcholine bilayers and transmembrane alpha-helical peptides depend on the nature of interfacially exposed aromatic and charged residues. Biochemistry 2002; 41:8396-404. [PMID: 12081488 DOI: 10.1021/bi0257686] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we investigated the extent to which different aromatic and positively charged side chains, which often flank transmembrane segments of proteins, can influence lipid-peptide interactions. Model systems consisting of phosphatidylcholine and hydrophobic alpha-helical peptides with different flanking residues were investigated. The peptides were incorporated in relatively thick and in relatively thin lipid bilayers to create a peptide-bilayer hydrophobic mismatch, and the compensating effects on lipid structure were analyzed. When relatively long with respect to the thickness of the bilayer, the peptides that are flanked by the aromatic side chains, Trp, Tyr, and Phe, all induce a significant ordering of the lipid acyl chains, while the peptides flanked by the charged residues Lys, Arg, and His do not. However, when the peptides are relatively short with respect to the thickness of the bilayer, their effect on lipid organization does not depend primarily on their aromatic or charged character. Peptides flanked by Trp, Tyr, Lys, or (at low pH) His residues are effective in inducing mismatch-relieving cubic and inverted hexagonal phases, while analogues flanked by Phe, Arg, or (at neutral pH) His residues cannot induce an inverted hexagonal phase. The different responses to mismatch might reflect the different interfacial affinities of the residues that were investigated.
Collapse
Affiliation(s)
- Maurits R R de Planque
- Center for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Department of Biochemistry of Membranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
421
|
Sharpe S, Barber KR, Grant CWM, Goodyear D, Morrow MR. Organization of model helical peptides in lipid bilayers: insight into the behavior of single-span protein transmembrane domains. Biophys J 2002; 83:345-58. [PMID: 12080125 PMCID: PMC1302152 DOI: 10.1016/s0006-3495(02)75174-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Selectively deuterated transmembrane peptides comprising alternating leucine-alanine subunits were examined in fluid bilayer membranes by solid-state nuclear magnetic resonance (NMR) spectroscopy in an effort to gain insight into the behavior of membrane proteins. Two groups of peptides were studied: 21-mers having a 17-amino-acid hydrophobic domain calculated to be close in length to the hydrophobic thickness of 1-palmitoyl-2-oleoyl phosphatidylcholine and 26-mers having a 22-amino-acid hydrophobic domain calculated to exceed the membrane hydrophobic thickness. (2)H NMR spectral features similar to ones observed for transmembrane peptides from single-span receptors of higher animal cells were identified which apparently correspond to effectively monomeric peptide. Spectral observations suggested significant distortion of the transmembrane alpha-helix, and/or potential for restriction of rotation about the tilted helix long axis for even simple peptides. Quadrupole splittings arising from the 26-mer were consistent with greater peptide "tilt" than were those of the analogous 21-mer. Quadrupole splittings associated with monomeric peptide were relatively insensitive to concentration and temperature over the range studied, indicating stable average conformations, and a well-ordered rotation axis. At high peptide concentration (6 mol% relative to phospholipid) it appeared that the peptide predicted to be longer than the membrane thickness had a particular tendency toward reversible peptide-peptide interactions occurring on a timescale comparable with or faster than approximately 10(-5) s. This interaction may be direct or lipid-mediated and was manifest as line broadening. Peptide rotational diffusion rates within the membrane, calculated from quadrupolar relaxation times, T(2e), were consistent with such interactions. In the case of the peptide predicted to be equal to the membrane thickness, at low peptide concentration spectral lineshape indicated the additional presence of a population of peptide having rotational motion that was restricted on a timescale of 10(-5) s.
Collapse
Affiliation(s)
- Simon Sharpe
- Department of Biochemistry, University of Western Ontario, London N6A 5C1, Canada
| | | | | | | | | |
Collapse
|
422
|
Duque D, Li XJ, Katsov K, Schick M. Molecular theory of hydrophobic mismatch between lipids and peptides. J Chem Phys 2002. [DOI: 10.1063/1.1477927] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
423
|
Strandberg E, Morein S, Rijkers DTS, Liskamp RMJ, van der Wel PCA, Killian JA. Lipid dependence of membrane anchoring properties and snorkeling behavior of aromatic and charged residues in transmembrane peptides. Biochemistry 2002; 41:7190-8. [PMID: 12044149 DOI: 10.1021/bi012047i] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
31P NMR spectroscopy was used to investigate the effects of transmembrane alpha-helical peptides with different flanking residues on the phase behavior of phosphatidylethanolamine and phosphatidylethanolamine/phosphatidylglycerol (molar ratio 7:3) model membranes. It was found that tryptophan-flanked (WALP) peptides and lysine-flanked (KALP) peptides both promote formation of nonlamellar phases in these lipid systems in a mismatch-dependent manner. Based on this mismatch dependence, it was concluded that the effective hydrophobic length of KALP peptides is considerably shorter than that of the corresponding WALP peptides. Peptides with other positively charged residues showed very similar effects as KALP. The results suggest that the peptides have a well-defined effective hydrophobic length, which is different for charged and aromatic flanking residues, but which is independent of the precise chemical nature of the side chain. Strikingly, the effective length of KALP peptides in the lipid systems investigated here is much smaller than that previously found for the same peptides in phosphatidylcholine. This suggests that snorkeling of lysine side chains, as proposed to occur in phosphatidylcholine, does not occur in lipid systems that are prone to form nonlamellar phases by themselves. This suggestion was supported by using peptides with shortened lysine side chains and by investigating the effects of mixtures of WALP and KALP peptides. The lipid dependency of the snorkeling behavior is explained by considering the free energy cost of snorkeling in relation to the free energy cost of the formation of nonlamellar phases.
Collapse
Affiliation(s)
- Erik Strandberg
- Department of Biochemistry of Membranes, Center for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
424
|
McGhie EJ, Hume PJ, Hayward RD, Torres J, Koronakis V. Topology of the Salmonella invasion protein SipB in a model bilayer. Mol Microbiol 2002; 44:1309-21. [PMID: 12068811 DOI: 10.1046/j.1365-2958.2002.02958.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A critical early event in Salmonella infection is entry into intestinal epithelial cells. The Salmonella invasion protein SipB is required for the delivery of bacterial effector proteins into target eukaryotic cells, which subvert signal transduction pathways and cytoskeletal dynamics. SipB inserts into the host plasma membrane during infection, and the purified protein has membrane affinity and heterotypic membrane fusion activity in vitro. We used complementary biochemical and biophysical techniques to investigate the topology of purified SipB in a model membrane. We show that the 593 residue SipB is predominantly alpha-helical in aqueous solution, and that no significant change in secondary structural content accompanies lipid interaction. SipB contains two -helical transmembrane domains (residues 320-353 and 409-427), which insert deeply into the bilayer. Their integration allowed the hydrophilic region between the hydrophobic domains (354-408) to cross the bilayer. SipB membrane integration required both the hydrophobic domains and an additional helical C-terminal region (428-593). Further spectroscopic analysis of these domains in isolation showed that the hydrophobic regions insert obliquely into the bilayer, whereas the C-terminal domain associates with the bilayer surface, tilted parallel to the membrane. The combined data suggest a topological model for membrane-inserted SipB.
Collapse
Affiliation(s)
- Emma J McGhie
- Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | | | | | |
Collapse
|
425
|
Venkatraman J, Nagana Gowda GA, Balaram P. Structural analysis of synthetic peptide fragments from EmrE, a multidrug resistance protein, in a membrane-mimetic environment. Biochemistry 2002; 41:6631-9. [PMID: 12022866 DOI: 10.1021/bi015793w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
EmrE, a multidrug resistance protein from Escherichia coli, renders the bacterium resistant to a variety of cytotoxic drugs by active translocation out of the cell. The 110-residue sequence of EmrE limits the number of structural possibilities that can be envisioned for this membrane protein. Four helix bundle models have been considered [Yerushalmi, H., Lebendiker, M., and Schuldiner, S. (1996) J. Biol. Chem. 271, 31044-31048]. The validity of EmrE structural models has been probed experimentally by investigations on overlapping peptides (ranging in length from 19 to 27 residues), derived from the sequence of EmrE. The choice of peptides was made to provide sequences of two complete, predicted transmembrane helices (peptides H1 and H3) and two helix-loop-helix motifs (peptides A and B). Peptide (B) also corresponds to a putative hairpin in a speculative beta-barrel model, with the "Pro-Thr-Gly" segment forming a turn. Structure determination in SDS micelles using NMR indicates peptide H1 to be predominantly helical, with helix boundaries in the micellar environment corroborating predicted helical limits. Peptide A adopts a helix-loop-helix structure in SDS micelles, and peptide B was also largely helical in micellar environments. An analogue peptide, C, in which the central "Pro-Thr-Gly" was replaced by "(D)Pro-Gly" displays local turn conformation at the (D)Pro-Gly segment, but neither a continuous helical stretch nor beta-hairpin formation was observed. This study implies that the constraints of membrane and micellar environments largely direct the structure of transmembrane peptides and proteins and study of judiciously selected peptide fragments can prove useful in the structural elucidation of membrane proteins.
Collapse
Affiliation(s)
- Janani Venkatraman
- Molecular Biophysics Unit and Sophisticated Instruments Facility, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
426
|
Ben-Shooshan I, Kessel A, Ben-Tal N, Cohen-Luria R, Parola AH. On the regulatory role of dipeptidyl peptidase IV (=CD=adenosine deaminase complexing protein) on adenosine deaminase activity. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1587:21-30. [PMID: 12009420 DOI: 10.1016/s0925-4439(02)00050-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecular mechanism controlling the variable activity of the malignancy marker adenosine deaminase (ADA) is enigmatic. ADA activity was found to be modulated by the membrane-bound adenosine deaminase complexing protein (CP=DPPIV=CD26). The role of lipid-protein interactions in this modulation was sought. While direct solubilization of ADA in vesicles resulted in loss of ADA activity, the binding of ADA to CP reconstituted in vesicles restored the specific activity. The activity of ADA, free or bound to CP in solution, resulted in continuous linear Arrhenius plots. However, ADA bound to reconstituted CP exhibited two breaks associated with approximately 30% increased activity, at 25 and 13 degrees C, yielding three lines with similar apparent activation energies (E(a)). Continuum solvent model calculations of the free energy of transfer of the transmembrane helix of CP from the aqueous phase into membranes of various widths show that the most favorable orientations of the helix above and below the main phase transition may be different. We suggest that the 20% change in the thickness of the bilayer below and above the main phase transition may modify the orientation of CP in the membrane, thereby affecting substrate accessibility of ADA. This could account for ADA's reduced activity associated with increased membrane fluidity in transformed vs. normal fibroblasts.
Collapse
Affiliation(s)
- Itzhak Ben-Shooshan
- Department of Chemistry, The Faculty of Natural Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | | | | | | | | |
Collapse
|
427
|
Lewis RNAH, Zhang YP, Liu F, McElhaney RN. Mechanisms of the interaction of alpha-helical transmembrane peptides with phospholipid bilayers. Bioelectrochemistry 2002; 56:135-40. [PMID: 12009460 DOI: 10.1016/s1567-5394(02)00012-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The synthetic peptide acetyl-K(2)-G-L(24)-K(2)-A-amide (P(24)) and its analogs have been successfully utilized as models of the hydrophobic transmembrane alpha-helical segments of integral membrane proteins. The central polyleucine region of these peptides was designed to form a maximally stable, very hydrophobic alpha-helix which will partition strongly into the hydrophobic environment of the lipid bilayer core, while the dilysine caps were designed to anchor the ends of these peptides to the polar surface of the lipid bilayer and to inhibit the lateral aggregation of these peptides. Moreover, the normally positively charged N-terminus and the negatively charged C-terminus have both been blocked in order to provide a symmetrical tetracationic peptide, which will more faithfully mimic the transbilayer region of natural membrane proteins and preclude favorable electrostatic interactions. In fact, P(24) adopts a very stable alpha-helical conformation and transbilayer orientation in lipid model membranes. The results of our recent studies of the interaction of this family of alpha-helical transmembrane peptides with phospholipid bilayers are summarized here.
Collapse
Affiliation(s)
- Ruthven N A H Lewis
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | |
Collapse
|
428
|
Münster C, Spaar A, Bechinger B, Salditt T. Magainin 2 in phospholipid bilayers: peptide orientation and lipid chain ordering studied by X-ray diffraction. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1562:37-44. [PMID: 11988220 DOI: 10.1016/s0005-2736(02)00357-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a structural study of biomimetic lipid bilayers interacting with the antimicrobial peptide magainin 2 amide, using grazing incidence X-ray diffraction and reciprocal space mapping (RSM) techniques. The short-range order of lipid chains in lecithin is found to be strongly reduced by the peptides. From the scattering intensity of the chain correlation peak, we can quantify the lateral length scale R over which the bilayer structure is affected by peptide binding. The non-local perturbation of the bilayer is discussed in the framework of bilayer elasticity theory.
Collapse
Affiliation(s)
- Christian Münster
- Experimentalphysik, Universität des Saarlandes, Saarbrücken, Germany
| | | | | | | |
Collapse
|
429
|
Ridder ANJA, van de Hoef W, Stam J, Kuhn A, de Kruijff B, Killian JA. Importance of hydrophobic matching for spontaneous insertion of a single-spanning membrane protein. Biochemistry 2002; 41:4946-52. [PMID: 11939790 DOI: 10.1021/bi0158674] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, we have investigated the effect of hydrophobic mismatch between the thickness of the membrane and a transmembrane segment of a protein that directly inserts into the membrane bilayer. For this purpose we used mutants of the single-spanning Pf3 coat protein that can spontaneously insert into Escherichia coli membrane vesicles and large unilamellar vesicles (LUVs). The thickness of the liposomal bilayer could be altered by using lipids with different acyl chain lengths or by incorporation of cholesterol. The insertion efficiency of the protein clearly depended on the bilayer thickness, with most efficient insertion under hydrophobic matching conditions. To discriminate between effects of length and hydrophobicity, mutants with different synthetic transmembrane segments were constructed. These mutants inserted into LUVs in a mismatch-dependent manner. However, in particular for longer and less hydrophobic mutants, most efficient insertion was generally observed in thinner bilayers than expected on the basis of hydrophobic matching.
Collapse
Affiliation(s)
- Anja N J A Ridder
- Department of Biochemistry of Membranes, Centre for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
430
|
Gandhavadi M, Allende D, Vidal A, Simon SA, McIntosh TJ. Structure, composition, and peptide binding properties of detergent soluble bilayers and detergent resistant rafts. Biophys J 2002; 82:1469-82. [PMID: 11867462 PMCID: PMC1301948 DOI: 10.1016/s0006-3495(02)75501-x] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Lipid bilayers composed of unsaturated phosphatidylcholine (PC), sphingomyelin (SM), and cholesterol are thought to contain microdomains that have similar detergent insolubility characteristics as rafts isolated from cell plasma membranes. We chemically characterized the fractions corresponding to detergent soluble membranes (DSMs) and detergent resistant membranes (DRMs) from 1:1:1 PC:SM:cholesterol, compared the binding properties of selected peptides to bilayers with the compositions of DSMs and DRMs, used differential scanning calorimetry to identify phase transitions, and determined the structure of DRMs with x-ray diffraction. Compared with the equimolar starting material, DRMs were enriched in both SM and cholesterol. Both transmembrane and interfacial peptides bound to a greater extent to DSM bilayers than to DRM bilayers, likely because of differences in the mechanical properties of the two bilayers. Thermograms from 1:1:1 PC:SM:cholesterol from 3 to 70 degrees C showed no evidence for a liquid-ordered to liquid-disordered phase transition. Over a wide range of osmotic stresses, each x-ray pattern from equimolar PC:SM:cholesterol or DRMs contained a broad wide-angle band at 4.5 A, indicating that the bilayers were in a liquid-crystalline phase, and several sharp low-angle reflections that indexed as orders of a single lamellar repeat period. Electron density profiles showed that the total bilayer thickness was 57 A for DRMs, which was approximately 5 A greater than that of 1:1:1 PC:SM:cholesterol and 10 A greater than the thickness of bilayers with the composition of DSMs. These x-ray data provide accurate values for the widths of raft and nonraft bilayers that should be important in understanding mechanisms of protein sorting by rafts.
Collapse
Affiliation(s)
- M Gandhavadi
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
431
|
Morein S, Killian JA, Sperotto MM. Characterization of the thermotropic behavior and lateral organization of lipid-peptide mixtures by a combined experimental and theoretical approach: effects of hydrophobic mismatch and role of flanking residues. Biophys J 2002; 82:1405-17. [PMID: 11867456 PMCID: PMC1301942 DOI: 10.1016/s0006-3495(02)75495-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A combined experimental and theoretical study was performed on a series of mixtures of dipalmitoylphosphatidylcholine (DPPC) and synthetic peptides to investigate their thermotropic behavior and lateral organization. The experimental study was based on differential scanning calorimetry (DSC) and phosphorous nuclear magnetic resonance ((31)P-NMR) techniques; the theoretical study was based on calculations on a microscopic molecular interaction model, where the lipid-peptide interaction is built on the hydrophobic matching principle. The chosen peptides, WALP and KALP, consist of a hydrophobic stretch, of variable length, of alternating leucine and alanine residues, flanked on both ends with tryptophan and lysine residues, respectively. By systematically varying the peptide hydrophobic length it was thus possible to explore different matching conditions between the peptide's hydrophobic length and the lipid bilayer hydrophobic thickness, and to investigate the potential role of flanking residues. The results show that both the WALP and the KALP peptides tend to favor the liquid-crystalline (or fluid) phase of the system; i.e., they tend to depress the main-transition temperature, T(m), of pure DPPC. However, the detailed effects of both peptides on the lateral phase behavior of the lipid-peptide system are dependent on the peptide length and the type of flanking residues. The results suggest that below T(m), the shortest among the WALP and KALP peptides induce gel-fluid phase separation in the system within an extensive temperature-composition region. The longer the hydrophobic length of the peptides is, the more narrow this region appears to become.
Collapse
Affiliation(s)
- Sven Morein
- Department of Biochemistry of Membranes, Utrecht University, NL-3584 CH Utrecht, The Netherlands
| | | | | |
Collapse
|
432
|
Shenkarev ZO, Balashova TA, Efremov RG, Yakimenko ZA, Ovchinnikova TV, Raap J, Arseniev AS. Spatial structure of zervamicin IIB bound to DPC micelles: implications for voltage-gating. Biophys J 2002; 82:762-71. [PMID: 11806918 PMCID: PMC1301885 DOI: 10.1016/s0006-3495(02)75438-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Zervamicin IIB is a 16-amino acid peptaibol that forms voltage-dependent ion channels with multilevel conductance states in planar lipid bilayers and vesicular systems. The spatial structure of zervamicin IIB bound to dodecylphosphocholine micelles was studied by nuclear magnetic resonance spectroscopy. The set of 20 structures obtained has a bent helical conformation with a mean backbone root mean square deviation value of approximately 0.2 A and resembles the structure in isotropic solvents (Balashova et al., 2000. NMR structure of the channel-former zervamicin IIB in isotropic solvents. FEBS Lett 466:333-336). The N-terminus represents an alpha-helix, whereas the C-terminal part has a mixed 3(10)/alpha(R) hydrogen-bond pattern. In the anisotropic micelle environment, the bending angle on Hyp10 (23 degrees) is smaller than that (47 degrees) in isotropic solvents. In the NOESY (Nuclear Overhauser Effect Spectroscopy) spectra, the characteristic attenuation of the peptide signals by 5- and 16-doxylstearate relaxation probes indicates a peripheral mode of the peptaibol binding to the micelle with the N-terminus immersed slightly deeper into micelle interior. Analysis of the surface hydrophobicity reveals that the zervamicin IIB helix is amphiphilic and well suited to formation of a tetrameric transmembrane bundle, according to the barrel-stave mechanism. The results are discussed in a context of voltage-driven peptaibol insertion into membrane.
Collapse
Affiliation(s)
- Z O Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
433
|
|
434
|
Kessel A, Ben-Tal N. Free energy determinants of peptide association with lipid bilayers. PEPTIDE-LIPID INTERACTIONS 2002. [DOI: 10.1016/s1063-5823(02)52010-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
435
|
Binder H, Gawrisch K. Effect of Unsaturated Lipid Chains on Dimensions, Molecular Order and Hydration of Membranes. J Phys Chem B 2001. [DOI: 10.1021/jp010118h] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hans Binder
- University of Leipzig, Institute of Medical Physics and Biophysics, Liebigstr. 27, D-04103 Leipzig, Germany, and NIH, NIAAA, Laboratory of Membrane Biochemistry and Biophysics, 12420 Parklawn Drive, Rockville, Maryland 20852
| | - Klaus Gawrisch
- University of Leipzig, Institute of Medical Physics and Biophysics, Liebigstr. 27, D-04103 Leipzig, Germany, and NIH, NIAAA, Laboratory of Membrane Biochemistry and Biophysics, 12420 Parklawn Drive, Rockville, Maryland 20852
| |
Collapse
|
436
|
Dergunov AD, Dobretsov GE, Visvikis S, Siest G. Protein-lipid interactions in reconstituted high density lipoproteins: apolipoprotein and cholesterol influence. Chem Phys Lipids 2001; 113:67-82. [PMID: 11687228 DOI: 10.1016/s0009-3084(01)00176-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Two fluorescent probes-cis- and trans-parinaric acids were used to study the dimensions, lipid dynamics and apolipoprotein location in the reconstituted discoidal high density lipoproteins (rHDL). The rHDL particles made from apolipoprotein A-I (apoA-I), dipalmitoylphosphatidylcholine (DPPC), with or without cholesterol (Chol) were compared with the analogous particles with two other apolipoproteins-apoE and apoA-II. The data obtained for apoA-I-containing rHDL were as follows: (1) the inclusion of 8 mol.% of cholesterol did not significantly change the particle dimensions (13+/-1 nm) or the mean distance between apoA-I and the disc axis; (2) the phospholipid domains-boundary lipid region in the close vicinity to apoA-I molecule and the remaining part of the bilayer-existed at temperatures both lower and above DPPC transition temperature T(t); (3) at T<T(t) Chol molecules preferentially accumulated in the central area with a radius of 2.8 nm that conserved partially after DPPC phase transition; (4) inhomogeneous cholesterol distribution was assumed to exist within these domains. A hydrophobic matching concept was used to compare protein-lipid interactions in rHDL particles. For complexes with all three apolipoproteins studied, at T<T(t) the probe mobility in the lipid phase of rHDL was significantly higher compared to pure DPPC bilayer. After temperature-induced transition, mobility increased significantly still being lower in rHDL. The comparative study of lipid dynamics in apoA-I-, apoE- and apoA-II-containing complexes revealed the presence of boundary lipid in all three complexes without cholesterol. The degree of cholesterol exclusion from the boundary lipid region seems to increase in the order A-I<E<A-II for Chol-containing complexes, the exclusion being an inherent property of the particular apolipoprotein molecule.
Collapse
Affiliation(s)
- A D Dergunov
- National Research Centre for Preventive Medicine, 10, Petroverigsky Street, 101953 Moscow, Russia.
| | | | | | | |
Collapse
|
437
|
Mashl RJ, Tang Y, Schnitzer J, Jakobsson E. Hierarchical approach to predicting permeation in ion channels. Biophys J 2001; 81:2473-83. [PMID: 11606263 PMCID: PMC1301717 DOI: 10.1016/s0006-3495(01)75893-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
A hierarchical computational strategy combining molecular modeling, electrostatics calculations, molecular dynamics, and Brownian dynamics simulations is developed and implemented to compute electrophysiologically measurable properties of the KcsA potassium channel. Models for a series of channels with different pore sizes are developed from the known x-ray structure, using insights into the gating conformational changes as suggested by a variety of published experiments. Information on the pH dependence of the channel gating is incorporated into the calculation of potential profiles for K(+) ions inside the channel, which are then combined with K(+) ion mobilities inside the channel, as computed by molecular dynamics simulations, to provide inputs into Brownian dynamics simulations for computing ion fluxes. The open model structure has a conductance of approximately 110 pS under symmetric 250 mM K(+) conditions, in reasonable agreement with experiments for the largest conducting substate. The dimensions of this channel are consistent with electrophysiologically determined size dependence of quaternary ammonium ion blocking from the intracellular end of this channel as well as with direct structural evidence that tetrabutylammonium ions can enter into the interior cavity of the channel. Realistic values of Ussing flux ratio exponents, distribution of ions within the channel, and shapes of the current-voltage and current-concentration curves are obtained. The Brownian dynamics calculations suggest passage of ions through the selectivity filter proceeds by a "knock-off" mechanism involving three ions, as has been previously inferred from functional and structural studies of barium ion blocking. These results suggest that the present calculations capture the essential nature of K(+) ion permeation in the KcsA channel and provide a proof-of-concept for the integrated microscopic/mesoscopic multitiered approach for predicting ion channel function from structure, which can be applied to other channel structures.
Collapse
Affiliation(s)
- R J Mashl
- Beckman Institute for Advanced Science and Technology, Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | | | |
Collapse
|
438
|
Lewis RN, Zhang YP, Hodges RS, Subczynski WK, Kusumi A, Flach CR, Mendelsohn R, McElhaney RN. A polyalanine-based peptide cannot form a stable transmembrane alpha-helix in fully hydrated phospholipid bilayers. Biochemistry 2001; 40:12103-11. [PMID: 11580285 DOI: 10.1021/bi010555m] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conformation and amide proton exchangeability of the peptide acetyl-K(2)-A(24)-K(2)-amide (A(24)) and its interaction with phosphatidylcholine bilayers were examined by a variety of physical techniques. When dissolved in or cast from methanol as a dried film, A(24) is predominantly alpha-helical. In aqueous media, however, A(24) exists primarily as a mixture of helical (though not necessarily alpha-helical) and random coiled structures, both of which allow rapid H-D exchange of all amide protons. When incorporated into phospholipids in the absence of water, A(24) also exists primarily as a transmembrane alpha-helix. However, upon hydration of that system, rapid exchange of all amide protons also occurs along with a marked change in the amide I absorption band of the peptide. Also, when dispersed with phosphatidylcholine in aqueous media, the conformation and thermal stability of A(24) are not significantly altered by the presence of the phospholipid or by its gel/liquid-crystalline phase transition. Differential scanning calorimetric and electron spin resonance spectroscopic studies indicate that A(24) has relatively minor effects on the thermodynamic properties of the lipid hydrocarbon chain-melting phase transition, that it does not abolish the lipid pretransition, and that its presence has no significant effect on the orientational order or rates of motion of the phospholipid hydrocarbon chains. We therefore conclude that A(24) has sufficient alpha-helical propensity, but insufficient hydrophobicity, to maintain a stable transmembrane association with phospholipid bilayers in the presence of water. Instead, it exists primarily as a dynamic mixture of helices and other conformers and resides mostly in the aqueous phase where it interacts weakly with the bilayer surface or with the polar/apolar interfacial region of phosphatidylcholine bilayers. Thus, polyalanine-based peptides are not good models for the transmembrane alpha-helical segments of natural membrane proteins.
Collapse
Affiliation(s)
- R N Lewis
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
439
|
Holthuis JC, Pomorski T, Raggers RJ, Sprong H, Van Meer G. The organizing potential of sphingolipids in intracellular membrane transport. Physiol Rev 2001; 81:1689-723. [PMID: 11581500 DOI: 10.1152/physrev.2001.81.4.1689] [Citation(s) in RCA: 242] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Eukaryotes are characterized by endomembranes that are connected by vesicular transport along secretory and endocytic pathways. The compositional differences between the various cellular membranes are maintained by sorting events, and it has long been believed that sorting is based solely on protein-protein interactions. However, the central sorting station along the secretory pathway is the Golgi apparatus, and this is the site of synthesis of the sphingolipids. Sphingolipids are essential for eukaryotic life, and this review ascribes the sorting power of the Golgi to its capability to act as a distillation apparatus for sphingolipids and cholesterol. As Golgi cisternae mature, ongoing sphingolipid synthesis attracts endoplasmic reticulum-derived cholesterol and drives a fluid-fluid lipid phase separation that segregates sphingolipids and sterols from unsaturated glycerolipids into lateral domains. While sphingolipid domains move forward, unsaturated glycerolipids are retrieved by recycling vesicles budding from the sphingolipid-poor environment. We hypothesize that by this mechanism, the composition of the sphingolipid domains, and the surrounding membrane changes along the cis-trans axis. At the same time the membrane thickens. These features are recognized by a number of membrane proteins that as a consequence of partitioning between domain and environment follow the domains but can enter recycling vesicles at any stage of the pathway. The interplay between protein- and lipid-mediated sorting is discussed.
Collapse
Affiliation(s)
- J C Holthuis
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
440
|
Demmers JA, van Duijn E, Haverkamp J, Greathouse DV, Koeppe RE, Heck AJ, Killian JA. Interfacial positioning and stability of transmembrane peptides in lipid bilayers studied by combining hydrogen/deuterium exchange and mass spectrometry. J Biol Chem 2001; 276:34501-8. [PMID: 11435420 DOI: 10.1074/jbc.m101401200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nano-electrospray ionization mass spectrometry (ESI-MS) was used to analyze hydrogen/deuterium (H/D) exchange properties of transmembrane peptides with varying length and composition. Synthetic transmembrane peptides were used with a general acetyl-GW(2)(LA)(n)LW(2)A-ethanolamine sequence. These peptides were incorporated in large unilamellar vesicles of 1,2-dimyristoyl-sn-glycero-3-phosphocholine. The vesicles were diluted in buffered deuterium oxide, and the H/D exchange after different incubation times was directly analyzed by means of ESI-MS. First, the influence of the length of the hydrophobic Leu-Ala sequence on exchange behavior was investigated. It was shown that longer peptide analogs are more protected from H/D exchange than expected on the basis of their length with respect to bilayer thickness. This is explained by an increased protection from the bilayer environment, because of stretching of the lipid acyl chains and/or tilting of the longer peptides. Next, the role of the flanking tryptophan residues was investigated. The length of the transmembrane part that shows very slow H/D exchange was found to depend on the exact position of the tryptophans in the peptide sequence, suggesting that tryptophan acts as a strong determinant for positioning of proteins at the membrane/water interface. Finally, the influence of putative helix breakers was studied. It was shown that the presence of Pro in the transmembrane segment results in much higher exchange rates as compared with Gly or Leu, suggesting a destabilization of the alpha-helix. Tandem MS measurements suggested that the increased exchange takes place over the entire transmembrane segment. The results show that ESI-MS is a convenient technique to gain detailed insight into properties of peptides in lipid bilayers by monitoring H/D exchange kinetics.
Collapse
Affiliation(s)
- J A Demmers
- Department of Biochemistry of Membranes, Center for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
441
|
Kol MA, de Kroon AI, Rijkers DT, Killian JA, de Kruijff B. Membrane-spanning peptides induce phospholipid flop: a model for phospholipid translocation across the inner membrane of E. coli. Biochemistry 2001; 40:10500-6. [PMID: 11523991 DOI: 10.1021/bi010627+] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanism by which phospholipids translocate (flop) across the E. coli inner membrane remains to be elucidated. We tested the hypothesis that the membrane-spanning domains of proteins catalyze phospholipid flop by their mere presence in the membrane. As a model, peptides mimicking the transmembrane stretches of proteins, with the amino acid sequence GXXL(AL)(n)XXA (with X = K, H, or W and n = 8 or 12), were incorporated in large unilamellar vesicles composed of E. coli phospholipids. Phospholipid flop was measured by assaying the increase in accessibility to dithionite of a 2,6-(7-nitro-2,1,3-benzoxadiazol-4-yl)aminocaproyl (C(6)NBD)-labeled phospholipid analogue, initially exclusively present in the inner leaflet of the vesicle membrane. Fast flop of C(6)NBD-phosphatidylglycerol (C(6)NBD-PG) was observed in vesicles in which GKKL(AL)(12)KKA was incorporated, with the apparent first-order flop rate constant (K(flop)) linearly increasing with peptide:phospholipid molar ratios, reaching a translocation half-time of approximately 10 min at a 1:250 peptide:phospholipid molar ratio at 25 degrees C. The peptides of the series GXXL(AL)(8)XXA also induced flop of C(6)NBD-PG, supporting the hypothesis that transmembrane parts of proteins mediate phospholipid translocation. In this series, K(flop) decreased in the order X = K > H > W, indicating that peptide-lipid interactions in the interfacial region of the membrane modulate the efficiency of a peptide to cause flop. For the peptides tested, flop of C(6)NBD-phosphatidylethanolamine (C(6)NBD-PE) was substantially slower than that of C(6)NBD-PG. In vesicles without peptide, flop was negligible both for C(6)NBD-PG and for C(6)NBD-PE. A model for peptide-induced flop is proposed, which takes into account the observed peptide and lipid specificity.
Collapse
Affiliation(s)
- M A Kol
- Department Biochemistry of Membranes, Center for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
442
|
Bechinger B. Solid-state NMR investigations of interaction contributions that determine the alignment of helical polypeptides in biological membranes. FEBS Lett 2001; 504:161-5. [PMID: 11532448 DOI: 10.1016/s0014-5793(01)02741-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Helical peptides reconstituted into oriented phospholipid bilayers were studied by proton-decoupled 15N solid-state NMR spectroscopy. Whereas hydrophobic channel peptides, such as the N-terminal region of Vpu of HIV-1, adopt transmembrane orientations, amphipathic peptide antibiotics are oriented parallel to the bilayer surface. The interaction contributions that determine the alignment of helical peptides in lipid membranes were analysed using model sequences, and peptides that change their topology in a pH-dependent manner have been designed. The energy contributions of histidines, lysines, leucines and alanines as well as the alignment of peptides and phospholipids under conditions of hydrophobic mismatch have been investigated in considerable detail.
Collapse
Affiliation(s)
- B Bechinger
- Max-Planck-Institute for Biochemistry, Am Klopferspitz 18A, 82152, Martinsried, Germany.
| |
Collapse
|
443
|
Bechinger B, Skladnev DA, Ogrel A, Li X, Rogozhkina EV, Ovchinnikova TV, O'Neil JD, Raap J. 15N and 31P solid-state NMR investigations on the orientation of zervamicin II and alamethicin in phosphatidylcholine membranes. Biochemistry 2001; 40:9428-37. [PMID: 11478913 DOI: 10.1021/bi010162n] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The topologies of zervamicin II and alamethicin, labeled with (15)N uniformly, selectively, or specifically, have been investigated by oriented proton-decoupled (15)N solid-state NMR spectroscopy. Whereas at lipid-to-peptide (L/P) ratios of 50 (wt/wt) zervamicin II exhibits transmembrane alignments in 1,2-dicapryl (di-C10:0-PC) and 1,2-dilauroyl (di-C12:0-PC) phosphatidylcholine bilayers, it adopts orientations predominantly parallel to the membrane surface when the lengths of the fatty acyl chains are extended. The orientational order of zervamicin II increases with higher phospholipid concentrations, and considerable line narrowing is obtained in di-C10:0-PC/zervamicin II membranes at L/P ratios of 100 (wt/wt). In contrast to zervamicin, alamethicin is transmembrane throughout most, if not all, of its length when reconstituted into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers. The (31)P solid-state NMR spectra of all phospholipid/peptaibol samples investigated show a high degree of headgroup order, indicating that the peptides do not distort the bilayer structure. The observed differences in peptide orientation between zervamicin and alamethicin are discussed with reference to differences in their lengths, helical conformations, distribution of (hydroxy)proline residues, and hydrophobic moments. Possible implications for peptaibol voltage-gating are also described.
Collapse
Affiliation(s)
- B Bechinger
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18A, 82152 Martinsried, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
444
|
Campagna S, Cosette P, Molle G, Gaillard JL. Evidence for membrane affinity of the C-terminal domain of bovine milk PP3 component. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1513:217-22. [PMID: 11470093 DOI: 10.1016/s0005-2736(01)00360-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Component PP3 is a phosphoglycoprotein isolated from bovine milk with unknown biological function, which displays in its C-terminal region a basic amphipathic alpha-helix, a feature often involved in membrane association. According to that, the behaviour of PP3 and of a synthetic peptide from the C-terminal domain (residues 113-135) was investigated in lipid environment. Conductance measurements indicated that the peptide was able to associate and form channels in planar lipid bilayers composed of neutral or charged phospholipids. Electrostatic interactions seemed to promote voltage-dependent channel formation but this was not absolutely required since the pore-forming ability of the 113-135 C-terminal peptide was also detected with the zwitterionic lipid bilayer. Additionally, a spectroscopic study using circular dichroism argues that the peptide adopts an alpha-helical conformation in interaction with neutral or charged micelles. Thus, the conducting aggregates in bilayers might be composed of a bundle of peptides in helical conformation. Besides, similar conductance measurements performed with the whole PP3 protein did not induce any channel fluctuations. However, with the latter, an early breakdown of the bilayers occurred, a finding that can be tentatively explained by a massive incorporation of PP3. In the light of the present results, it could be inferred that PP3 membrane attachment may be achieved by oligomerization of the C-terminal amphipathic helical region.
Collapse
Affiliation(s)
- S Campagna
- Laboratoire des Biosciences de l'Aliment, UA INRA 885, Université Henri Poincaré, Nancy-1, BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France.
| | | | | | | |
Collapse
|
445
|
Kessel A, Ben-Tal N, May S. Interactions of cholesterol with lipid bilayers: the preferred configuration and fluctuations. Biophys J 2001; 81:643-58. [PMID: 11463613 PMCID: PMC1301541 DOI: 10.1016/s0006-3495(01)75729-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The free energy difference associated with the transfer of a single cholesterol molecule from the aqueous phase into a lipid bilayer depends on its final location, namely on its insertion depth and orientation within the bilayer. We calculated desolvation and lipid bilayer perturbation contributions to the water-to-membrane transfer free energy, thus allowing us to determine the most favorable location of cholesterol in the membrane and the extent of fluctuations around it. The electrostatic and nonpolar contributions to the solvation free energy were calculated using continuum solvent models. Lipid layer perturbations, resulting from both conformational restrictions of the lipid chains in the vicinity of the (rigid) cholesterol backbone and from cholesterol-induced elastic deformations, were calculated using a simple director model and elasticity theory, respectively. As expected from the amphipathic nature of cholesterol and in agreement with the available experimental data, our results show that at the energetically favorable state, cholesterol's hydrophobic core is buried within the hydrocarbon region of the bilayer. At this state, cholesterol spans approximately one leaflet of the membrane, with its OH group protruding into the polar (headgroup) region of the bilayer, thus avoiding an electrostatic desolvation penalty. We found that the transfer of cholesterol into a membrane is mainly driven by the favorable nonpolar contributions to the solvation free energy, whereas only a small opposing contribution is caused by conformational restrictions of the lipid chains. Our calculations also predict a strong tendency of the lipid layer to elastically respond to (thermally excited) vertical fluctuations of cholesterol so as to fully match the hydrophobic height of the solute. However, orientational fluctuations of cholesterol were found to be accompanied by both an elastic adjustment of the surrounding lipids and by a partial exposure of the hydrophobic cholesterol backbone to the polar (headgroup) environment. Our calculations of the molecular order parameter, which reflects the extent of orientational fluctuations of cholesterol in the membrane, are in good agreement with available experimental data.
Collapse
Affiliation(s)
- A Kessel
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv 69978, Israel
| | | | | |
Collapse
|
446
|
Shobini J, Mishra AK. Effect of a Decapeptide (VPDLLADLLK) on the Phase Transition of Dimyristoylphosphatidylcholine Lipid Bilayer. J Colloid Interface Sci 2001; 240:24-29. [PMID: 11446782 DOI: 10.1006/jcis.2001.7644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
VPDLLADLLK is a synthetic decapeptide, which shows a difference in conformation in various environments. Circular dichroism spectral studies show that it exists in an unordered conformation in the aqueous phase, and in dimyristoylphosphatidylcholine (DMPC) lipid bilayer, it exhibits an alpha-helical structure. The membrane property modification due to the peptide incorporation has been studied by using differential scanning calorimetry and fluorescence spectroscopy. With incorporation of the peptide the average steady-state anisotropy of DPH in the membrane decreases slightly in the gel state but remains more or less the same in the liquid crystalline state. The peptide incorporation causes a shift in the phase-transition temperature from 23 to 26 degrees C for 15 mol% and 29 degrees C for 30 mol% of the peptide, which is accompanied by a decrease in the sharpness and a broadening of the DSC thermogram. This preferential stabilization of the more ordered gel phase by the peptide could be due to the hydrophobic mismatch between the length of the peptide and the length of the hydrophobic segment of the DMPC bilayer. Copyright 2001 Academic Press.
Collapse
Affiliation(s)
- J. Shobini
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, India
| | | |
Collapse
|
447
|
Masserini M, Ravasi D. Role of sphingolipids in the biogenesis of membrane domains. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1532:149-61. [PMID: 11470236 DOI: 10.1016/s1388-1981(01)00128-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In recent years, a huge interest in sphingolipid- and cholesterol-enriched membrane domains has risen, after their involvement in fundamental membrane-associated events such as signal transmission, cell adhesion and lipid/protein sorting was postulated. Theoretical considerations and several experimental data suggest that sphingolipids play an important role in the biogenesis and function of domains. In fact, their physicochemical features, different from those of other membrane lipids, allow their interaction either with other sphingolipids or with other membrane components and external ligands. Owing to these features, sphingolipids may undergo segregation and represent a nucleation point for co-clustering with other lipids and proteins in a complex, functional domain. Moreover, sphingolipids confer dynamic properties on domains, a fundamental feature for the modulation of their postulated functions.
Collapse
Affiliation(s)
- M Masserini
- Department of Experimental, Environmental Medicine and Biotechnology, University of Milan-Bicocca, Via Cadore 48, 20052 Monza, Italy.
| | | |
Collapse
|
448
|
Monné M, von Heijne G. Effects of 'hydrophobic mismatch' on the location of transmembrane helices in the ER membrane. FEBS Lett 2001; 496:96-100. [PMID: 11356190 DOI: 10.1016/s0014-5793(01)02415-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have studied the effects of 'hydrophobic mismatch' between a poly-Leu transmembrane helix (TMH) and the ER membrane using a glycosylation mapping approach. The simplest interpretation of our results is that the lumenal end of the TMH is located deeper in the membrane for both short (negative mismatch) and long (positive mismatch) TMHs than for poly-Leu segments of intermediate length. We further find that the position-specific effect of Lys residues on the location of short TMHs in the membrane varies with an apparent helical periodicity when the Lys residue is moved along the poly-Leu stretch. We discuss these findings in the context of models for peptide-lipid interactions during hydrophobic mismatch.
Collapse
Affiliation(s)
- M Monné
- Department of Biochemistry and Biophysics, Stockholm University, S-106 91, Stockholm, Sweden
| | | |
Collapse
|
449
|
de Planque MR, Goormaghtigh E, Greathouse DV, Koeppe RE, Kruijtzer JA, Liskamp RM, de Kruijff B, Killian JA. Sensitivity of single membrane-spanning alpha-helical peptides to hydrophobic mismatch with a lipid bilayer: effects on backbone structure, orientation, and extent of membrane incorporation. Biochemistry 2001; 40:5000-10. [PMID: 11305916 DOI: 10.1021/bi000804r] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The extent of matching of membrane hydrophobic thickness with the hydrophobic length of transmembrane protein segments potentially constitutes a major director of membrane organization. Therefore, the extent of mismatch that can be compensated, and the types of membrane rearrangements that result, can provide valuable insight into membrane functionality. In the present study, a large family of synthetic peptides and lipids is used to investigate a range of mismatch situations. Peptide conformation, orientation, and extent of incorporation are assessed by infrared spectroscopy, tryptophan fluorescence, circular dichroism, and sucrose gradient centrifugation. It is shown that peptide backbone structure is not significantly affected by mismatch, even when the extent of mismatch is large. Instead, this study demonstrates that for tryptophan-flanked peptides the dominant response of a membrane to large mismatch is that the extent of incorporation is reduced, when the peptide is both too short and too long. With increasing mismatch, a smaller fraction of peptide is incorporated into the lipid bilayer, and a larger fraction is present in extramembranous aggregates. Relatively long peptides that remain incorporated in the bilayer have a small tilt angle with respect to the membrane normal. The observed effects depend on the nature of the flanking residues: long tryptophan-flanked peptides do not associate well with thin bilayers, while equisized lysine-flanked peptides associate completely, thus supporting the notion that tryptophan and lysine interact differently with membrane-water interfaces. The different properties that aromatic and charged flanking residues impart on transmembrane protein segments are discussed in relation to protein incorporation in biological systems.
Collapse
Affiliation(s)
- M R de Planque
- Department of Biochemistry of Membranes, Center for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
450
|
Abstract
The simplest cell-like structure, the lipid bilayer vesicle, can respond to mechanical deformation by elastic membrane dilation/thinning and curvature changes. When a protein is inserted in the lipid bilayer, an energetic cost may arise because of hydrophobic mismatch between the protein and bilayer. Localized changes in bilayer thickness and curvature may compensate for this mismatch. The peptides alamethicin and gramicidin and the bacterial membrane protein MscL form mechanically gated (MG) channels when inserted in lipid bilayers. Their mechanosensitivity may arise because channel opening is associated with a change in the protein's membrane-occupied area, its hydrophobic mismatch with the bilayer, excluded water volume, or a combination of these effects. As a consequence, bilayer dilation/thinning or changes in local membrane curvature may shift the equilibrium between channel conformations. Recent evidence indicates that MG channels in specific animal cell types (e.g., Xenopus oocytes) are also gated directly by bilayer tension. However, animal cells lack the rigid cell wall that protects bacteria and plants cells from excessive expansion of their bilayer. Instead, a cortical cytoskeleton (CSK) provides a structural framework that allows the animal cell to maintain a stable excess membrane area (i.e., for its volume occupied by a sphere) in the form of membrane folds, ruffles, and microvilli. This excess membrane provides an immediate membrane reserve that may protect the bilayer from sudden changes in bilayer tension. Contractile elements within the CSK may locally slacken or tighten bilayer tension to regulate mechanosensitivity, whereas membrane blebbing and tight seal patch formation, by using up membrane reserves, may increase membrane mechanosensitivity. In specific cases, extracellular and/or CSK proteins (i.e., tethers) may transmit mechanical forces to the process (e.g., hair cell MG channels, MS intracellular Ca(2+) release, and transmitter release) without increasing tension in the lipid bilayer.
Collapse
Affiliation(s)
- O P Hamill
- Physiology and Biophysics, University Of Texas Medical Branch, Galveston, Texas 77555, USA.
| | | |
Collapse
|