401
|
A Survey of Strategies to Modulate the Bone Morphogenetic Protein Signaling Pathway: Current and Future Perspectives. Stem Cells Int 2016; 2016:7290686. [PMID: 27433166 PMCID: PMC4940573 DOI: 10.1155/2016/7290686] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/24/2016] [Indexed: 12/14/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the TGF-β family of ligands and are unequivocally involved in regulating stem cell behavior. Appropriate regulation of canonical BMP signaling is critical for the development and homeostasis of numerous human organ systems, as aberrations in the BMP pathway or its regulation are increasingly associated with diverse human pathologies. In this review, we provide a wide-perspective on strategies that increase or decrease BMP signaling. We briefly outline the current FDA-approved approaches, highlight emerging next-generation technologies, and postulate prospective avenues for future investigation. We also detail how activating other pathways may indirectly modulate BMP signaling, with a particular emphasis on the relationship between the BMP and Activin/TGF-β pathways.
Collapse
|
402
|
Tanboon J, Williams EA, Louis DN. The Diagnostic Use of Immunohistochemical Surrogates for Signature Molecular Genetic Alterations in Gliomas. J Neuropathol Exp Neurol 2016; 75:4-18. [PMID: 26671986 DOI: 10.1093/jnen/nlv009] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A number of key mutations that affect treatment and prognosis have been identified in human gliomas. Two major ways to identify these mutations in a tumor sample are direct interrogation of the mutated DNA itself and immunohistochemistry to assess the effects of the mutated genes on proteins. Immunohistochemistry is an affordable, robust, and widely available technology that has been in place for decades. For this reason, the use of immunohistochemical approaches to assess molecular genetic changes has become an essential component of state-of-the-art practice. In contrast, even though DNA sequencing technologies are undergoing rapid development, many medical centers do not have access to such methodologies and may be thwarted by the relatively high costs of sending out such tests to reference laboratories. This review summarizes the current experience using immunohistochemistry of glioma samples to identify mutations in IDH1, TP53, ATRX, histone H3 genes, BRAF, EGFR, MGMT, CIC, and FUBP1 as well as guidelines for prudent use of DNA sequencing as a supplemental method.
Collapse
|
403
|
Nichol JN, Dupéré-Richer D, Ezponda T, Licht JD, Miller WH. H3K27 Methylation: A Focal Point of Epigenetic Deregulation in Cancer. Adv Cancer Res 2016; 131:59-95. [PMID: 27451124 PMCID: PMC5325795 DOI: 10.1016/bs.acr.2016.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Epigenetics, the modification of chromatin without changing the DNA sequence itself, determines whether a gene is expressed, and how much of a gene is expressed. Methylation of lysine 27 on histone 3 (H3K27me), a modification usually associated with gene repression, has established roles in regulating the expression of genes involved in lineage commitment and differentiation. Not surprisingly, alterations in the homeostasis of this critical mark have emerged as a recurrent theme in the pathogenesis of many cancers. Perturbations in the distribution or levels of H3K27me occur due to deregulation at all levels of the process, either by mutation in the histone itself, or changes in the activity of the writers, erasers, or readers of this mark. Additionally, as no single histone mark alone determines the overall transcriptional readiness of a chromatin region, deregulation of other chromatin marks can also have dramatic consequences. Finally, the significance of mutations altering H3K27me is highlighted by the poor clinical outcome of patients whose tumors harbor such lesions. Current therapeutic approaches targeting aberrant H3K27 methylation remain to be proven useful in the clinic. Understanding the biological consequences and gene expression pathways affected by aberrant H3K27 methylation may lead to identification of new therapeutic targets and strategies.
Collapse
Affiliation(s)
- J N Nichol
- Segal Cancer Centre and Lady Davis Institute, Jewish General Hospital, Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - D Dupéré-Richer
- Division of Hematology Oncology, The University of Florida Health Cancer Center, Gainesville, FL, United States
| | - T Ezponda
- Division of Hematology/Oncology, Centro de Investigacion Medica Aplicada (CIMA), IDISNA, Pamplona, Spain
| | - J D Licht
- Division of Hematology Oncology, The University of Florida Health Cancer Center, Gainesville, FL, United States
| | - W H Miller
- Segal Cancer Centre and Lady Davis Institute, Jewish General Hospital, Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
404
|
Zhao B, Pritchard JR. Inherited Disease Genetics Improves the Identification of Cancer-Associated Genes. PLoS Genet 2016; 12:e1006081. [PMID: 27304678 PMCID: PMC4909226 DOI: 10.1371/journal.pgen.1006081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 05/04/2016] [Indexed: 01/21/2023] Open
Abstract
The identification of biologically significant variants in cancer genomes is critical to therapeutic discovery, but it is limited by the statistical power needed to discern driver from passenger. Independent biological data can be used to filter cancer exomes and increase statistical power. Large genetic databases for inherited diseases are uniquely suited to this task because they contain specific amino acid alterations with known pathogenicity and molecular mechanisms. However, no rigorous method to overlay this information onto the cancer exome exists. Here, we present a computational methodology that overlays any variant database onto the somatic mutations in all cancer exomes. We validate the computation experimentally and identify novel associations in a re-analysis of 7362 cancer exomes. This analysis identified activating SOS1 mutations associated with Noonan syndrome as significantly altered in melanoma and the first kinase-activating mutations in ACVR1 associated with adult tumors. Beyond a filter, significant variants found in both rare cancers and rare inherited diseases increase the unmet medical need for therapeutics that target these variants and may bootstrap drug discovery efforts in orphan indications.
Collapse
Affiliation(s)
- Boyang Zhao
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Discovery/Translational Biology, ARIAD Pharmaceuticals, Cambridge, Massachusetts, United States of America
- * E-mail: (BZ); (JP)
| | - Justin R. Pritchard
- Discovery/Translational Biology, ARIAD Pharmaceuticals, Cambridge, Massachusetts, United States of America
- * E-mail: (BZ); (JP)
| |
Collapse
|
405
|
Filbin MG, Suvà ML. Gliomas Genomics and Epigenomics: Arriving at the Start and Knowing It for the First Time. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:497-521. [DOI: 10.1146/annurev-pathol-012615-044208] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mariella G. Filbin
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114;
- Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts 02114;
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts 02215
| | - Mario L. Suvà
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114;
- Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts 02114;
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142
| |
Collapse
|
406
|
Commentary on "Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes". Acta Neuropathol 2016; 131:793-4. [PMID: 27026412 DOI: 10.1007/s00401-016-1567-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/14/2016] [Accepted: 03/19/2016] [Indexed: 12/23/2022]
|
407
|
Abstract
Great progress has been made in many areas of pediatric oncology. However, tumors of the central nervous system (CNS) remain a significant challenge. A recent explosion of data has led to an opportunity to understand better the molecular basis of these diseases and is already providing a foundation for the pursuit of rationally chosen therapeutics targeting relevant molecular pathways. The molecular biology of pediatric brain tumors is shifting from a singular focus on basic scientific discovery to a platform upon which insights are being translated into therapies.
Collapse
|
408
|
Nikbakht H, Panditharatna E, Mikael LG, Li R, Gayden T, Osmond M, Ho CY, Kambhampati M, Hwang EI, Faury D, Siu A, Papillon-Cavanagh S, Bechet D, Ligon KL, Ellezam B, Ingram WJ, Stinson C, Moore AS, Warren KE, Karamchandani J, Packer RJ, Jabado N, Majewski J, Nazarian J. Spatial and temporal homogeneity of driver mutations in diffuse intrinsic pontine glioma. Nat Commun 2016; 7:11185. [PMID: 27048880 PMCID: PMC4823825 DOI: 10.1038/ncomms11185] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/29/2016] [Indexed: 12/28/2022] Open
Abstract
Diffuse Intrinsic Pontine Gliomas (DIPGs) are deadly paediatric brain tumours where needle biopsies help guide diagnosis and targeted therapies. To address spatial heterogeneity, here we analyse 134 specimens from various neuroanatomical structures of whole autopsy brains from nine DIPG patients. Evolutionary reconstruction indicates histone 3 (H3) K27M--including H3.2K27M--mutations potentially arise first and are invariably associated with specific, high-fidelity obligate partners throughout the tumour and its spread, from diagnosis to end-stage disease, suggesting mutual need for tumorigenesis. These H3K27M ubiquitously-associated mutations involve alterations in TP53 cell-cycle (TP53/PPM1D) or specific growth factor pathways (ACVR1/PIK3R1). Later oncogenic alterations arise in sub-clones and often affect the PI3K pathway. Our findings are consistent with early tumour spread outside the brainstem including the cerebrum. The spatial and temporal homogeneity of main driver mutations in DIPG implies they will be captured by limited biopsies and emphasizes the need to develop therapies specifically targeting obligate oncohistone partnerships.
Collapse
Affiliation(s)
- Hamid Nikbakht
- Department of Human Genetics, McGill University, Montreal, Québec, Canada H3A 1B1.,McGill University and Génome Québec Innovation Centre, Montreal, Québec, Canada H3A 0G1
| | - Eshini Panditharatna
- Research Center for Genetic Medicine, Children's National Health System, Washington, District Of Columbia 20010, USA.,Institute for Biomedical Sciences, George Washington University School of Medicine and Health Sciences, Washington, District Of Columbia 20052, USA
| | - Leonie G Mikael
- Department of Pediatrics, McGill University and McGill University Heath Centre Research Institute, Montreal, Québec, Canada H4A 3J1
| | - Rui Li
- Department of Human Genetics, McGill University, Montreal, Québec, Canada H3A 1B1.,McGill University and Génome Québec Innovation Centre, Montreal, Québec, Canada H3A 0G1
| | - Tenzin Gayden
- Department of Human Genetics, McGill University, Montreal, Québec, Canada H3A 1B1
| | - Matthew Osmond
- Department of Human Genetics, McGill University, Montreal, Québec, Canada H3A 1B1.,McGill University and Génome Québec Innovation Centre, Montreal, Québec, Canada H3A 0G1
| | - Cheng-Ying Ho
- Division of Pathology, Children's National Health System, Washington, District Of Columbia 20010, USA
| | - Madhuri Kambhampati
- Research Center for Genetic Medicine, Children's National Health System, Washington, District Of Columbia 20010, USA
| | - Eugene I Hwang
- Center for Cancer and Blood Disorders, Children's National Health System, Washington, District Of Columbia 20010, USA
| | - Damien Faury
- Department of Pediatrics, McGill University and McGill University Heath Centre Research Institute, Montreal, Québec, Canada H4A 3J1
| | - Alan Siu
- The Department of Neurological Surgery, George Washington University School of Medicine and Health Sciences, Washington, District Of Columbia 20052, USA
| | - Simon Papillon-Cavanagh
- Department of Human Genetics, McGill University, Montreal, Québec, Canada H3A 1B1.,McGill University and Génome Québec Innovation Centre, Montreal, Québec, Canada H3A 0G1
| | - Denise Bechet
- Department of Human Genetics, McGill University, Montreal, Québec, Canada H3A 1B1
| | - Keith L Ligon
- Center for Molecular Oncologic Pathology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusett 02115, USA
| | - Benjamin Ellezam
- Department of Pathology, CHU Ste-Justine, Université de Montréal, Montreal, Québec, Canada H3T 1C5
| | - Wendy J Ingram
- UQ Child Health Research Centre, The University of Queensland, Brisbane, Queensland 4101, Australia
| | - Caedyn Stinson
- University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Andrew S Moore
- UQ Child Health Research Centre, The University of Queensland, Brisbane, Queensland 4101, Australia.,University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia.,Oncology Service, Children's Health Queensland Hospital and Health Service, Brisbane, Queensland 4101, Australia
| | - Katherine E Warren
- National Cancer Institute, National Institute of Health, Bethesda, Maryland 20892, USA
| | - Jason Karamchandani
- Department of Pathology, Montreal Neurological Hospital, McGill University, Montreal, Québec, Canada H3A 2B4
| | - Roger J Packer
- Brain Tumour Institute, Center for Neuroscience and Behavioral Medicine, Children's National Health System, Washington, District Of Columbia, 20010, USA
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, Québec, Canada H3A 1B1.,Department of Pediatrics, McGill University and McGill University Heath Centre Research Institute, Montreal, Québec, Canada H4A 3J1
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, Québec, Canada H3A 1B1.,McGill University and Génome Québec Innovation Centre, Montreal, Québec, Canada H3A 0G1
| | - Javad Nazarian
- Research Center for Genetic Medicine, Children's National Health System, Washington, District Of Columbia 20010, USA.,Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, District Of Columbia 20052, USA
| |
Collapse
|
409
|
Kambhampati M, Perez JP, Yadavilli S, Saratsis AM, Hill AD, Ho CY, Panditharatna E, Markel M, Packer RJ, Nazarian J. A standardized autopsy procurement allows for the comprehensive study of DIPG biology. Oncotarget 2016; 6:12740-7. [PMID: 25749048 PMCID: PMC4494970 DOI: 10.18632/oncotarget.3374] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/15/2015] [Indexed: 11/25/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is one of the least understood and most deadly childhood cancers. Historically, there has been a paucity of DIPG specimens for molecular analysis. However, due to the generous participation of DIPG families in programs for postmortem specimen donation, there has been a recent surge in molecular analysis of newly available tumor specimens. Collaborative efforts to share data and tumor specimens have resulted in rapid discoveries in other pediatric brain tumors, such as medulloblastoma, and therefore have the potential to shed light on the biology of DIPG. Given the generous gift of postmortem tissue donation from DIPG patients, there is a need for standardized postmortem specimen accrual to facilitate rapid and effective multi-institutional molecular studies. We developed and implemented an autopsy protocol for rapid procurement, documenting and storing these specimens. Sixteen autopsies were performed throughout the United States and Canada and processed using a standard protocol and inventory method, including specimen imaging, fixation, snap freezing, orthotopic injection, or preservation. This allowed for comparative clinical and biological studies of rare postmortem DIPG tissue specimens, generation of in vivo and in vitro models of DIPG, and detailed records to facilitate collaborative analysis.
Collapse
Affiliation(s)
- Madhuri Kambhampati
- Research Center for Genetic Medicine, Children's National Health System, Washington, DC, USA
| | - Jennifer P Perez
- Research Center for Genetic Medicine, Children's National Health System, Washington, DC, USA
| | - Sridevi Yadavilli
- Research Center for Genetic Medicine, Children's National Health System, Washington, DC, USA
| | - Amanda M Saratsis
- Research Center for Genetic Medicine, Children's National Health System, Washington, DC, USA.,Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ashley D Hill
- Division of Pathology, Children's National Health System, Washington, DC, USA
| | - Cheng-Ying Ho
- Division of Pathology, Children's National Health System, Washington, DC, USA
| | - Eshini Panditharatna
- Research Center for Genetic Medicine, Children's National Health System, Washington, DC, USA.,Institute for Biomedical Sciences, George Washington University, Washington, DC, USA
| | - Melissa Markel
- Department of Neuro Oncology, Riley hospital for Children, Indiana University Health, Indianapolis, IN, USA
| | - Roger J Packer
- Brain Tumor Institute, Center for Neuroscience and Behavioral Medicine, Children's National Health System, Washington, DC, USA
| | - Javad Nazarian
- Research Center for Genetic Medicine, Children's National Health System, Washington, DC, USA.,Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
410
|
[Classification of gliomas. Current progress and perspectives]. DER NERVENARZT 2016; 86:672, 674-6, 678-80, passim. [PMID: 25989737 DOI: 10.1007/s00115-014-4223-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The diagnostic subdivision of gliomas is traditionally based on histological features as defined by the World Health Organization (WHO) classification of tumors of the central nervous system. In recent years molecular studies have identified a number of genetic and epigenetic markers that could contribute to an improved tumor classification and better prediction of response to therapy and prognosis in the individual patient. The most important molecular tests with differential diagnostic relevance in patients with astrocytic and oligodendroglial tumors include the detection of genetic mutations in the isocitrate dehydrogenase 1 (IDH1), IDH2, alpha thalassemia/mental retardation syndrome X-linked (ATRX), histone H3.3 (H3F3A) and v-raf murine sarcoma viral oncogene homolog B (BRAF) genes as well as the demonstration of codeletions of chromosomal arms 1p and 19q. Important predictive markers that have been linked to the response to alkylating chemotherapy are O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation in glioblastoma patients and 1p/19q codel status in anaplastic glioma patients. Oncogenic c11orf95/RELA fusion gene formation is characteristic for a subgroup of patients with supratentorial ependymoma. In addition to diagnostic testing of individual genes, novel microarray and next generation sequencing (NGS) techniques show promising perspectives in glioma diagnostics. The assessment of DNA methylation profiles using DNA methylation arrays representing 450,000 CpG dinucleotides distributed throughout the human genome (450 k array test) now allows the robust molecular classification of gliomas into clinically relevant entities and variants. Moreover, glioma-associated gene panel NGS promises the timely parallel sequencing of relevant diagnostic and predictive marker genes in a single test. It will now be a major task to integrate these novel results and techniques into the conventional histological procedures in the up-coming revision of the WHO classification.
Collapse
|
411
|
Lulla RR, Saratsis AM, Hashizume R. Mutations in chromatin machinery and pediatric high-grade glioma. SCIENCE ADVANCES 2016; 2:e1501354. [PMID: 27034984 PMCID: PMC4803494 DOI: 10.1126/sciadv.1501354] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/04/2016] [Indexed: 05/24/2023]
Abstract
Pediatric central nervous system tumors are the most common solid tumor of childhood. Of these, approximately one-third are gliomas that exhibit diverse biological behaviors in the unique context of the developing nervous system. Although low-grade gliomas predominate and have favorable outcomes, up to 20% of pediatric gliomas are high-grade. These tumors are a major contributor to cancer-related morbidity and mortality in infants, children, and adolescents, with long-term survival rates of only 10 to 15%. The recent discovery of somatic oncogenic mutations affecting chromatin regulation in pediatric high-grade glioma has markedly improved our understanding of disease pathogenesis, and these findings have stimulated the development of novel therapeutic approaches targeting epigenetic regulators for disease treatment. We review the current perspective on pediatric high-grade glioma genetics and epigenetics, and discuss the emerging and experimental therapeutics targeting the unique molecular abnormalities present in these deadly childhood brain tumors.
Collapse
Affiliation(s)
- Rishi R. Lulla
- Department of Pediatrics—Hematology, Oncology, Neuro-Oncology and Stem Cell Transplantation, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Amanda Muhs Saratsis
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rintaro Hashizume
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
412
|
Sturm D, Orr BA, Toprak UH, Hovestadt V, Jones DTW, Capper D, Sill M, Buchhalter I, Northcott PA, Leis I, Ryzhova M, Koelsche C, Pfaff E, Allen SJ, Balasubramanian G, Worst BC, Pajtler KW, Brabetz S, Johann PD, Sahm F, Reimand J, Mackay A, Carvalho DM, Remke M, Phillips JJ, Perry A, Cowdrey C, Drissi R, Fouladi M, Giangaspero F, Łastowska M, Grajkowska W, Scheurlen W, Pietsch T, Hagel C, Gojo J, Lötsch D, Berger W, Slavc I, Haberler C, Jouvet A, Holm S, Hofer S, Prinz M, Keohane C, Fried I, Mawrin C, Scheie D, Mobley BC, Schniederjan MJ, Santi M, Buccoliero AM, Dahiya S, Kramm CM, von Bueren AO, von Hoff K, Rutkowski S, Herold-Mende C, Frühwald MC, Milde T, Hasselblatt M, Wesseling P, Rößler J, Schüller U, Ebinger M, Schittenhelm J, Frank S, Grobholz R, Vajtai I, Hans V, Schneppenheim R, Zitterbart K, Collins VP, Aronica E, Varlet P, Puget S, Dufour C, Grill J, Figarella-Branger D, Wolter M, Schuhmann MU, Shalaby T, Grotzer M, van Meter T, Monoranu CM, Felsberg J, Reifenberger G, Snuderl M, Forrester LA, Koster J, Versteeg R, Volckmann R, van Sluis P, Wolf S, Mikkelsen T, Gajjar A, Aldape K, Moore AS, Taylor MD, Jones C, et alSturm D, Orr BA, Toprak UH, Hovestadt V, Jones DTW, Capper D, Sill M, Buchhalter I, Northcott PA, Leis I, Ryzhova M, Koelsche C, Pfaff E, Allen SJ, Balasubramanian G, Worst BC, Pajtler KW, Brabetz S, Johann PD, Sahm F, Reimand J, Mackay A, Carvalho DM, Remke M, Phillips JJ, Perry A, Cowdrey C, Drissi R, Fouladi M, Giangaspero F, Łastowska M, Grajkowska W, Scheurlen W, Pietsch T, Hagel C, Gojo J, Lötsch D, Berger W, Slavc I, Haberler C, Jouvet A, Holm S, Hofer S, Prinz M, Keohane C, Fried I, Mawrin C, Scheie D, Mobley BC, Schniederjan MJ, Santi M, Buccoliero AM, Dahiya S, Kramm CM, von Bueren AO, von Hoff K, Rutkowski S, Herold-Mende C, Frühwald MC, Milde T, Hasselblatt M, Wesseling P, Rößler J, Schüller U, Ebinger M, Schittenhelm J, Frank S, Grobholz R, Vajtai I, Hans V, Schneppenheim R, Zitterbart K, Collins VP, Aronica E, Varlet P, Puget S, Dufour C, Grill J, Figarella-Branger D, Wolter M, Schuhmann MU, Shalaby T, Grotzer M, van Meter T, Monoranu CM, Felsberg J, Reifenberger G, Snuderl M, Forrester LA, Koster J, Versteeg R, Volckmann R, van Sluis P, Wolf S, Mikkelsen T, Gajjar A, Aldape K, Moore AS, Taylor MD, Jones C, Jabado N, Karajannis MA, Eils R, Schlesner M, Lichter P, von Deimling A, Pfister SM, Ellison DW, Korshunov A, Kool M. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. Cell 2016; 164:1060-1072. [PMID: 26919435 PMCID: PMC5139621 DOI: 10.1016/j.cell.2016.01.015] [Show More Authors] [Citation(s) in RCA: 663] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/22/2015] [Accepted: 01/08/2016] [Indexed: 12/11/2022]
Abstract
Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors. From the remaining fraction of CNS-PNETs, we identify four new CNS tumor entities, each associated with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1)," and "CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)," will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by poorly differentiated CNS tumors.
Collapse
Affiliation(s)
- Dominik Sturm
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Brent A. Orr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Umut H. Toprak
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Volker Hovestadt
- Division of Molecular Genetics, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - David T. W. Jones
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - David Capper
- Department of Neuropathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), 69120 Heidelberg
| | - Martin Sill
- Division of Biostatistics, German Cancer Research Center (DKFZ) Heidelberg and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Ivo Buchhalter
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Paul A. Northcott
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Irina Leis
- Department of Neuropathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Marina Ryzhova
- NN Burdenko Neurosurgical Institute, Moscow, 125047 Russia
| | - Christian Koelsche
- Department of Neuropathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), 69120 Heidelberg
| | - Elke Pfaff
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Sariah J. Allen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Gnanaprakash Balasubramanian
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Barbara C. Worst
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Kristian W. Pajtler
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Sebastian Brabetz
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Pascal D. Johann
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), 69120 Heidelberg
| | - Jüri Reimand
- Ontario Institute for Cancer Research, M5G 0A3, Toronto, ON M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Alan Mackay
- Division of Molecular Pathology, The Institute of Cancer Research, SW7 3RP, London, United Kingdom
| | - Diana M. Carvalho
- Division of Molecular Pathology, The Institute of Cancer Research, SW7 3RP, London, United Kingdom
| | - Marc Remke
- Program in Developmental and Stem Cell Biology, Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, University of Toronto, Toronto, ON M4N 1X8, Canada
| | - Joanna J. Phillips
- Brain Tumor Research Center, University of California, San Francisco, CA 94158-9001, USA
- Neuropathology, Department of Pathology, University of California, San Francisco, CA 94143-0102, USA
- Department of Neurological Surgery, University of California, San Francisco, CA 94143-0112, USA
| | - Arie Perry
- Brain Tumor Research Center, University of California, San Francisco, CA 94158-9001, USA
- Neuropathology, Department of Pathology, University of California, San Francisco, CA 94143-0102, USA
- Department of Neurological Surgery, University of California, San Francisco, CA 94143-0112, USA
| | - Cynthia Cowdrey
- Brain Tumor Research Center, University of California, San Francisco, CA 94158-9001, USA
| | - Rachid Drissi
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Maryam Fouladi
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomic-Pathological Sciences, Sapienza University of Rome, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Molise, Italy
| | - Maria Łastowska
- Department of Pathology, Children's Memorial Health Institute, 04-730 Warsaw, Poland
| | - Wiesława Grajkowska
- Department of Pathology, Children's Memorial Health Institute, 04-730 Warsaw, Poland
| | - Wolfram Scheurlen
- Cnopf'sche Kinderklinik, Nürnberg Children's Hospital, 90419 Nürnberg, Germany
| | - Torsten Pietsch
- Department of Neuropathology, University of Bonn Medical School, 53105 Bonn, Germany
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Johannes Gojo
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Daniela Lötsch
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Walter Berger
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Irene Slavc
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Christine Haberler
- Institute of Neurology, Medical University of Vienna, 1097 Vienna, Austria
| | - Anne Jouvet
- Neuro-Oncology and Neuro-Inflammation Team, Inserm U1028, CNRS UMR 5292, University Lyon-1, Neuroscience Center, 69000 Lyon, France, and Centre de Pathologie et de Neuropathologie Est, Hospices Civils de Lyon, 69003 Lyon, France
| | - Stefan Holm
- Department of Women's and Children's Health (KBH), Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Silvia Hofer
- Department of Oncology, Luzerner Kantonsspital, 6000 Luzern 16, Luzern, Switzerland
| | - Marco Prinz
- Institute of Neuropathology, University of Freiburg, Germany & BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79106 Freiburg, Germany
| | - Catherine Keohane
- Department of Pathology, University College Cork and Cork University Hospital Wilton, Cork, Ireland
| | - Iris Fried
- Department of Pediatric Hematology and Oncology, Hadassah Medical Center, Jerusalem, Israel
| | - Christian Mawrin
- Institute of Neuropathology, University Hospital, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - David Scheie
- Department of Pathology, Copenhagen University Hospital, 2100 København Ø, Denmark
| | - Bret C. Mobley
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Matthew J. Schniederjan
- Department of Pathology and Laboratory Administration, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Mariarita Santi
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Anna M. Buccoliero
- Pathology Unit, Anna Meyer Children's University Hospital, 50141 Florence, Italy
| | - Sonika Dahiya
- Department of Pathology and Immunology, Washington University, St. Louis, MO 63110, USA
| | - Christof M. Kramm
- Division of Pediatric Hematology and Oncology, Department of Child and Adolescent Health, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - André O. von Bueren
- Division of Pediatric Hematology and Oncology, Department of Child and Adolescent Health, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Katja von Hoff
- Department of Pediatric Haematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stefan Rutkowski
- Department of Pediatric Haematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christel Herold-Mende
- Department of Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | | | - Till Milde
- Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) Heidelberg, 69120 Heidelberg, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, 48149 Münster, Germany
| | - Pieter Wesseling
- Department of Pathology, VU University Medical Center Amsterdam, 1008 MB Amsterdam, The Netherlands
- Department of Pathology, Radboud University Nijmegen Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Jochen Rößler
- Department of Pediatric Hematology/Oncology, Center of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Ulrich Schüller
- Department of Neuropathology, Ludwig-Maximilians-University, and German Cancer Consortium (DKTK) partner site Munich, 81377 Munich, Germany
| | - Martin Ebinger
- Department of Hematology and Oncology, Children's University Hospital Tübingen, and German Cancer Consortium (DKTK) partner site Tübingen, 72076 Tübingen, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, Institute of Pathology and Neuropathology, University of Tübingen, and German Cancer Consortium (DKTK) partner site Tübingen, 72076 Tübingen, Germany
| | - Stephan Frank
- Department of Neuropathology, Institute of Pathology, Basel University Hospital, 4031 Basel, Switzerland
| | - Rainer Grobholz
- Department of Pathology, Medical Center Aarau, 5001 Aarau, Switzerland
| | - Istvan Vajtai
- Department of Pathology, University Hospital Bern, 3010 Bern, Switzerland
| | - Volkmar Hans
- Department of Neuropathology, Medical Center Bielefeld, 33617 Bielefeld, Germany
| | - Reinhard Schneppenheim
- Department of Pediatric Haematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Karel Zitterbart
- Department of Pediatric Oncology, University Hospital Brno and Masaryk University, Faculty of Medicine, 613 00 Brno, Czech Republic
| | - V. Peter Collins
- Division of Molecular Histopathology, Department of Pathology, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom
| | - Eleonora Aronica
- Department of Neuropathology, AMC, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Pascale Varlet
- Department of Neuropathology, Hôpital Sainte-Anne, 75674, Paris, France
| | - Stephanie Puget
- Pediatric Neurosurgery Department, Necker Enfants Malades Hospital, 75015, Paris, France
| | - Christelle Dufour
- Brain Tumor Program, Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Institute, University Paris Sud, 94805, Villejuif, France
| | - Jacques Grill
- Brain Tumor Program, Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Institute, University Paris Sud, 94805, Villejuif, France
| | - Dominique Figarella-Branger
- Department of Pathology and Neuropathology, la Timone Hospital, AP-HM and UMR911 CR02, Aix-Marseille University, 13385 Marseille, France
| | - Marietta Wolter
- Department of Neuropathology, Heinrich-Heine-University, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, 40225 Düsseldorf, Germany
| | - Martin U. Schuhmann
- Department of Neurosurgery, Section of Pediatric Neurosurgery, University Hospital Tübingen, and German Cancer Consortium (DKTK) partner site Tübingen, 72076 Tübingen, Germany
| | - Tarek Shalaby
- Neuro-Oncology Program, Division of Oncology, University Children's Hospital Zurich, 8032 Zürich, Switzerland
| | - Michael Grotzer
- Neuro-Oncology Program, Division of Oncology, University Children's Hospital Zurich, 8032 Zürich, Switzerland
| | | | - Camelia-Maria Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, and Comprehensive Cancer Center (CCC) Mainfranken, University and University Hospital, 97080 Würzburg, Germany
| | - Jörg Felsberg
- Department of Neuropathology, Heinrich-Heine-University, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, 40225 Düsseldorf, Germany
| | - Guido Reifenberger
- Department of Neuropathology, Heinrich-Heine-University, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, 40225 Düsseldorf, Germany
| | - Matija Snuderl
- Department of Pathology, Division of Neuropathology, NYU Langone Medical Center, New York, NY 10016, USA
| | | | - Jan Koster
- Department of Oncogenomics, AMC, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Rogier Versteeg
- Department of Oncogenomics, AMC, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Richard Volckmann
- Department of Oncogenomics, AMC, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Peter van Sluis
- Department of Oncogenomics, AMC, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Stephan Wolf
- Genomics and Proteomics Core Facility, High Throughput Sequencing Unit, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Tom Mikkelsen
- Departments of Neurology and Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Amar Gajjar
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kenneth Aldape
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew S. Moore
- The University of Queensland Diamantina Institute, Translational Research Institute; UQ Child Health Research Centre, The University of Queensland; Queensland Children's Medical Research Institute, Children's Health Queensland Hospital and Health Service; Brisbane, Australia
| | - Michael D. Taylor
- Program in Developmental and Stem Cell Biology, Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, University of Toronto, Toronto, ON M4N 1X8, Canada
| | - Chris Jones
- Division of Molecular Pathology, The Institute of Cancer Research, SW7 3RP, London, United Kingdom
| | - Nada Jabado
- McGill University and Genome Quebec Innovation Centre, Montreal, QC H3A 1A4, Canada
| | - Matthias A. Karajannis
- Departments of Pediatrics and Otolaryngology, Division of Pediatric Hematology/Oncology, NYU Langone Medical Center and Laura and Isaac Perlmutter Cancer Center, NY 10016, New York, USA
| | - Roland Eils
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Department for Bioinformatics and Functional Genomics, Institute for Pharmacy and Molecular Biotechnology (IPMB) and BioQuant, Heidelberg University, Heidelberg, Germany
- Heidelberg Center for Personalized Oncology, DKFZ-HIPO, DKFZ, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Matthias Schlesner
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Heidelberg Center for Personalized Oncology, DKFZ-HIPO, DKFZ, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), 69120 Heidelberg
| | - Stefan M. Pfister
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - David W. Ellison
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Andrey Korshunov
- Department of Neuropathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), 69120 Heidelberg
| | - Marcel Kool
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| |
Collapse
|
413
|
Mittapalli RK, Chung AH, Parrish KE, Crabtree D, Halvorson KG, Hu G, Elmquist WF, Becher OJ. ABCG2 and ABCB1 Limit the Efficacy of Dasatinib in a PDGF-B-Driven Brainstem Glioma Model. Mol Cancer Ther 2016; 15:819-29. [PMID: 26883271 DOI: 10.1158/1535-7163.mct-15-0093] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/10/2016] [Indexed: 12/22/2022]
Abstract
Dasatinib is a multikinase inhibitor in clinical trials for glioma, and thus far has failed to demonstrate significant efficacy. We investigated whether the ABC efflux transporters ABCG2 and ABCB1 expressed in the blood-brain barrier (BBB), are limiting the efficacy of dasatinib in the treatment of glioma using genetic and pharmacologic approaches. We utilized a genetic brainstem glioma mouse model driven by platelet-derived growth factor-B and p53 loss using abcg2/abcb1 wild-type (ABC WT) or abcg2/abcb1 knockout mice (ABC KO). First, we observed that brainstem glioma tumor latency is significantly prolonged in ABC KO versus ABC WT mice (median survival of 47 vs. 34 days). Dasatinib treatment nearly doubles the survival of brainstem glioma-bearing ABC KO mice (44 vs. 80 days). Elacridar, an ABCG2 and ABCB1 inhibitor, significantly increases the efficacy of dasatinib in brainstem glioma-bearing ABC WT mice (42 vs. 59 days). Pharmacokinetic analysis demonstrates that dasatinib delivery into the normal brain, but not into the tumor core, is significantly increased in ABC KO mice compared with ABC WT mice. Surprisingly, elacridar did not significantly increase dasatinib delivery into the normal brain or the tumor core of ABC WT mice. Next, we demonstrate that the tight junctions of the BBB of this model are compromised as assessed by tissue permeability to Texas Red dextran. Finally, elacridar increases the cytotoxicity of dasatinib independent of ABCG2 and ABCB1 expression in vitro In conclusion, elacridar improves the efficacy of dasatinib in a brainstem glioma model without significantly increasing its delivery to the tumor core. Mol Cancer Ther; 15(5); 819-29. ©2016 AACR.
Collapse
Affiliation(s)
- Rajendar K Mittapalli
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota
| | - Alexander H Chung
- Department of Pediatrics, Duke University, Durham, North Carolina. Department of Pathology, Duke University, Durham, North Carolina. Preston Robert Tisch Brain Tumor Center, Durham, North Carolina
| | - Karen E Parrish
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota
| | - Donna Crabtree
- Department of Pediatrics, Duke University, Durham, North Carolina. Department of Pathology, Duke University, Durham, North Carolina. Preston Robert Tisch Brain Tumor Center, Durham, North Carolina
| | - Kyle G Halvorson
- Department of Pediatrics, Duke University, Durham, North Carolina. Department of Pathology, Duke University, Durham, North Carolina. Preston Robert Tisch Brain Tumor Center, Durham, North Carolina. Department of Surgery, Division of Neurological Surgery, Duke University, Durham, North Carolina
| | - Guo Hu
- Department of Pediatrics, Duke University, Durham, North Carolina. Department of Pathology, Duke University, Durham, North Carolina. Preston Robert Tisch Brain Tumor Center, Durham, North Carolina
| | - William F Elmquist
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota
| | - Oren J Becher
- Department of Pediatrics, Duke University, Durham, North Carolina. Department of Pathology, Duke University, Durham, North Carolina. Preston Robert Tisch Brain Tumor Center, Durham, North Carolina.
| |
Collapse
|
414
|
Abstract
PURPOSE OF REVIEW Central nervous system tumors represent the most common solid tumors in children and are a leading cause of cancer-related fatalities in this age group. Here, we provide an update on insights gained through molecular profiling of the most common malignant childhood brain tumors. RECENT FINDINGS Genomic profiling studies of medulloblastoma, ependymoma, and diffuse intrinsic pontine glioma (diffuse midline glioma, with H3-K27M mutation), have refined, if not redefined, the diagnostic classification and therapeutic stratification of patients with these tumors. They detail the substantial genetic heterogeneity across each disease type and, importantly, link genotypic information to clinical course. The most aggressive, treatment-resistant (and also treatment-sensitive) forms within each disease entity are identified, and their potentially actionable targets. SUMMARY Molecularly based classification of pediatric brain tumors provides a critical framework for the more precise stratification and treatment of children with brain tumors.
Collapse
|
415
|
Histone Variant H3.3: A versatile H3 variant in health and in disease. SCIENCE CHINA-LIFE SCIENCES 2016; 59:245-56. [DOI: 10.1007/s11427-016-5006-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/26/2015] [Indexed: 01/24/2023]
|
416
|
Hoffman LM, DeWire M, Ryall S, Buczkowicz P, Leach J, Miles L, Ramani A, Brudno M, Kumar SS, Drissi R, Dexheimer P, Salloum R, Chow L, Hummel T, Stevenson C, Lu QR, Jones B, Witte D, Aronow B, Hawkins CE, Fouladi M. Spatial genomic heterogeneity in diffuse intrinsic pontine and midline high-grade glioma: implications for diagnostic biopsy and targeted therapeutics. Acta Neuropathol Commun 2016; 4:1. [PMID: 26727948 PMCID: PMC4700584 DOI: 10.1186/s40478-015-0269-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 12/20/2015] [Indexed: 11/20/2022] Open
Abstract
Introduction Diffuse intrinsic pontine glioma (DIPG) and midline high-grade glioma (mHGG) are lethal childhood brain tumors. Spatial genomic heterogeneity has been well-described in adult HGG but has not been comprehensively characterized in pediatric HGG. We performed whole exome sequencing on 38-matched primary, contiguous, and metastatic tumor sites from eight children with DIPG (n = 7) or mHGG (n = 1) collected using a unique MRI-guided autopsy protocol. Validation was performed using Sanger sequencing, Droplet Digital polymerase-chain reaction, immunohistochemistry, and fluorescent in-situ hybridization. Results Median age at diagnosis was 6.1 years (range: 2.9–23.3 years). Median overall survival was 13.2 months (range: 11.2–32.2 months). Contiguous tumor infiltration and distant metastases were observed in seven and six patients, respectively, including leptomeningeal dissemination in three DIPGs. Histopathological heterogeneity was evident in seven patients, including intra-pontine heterogeneity in two DIPGs, ranging from World Health Organization grade II to IV astrocytoma. We found conservation of heterozygous K27M mutations in H3F3A (n = 4) or HIST1H3B (n = 3) across all primary, contiguous, and metastatic tumor sites in all DIPGs. ACVR1 (n = 2), PIK3CA (n = 2), FGFR1 (n = 2), and MET (n = 1) were also intra-tumorally conserved. ACVR1 was co-mutated with HIST1H3B (n = 2). In contrast, PDGFRA amplification and mutation were spatially heterogeneous, as were mutations in BCOR (n = 1), ATRX (n = 2), and MYC (n = 1). TP53 aberrations (n = 3 patients) varied by type and location between primary and metastatic tumors sites but were intra-tumorally conserved. Conclusion Spatial conservation of prognostically-relevant and therapeutically-targetable somatic mutations in DIPG and mHGG contrasts the significant heterogeneity of driver mutations seen in adult HGG and supports uniform implementation of diagnostic biopsy in DIPG and mHGG to classify molecular risk groups and guide therapeutic strategy. Electronic supplementary material The online version of this article (doi:10.1186/s40478-015-0269-0) contains supplementary material, which is available to authorized users.
Collapse
|
417
|
Masui K, Mischel PS, Reifenberger G. Molecular classification of gliomas. HANDBOOK OF CLINICAL NEUROLOGY 2016; 134:97-120. [PMID: 26948350 DOI: 10.1016/b978-0-12-802997-8.00006-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The identification of distinct genetic and epigenetic profiles in different types of gliomas has revealed novel diagnostic, prognostic, and predictive molecular biomarkers for refinement of glioma classification and improved prediction of therapy response and outcome. Therefore, the new (2016) World Health Organization (WHO) classification of tumors of the central nervous system breaks with the traditional principle of diagnosis based on histologic criteria only and incorporates molecular markers. This will involve a multilayered approach combining histologic features and molecular information in an "integrated diagnosis". We review the current state of diagnostic molecular markers for gliomas, focusing on isocitrate dehydrogenase 1 or 2 (IDH1/IDH2) gene mutation, α-thalassemia/mental retardation syndrome X-linked (ATRX) gene mutation, 1p/19q co-deletion and telomerase reverse transcriptase (TERT) promoter mutation in adult tumors, as well as v-raf murine sarcoma viral oncogene homolog B1 (BRAF) and H3 histone family 3A (H3F3A) aberrations in pediatric gliomas. We also outline prognostic and predictive molecular markers, including O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation, and discuss the potential clinical relevance of biologic glioblastoma subtypes defined by integration of multiomics data. Commonly used methods for individual marker detection as well as novel large-scale DNA methylation profiling and next-generation sequencing approaches are discussed. Finally, we illustrate how advances in molecular diagnostics affect novel strategies of targeted therapy, thereby raising new challenges and identifying new leads for personalized treatment of glioma patients.
Collapse
Affiliation(s)
- Kenta Masui
- Department of Pathology, Tokyo Women's Medical University, Shinjku-ku, Tokyo, Japan; Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA
| | - Paul S Mischel
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA
| | - Guido Reifenberger
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
418
|
Mack SC, Hubert CG, Miller TE, Taylor MD, Rich JN. An epigenetic gateway to brain tumor cell identity. Nat Neurosci 2016; 19:10-9. [PMID: 26713744 PMCID: PMC5568053 DOI: 10.1038/nn.4190] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/30/2015] [Indexed: 12/13/2022]
Abstract
Precise targeting of genetic lesions alone has been insufficient to extend brain tumor patient survival. Brain cancer cells are diverse in their genetic, metabolic and microenvironmental compositions, accounting for their phenotypic heterogeneity and disparate responses to therapy. These factors converge at the level of the epigenome, representing a unified node that can be disrupted by pharmacologic inhibition. Aberrant epigenomes define many childhood and adult brain cancers, as demonstrated by widespread changes to DNA methylation patterns, redistribution of histone marks and disruption of chromatin structure. In this Review, we describe the convergence of genetic, metabolic and microenvironmental factors on mechanisms of epigenetic deregulation in brain cancer. We discuss how aberrant epigenetic pathways identified in brain tumors affect cell identity, cell state and neoplastic transformation, as well as addressing the potential to exploit these alterations as new therapeutic strategies for the treatment of brain cancer.
Collapse
Affiliation(s)
- Stephen C. Mack
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Christopher G. Hubert
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Tyler E. Miller
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Michael D. Taylor
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jeremy N. Rich
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, USA
| |
Collapse
|
419
|
Aldape K, Pfister SM. Next-generation molecular diagnostics. HANDBOOK OF CLINICAL NEUROLOGY 2016; 134:121-130. [PMID: 26948351 DOI: 10.1016/b978-0-12-802997-8.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The classification of brain tumors is based on the time-honored tradition of histologic examination, coupled with clinicopathologic correlation, and is based on the fundamental importance of microscopic morphologic interpretation. Supplementation by immunohistochemical markers is of substantial value to distinguish related entities and to confirm morphologic impressions. The use of techniques such as fluorescent in situ hybridization (FISH) is also critical in specific situations. However, with these practices, it is clear that the use of state-of-the-art molecular techniques has great promise to add to classification to (1) reduce the subjectivity inherent in interobserver discordance, particularly with specific entities; and (2) elucidate the biologic diversity of entities that are not resolvable by routine methods. In this chapter, we discuss these possibilities, focusing on several tumor types affecting the central nervous system, including diffuse glioma and ependymoma.
Collapse
Affiliation(s)
- Kenneth Aldape
- Department of Pathology, University Health Network and Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, German Cancer Research Center, Heidelberg University Hospital, Heidelberg, Germany; Department of Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
420
|
Common mutations in ALK2/ACVR1, a multi-faceted receptor, have roles in distinct pediatric musculoskeletal and neural orphan disorders. Cytokine Growth Factor Rev 2015; 27:93-104. [PMID: 26776312 DOI: 10.1016/j.cytogfr.2015.12.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Activin receptor-like kinase-2 (ALK2), the product of ACVR1, is a member of the type I bone morphogenetic protein (BMP) receptor family. ALK2 exerts key and non-redundant roles in numerous developmental processes, including the specification, growth and morphogenesis of endochondral skeletal elements. There is also strong evidence that BMP signaling plays important roles in determination, differentiation and function of neural cells and tissues. Here we focus on the intriguing discovery that common activating mutations in ALK2 occur in Fibrodysplasia Ossificans Progressiva (FOP) and Diffuse Intrinsic Pontine Gliomas (DIPGs), distinct pediatric disorders of significant severity that are associated with premature death. Pathogenesis and treatment remain elusive for both. We consider recent studies on the nature of the ACVR1 mutations, possible modes of action and targets, and plausible therapeutic measures. Comparisons of the diverse - but genetically interrelated - pathologies of FOP and DIPG will continue to be of major mutual benefit with broad biomedical and clinical relevance.
Collapse
|
421
|
Solomon DA, Wood MD, Tihan T, Bollen AW, Gupta N, Phillips JJJ, Perry A. Diffuse Midline Gliomas with Histone H3-K27M Mutation: A Series of 47 Cases Assessing the Spectrum of Morphologic Variation and Associated Genetic Alterations. Brain Pathol 2015; 26:569-80. [PMID: 26517431 DOI: 10.1111/bpa.12336] [Citation(s) in RCA: 306] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/26/2015] [Indexed: 12/12/2022] Open
Abstract
Somatic mutations of the H3F3A and HIST1H3B genes encoding the histone H3 variants, H3.3 and H3.1, were recently identified in high-grade gliomas arising in the thalamus, pons and spinal cord of children and young adults. However, the complete range of patients and locations in which these tumors arise, as well as the morphologic spectrum and associated genetic alterations remain undefined. Here, we describe a series of 47 diffuse midline gliomas with histone H3-K27M mutation. The 25 male and 22 female patients ranged in age from 2 to 65 years (median = 14). Tumors were centered not only in the pons, thalamus, and spinal cord, but also in the third ventricle, hypothalamus, pineal region and cerebellum. Patients with pontine tumors were younger (median = 7 years) than those with thalamic (median = 24 years) or spinal (median = 25 years) tumors. A wide morphologic spectrum was encountered including gliomas with giant cells, epithelioid and rhabdoid cells, primitive neuroectodermal tumor (PNET)-like foci, neuropil-like islands, pilomyxoid features, ependymal-like areas, sarcomatous transformation, ganglionic differentiation and pleomorphic xanthoastrocytoma (PXA)-like areas. In this series, histone H3-K27M mutation was mutually exclusive with IDH1 mutation and EGFR amplification, rarely co-occurred with BRAF-V600E mutation, and was commonly associated with p53 overexpression, ATRX loss (except in pontine gliomas), and monosomy 10.
Collapse
Affiliation(s)
- David A Solomon
- Division of Neuropathology, Department of Pathology, University of California, San Francisco, CA
| | - Matthew D Wood
- Division of Neuropathology, Department of Pathology, University of California, San Francisco, CA
| | - Tarik Tihan
- Division of Neuropathology, Department of Pathology, University of California, San Francisco, CA
| | - Andrew W Bollen
- Division of Neuropathology, Department of Pathology, University of California, San Francisco, CA
| | - Nalin Gupta
- Department of Neurological Surgery, University of California.,Department of Pediatrics, University of California
| | - Joanna J J Phillips
- Division of Neuropathology, Department of Pathology, University of California, San Francisco, CA.,Department of Neurological Surgery, University of California
| | - Arie Perry
- Division of Neuropathology, Department of Pathology, University of California, San Francisco, CA.,Department of Neurological Surgery, University of California
| |
Collapse
|
422
|
Baker SJ, Ellison DW, Gutmann DH. Pediatric gliomas as neurodevelopmental disorders. Glia 2015; 64:879-95. [PMID: 26638183 DOI: 10.1002/glia.22945] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/13/2015] [Indexed: 01/01/2023]
Abstract
Brain tumors represent the most common solid tumor of childhood, with gliomas comprising the largest fraction of these cancers. Several features distinguish them from their adult counterparts, including their natural history, causative genetic mutations, and brain locations. These unique properties suggest that the cellular and molecular etiologies that underlie their development and maintenance might be different from those that govern adult gliomagenesis and growth. In this review, we discuss the genetic basis for pediatric low-grade and high-grade glioma in the context of developmental neurobiology, and highlight the differences between histologically-similar tumors arising in children and adults.
Collapse
Affiliation(s)
- Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude's Children's Research Hospital, Memphis, Tennessee
| | - David W Ellison
- Department of Pathology, St. Jude's Children's Research Hospital, Memphis, Tennessee
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
423
|
Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol 2015; 130:815-27. [PMID: 26399631 PMCID: PMC4654747 DOI: 10.1007/s00401-015-1478-0] [Citation(s) in RCA: 456] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 01/15/2023]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is the most severe paediatric solid tumour, with no significant therapeutic progress made in the past 50 years. Recent studies suggest that diffuse midline glioma, H3-K27M mutant, may comprise more than one biological entity. The aim of the study was to determine the clinical and biological variables that most impact their prognosis. Ninety-one patients with classically defined DIPG underwent a systematic stereotactic biopsy and were included in this observational retrospective study. Histone H3 genes mutations were assessed by immunochemistry and direct sequencing, whilst global gene expression profiling and chromosomal imbalances were determined by microarrays. A full description of the MRI findings at diagnosis and at relapse was integrated with the molecular profiling data and clinical outcome. All DIPG but one were found to harbour either a somatic H3-K27M mutation and/or loss of H3K27 trimethylation. We also discovered a novel K27M mutation in HIST2H3C, and a lysine-to-isoleucine substitution (K27I) in H3F3A, also creating a loss of trimethylation. Patients with tumours harbouring a K27M mutation in H3.3 (H3F3A) did not respond clinically to radiotherapy as well, relapsed significantly earlier and exhibited more metastatic recurrences than those in H3.1 (HIST1H3B/C). H3.3-K27M-mutated DIPG have a proneural/oligodendroglial phenotype and a pro-metastatic gene expression signature with PDGFRA activation, while H3.1-K27M-mutated tumours exhibit a mesenchymal/astrocytic phenotype and a pro-angiogenic/hypoxic signature supported by expression profiling and radiological findings. H3K27 alterations appear as the founding event in DIPG and the mutations in the two main histone H3 variants drive two distinct oncogenic programmes with potential specific therapeutic targets.
Collapse
|
424
|
Mechanisms of action of bone morphogenetic proteins in cancer. Cytokine Growth Factor Rev 2015; 27:81-92. [PMID: 26678814 DOI: 10.1016/j.cytogfr.2015.11.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/13/2015] [Indexed: 01/28/2023]
Abstract
The bone morphogenetic proteins (BMPs) play fundamental roles in embryonic development and control differentiation of a diverse set of cell types. It is therefore of no surprise that the BMPs also contribute to the process of tumourigenesis and regulate cancer progression through various stages. We summarise here key roles of BMP ligands, receptors, their signalling mediators, mainly focusing on proteins of the Smad family, and extracellular antagonists, that contribute to the onset of tumourigenesis and to cancer progression in diverse tissues. Overall, the BMP pathways seem to act as tumour suppressors that maintain physiological tissue homeostasis and which are perturbed in cancer either via genetic mutation or via epigenetic misregulation of key gene components. BMPs also control the self-renewal and fate choices made by stem cells in several tissues. By promoting cell differentiation, including inhibition of the process of epithelial-mesenchymal transition, BMPs contribute to the malignant progression of cancer at advanced stages. It is therefore reasonable that pharmaceutical industries continuously develop biological agents and chemical modulators of BMP signalling with the aim to improve therapeutic regimes against several types of cancer.
Collapse
|
425
|
Huse JT, Rosenblum MK. The Emerging Molecular Foundations of Pediatric Brain Tumors. J Child Neurol 2015; 30:1838-50. [PMID: 25873586 DOI: 10.1177/0883073815579709] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/10/2015] [Indexed: 01/23/2023]
Abstract
Recent years have witnessed extensive molecular characterization of several pediatric brain tumor variants. These studies have dramatically shifted notions of disease classification and are likely to have similarly profound effects on patient management in the near future. In this review, we cover the molecular foundations of low-grade glial and glioneuronal neoplasms, high-grade glioma, ependymoma, and medulloblastoma, the details of which have only been recently elucidated in many cases. In doing so, we describe an array of biomarkers likely to play a major role in clinically relevant molecular stratification moving forward. We also discuss strategies for robust and efficient biomarker assessment in the clinical environment.
Collapse
Affiliation(s)
- Jason T Huse
- Department of Pathology and Memorial Sloan-Kettering Cancer Center, New York, NY, USA Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Marc K Rosenblum
- Department of Pathology and Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
426
|
Vanan MI, Eisenstat DD. DIPG in Children - What Can We Learn from the Past? Front Oncol 2015; 5:237. [PMID: 26557503 PMCID: PMC4617108 DOI: 10.3389/fonc.2015.00237] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 10/08/2015] [Indexed: 02/02/2023] Open
Abstract
Brainstem tumors represent 10–15% of pediatric central nervous system tumors and diffuse intrinsic pontine glioma (DIPG) is the most common brainstem tumor of childhood. DIPG is almost uniformly fatal and is the leading cause of brain tumor-related death in children. To date, radiation therapy (RT) is the only form of treatment that offers a transient benefit in DIPG. Chemotherapeutic strategies including multi-agent neoadjuvant chemotherapy, concurrent chemotherapy with RT, and adjuvant chemotherapy have not provided any survival advantage. To overcome the restrictive ability of the intact blood–brain barrier (BBB) in DIPG, several alternative drug delivery strategies have been proposed but have met with minimal success. Targeted therapies either alone or in combination with RT have also not improved survival. Five decades of unsuccessful therapies coupled with recent advances in the genetics and biology of DIPG have taught us several important lessons (1). DIPG is a heterogeneous group of tumors that are biologically distinct from other pediatric and adult high grade gliomas (HGG). Adapting chemotherapy and targeted therapies that are used in pediatric or adult HGG for the treatment of DIPG should be abandoned (2). Biopsy of DIPG is relatively safe and informative and should be considered in the context of multicenter clinical trials (3). DIPG probably represents a whole brain disease so regular neuraxis imaging is important at diagnosis and during therapy (4). BBB permeability is of major concern in DIPG and overcoming this barrier may ensure that drugs reach the tumor (5). Recent development of DIPG tumor models should help us accurately identify and validate therapeutic targets and small molecule inhibitors in the treatment of this deadly tumor.
Collapse
Affiliation(s)
- Magimairajan Issai Vanan
- Department of Pediatrics and Child Health, University of Manitoba , Winnipeg, MB , Canada ; Department of Biochemistry and Medical Genetics, University of Manitoba , Winnipeg, MB , Canada
| | - David D Eisenstat
- Department of Pediatrics, University of Alberta , Edmonton, AB , Canada ; Department of Medical Genetics, University of Alberta , Edmonton, AB , Canada ; Department of Oncology, University of Alberta , Edmonton, AB , Canada
| |
Collapse
|
427
|
Poussaint TY, Vajapeyam S, Ricci KI, Panigrahy A, Kocak M, Kun LE, Boyett JM, Pollack IF, Fouladi M. Apparent diffusion coefficient histogram metrics correlate with survival in diffuse intrinsic pontine glioma: a report from the Pediatric Brain Tumor Consortium. Neuro Oncol 2015; 18:725-34. [PMID: 26487690 DOI: 10.1093/neuonc/nov256] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/16/2015] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Diffuse intrinsic pontine glioma (DIPG) is associated with poor survival regardless of therapy. We used volumetric apparent diffusion coefficient (ADC) histogram metrics to determine associations with progression-free survival (PFS) and overall survival (OS) at baseline and after radiation therapy (RT). METHODS Baseline and post-RT quantitative ADC histograms were generated from fluid-attenuated inversion recovery (FLAIR) images and enhancement regions of interest. Metrics assessed included number of peaks (ie, unimodal or bimodal), mean and median ADC, standard deviation, mode, skewness, and kurtosis. RESULTS Based on FLAIR images, the majority of tumors had unimodal peaks with significantly shorter average survival. Pre-RT FLAIR mean, mode, and median values were significantly associated with decreased risk of progression; higher pre-RT ADC values had longer PFS on average. Pre-RT FLAIR skewness and standard deviation were significantly associated with increased risk of progression; higher pre-RT FLAIR skewness and standard deviation had shorter PFS. Nonenhancing tumors at baseline showed higher ADC FLAIR mean values, lower kurtosis, and higher PFS. For enhancing tumors at baseline, bimodal enhancement histograms had much worse PFS and OS than unimodal cases and significantly lower mean peak values. Enhancement in tumors only after RT led to significantly shorter PFS and OS than in patients with baseline or no baseline enhancement. CONCLUSIONS ADC histogram metrics in DIPG demonstrate significant correlations between diffusion metrics and survival, with lower diffusion values (increased cellularity), increased skewness, and enhancement associated with shorter survival, requiring future investigations in large DIPG clinical trials.
Collapse
Affiliation(s)
- Tina Young Poussaint
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts (T.Y.P., S.V., K.I.R.); Department of Radiology, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P.); Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tennessee (L.E.K.); Department of Biostatistics, St Jude Children's Research Hospital, Memphis, Tennessee (M.K., J.M.B.); Department of Neurosurgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (I.F.P.); Neuro-Oncology Program, Cincinnati Children's Hospital, Cincinnati, Ohio (M.F.)
| | - Sridhar Vajapeyam
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts (T.Y.P., S.V., K.I.R.); Department of Radiology, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P.); Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tennessee (L.E.K.); Department of Biostatistics, St Jude Children's Research Hospital, Memphis, Tennessee (M.K., J.M.B.); Department of Neurosurgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (I.F.P.); Neuro-Oncology Program, Cincinnati Children's Hospital, Cincinnati, Ohio (M.F.)
| | - Kelsey I Ricci
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts (T.Y.P., S.V., K.I.R.); Department of Radiology, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P.); Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tennessee (L.E.K.); Department of Biostatistics, St Jude Children's Research Hospital, Memphis, Tennessee (M.K., J.M.B.); Department of Neurosurgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (I.F.P.); Neuro-Oncology Program, Cincinnati Children's Hospital, Cincinnati, Ohio (M.F.)
| | - Ashok Panigrahy
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts (T.Y.P., S.V., K.I.R.); Department of Radiology, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P.); Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tennessee (L.E.K.); Department of Biostatistics, St Jude Children's Research Hospital, Memphis, Tennessee (M.K., J.M.B.); Department of Neurosurgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (I.F.P.); Neuro-Oncology Program, Cincinnati Children's Hospital, Cincinnati, Ohio (M.F.)
| | - Mehmet Kocak
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts (T.Y.P., S.V., K.I.R.); Department of Radiology, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P.); Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tennessee (L.E.K.); Department of Biostatistics, St Jude Children's Research Hospital, Memphis, Tennessee (M.K., J.M.B.); Department of Neurosurgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (I.F.P.); Neuro-Oncology Program, Cincinnati Children's Hospital, Cincinnati, Ohio (M.F.)
| | - Larry E Kun
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts (T.Y.P., S.V., K.I.R.); Department of Radiology, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P.); Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tennessee (L.E.K.); Department of Biostatistics, St Jude Children's Research Hospital, Memphis, Tennessee (M.K., J.M.B.); Department of Neurosurgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (I.F.P.); Neuro-Oncology Program, Cincinnati Children's Hospital, Cincinnati, Ohio (M.F.)
| | - James M Boyett
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts (T.Y.P., S.V., K.I.R.); Department of Radiology, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P.); Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tennessee (L.E.K.); Department of Biostatistics, St Jude Children's Research Hospital, Memphis, Tennessee (M.K., J.M.B.); Department of Neurosurgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (I.F.P.); Neuro-Oncology Program, Cincinnati Children's Hospital, Cincinnati, Ohio (M.F.)
| | - Ian F Pollack
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts (T.Y.P., S.V., K.I.R.); Department of Radiology, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P.); Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tennessee (L.E.K.); Department of Biostatistics, St Jude Children's Research Hospital, Memphis, Tennessee (M.K., J.M.B.); Department of Neurosurgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (I.F.P.); Neuro-Oncology Program, Cincinnati Children's Hospital, Cincinnati, Ohio (M.F.)
| | - Maryam Fouladi
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts (T.Y.P., S.V., K.I.R.); Department of Radiology, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P.); Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tennessee (L.E.K.); Department of Biostatistics, St Jude Children's Research Hospital, Memphis, Tennessee (M.K., J.M.B.); Department of Neurosurgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (I.F.P.); Neuro-Oncology Program, Cincinnati Children's Hospital, Cincinnati, Ohio (M.F.)
| |
Collapse
|
428
|
Puget S, Beccaria K, Blauwblomme T, Roujeau T, James S, Grill J, Zerah M, Varlet P, Sainte-Rose C. Biopsy in a series of 130 pediatric diffuse intrinsic Pontine gliomas. Childs Nerv Syst 2015; 31:1773-80. [PMID: 26351229 DOI: 10.1007/s00381-015-2832-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 01/06/2023]
Abstract
PURPOSE Diffuse intrinsic pontine glioma (DIPG) is the most severe pediatric solid tumor, with no significant improvement in the past 50 years. Possible reasons for failure to make therapeutic progress include poor understanding of the underlying molecular biology due to lack of tumor material. METHODS We performed a prospective analysis of children with typical appearance of DIPG who had a stereotactic biopsy in our unit since 2002. Technical approach, complications, histopathological results, and samples processing are exposed. The literature on this subject is discussed. RESULTS Reviewing our own 130 cases of DIPG biopsies and previous published data, these procedures appear to have a diagnostic yield and morbidity rates similar to those reported for other brain locations (3.9 % of transient morbidity in our series). In addition, the quality and the quantity of the material obtained allow to (1) confirm the diagnosis, (2) reveal that WHO grading was useless to predict outcome, and (3) perform an extended molecular screen, including biomarkers study and the development of preclinical models. Recent studies reveal that DIPG may comprise more than one biological entity and a unique oncogenesis involving mutations never described in other types of cancers, i.e., histones H3 K27M and activin receptor ACVR1. CONCLUSION Stereotactic biopsies of DIPG can be considered as a safe procedure in well-trained neurosurgical teams and could be incorporated in protocols. It is a unique opportunity to integrate DIPG biopsies in clinical practice and use the biology at diagnosis to drive the introduction of innovative targeted therapies, in combination with radiotherapy.
Collapse
Affiliation(s)
- Stephanie Puget
- Department of Pediatric Neurosurgery, Necker Enfants Malades Hospital, 149 rue de Sèvres, 75015, Paris, France. .,Sorbonne Paris Cité, Université Paris Descartes, Paris, France. .,UMR CNRS 8203 "Vectorologie et Thérapeutiques Anticancéreuses", Département de Cancérologie de l'Enfant et de l'Adolescent, Institut de Cancérologie Gustave Roussy, 114 rue Edouard Vaillant, 94805, Villejuif cedex, France.
| | - Kevin Beccaria
- Department of Pediatric Neurosurgery, Necker Enfants Malades Hospital, 149 rue de Sèvres, 75015, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Thomas Blauwblomme
- Department of Pediatric Neurosurgery, Necker Enfants Malades Hospital, 149 rue de Sèvres, 75015, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Thomas Roujeau
- Department of Pediatric Neurosurgery, Necker Enfants Malades Hospital, 149 rue de Sèvres, 75015, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Syril James
- Department of Pediatric Neurosurgery, Necker Enfants Malades Hospital, 149 rue de Sèvres, 75015, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Jacques Grill
- Department of Pediatric and Adolescent Oncology and CNRS UMR 8203 "Vectorology and Anticancer Therapeutics", Gustave Roussy Cancer Institute, Universite Paris Sud, 114 rue Edouard Vaillant, 94805, Villejuif, France
| | - Michel Zerah
- Department of Pediatric Neurosurgery, Necker Enfants Malades Hospital, 149 rue de Sèvres, 75015, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Pascale Varlet
- Department of Neuropathology, Sainte-Anne Hospital, 1 rue Cabanis, 75014, Paris, France
| | - Christian Sainte-Rose
- Department of Pediatric Neurosurgery, Necker Enfants Malades Hospital, 149 rue de Sèvres, 75015, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| |
Collapse
|
429
|
Zhang L, Pan CC, Li D. The historical change of brainstem glioma diagnosis and treatment: from imaging to molecular pathology and then molecular imaging. Chin Neurosurg J 2015. [DOI: 10.1186/s41016-015-0006-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
430
|
Pediatric brainstem gliomas: new understanding leads to potential new treatments for two very different tumors. Curr Oncol Rep 2015; 17:436. [PMID: 25702179 DOI: 10.1007/s11912-014-0436-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Pediatric brainstem gliomas include low-grade focal brainstem gliomas (FBSG) and high-grade diffuse intrinsic pontine gliomas (DIPG). These tumors share a crucial and eloquent area of the brain as their location, which carries common challenges for treatment. Otherwise, though, these two diseases are very different in terms of presentation, biology, treatment, and prognosis. FBSG usually present with greater than 3 months of symptoms, while DIPG are usually diagnosed within 3 months of symptom onset. Surgery remains the preferred initial treatment for FBSG, with chemotherapy used for persistent, recurrent, or inoperable disease; conversely, radiation is the only known effective treatment for DIPG. Recent developments in biological understanding of both tumors have led to new treatment possibilities. In FBSG, two genetic changes related to BRAF characterize the majority of tumors, and key differences in their biological effects are informing strategies for targeted chemotherapy use. In DIPG, widespread histone H3 and ACVR1 mutations have led to new hope for effective targeted treatments. FBSG has an excellent prognosis, while the long-term survival rate of DIPG tragically remains near zero. In this review, we cover the epidemiology, biology, presentation, imaging characteristics, multimodality treatment, and prognosis of FBSG and DIPG, with a focus on recent biological discoveries.
Collapse
|
431
|
Zhang R, Han J, Daniels D, Huang H, Zhang Z. Detecting the H3F3A mutant allele found in high-grade pediatric glioma by real-time PCR. J Neurooncol 2015; 126:27-36. [PMID: 26376656 DOI: 10.1007/s11060-015-1936-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 09/08/2015] [Indexed: 01/22/2023]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is an aggressive pediatric brain tumor with a median survival of 1 year after diagnosis. It has been reported recently that about 80% of DIPG cases and 70% of midline glioblastomas contain a mutation at one allele of the H3F3A gene (encoding histone H3 variant H3.3), replacing the lysine 27 with methionine (K27M). In order to facilitate diagnosis of DIPG patients, a quick and reliable method to identify the H3F3A K27M mutation is needed. Here, we describe a real-time PCR-based procedure involving a mutant-specific primer, a blocker oligonucleotide, and a reverse primer that can differentiate samples with H3F3A K27M mutation from those that do not. We first tested four different mutant-specific primers for their ability to selectively amplify H3F3A K27M-mutant allele and found that one primer amplified the mutant allele more efficiently than the rest. We then determined the optimal concentration of blocker oligo that significantly improved amplification of the H3F3A K27M-mutant allele. Using this optimized real-time PCR assay, we analyzed eleven samples, two of which containing H3F3A K27M mutation, and found that these two samples were differentially amplified from the nine others. In addition, we were able to discern the H3F3A K27M mutation in a newly obtained pediatric brainstem glioblastoma sample whose H3.3 status was not known previously, and in three other DIPG samples as well as paraffin embedded samples. These results demonstrate that we have developed a new reliable procedure for detecting the H3F3A K27M mutation in pediatric glioblastoma patient samples.
Collapse
Affiliation(s)
- Ray Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1ST SW, Rochester, MN, 55905, USA
| | - Jing Han
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1ST SW, Rochester, MN, 55905, USA
| | - David Daniels
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1ST SW, Rochester, MN, 55905, USA
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1ST SW, Rochester, MN, 55905, USA
| | - Zhiguo Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1ST SW, Rochester, MN, 55905, USA.
| |
Collapse
|
432
|
Reitman ZJ. Smaller protein, larger therapeutic potential: PPM1D as a new therapeutic target in brainstem glioma. Pharmacogenomics 2015; 15:1639-41. [PMID: 25410889 DOI: 10.2217/pgs.14.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
433
|
Chornenkyy Y, Agnihotri S, Yu M, Buczkowicz P, Rakopoulos P, Golbourn B, Garzia L, Siddaway R, Leung S, Rutka JT, Taylor MD, Dirks PB, Hawkins C. Poly-ADP-Ribose Polymerase as a Therapeutic Target in Pediatric Diffuse Intrinsic Pontine Glioma and Pediatric High-Grade Astrocytoma. Mol Cancer Ther 2015; 14:2560-8. [PMID: 26351319 DOI: 10.1158/1535-7163.mct-15-0282] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/20/2015] [Indexed: 11/16/2022]
Abstract
Pediatric high-grade astrocytomas (pHGA) and diffuse intrinsic pontine gliomas (DIPG) are devastating malignancies for which no effective therapies exist. We investigated the therapeutic potential of PARP1 inhibition in preclinical models of pHGA and DIPG. PARP1 levels were characterized in pHGA and DIPG patient samples and tumor-derived cell lines. The effects of PARP inhibitors veliparib, olaparib, and niraparib as monotherapy or as radiosensitizers on cell viability, DNA damage, and PARP1 activity were evaluated in a panel of pHGA and DIPG cell lines. Survival benefit of niraparib was examined in an orthotopic xenograft model of pHGA. About 85% of pHGAs and 76% of DIPG tissue microarray samples expressed PARP1. Six of 8 primary cell lines highly expressed PARP1. Interestingly, across multiple cell lines, some PARP1 protein expression was required for response to PARP inhibition; however, there was no correlation between protein level or PARP1 activity and sensitivity to PARP inhibitors. Niraparib was the most effective at reducing cell viability and proliferation (MTT and Ki67). Niraparib induced DNA damage (γH2AX foci) and induced growth arrest. Pretreatment of pHGA cells with a sublethal dose of niraparib (1 μmol/L) before 2 Gy of ionizing radiation (IR) decreased the rate of DNA damage repair, colony growth, and relative cell number. Niraparib (50 mg/kg) inhibited PARP1 activity in vivo and extended survival of mice with orthotopic pHGA xenografts, when administered before IR (20 Gy, fractionated), relative to control mice (40 vs. 25 days). Our data provide in vitro and in vivo evidence that niraparib may be an effective radiosensitizer for pHGA and DIPG.
Collapse
Affiliation(s)
- Yevgen Chornenkyy
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada. Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sameer Agnihotri
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Man Yu
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Pawel Buczkowicz
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Patricia Rakopoulos
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada. Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Brian Golbourn
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada. Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Livia Garzia
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Robert Siddaway
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephie Leung
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada. Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - James T Rutka
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada. Division of Neurosurgery, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Michael D Taylor
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada. Division of Neurosurgery, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Peter B Dirks
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada. Division of Neurosurgery, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Cynthia Hawkins
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada. Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. Division of Pathology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
434
|
Sun T, Plutynski A, Ward S, Rubin JB. An integrative view on sex differences in brain tumors. Cell Mol Life Sci 2015; 72:3323-42. [PMID: 25985759 PMCID: PMC4531141 DOI: 10.1007/s00018-015-1930-2] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/27/2015] [Accepted: 05/11/2015] [Indexed: 02/07/2023]
Abstract
Sex differences in human health and disease can range from undetectable to profound. Differences in brain tumor rates and outcome are evident in males and females throughout the world and regardless of age. These observations indicate that fundamental aspects of sex determination can impact the biology of brain tumors. It is likely that optimal personalized approaches to the treatment of male and female brain tumor patients will require recognizing and understanding the ways in which the biology of their tumors can differ. It is our view that sex-specific approaches to brain tumor screening and care will be enhanced by rigorously documenting differences in brain tumor rates and outcomes in males and females, and understanding the developmental and evolutionary origins of sex differences. Here we offer such an integrative perspective on brain tumors. It is our intent to encourage the consideration of sex differences in clinical and basic scientific investigations.
Collapse
Affiliation(s)
- Tao Sun
- />Department of Pediatrics, Washington University School of Medicine, St Louis, USA
| | - Anya Plutynski
- />Department of Philosophy, Washington University in St Louis, St Louis, USA
| | - Stacey Ward
- />Department of Pediatrics, Washington University School of Medicine, St Louis, USA
| | - Joshua B. Rubin
- />Department of Pediatrics, Washington University School of Medicine, St Louis, USA
- />Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Ave, St Louis, MO 63110 USA
- />Campus Box 8208, 660 South Euclid Ave, St Louis, MO 63110 USA
| |
Collapse
|
435
|
Gajjar A, Bowers DC, Karajannis MA, Leary S, Witt H, Gottardo NG. Pediatric Brain Tumors: Innovative Genomic Information Is Transforming the Diagnostic and Clinical Landscape. J Clin Oncol 2015; 33:2986-98. [PMID: 26304884 DOI: 10.1200/jco.2014.59.9217] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pediatric neuro-oncology has undergone an exciting and dramatic transformation during the past 5 years. This article summarizes data from collaborative group and institutional trials that have advanced the science of pediatric brain tumors and survival of patients with these tumors. Advanced genomic analysis of the entire spectrum of pediatric brain tumors has heralded an era in which stakeholders in the pediatric neuro-oncology community are being challenged to reconsider their current research and diagnostic and treatment strategies. The incorporation of this new information into the next-generation treatment protocols will unleash new challenges. This review succinctly summarizes the key advances in our understanding of the common pediatric brain tumors (ie, medulloblastoma, low- and high-grade gliomas, diffuse intrinsic pontine glioma, and ependymoma) and some selected rare tumors (ie, atypical teratoid/rhabdoid tumor and CNS primitive neuroectodermal tumor). The potential impact of this new information on future clinical protocols also is discussed. Cutting-edge genomics technologies and the information gained from such studies are facilitating the identification of molecularly defined subgroups within patients with particular pediatric brain tumors. The number of evaluable patients in each subgroup is small, particularly in the subgroups of rare diseases. Therefore, international collaboration will be crucial to draw meaningful conclusions about novel approaches to treating pediatric brain tumors.
Collapse
Affiliation(s)
- Amar Gajjar
- Amar Gajjar, St Jude Children's Research Hospital, Memphis, TN; Daniel C. Bowers, University of Texas Southwestern Medical Center, Dallas, TX; Matthias A. Karajannis, New York University (NYU) Perlmutter Cancer Center and NYU Langone Medical Center, New York, NY; Sarah Leary, University of Washington School of Medicine and Fred Hutchinson Cancer Research Center, Seattle, WA; Hendrik Witt, German Cancer Research Center and University of Heidelberg, Heidelberg, Germany; and Nicholas G. Gottardo, Princess Margaret Hospital for Children and The University of Western Australia, Perth, Western Australia, Australia.
| | - Daniel C Bowers
- Amar Gajjar, St Jude Children's Research Hospital, Memphis, TN; Daniel C. Bowers, University of Texas Southwestern Medical Center, Dallas, TX; Matthias A. Karajannis, New York University (NYU) Perlmutter Cancer Center and NYU Langone Medical Center, New York, NY; Sarah Leary, University of Washington School of Medicine and Fred Hutchinson Cancer Research Center, Seattle, WA; Hendrik Witt, German Cancer Research Center and University of Heidelberg, Heidelberg, Germany; and Nicholas G. Gottardo, Princess Margaret Hospital for Children and The University of Western Australia, Perth, Western Australia, Australia
| | - Matthias A Karajannis
- Amar Gajjar, St Jude Children's Research Hospital, Memphis, TN; Daniel C. Bowers, University of Texas Southwestern Medical Center, Dallas, TX; Matthias A. Karajannis, New York University (NYU) Perlmutter Cancer Center and NYU Langone Medical Center, New York, NY; Sarah Leary, University of Washington School of Medicine and Fred Hutchinson Cancer Research Center, Seattle, WA; Hendrik Witt, German Cancer Research Center and University of Heidelberg, Heidelberg, Germany; and Nicholas G. Gottardo, Princess Margaret Hospital for Children and The University of Western Australia, Perth, Western Australia, Australia
| | - Sarah Leary
- Amar Gajjar, St Jude Children's Research Hospital, Memphis, TN; Daniel C. Bowers, University of Texas Southwestern Medical Center, Dallas, TX; Matthias A. Karajannis, New York University (NYU) Perlmutter Cancer Center and NYU Langone Medical Center, New York, NY; Sarah Leary, University of Washington School of Medicine and Fred Hutchinson Cancer Research Center, Seattle, WA; Hendrik Witt, German Cancer Research Center and University of Heidelberg, Heidelberg, Germany; and Nicholas G. Gottardo, Princess Margaret Hospital for Children and The University of Western Australia, Perth, Western Australia, Australia
| | - Hendrik Witt
- Amar Gajjar, St Jude Children's Research Hospital, Memphis, TN; Daniel C. Bowers, University of Texas Southwestern Medical Center, Dallas, TX; Matthias A. Karajannis, New York University (NYU) Perlmutter Cancer Center and NYU Langone Medical Center, New York, NY; Sarah Leary, University of Washington School of Medicine and Fred Hutchinson Cancer Research Center, Seattle, WA; Hendrik Witt, German Cancer Research Center and University of Heidelberg, Heidelberg, Germany; and Nicholas G. Gottardo, Princess Margaret Hospital for Children and The University of Western Australia, Perth, Western Australia, Australia
| | - Nicholas G Gottardo
- Amar Gajjar, St Jude Children's Research Hospital, Memphis, TN; Daniel C. Bowers, University of Texas Southwestern Medical Center, Dallas, TX; Matthias A. Karajannis, New York University (NYU) Perlmutter Cancer Center and NYU Langone Medical Center, New York, NY; Sarah Leary, University of Washington School of Medicine and Fred Hutchinson Cancer Research Center, Seattle, WA; Hendrik Witt, German Cancer Research Center and University of Heidelberg, Heidelberg, Germany; and Nicholas G. Gottardo, Princess Margaret Hospital for Children and The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
436
|
Progress in the application of molecular biomarkers in gliomas. Biochem Biophys Res Commun 2015; 465:1-4. [PMID: 26253473 DOI: 10.1016/j.bbrc.2015.07.148] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 12/18/2022]
Abstract
Gliomas are a common adult central nervous system tumor, and glioblastoma (GBM), which has a poor prognosis, is the most lethal of all gliomas. The overall survival of GBM patients is only 12-14 months after diagnosis. With progress in the precision of personal medication, therapeutic options for various tumors have become gradually dependent on the molecular profiles of patients. GBM is one of the tumors in which treatment response relies largely on the molecular characteristics of the tumor. Therefore, awareness of the genetic background of each patient will help decision-making regarding the best treatment strategy to use. In this review, a novel molecular classification of gliomas based on recent findings of their genetic characteristics is introduced. Representative molecular markers, such as IDH1 mutation, 1p19q co-deletion, MGMT promoter methylation and EGFRvIII amplification, are described. Furthermore, the development of non-coding RNAs and omics studies of GBM are briefly discussed. Finally, a novel concept for non-invasive detection that could facilitate both diagnosis and treatment monitoring is presented. There is no doubt that the use of molecular profiling by biomarkers will indeed improve the overall survival and quality of life of GBM patients.
Collapse
|
437
|
Bertamino M, Severino M, Schiaffino MC, Garrè ML, Bocciardi R, Ravazzolo R, Rossi A, Di Rocco M. New insights into central nervous system involvement in FOP: Case report and review of the literature. Am J Med Genet A 2015; 167A:2817-21. [PMID: 26239063 DOI: 10.1002/ajmg.a.37271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/13/2015] [Indexed: 12/29/2022]
Abstract
Fibrodyspasia ossificans progressiva is an autosomal dominant disease due to activating mutations in activin receptor type IA and characterized by progressive heterotopic ossification. Recently, the same non-synonymous heterozygous somatic mutations of ACVR1 have been identified in brain biopsies or autopsy of 24-27% of patients with a rare cerebral tumor, the diffuse intrinsic pontine glioma. We report the first case of a patient with FOP with incidental findings of an abnormal soft tissue mass surrounding the brainstem and causing obstructive hydrocephalus, associated with bilateral dentate lesions. Clinico-radiological course during 10 years of follow-up was consistent with a benign lesion, excluding an oncogenic role of ACVR1 mutations.
Collapse
Affiliation(s)
- Marta Bertamino
- Department of Medicine and Surgery, University of Genoa, Genoa, Italy
| | | | | | | | - Renata Bocciardi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,G. Gaslini Institute, Laboratory of Molecular Genetics Genoa, Italy 7 Giannina Gaslini Institute, Rare Diseases, Pediatric, Genoa, Italy
| | - Roberto Ravazzolo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,G. Gaslini Institute, Laboratory of Molecular Genetics Genoa, Italy 7 Giannina Gaslini Institute, Rare Diseases, Pediatric, Genoa, Italy
| | - Andrea Rossi
- Giannina Gaslini Institute, Unit of Neuroradiology, Genoa, Italy
| | - Maja Di Rocco
- Giannina Gaslini Institute, Rare Diseases, Pediatric, Genoa, Italy
| |
Collapse
|
438
|
Kaye EC, Baker JN, Broniscer A. Management of diffuse intrinsic pontine glioma in children: current and future strategies for improving prognosis. CNS Oncol 2015; 3:421-31. [PMID: 25438813 DOI: 10.2217/cns.14.47] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is one of the deadliest pediatric central nervous system cancers in spite of treatment with radiation therapy, the current standard of care. The outcome of affected children remains dismal despite multiple clinical trials that investigated radiation therapy combined with chemotherapy. Recently, multiple genome-wide studies unveiled the distinct molecular characteristics of DIPGs and preclinical models of DIPG were developed to mimic the human disease. Both of these accomplishments have generated tremendous progress in the research of new therapies for children with DIPG. Here we review some of these promising new strategies.
Collapse
Affiliation(s)
- Erica C Kaye
- Department of Oncology, St Jude Children's Research Hospital; 262 Danny Thomas Place, Mail Stop 260, Memphis, TN 38105, USA
| | | | | |
Collapse
|
439
|
Abstract
High-grade gliomas (HGGs) are extremely lethal tumors. Survival has not changed significantly in the past decades. The only known prognostic factors in pediatric HGGs (pHGGs) are extent of resection and histologic grade. Treatment has historically been based on adult trials because of the rarity of pHGGs and the lack of genomic tools to explore their unique molecular characteristics. The recent advances in molecular biological data helped divide these tumors into distinct subgroups. In this review, the authors focus on major molecular targets of alterations in pHGGs: histone H3.3, telomeres, PDGFRA, IDH, BRAF (V600E), ACVR1 and NTRK and briefly highlight the difference with the adult counterpart.
Collapse
Affiliation(s)
- Omar Chamdine
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
440
|
Misuraca KL, Cordero FJ, Becher OJ. Pre-Clinical Models of Diffuse Intrinsic Pontine Glioma. Front Oncol 2015; 5:172. [PMID: 26258075 PMCID: PMC4513210 DOI: 10.3389/fonc.2015.00172] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/09/2015] [Indexed: 01/03/2023] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a rare and incurable brain tumor that arises in the brainstem of children predominantly between the ages of 6 and 8. Its intricate morphology and involvement of normal pons tissue precludes surgical resection, and the standard of care today remains fractionated radiation alone. In the past 30 years, there have been no significant advances made in the treatment of DIPG. This is largely because we lack good models of DIPG and therefore have little biological basis for treatment. In recent years, however, due to increased biopsy and acquisition of autopsy specimens, research is beginning to unravel the genetic and epigenetic drivers of DIPG. Insight gleaned from these studies has led to improvements in approaches to both model these tumors in the lab and to potentially treat them in the clinic. This review will detail the initial strides toward modeling DIPG in animals, which included allograft and xenograft rodent models using non-DIPG glioma cells. Important advances in the field came with the development of in vitro cell and in vivo xenograft models derived directly from autopsy material of DIPG patients or from human embryonic stem cells. Finally, we will summarize the progress made in the development of genetically engineered mouse models of DIPG. Cooperation of studies incorporating all of these modeling systems to both investigate the unique mechanisms of gliomagenesis in the brainstem and to test potential novel therapeutic agents in a preclinical setting will result in improvement in treatments for DIPG patients.
Collapse
Affiliation(s)
- Katherine L Misuraca
- Department of Pediatrics, Division of Hematology-Oncology, Duke University Medical Center , Durham, NC , USA
| | | | - Oren J Becher
- Department of Pediatrics, Division of Hematology-Oncology, Duke University Medical Center , Durham, NC , USA ; Department of Pathology, Duke University Medical Center , Durham, NC , USA
| |
Collapse
|
441
|
Abstract
Diffuse intrinsic pontine glioma (DIPG) is an aggressive tumor that is universally fatal, and to-date we are at a virtual standstill in improving its grim prognosis. Dearth of tissue due to rarity of biopsy has precluded understanding the elusive biology and frustration continues in reproducing faithful animal models for translational research. Furthermore the intricate anatomy of the pons has forestalled locoregional therapy and drug penetration. Over the last few years, biopsy-driven targeted therapy, development of vitro and xenograft animal models for therapeutic testing, profiling immunotherapeutic strategies and locoregional infusion of drugs in brain stem tumors, now provide a sense of hope in the years ahead. This review aims to discuss current status and advances in the management of these tumors.
Collapse
Affiliation(s)
- Soumen Khatua
- Pediatric Neuro-Oncology, Department of Pediatrics, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 87, Houston, TX 77030, USA
| | | |
Collapse
|
442
|
Weller M, Wick W, Aldape K, Brada M, Berger M, Pfister SM, Nishikawa R, Rosenthal M, Wen PY, Stupp R, Reifenberger G. Glioma. Nat Rev Dis Primers 2015; 1:15017. [PMID: 27188790 DOI: 10.1038/nrdp.2015.17] [Citation(s) in RCA: 751] [Impact Index Per Article: 75.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gliomas are primary brain tumours that are thought to derive from neuroglial stem or progenitor cells. On the basis of their histological appearance, they have been traditionally classified as astrocytic, oligodendroglial or ependymal tumours and assigned WHO grades I-IV, which indicate different degrees of malignancy. Tremendous progress in genomic, transcriptomic and epigenetic profiling has resulted in new concepts of classifying and treating gliomas. Diffusely infiltrating gliomas in adults are now separated into three overarching tumour groups with distinct natural histories, responses to treatment and outcomes: isocitrate dehydrogenase (IDH)-mutant, 1p/19q co-deleted tumours with mostly oligodendroglial morphology that are associated with the best prognosis; IDH-mutant, 1p/19q non-co-deleted tumours with mostly astrocytic histology that are associated with intermediate outcome; and IDH wild-type, mostly higher WHO grade (III or IV) tumours that are associated with poor prognosis. Gliomas in children are molecularly distinct from those in adults, the majority being WHO grade I pilocytic astrocytomas characterized by circumscribed growth, favourable prognosis and frequent BRAF gene fusions or mutations. Ependymal tumours can be molecularly subdivided into distinct epigenetic subgroups according to location and prognosis. Although surgery, radiotherapy and alkylating agent chemotherapy are still the mainstay of treatment, individually tailored strategies based on tumour-intrinsic dominant signalling pathways and antigenic tumour profiles may ultimately improve outcome. For an illustrated summary of this Primer, visit: http://go.nature.com/TXY7Ri.
Collapse
Affiliation(s)
- Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, CH-8091 Zurich, Switzerland
| | - Wolfgang Wick
- Neurology Clinic, University of Heidelberg and German Cancer Research Center, Heidelberg, Germany
| | - Ken Aldape
- Department of Pathology, University Health Network, Toronto, Ontario, Canada
| | - Michael Brada
- Department of Molecular and Clinical Cancer Medicine and Department of Radiation Oncology, University of Liverpool and Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK
| | - Mitchell Berger
- Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, California, USA
| | - Stefan M Pfister
- Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pediatric Haematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ryo Nishikawa
- Department of Neuro-Oncology and Neurosurgery, Saitama Medical University, Saitama, Japan
| | - Mark Rosenthal
- Department of Medical Oncology, The Royal Melbourne Hospital, Victoria 3050, Australia
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts, USA
| | - Roger Stupp
- Department of Oncology and Brain Tumor Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Guido Reifenberger
- Department of Neuropathology, Heinrich Heine University Düsseldorf, and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Heidelberg, partner site Essen/Düsseldorf, Germany
| |
Collapse
|
443
|
Danielsson A, Nemes S, Tisell M, Lannering B, Nordborg C, Sabel M, Carén H. MethPed: a DNA methylation classifier tool for the identification of pediatric brain tumor subtypes. Clin Epigenetics 2015; 7:62. [PMID: 26157508 PMCID: PMC4495799 DOI: 10.1186/s13148-015-0103-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/29/2015] [Indexed: 11/25/2022] Open
Abstract
Background Classification of pediatric tumors into biologically defined subtypes is challenging, and multifaceted approaches are needed. For this aim, we developed a diagnostic classifier based on DNA methylation profiles. Results Methylation data generated by the Illumina Infinium HumanMethylation 450 BeadChip arrays were downloaded from the Gene Expression Omnibus (n = 472). Using the data, we built MethPed, which is a multiclass random forest algorithm, based on DNA methylation profiles from nine subgroups of pediatric brain tumors. DNA from 18 regional samples was used to validate MethPed. MethPed was additionally applied to a set of 28 publically available tumors with the heterogeneous diagnosis PNET. MethPed could successfully separate individual histology tumor types at a very high accuracy (κ = 0.98). Analysis of a regional cohort demonstrated the clinical benefit of MethPed, as confirmation of diagnosis of tumors with clear histology but also identified possible differential diagnoses in tumors with complicated and mixed type morphology. Conclusions We demonstrate the utility of methylation profiling of pediatric brain tumors and offer MethPed as an easy-to-use toolbox that allows researchers and clinical diagnosticians to test single samples as well as large cohorts for subclass prediction of pediatric brain tumors. This will immediately aid clinical practice and importantly increase our molecular knowledge of these tumors for further therapeutic development. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0103-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Danielsson
- Department of Oncology, Sahlgrenska Cancer Center, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Szilárd Nemes
- Swedish Hip Arthroplasty Register, Centre of Registers Västra Götaland, Gothenburg, Sweden
| | - Magnus Tisell
- Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Birgitta Lannering
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Claes Nordborg
- Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Magnus Sabel
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Helena Carén
- Department of Pathology, Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, PO Box 425, SE-40530 Gothenburg, Sweden
| |
Collapse
|
444
|
Gajjar A, Pfister SM, Taylor MD, Gilbertson RJ. Molecular insights into pediatric brain tumors have the potential to transform therapy. Clin Cancer Res 2015; 20:5630-40. [PMID: 25398846 DOI: 10.1158/1078-0432.ccr-14-0833] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
High-throughput genomic technologies have shed light on the biologic heterogeneity of several pediatric brain tumors. The biology of the four common pediatric brain tumors-namely medulloblastoma; ependymoma; high-grade glioma (HGG), including diffuse intrinsic pontine glioma; and low-grade glioma-is highlighted in this CCR Focus article. The discovery that medulloblastoma consists of four different subgroups, namely WNT, SHH, Group 3, and Group 4, each with distinct clinical and molecular features, has affected the treatment of children with medulloblastoma. Prospective studies have documented the efficacy of SMO inhibitors in a subgroup of patients with SHH medulloblastoma. Efforts are ongoing to develop specific therapies for each of the subgroups of medulloblastoma. Similar efforts are being pursued for ependymoma, HGG, and diffuse intrinsic pontine glioma where the disease outcome for the latter two tumors has not changed over the past three decades despite several prospective clinical trials. Developing and testing targeted therapies based on this new understanding remains a major challenge to the pediatric neuro-oncology community. The focus of this review is to summarize the rapidly evolving understanding of the common pediatric brain tumors based on genome-wide analysis. These novel insights will add impetus to translating these laboratory-based discoveries to newer therapies for children diagnosed with these tumors.
Collapse
Affiliation(s)
- Amar Gajjar
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| | - Stefan M Pfister
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Division of Pediatric Neuro Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Richard J Gilbertson
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee. Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
445
|
Morales La Madrid A, Hashizume R, Kieran MW. Future Clinical Trials in DIPG: Bringing Epigenetics to the Clinic. Front Oncol 2015; 5:148. [PMID: 26191506 PMCID: PMC4486770 DOI: 10.3389/fonc.2015.00148] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/16/2015] [Indexed: 11/18/2022] Open
Abstract
In spite of major recent advances in diffuse intrinsic pontine glioma (DIPG) molecular characterization, this body of knowledge has not yet translated into better treatments. To date, more than 250 clinical trials evaluating radiotherapy along with conventional cytotoxic chemotherapy as well as newer biologic agents have failed to improve the dismal outcome when compared to palliative radiation alone. The biology of DIPG remained unknown until recently when the neurosurgical expertise along with the recognition by the scientific and clinical community of the importance of tissue sampling at diagnosis; ideally, in the context of a clinical trial and by trained neurosurgical teams to maximize patient safety. These pre-treatment tumor samples, and others coming from tissue obtained post-mortem, have yielded new insights into DIPG molecular pathogenesis. We now know that DIPG comprises a heterogeneous disease with variable molecular phenotypes, different from adult high-grade glioma, other non-pontine pediatric high-grade gliomas, and even between pontine gliomas. The discovery of histone H3.3 or H3.1 mutations has been an important step forward in understanding tumor formation, maintenance, and progression. Pharmacologic reversal of DIPG histone demethylation therefore offers an important potential intervention strategy for the treatment of DIPG. To date, clinical trials of newly diagnosed or progressive DIPG with epigenetic (histone) modifiers have been unsuccessful. Whether this failure represents limited activity of the agents used, their CNS penetration, redundant pathways within the tumor, or the possibility that histone mutations are necessary only to initiate DIPGs but not maintain their growth, suggest that a great deal still needs to be elucidated in both the underlying biology of these pathways and the drugs designed to target them. In this review, we will discuss the role of both epigenetic and genetic mutations within DIPG and the development of treatment strategies directed against the unique abnormalities present in this disease.
Collapse
Affiliation(s)
- Andres Morales La Madrid
- Pediatric Neuro-Oncology, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Deu , Barcelona , Spain
| | - Rintaro Hashizume
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University , Chicago, IL , USA ; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University , Chicago, IL , USA
| | - Mark W Kieran
- Pediatric Neuro-Oncology, Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital , Boston, MA , USA
| |
Collapse
|
446
|
Buczkowicz P, Hawkins C. Pathology, Molecular Genetics, and Epigenetics of Diffuse Intrinsic Pontine Glioma. Front Oncol 2015; 5:147. [PMID: 26175967 PMCID: PMC4485076 DOI: 10.3389/fonc.2015.00147] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/16/2015] [Indexed: 11/13/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a devastating pediatric brain cancer with no effective therapy. Histological similarity of DIPG to supratentorial high-grade astrocytomas of adults has led to assumptions that these entities possess similar underlying molecular properties and therefore similar therapeutic responses to standard therapies. The failure of all clinical trials in the last 30 years to improve DIPG patient outcome has suggested otherwise. Recent studies employing next-generation sequencing and microarray technologies have provided a breadth of evidence highlighting the unique molecular genetics and epigenetics of this cancer, distinguishing it from both adult and pediatric cerebral high-grade astrocytomas. This review describes the most common molecular genetic and epigenetic signatures of DIPG in the context of molecular subgroups and histopathological diagnosis, including this tumor entity's unique mutational landscape, copy number alterations, and structural variants, as well as epigenetic changes on the global DNA and histone levels. The increased knowledge of DIPG biology and histopathology has opened doors to new diagnostic and therapeutic avenues.
Collapse
Affiliation(s)
- Pawel Buczkowicz
- Division of Pathology, The Hospital for Sick Children , Toronto, ON , Canada ; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children , Toronto, ON , Canada
| | - Cynthia Hawkins
- Division of Pathology, The Hospital for Sick Children , Toronto, ON , Canada ; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children , Toronto, ON , Canada ; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
447
|
Alken SP, D'Urso P, Saran FH. Managing teenage/young adult (TYA) brain tumors: a UK perspective. CNS Oncol 2015; 4:235-46. [PMID: 26118974 DOI: 10.2217/cns.15.14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Tumors of the CNS are among the commonest malignancies occurring in teenage/young adult patients (i.e., those aged between 15 and 24 years). The treatment of this patient population is challenging. Adolescence and young adulthood are a turbulent period of life, with physical, emotional, social and cognitive changes. Best practice advocates their treatment in dedicated teenage/young adult units, with multidisciplinary team input and access to clinical trials. Treatment of CNS malignancies is dependent upon histological subtype and staging, with varying combinations of surgery, radiotherapy and chemotherapy used. Clinical trials directly targeted at this patient population are rare; treatments are based on pediatric protocols as studies have demonstrated improved outcomes in patients (with other malignancies) treated as such. Scope for improvement lies in minimizing patient risk of recurrence and long-term sequelae of treatment. Molecular characterization of tumors may provide further information.
Collapse
Affiliation(s)
- Scheryll P Alken
- Department of Neuro Oncology, Royal Marsden Hospital, Sutton, UK
| | - Pietro D'Urso
- Department of Neurosurgery, Salford Royal Hospital Foundation Trust, Salford, UK
| | - Frank H Saran
- Department of Neuro Oncology, Royal Marsden Hospital, Sutton, UK
| |
Collapse
|
448
|
Abstract
Advances in understanding pediatric high-grade glioma (pHGG) genetics have revealed key differences between pHGG and adult HGG and have uncovered unique molecular drivers among subgroups within pHGG. The 3 core adult HGG pathways, the receptor tyrosine kinase-Ras-phosphatidylinositide 3-kinase, p53, and retinoblastoma networks, are also disrupted in pHGG, but they exhibit a different spectrum of effectors targeted by mutation. There are also similarities and differences in the genomic landscape of diffuse intrinsic pontine glioma (DIPG) and pediatric nonbrainstem (pNBS)-HGG. In 2012, histone H3 mutations were identified in nearly 80% of DIPGs and ~35% of pNBS-HGG. These were the first reports of histone mutations in human cancer, implicating novel biology in pediatric gliomagenesis. Additionally, DIPG and midline pNBS-HGG vary in the frequency and specific histone H3 amino acid substitution compared with pNBS-HGGs arising in the cerebral hemispheres, demonstrating a molecular difference among pHGG subgroups. The gene expression signatures as well as DNA methylation signatures of these tumors are also distinctive, reflecting a combination of the driving mutations and the developmental context from which they arise. These data collectively highlight unique selective pressures within the developing brainstem and solidify DIPG as a specific molecular and biological entity among pHGGs. Emerging studies continue to identify novel mutations that distinguish subgroups of pHGG. The molecular heterogeneity among pHGGs will undoubtedly have clinical implications moving forward. The discovery of unique oncogenic drivers is a critical first step in providing patients with appropriate, targeted therapies. Despite these insights, our vantage point has been largely limited to an in-depth analysis of protein coding sequences. Given the clear importance of histone mutations in pHGG, it will be interesting to see how aberrant epigenetic regulation contributes to tumorigenesis in the pediatric context. New mechanistic insights may allow for the identification of distinct vulnerabilities in this devastating spectrum of childhood tumors.
Collapse
Affiliation(s)
- Alexander K Diaz
- Developmental Neurobiology, St. Jude Children׳s Research Hospital, Memphis, TN; Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN
| | - Suzanne J Baker
- Developmental Neurobiology, St. Jude Children׳s Research Hospital, Memphis, TN; Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN.
| |
Collapse
|
449
|
Northcott PA, Pfister SM, Jones DTW. Next-generation (epi)genetic drivers of childhood brain tumours and the outlook for targeted therapies. Lancet Oncol 2015; 16:e293-302. [PMID: 26065614 DOI: 10.1016/s1470-2045(14)71206-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Arguably, nowhere has there been a greater advance in our understanding of biological mechanisms and potential translational targets during the next-generation sequencing era than in paediatric brain tumours. The so-called omics revolution, enabled by high-throughput sequencing, has empowered large consortia and independent groups alike to make major genetic discoveries, from dominant-negative histone mutations and hijacking of distal enhancer elements, to new oncogenic gene fusions and aberrantly active gene expression. Epigenetic deregulation has also been revealed as a common theme across several tumour subtypes. This Review focuses on key findings that have been transforming the landscape of paediatric neuro-oncology research and how these results are opening new avenues towards potential therapeutic translation.
Collapse
Affiliation(s)
- Paul A Northcott
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, Heidelberg Germany
| | - David T W Jones
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
450
|
Transforming growth factor β and bone morphogenetic protein actions in brain tumors. FEBS Lett 2015; 589:1588-97. [PMID: 25957771 DOI: 10.1016/j.febslet.2015.04.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 01/05/2023]
Abstract
Members of the transforming growth factor β (TGF-β) family are implicated in the biology of several cancers. Here we focus on malignancies of the brain and examine the TGFβ and the bone morphogenetic protein (BMP) signaling branches of the family. These pathways exhibit context-dependent actions during tumorigenesis, acting either as tumor suppressors or as pro-tumorigenic agents. In the brain, the TGF-βs associate with oncogenic development and progression to the more malignant state. Inversely, the BMPs suppress tumorigenic potential by acting as agents that induce tumor cell differentiation. The latter has been best demonstrated in grade IV astrocytomas, otherwise known as glioblastoma multiforme. We discuss how the actions of TGF-βs and BMPs on cancer stem cells may explain their effects on tumor progression, and try to highlight intricate mechanisms that may link tumor cell differentiation to invasion. The focus on TGF-β and BMP and their actions in brain malignancies provides a rich territory for mechanistic understanding of tumor heterogeneity and suggests ways for improved therapeutic intervention, currently being addressed by clinical trials.
Collapse
|