401
|
Bakhshalizadeh S, Rabiee F, Shirazi R, Ghaedi K, Amidi F, Nasr-Esfahani MH. Assessment of PGC1α-FNDC5 Axis in Granulosa Cells of PCOS Mouse Model. J Reprod Infertil 2018; 19:89-94. [PMID: 30009142 PMCID: PMC6010818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Polycystic ovarian syndrome (PCOS) is a metabolic and endocrine disorder which is characterized by hyperandrogenism, anovulation or oligomenorrhea and polycystic ovarian morphology. It is believed that modulation in metabolism of granulosa cells of PCOS patients may lead to infertility. One of the metabolic modulators is FNDC5 and its cleaved form, irisin. The axis of PGC1α-FNDC5 pathway is one of the main factors affecting cellular energy balance the purpose of this study was to evaluate this pathway in granulosa cells derived from PCOS mice model in comparison with control group. METHODS In the present study, PCOS mouse model was developed by injection of dehydroepiandrosterone (DHEA) hormone in 20 mice for a period of 20 days. Also, 20 uninjected mice were used as the control. Meanwhile, a vehicle group consisted of mice which received daily subcutaneous sesame oil injection (n=20). Relative expressions of PGC1α and FNDC5 in granulosa cells were evaluated by RT-qPCR. Analysis of gene expressions was calculated by the ΔΔCT method and the relative levels of mRNA were normalized to GAPDH transcript levels. Differences in genes expression among three groups were assessed using one-way ANOVA, Tukey's Post Hoc test. RESULTS Our results showed that expression of FNDC5 was significantly reduced in granulosa cells of DHEA-induced PCOS mice compared with control and vehicle groups (p<0.05), while there was no significant differences in PGC1α expression among different groups. CONCLUSION Down regulation of FNDC5 transcript level may contribute in metabolic disturbance of granulosa cells derived from PCOS ovary apart from PGC1α levels which remained unchanged.
Collapse
Affiliation(s)
- Shabnam Bakhshalizadeh
- Department of Anatomy, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Farzaneh Rabiee
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Reza Shirazi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran, Department of Anatomical Sciences, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran, Cell and Molecular Biology Division, Biology Department, School of Sciences, University of Isfahan, Isfahan, Iran
| | - Fardin Amidi
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran,Corresponding Authors: Mohammad Hossein, Nasr-Esfahani, Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, P.O. Code 816513-1378, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran,Corresponding Authors: Mohammad Hossein, Nasr-Esfahani, Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, P.O. Code 816513-1378, Isfahan, Iran
| |
Collapse
|
402
|
|
403
|
Cooke AB, Gomez YH, Daskalopoulou SS. 5 years later: irisin detection still an issue. Eur J Endocrinol 2017; 177:C1-C4. [PMID: 28710063 DOI: 10.1530/eje-17-0572] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Alexandra B Cooke
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Yessica-Haydee Gomez
- Division of Internal Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Stella S Daskalopoulou
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Division of Internal Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
404
|
The role of exercise-induced myokines in regulating metabolism. Arch Pharm Res 2017; 41:14-29. [DOI: 10.1007/s12272-017-0994-y] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/21/2017] [Indexed: 12/25/2022]
|
405
|
Fatouros IG. Is irisin the new player in exercise-induced adaptations or not? A 2017 update. ACTA ACUST UNITED AC 2017; 56:525-548. [DOI: 10.1515/cclm-2017-0674] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/04/2017] [Indexed: 12/16/2022]
Abstract
Abstract
Irisin is produced by a proteolytic cleavage of fibronectin type III domain-containing protein 5 (FNDC5) and has emerged as a potential mediator of exercise-induced energy metabolism. The purpose of this study was to review the results of studies that investigated irisin responses to acute and chronic exercise and provide an update. A comprehensive search in the databases of MEDLINE was performed (74 exercise studies). The focus of the analysis was on data concerning FNDC5 mRNA expression in skeletal muscle and circulating irisin concentration relatively to exercise mode, intensity, frequency and duration and the characteristics of the sample used. Circulating irisin levels may either not relate to FNDC5 transcription or expression of the later precedes irisin rise in the blood. Acute speed/strength and endurance exercise protocols represent potent stimuli for irisin release if they are characterized by adequate intensity and/or duration. There are no reports regarding irisin responses to field sport activities. Although animal studies suggest that irisin may also respond to systematic exercise training, the majority of human studies has produced contradictory results. Certain methodological issues need to be considered here such as the analytical assays used to measure irisin concentration in the circulation. Results may also be affected by subjects’ age, conditioning status and exercise intensity. The role of irisin as a moderator of energy metabolism during exercise remains to be seen.
Collapse
Affiliation(s)
- Ioannis G. Fatouros
- School of Physical Education and Sports Sciences , University of Thessaly , Karies 42100 , Trikala , Greece
| |
Collapse
|
406
|
Deng X, Huang W, Peng J, Zhu TT, Sun XL, Zhou XY, Yang H, Xiong JF, He HQ, Xu YH, He YZ. Irisin Alleviates Advanced Glycation End Products-Induced Inflammation and Endothelial Dysfunction via Inhibiting ROS-NLRP3 Inflammasome Signaling. Inflammation 2017; 41:260-275. [PMID: 29098483 DOI: 10.1007/s10753-017-0685-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
407
|
The Exercise-Induced Irisin Is Associated with Improved Levels of Glucose Homeostasis Markers in Pregnant Women Participating in 8-Week Prenatal Group Fitness Program: A Pilot Study. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9414525. [PMID: 29226153 PMCID: PMC5684569 DOI: 10.1155/2017/9414525] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/25/2017] [Accepted: 10/03/2017] [Indexed: 11/17/2022]
Abstract
Background Both exercise and pregnancy influence serum irisin concentration. Aim To determine how the interaction of pregnancy and exercise affects irisin level and whether various patterns of exercise adherence had different effect on irisin concentration. Methods It was a one-group pretest-posttest study among 9 Caucasian nulliparous healthy women in normal pregnancy (age 23 ± 3 years, 21 ± 2 weeks of gestation; mean ± SD) who participated in 8-week group fitness program. Before and after exercise intervention, we determined serum concentrations of irisin and selected parameters of lipid profile and glucose homeostasis markers. Results In active women, irisin slightly decreased with the development of pregnancy. After 8 weeks of exercising, irisin correlated negatively with fasting glucose (R = -0.922; p = 0.001), glycated hemoglobin (R = -0.784; p = 0.012), and insulin concentrations (R = -0.845; p = 0.004). In women exercising below recommended level, we observed a significant drop in irisin concentration, whereas in women exercising at least three times a week this myokine slightly increased (31% difference; 90% confidence limits ±28; a large, clear effect). Conclusions Irisin stimulated by prenatal exercise may improve glucose homeostasis markers in healthy women and compensate for metabolic changes induced by pregnancy. Moreover, the frequency of exercise may regulate the changes in exercise-induced irisin concentration.
Collapse
|
408
|
Al-Daghri NM, Batzel JJ, Burgmann H, Carbone F, Charmandari E, Chrousos GP, Distelmaier K, Cvirn G, Dullaart RPF, Dumitrascu DL, Esteve-Pastor MA, Gervasini G, Goliasch G, Goswami N, Gruppen EG, Hernández-Mijares A, Kalantaridou SN, Krause R, Latini R, Makrigiannakis A, Marín F, Masson S, Montecucco F, Ndrepepa G, Nicolaides NC, Novelli D, Orasan OH, Qorbani M, Ratzinger F, Roessler A, Sabico S, Sciatti E, Stefanaki C, Stoner L, Tabatabaei-Malazy O, Tatar E, Toz H, Uslu A, Victor VM, Vizzardi E. Research update for articles published in EJCI in 2015. Eur J Clin Invest 2017; 47:775-788. [PMID: 28960328 DOI: 10.1111/eci.12819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Nasser M Al-Daghri
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jerry J Batzel
- Gravitational Physiology and Medicine Research Unit, Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Heinz Burgmann
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Federico Carbone
- First Clinical of Internal Medicine Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - George P Chrousos
- Choremeion Research Laboratory, 1st Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Klaus Distelmaier
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Gerhard Cvirn
- Physiology, Medical University of Graz, Graz, Austria
- Institute of Physiological Chemistry, Medical University of Graz, Graz, Austria
| | - Robin P F Dullaart
- Department of Endocrinology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Dan L Dumitrascu
- 2nd Medical Department, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - María A Esteve-Pastor
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBER-CV, Murcia, Spain
| | - Guillermo Gervasini
- Department of Medical and Surgical Therapeutics, Medical School, University of Extremadura, Badajoz, Spain
| | - Georg Goliasch
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Nandu Goswami
- Gravitational Physiology and Medicine Research Unit, Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Eke G Gruppen
- Department of Endocrinology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Antonio Hernández-Mijares
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- Department of Medicine, University of Valencia, Valencia, Spain
| | - Sophia N Kalantaridou
- 2nd Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Robert Krause
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- CBmed GmbH - Center for Biomarker Research in Medicine, Graz, Austria
| | - Roberto Latini
- Department of Cardiovascular Research, IRCCS - Istituto Mario Negri, Milano, Italy
| | - Antonis Makrigiannakis
- Department of Obstetrics and Gynecology, Medical School, University of Crete, Heraklion, Greece
| | - Francisco Marín
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBER-CV, Murcia, Spain
| | - Serge Masson
- Department of Cardiovascular Research, IRCCS - Istituto Mario Negri, Milano, Italy
| | - Fabrizio Montecucco
- First Clinical of Internal Medicine Department of Internal Medicine, University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino, Genova, Italy
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | | | - Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Deborah Novelli
- Department of Cardiovascular Research, IRCCS - Istituto Mario Negri, Milano, Italy
| | - Olga H Orasan
- 4th Medical Department, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mostafa Qorbani
- Department of Community Medicine, School of Medicine, Alborz University of Medical sciences, Karaj, Iran
- Non-Communicable Disease Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran university of Medical sciences, Tehran, Iran
| | - Franz Ratzinger
- Division of Medical and Chemical Laboratory Diagnostics, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Andreas Roessler
- Gravitational Physiology and Medicine Research Unit, Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Shaun Sabico
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Edoardo Sciatti
- Section of Cardiovascular Diseases, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University and Spedali Civili of Brescia, Brescia, Italy
| | - Charikleia Stefanaki
- Choremeion Research Laboratory, 1st Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Lee Stoner
- School of Sport and Exercise, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ozra Tabatabaei-Malazy
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran university of Medical sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Erhan Tatar
- Department of Nephrology, Izmir Bozyaka Education and Research Hospital, Izmir, Turkey
| | - Huseyin Toz
- Department of Nephrology, Ege University School of Medicine, Izmir, Turkey
| | - Adam Uslu
- Department of General Surgery and Transplantation, Izmir Bozyaka Education and Research Hospital, Izmir, Turkey
| | - Victor M Victor
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- Department of Physiology, University of Valencia, Valencia, Spain
| | - Enrico Vizzardi
- Section of Cardiovascular Diseases, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University and Spedali Civili of Brescia, Brescia, Italy
| |
Collapse
|
409
|
Jiang Q, Zhang Q, Lian A, Xu Y. Irisin stimulates gonadotropins gene expression in tilapia (Oreochromis niloticus) pituitary cells. Anim Reprod Sci 2017; 185:140-147. [DOI: 10.1016/j.anireprosci.2017.06.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/18/2017] [Accepted: 06/26/2017] [Indexed: 12/18/2022]
|
410
|
Irisin protects against neuronal injury induced by oxygen-glucose deprivation in part depends on the inhibition of ROS-NLRP3 inflammatory signaling pathway. Mol Immunol 2017; 91:185-194. [PMID: 28961497 DOI: 10.1016/j.molimm.2017.09.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/05/2017] [Accepted: 09/22/2017] [Indexed: 01/19/2023]
Abstract
Recent studies found that irisin, a newly discovered skeletal muscle-derived myokine during exercise, is also synthesized in various tissues of different species and protects against neuronal injury in cerebral ischemia. The NOD-like receptor pyrin 3 (NLRP3) inflammasome play an important role in detecting cellular damage and mediating inflammatory responses to aseptic tissue injury during ischemic stroke. However, it is unclear whether irisin is involved in the regulation of NLRP3 inflammasome activation during ischemic stroke. In the present study, PC12 neuronal cells were exposed to oxygen-glucose deprivation (OGD), exogenous irisin (12.5, 25, 50nmol/L) or NLRP3 inhibitor glyburide (50, 100, 200μmol/L) were used as an intervention reagent, NLRP3 was over-expressed or suppressed by transfection with a NLRP3 expressing vector or NLRP3-specifc siRNA, respectively. Our data showed that both irisin and its precursor protein fibronectin type III domain containing 5 (FNDC5) expression were significantly down-regulated (p<0.05); but oxidative stress and ROS-NLRP3 inflammasome signaling were activated by OGD (p<0.05); treatment with irisin or inhibition of NLRP3 reversed OGD-induced oxidative stress and inflammation (p<0.05). However, these irisin-mediated effects were blunted by over-expression NLRP3 (p<0.05). Taken together, our results firstly revealed that irisin mitigated OGD-induced neuronal injury in part via inhibiting ROS-NLRP3 inflammatory signaling pathway, suggesting a likely mechanism for irisin-induced therapeutic effect in ischemic stroke.
Collapse
|
411
|
Wang CY. Circadian Rhythm, Exercise, and Heart. ACTA CARDIOLOGICA SINICA 2017; 33:539-541. [PMID: 28959108 PMCID: PMC5611352 DOI: 10.6515/acs20170604a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Chao-Yung Wang
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
412
|
Scheideler M, Herzig S, Georgiadi A. Endocrine and autocrine/paracrine modulators of brown adipose tissue mass and activity as novel therapeutic strategies against obesity and type 2 diabetes. Horm Mol Biol Clin Investig 2017; 31:/j/hmbci.ahead-of-print/hmbci-2017-0043/hmbci-2017-0043.xml. [PMID: 28850545 DOI: 10.1515/hmbci-2017-0043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/28/2017] [Indexed: 12/17/2022]
Abstract
The dramatically increasing world-wide prevalence of obesity is recognized as a risk factor for the development of various diseases. The growing research on the role of adipose tissue in controlling energy homeostasis and insulin sensitivity has revealed that the promotion of brown adipose tissue (BAT) activity and the browning of white adipose tissue (WAT) leads to multiple health benefits and prevents obesity and type 2 diabetes (T2D). Inducible thermogenic adipocytes do exist in adult humans and are linked with increased energy combustion and lower body fat mass. Thus brown adipocytes are currently placed at the center of attention for novel therapeutic strategies against metabolic diseases such as obesity and diabetes. Besides the classical, norepinephrine-mediated sympathetic recruitment and activation of thermogenic adipocytes, a number of novel circulating factors have been recently identified to have a positive or negative impact on thermogenic adipocyte formation and activity. In this review their mechanism of action and the plausible therapeutic applications will be summarized and discussed.
Collapse
|
413
|
Jang HB, Kim HJ, Kang JH, Park SI, Park KH, Lee HJ. Association of circulating irisin levels with metabolic and metabolite profiles of Korean adolescents. Metabolism 2017; 73:100-108. [PMID: 28732566 DOI: 10.1016/j.metabol.2017.05.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 05/18/2017] [Accepted: 05/24/2017] [Indexed: 02/07/2023]
Abstract
CONTEXT Irisin, a novel exercise-induced myokine, has been suggested to regulate energy metabolism. OBJECTIVE We studied the relationship between circulating irisin and metabolic and metabolite profiles of Korean adolescents, and investigated the effects of physical activity, obesity, and metabolic syndrome (MetS) on irisin levels. MATERIALS AND METHODS Data were obtained from the Korean Children-Adolescents Study. Our cross-sectional study included 618 adolescents (370 normal-weight and 248 obese adolescents; 316 boys and 302 girls) aged 12-15years. Body composition was determined using an impedance body composition analyzer and general participant characteristics and lifestyle information were obtained from questionnaires. Serum irisin levels were measured using a commercial kit. RESULTS Mean body mass index (BMI) was 19.4kg/m2 in normal-weight adolescents and 31.4kg/m2 in obese adolescents. Circulating irisin was positively correlated with adiposity indices, including BMI z-score, waist circumference, percent body fat, fat mass, fat-free mass, fat mass to fat-free mass ratio, and lipid and glucose metabolism markers, including total cholesterol, low-density lipoprotein cholesterol (LDL-C), triglycerides, glucose, insulin, and homeostasis model assessment-estimated insulin resistance (all p≤0.006). Of these, increased body fat mass [standardized (Std) ß, 0.23; p<0.0001], LDL-C (Std ß, 0.14; p=0.0005) and fasting glucose (Std ß, 0.08; p=0.0383) were the main independent factors associated with higher irisin levels. Moreover, elevated serum irisin was associated with the risk of obesity [odds ratio (OR], 2.2; confidence interval (CI), 1.19-3.87] and MetS (OR, 2.0; CI, 1.15-3.47). Furthermore, irisin and branched-chain amino acids were positively associated (p<4×10-4 for Bonferroni correction). Additionally, in the normal-weight group, girls had higher irisin levels than boys (p=0.006) and adolescents who engaged in regular physical activity had higher levels of irisin than sedentary adolescents (p=0.0388). The relationship between physical activity and irisin levels was not observed in obese adolescents. CONCLUSIONS Elevated serum irisin was independently associated with the risk of obesity and positively correlated with unhealthy metabolic parameters and metabolites. Moreover, irisin levels were higher in active versus sedentary adolescents in the normal-weight group, but not in the obese group. Our findings suggest that irisin plays an important role in metabolic disorders and may be affected by physiopathological status.
Collapse
Affiliation(s)
- Han Byul Jang
- Center for Biomedical Science, Korea National Institute of Health, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Hyo-Jin Kim
- Center for Biomedical Science, Korea National Institute of Health, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Jae Heon Kang
- Department of Family Medicine, Obesity Research Institute, Seoul-Paik Hospital, Inje University, Seoul 100-032, Republic of Korea
| | - Sang Ick Park
- Center for Biomedical Science, Korea National Institute of Health, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Kyung Hee Park
- Department of Family Medicine, Hallym University Sacred Heart Hospital, Hallym University, Anyang, Gyeonggi-do 431-796, Republic of Korea.
| | - Hye-Ja Lee
- Center for Biomedical Science, Korea National Institute of Health, Cheongju, Chungcheongbuk-do, Republic of Korea.
| |
Collapse
|
414
|
Lombardi G, Sansoni V, Banfi G. Measuring myokines with cardiovascular functions: pre-analytical variables affecting the analytical output. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:299. [PMID: 28856139 PMCID: PMC5555982 DOI: 10.21037/atm.2017.07.11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/28/2017] [Indexed: 12/30/2022]
Abstract
In the last few years, a growing number of molecules have been associated to an endocrine function of the skeletal muscle. Circulating myokine levels, in turn, have been associated with several pathophysiological conditions including the cardiovascular ones. However, data from different studies are often not completely comparable or even discordant. This would be due, at least in part, to the whole set of situations related to the preparation of the patient prior to blood sampling, blood sampling procedure, processing and/or store. This entire process constitutes the pre-analytical phase. The importance of the pre-analytical phase is often not considered. However, in routine diagnostics, the 70% of the errors are in this phase. Moreover, errors during the pre-analytical phase are carried over in the analytical phase and affects the final output. In research, for example, when samples are collected over a long time and by different laboratories, a standardized procedure for sample collecting and the correct procedure for sample storage are acknowledged. In this review, we discuss the pre-analytical variables potentially affecting the measurement of myokines with cardiovascular functions.
Collapse
Affiliation(s)
- Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Veronica Sansoni
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Giuseppe Banfi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
415
|
Nakamura R, Okura T, Fujioka Y, Sumi K, Matsuzawa K, Izawa S, Ueta E, Kato M, Taniguchi SI, Yamamoto K. Serum fatty acid-binding protein 4 (FABP4) concentration is associated with insulin resistance in peripheral tissues, A clinical study. PLoS One 2017; 12:e0179737. [PMID: 28654680 PMCID: PMC5487042 DOI: 10.1371/journal.pone.0179737] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/02/2017] [Indexed: 01/22/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is caused by insulin resistance and β cell dysfunction. In recent studies reported that several markers associated with insulin sensitivity in skeletal muscle, Adiponectin and other parameters, such as fatty acid-binding protein (FABP4), have been reported to regulate insulin resistance, but it remains unclear which factor mostly affects insulin resistance in T2DM. In this cross-sectional study, we evaluated the relationships between several kinds of biomarkers and insulin resistance, and insulin secretion in T2DM and healthy controls. We recruited 30 participants (12 T2DM and 18 non-diabetic healthy controls). Participants underwent a meal tolerance test during which plasma glucose, insulin and serum C-peptide immunoreactivity were measured. We performed a hyperinsulinemic-euglycemic clamp and measured the glucose-disposal rate (GDR). The fasting serum levels of adiponectin, insulin-like growth factor-1, irisin, autotaxin, FABP4 and interleukin-6 were measured by ELISA. We found a strong negative correlation between FABP4 concentration and GDR in T2DM (r = -0.657, p = 0.020). FABP4 also was positively correlated with insulin secretion during the meal tolerance test in T2DM (IRI (120): r = 0.604, p = 0.038) and was positively related to the insulinogenic index in non-DM subjects (r = 0.536, p = 0.022). Autotaxin was also related to GDR. However, there was no relationship with insulin secretion. We found that serum FABP4 concentration were associated with insulin resistance and secretion in T2DM. This suggests that FABP4 may play an important role in glucose homeostasis.
Collapse
Affiliation(s)
- Risa Nakamura
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Tsuyoshi Okura
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
- * E-mail:
| | - Yohei Fujioka
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Keisuke Sumi
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Kazuhiko Matsuzawa
- Department of Regional Medicine, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Shoichiro Izawa
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Etsuko Ueta
- School of Health Science, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Masahiko Kato
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Shin-ichi Taniguchi
- Department of Regional Medicine, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Kazuhiro Yamamoto
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| |
Collapse
|
416
|
Dinas PC, Lahart IM, Timmons JA, Svensson PA, Koutedakis Y, Flouris AD, Metsios GS. Effects of physical activity on the link between PGC-1a and FNDC5 in muscle, circulating Ιrisin and UCP1 of white adipocytes in humans: A systematic review. F1000Res 2017; 6:286. [PMID: 28620456 PMCID: PMC5461915 DOI: 10.12688/f1000research.11107.2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2017] [Indexed: 01/08/2023] Open
Abstract
Background: Exercise may activate a brown adipose-like phenotype in white adipose tissue. The aim of this systematic review was to identify the effects of physical activity on the link between peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1a) and fibronectin type III domain-containing protein 5 (FNDC5) in muscle, circulating Irisin and uncoupling protein one (UCP1) of white adipocytes in humans. Methods: Two databases (PubMed 1966 to 08/2016 and EMBASE 1974 to 08/2016) were searched using an appropriate algorithm. We included articles that examined physical activity and/or exercise in humans that met the following criteria: a) PGC-1a in conjunction with FNDC5 measurements, and b) FNDC5 and/or circulating Irisin and/or UCP1 levels in white adipocytes. Results: We included 51 studies (12 randomised controlled trials) with 2474 participants. Out of the 51 studies, 16 examined PGC-1a and FNDC5 in response to exercise, and only four found increases in both PGC-1a and FNDC5 mRNA and one showed increased FNDC5 mRNA. In total, 22 out of 45 studies that examined circulating Irisin in response to exercise showed increased concentrations when ELISA techniques were used; two studies also revealed increased Irisin levels measured via mass spectrometry. Three studies showed a positive association of circulating Irisin with physical activity levels. One study found no exercise effects on UCP1 mRNA in white adipocytes. Conclusions: The effects of physical activity on the link between PGC-1a, FNDC5 mRNA in muscle and UCP1 in white human adipocytes has attracted little scientific attention. Current methods for Irisin identification lack precision and, therefore, the existing evidence does not allow for conclusions to be made regarding Irisin responses to physical activity. We found a contrast between standardised review methods and accuracy of the measurements used. This should be considered in future systematic reviews.
Collapse
Affiliation(s)
- Petros C. Dinas
- Institute of Sport, Faculty of Education Health and Wellbeing, University of Wolverhampton, Walsall, WS1 3BD, UK
- FAME Laboratory, Department of Physical Education and Exercise Science, University of Thessaly, Trikala, GR42100, Greece
| | - Ian M. Lahart
- Institute of Sport, Faculty of Education Health and Wellbeing, University of Wolverhampton, Walsall, WS1 3BD, UK
| | - James A. Timmons
- Genetics and Molecular Medicine, King’s College London, London, SE1 9RT, UK
| | - Per-Arne Svensson
- Department of Molecular and Clinical Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, SE-413 45, Sweden
| | - Yiannis Koutedakis
- Institute of Sport, Faculty of Education Health and Wellbeing, University of Wolverhampton, Walsall, WS1 3BD, UK
- Department of Physical Education and Exercise Science, University of Thessaly, Trikala, GR42100, Greece
- Institute for Research and Technology, Trikala, GR42100, Greece
| | - Andreas D. Flouris
- FAME Laboratory, Department of Physical Education and Exercise Science, University of Thessaly, Trikala, GR42100, Greece
| | - George S. Metsios
- Institute of Sport, Faculty of Education Health and Wellbeing, University of Wolverhampton, Walsall, WS1 3BD, UK
- Department of Physical Education and Exercise Science, University of Thessaly, Trikala, GR42100, Greece
| |
Collapse
|
417
|
Altara R, Giordano M, Nordén ES, Cataliotti A, Kurdi M, Bajestani SN, Booz GW. Targeting Obesity and Diabetes to Treat Heart Failure with Preserved Ejection Fraction. Front Endocrinol (Lausanne) 2017; 8:160. [PMID: 28769873 PMCID: PMC5512012 DOI: 10.3389/fendo.2017.00160] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/23/2017] [Indexed: 12/12/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major unmet medical need that is characterized by the presence of multiple cardiovascular and non-cardiovascular comorbidities. Foremost among these comorbidities are obesity and diabetes, which are not only risk factors for the development of HFpEF, but worsen symptoms and outcome. Coronary microvascular inflammation with endothelial dysfunction is a common denominator among HFpEF, obesity, and diabetes that likely explains at least in part the etiology of HFpEF and its synergistic relationship with obesity and diabetes. Thus, pharmacological strategies to supplement nitric oxide and subsequent cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) signaling may have therapeutic promise. Other potential approaches include exercise and lifestyle modifications, as well as targeting endothelial cell mineralocorticoid receptors, non-coding RNAs, sodium glucose transporter 2 inhibitors, and enhancers of natriuretic peptide protective NO-independent cGMP-initiated and alternative signaling, such as LCZ696 and phosphodiesterase-9 inhibitors. Additionally, understanding the role of adipokines in HFpEF may lead to new treatments. Identifying novel drug targets based on the shared underlying microvascular disease process may improve the quality of life and lifespan of those afflicted with both HFpEF and obesity or diabetes, or even prevent its occurrence.
Collapse
Affiliation(s)
- Raffaele Altara
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, Oslo, Norway
- Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
- *Correspondence: Raffaele Altara,
| | - Mauro Giordano
- Department of Medical, Surgical, Neurological, Metabolic and Geriatrics Sciences, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Einar S. Nordén
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, Oslo, Norway
- Bjørknes College, Oslo, Norway
| | - Alessandro Cataliotti
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, Oslo, Norway
| | - Mazen Kurdi
- Faculty of Sciences, Department of Chemistry and Biochemistry, Lebanese University, Hadath, Lebanon
| | - Saeed N. Bajestani
- Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
- Department of Ophthalmology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
418
|
Carson BP. The Potential Role of Contraction-Induced Myokines in the Regulation of Metabolic Function for the Prevention and Treatment of Type 2 Diabetes. Front Endocrinol (Lausanne) 2017; 8:97. [PMID: 28512448 PMCID: PMC5411437 DOI: 10.3389/fendo.2017.00097] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/18/2017] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle represents the largest organ in the body, comprises 36-42% of body weight, and has recently been recognized as having an endocrine function. Proteins expressed and released by muscle that have autocrine, paracrine, and endocrine bioactivities have been termed myokines. It is likely that muscle contraction represents the primary stimulus for the synthesis and secretion of myokines to enable communication with other organs such as the liver, adipose tissue, brain, and auto-regulation of muscle metabolism. To date, several hundred myokines in the muscle secretome have been identified, a sub-population of which are specifically induced by skeletal muscle contraction. However, the bioactivity of many of these myokines and the mechanism through which they act has either not yet been characterized or remains poorly understood. Physical activity and exercise are recognized as a central tenet in both the prevention and treatment of type 2 diabetes (T2D). Recent data suggest humoral factors such as muscle-derived secretory proteins may mediate the beneficial effects of exercise in the treatment of metabolic diseases. This mini-review aims to summarize our current knowledge on the role of contraction-induced myokines in mediating the beneficial effects of physical activity and exercise in the prevention and treatment of T2D, specifically glucose and lipid metabolism. Future directions as to how we can optimize contraction-induced myokine secretion to inform exercise protocols for the prevention and treatment of T2D will also be discussed.
Collapse
Affiliation(s)
- Brian P. Carson
- Health Research Institute, Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland
- *Correspondence: Brian P. Carson,
| |
Collapse
|